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We provide evidence on the relationship between aggregate uncertainty and the macroeconomy.
Identifying uncertainty shocks using methods from the news shocks literature, the analysis finds that
innovations in realized stock market volatility are robustly followed by contractions, while shocks
to forward-looking uncertainty have no significant effect on the economy. Moreover, investors have
historically paid large premia to hedge shocks to realized but not implied volatility. A model in which
fundamental shocks are skewed left can match those facts. Aggregate volatility matters, but it is the
realization of volatility, rather than uncertainty about the future, that has been associated with declines.
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1. INTRODUCTION

This article aims to estimate the magnitude of the effects of aggregate uncertainty shocks on eco-
nomic activity. Uncertainty about the economy varies substantially over time, countercyclically,
and often driven by policy choices. A growing literature has developed a range of theoretical
channels through which uncertainty shocks might cause recessions, though in most of those
models the sign of the effect of uncertainty shocks is actually ambiguous.1 Our analysis directly
applies to those theories by quantifying how the economy responds to identified shocks to
uncertainty. On a more practical level, it lets us ask whether events like Brexit or elections

1. For theoretical models, among many others, see Basu and Bundick (2017), Bloom et al. (2018), and
Leduc and Liu (2016). Bloom et al. (2018) discuss how in their model uncertainty shocks can have both expansionary
and contractionary effects, and similar forces are present in other settings.
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can have negative impacts on the economy purely through their effects on uncertainty, regardless
of any direct first-moment effects they may have.

The major identification problem we face is that uncertainty about the future tends to be related
to current economic conditions. The arrival of large shocks — i.e. the realization of volatility
— is correlated with increases in expected future volatility, that is, uncertainty about the future
(sometimes called GARCH effects, after the models of Engle (1982) and Bollerslev (1986)).
Our key distinction from past work is to construct shocks to uncertainty that are orthogonal to
current volatility. Current volatility measures how large are the shocks that have just occurred,
whereas uncertainty is about how large agents expect future shocks to be. Models of the effects
of uncertainty, such as those with wait-and-see or precautionary saving effects, are driven by
variation in agents’ subjective distributions of future shocks, as opposed to the variance of the
distribution from which today’s shocks were drawn.

Past work, such as Bloom (2009), found that shocks to stock market volatility, measured
as a mixture of realized and expected future volatility, have negative effects on the economy.
We show that the distinction between current volatility and news about the future is critical
for understanding the effects of uncertainty shocks. When uncertainty shocks are properly
defined as forward looking, they actually have no effects on the economy. Rather it is current
realized volatility that is associated with downturns and drives the previous results. Moreover, an
identification scheme separating realized from expected volatility accurately uncovers the true
structural uncertainty shocks in two recent state-of-the-art models of the effects of aggregate
uncertainty from Basu and Bundick (2017) and Bloom et al. (2018).

Empirically, the identified uncertainty shocks are not small, accounting for 30–60% of the
variation in total uncertainty, and they are associated with economically plausible uncertainty
events, such as the debt ceiling debates and the Euro crisis in 2010–12. Those events are
particularly useful for identification because they increased uncertainty but did not have any
direct effect on the economy on impact, unlike, for example, the Financial Crisis or 9/11. In a
vector autoregression (VAR), the identified uncertainty shocks are found to have no significant
effect on real activity, with confidence bands that we argue are meaningfully tight. Uncertainty
about the economy driven by major political and economic events does not appear, by itself, to
harm the economy.

The uncertainty shocks are primarily identified empirically in our analysis by option prices
(the VIX), so one possible explanation for our results is that even though investors in option
markets have extra information about future volatility, the average person might not (though note
that average investors do have access to option markets).2 The simplest way to check that is to
examine alternative measures of uncertainty. We show that alternative uncertainty indexes used in
the related literature are also able to predict future volatility above and beyond what is contained
in the past history of realized volatility, showing people do not simply extrapolate past volatility
when forecasting the future. Furthermore, when those indexes are used in our VAR, the finding
that uncertainty shocks are not contractionary is unchanged. However, we do show theoretically
that if agents use biased forecasts of future volatility, while our identification scheme still can
correctly identify the sign of the effect of uncertainty shocks, the magnitude may be biased down.

While there are many models explaining how uncertainty shocks might drive the economy,
there are no current models available matching our findings that uncertainty shocks are not
contractionary while realized volatility shocks are. The last section of the article presents a
simple rational expectations model that quantitatively matches our evidence. Its key mechanism

2. Note that we do not assume that the option-implied volatility is the statistical expectation of future volatility.
So, for example, we do not rule out time-variation in volatility risk premia.
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is that shocks to technology are negatively skewed.3 Negative skewness means that large shocks
— which cause high realized volatility — also tend to be negative shocks, immediately generating
the observed negative correlation between realized volatility and output. Our finding that realized
volatility is associated with contractions does not therefore imply that realized volatility per se
is contractionary — it can be simply capturing the occurrence of a large negative shock (in our
model, a downward jump in technology). In simulations, the model matches the empirical left
skewness in real activity and also the relative sizes of the financial risk premia on shocks to realized
and implied volatility. Most importantly, when we use our VAR identification on simulations of
the model, the impulse response functions (IRFs) are quantitatively similar to the data and the
identified shocks are very strongly correlated with the true structural shocks, providing further
theoretical support for our identification scheme.

In addition to the macroeconomic studies discussed above, our work is also closely related to
an important strand of research in finance studying the differences between expected and realized
volatility, e.g. Andersen et al. (2007). A jump in stock prices, such as a crash or the response
to a particularly bad macro data announcement, mechanically generates high realized volatility.
On the other hand, news about future uncertainty, such as an approaching presidential election,
increases expected volatility (Kelly et al., 2016). This article also contributes to the literature on
the pricing of shocks to realized and implied volatility: we show that historically, investors have
paid large premia to hedge shocks to realized volatility, but the premia associated with shocks
to implied volatility are close to zero, implying that investors do not view uncertainty shocks as
unfavourable.

Our VAR estimation method is closely related to the recent literature on news shocks in
macroeconomics.4 Past work has focused on first-moment news shocks: news about the average
future path of the economy (e.g. future productivity growth). This article extends the estimation
to second-moment news shocks — changes in expected future squared growth rates. News about
the expectation of future squared growth rates represents an uncertainty shock in that it is a change
in the conditional variance (see Beaudry and Portier (2014)). In the same way that a shock to the
current level of total factor productivity (TFP) is not the same as a shock to expected future TFP
growth, a surprisingly large squared shock today — realized volatility — is not the same as an
increase in conditional variance, or uncertainty.

Our work is also related to a large empirical literature that studies the relationship
between aggregate volatility and the macroeconomy. A wide range of measures of volatility
in financial markets and the real economy have been found to be countercyclical.5 Data used
in past work have generally only measured either uncertainty (e.g. the surveys studied in
Bachmann et al. (2013)) or realized volatility (e.g. the cross-sectional variance of income growth
in Storesletten, Telmer and Yaron (2007)). Part of our contribution is to measure both.

To identify causal effects, a number of papers use VARs, often with recursive identification,
to measure the effects of volatility shocks on the economy.6 Ludvigson et al. (2015), like us,

3. See also Morley and Piger (2012), McKay and Reis (2008), and Salgado et al. (n.d.) for recent work on
skewness. While our skewness is exogenous for simplicity, a richer model could endogenize it.

4. For example, Beaudry and Portier (2006), Barsky and Sims (2011), and Barsky et al. (2014).
5. See, among others, Gilchrist et al. (2014), Campbell et al. (2001), Storesletten et al. (2004), Guvenen et al.

(2014), Eisfeldt and Rampini (2006), Alexopoulos and Cohen (2009), Bloom et al. (2015), and Caggiano et al. (2014).
6. See Bloom (2009) and Basu and Bundick (2017), who study the VIX; and Bloom et al. (2015) and

Alexopoulos and Cohen (2009), who study news-based measures of uncertainty. Jurado et al. (2015) and Ludvigson et al.
(2015) measure uncertainty based on squared forecast errors for a large panel of macroeconomic time series (using a
2-sided filter to extract a latent volatility factor). Baker and Bloom (2013) use cross-country evidence to argue that there
is causal and negative relationship between uncertainty and growth. See also Born and Pfeifer (2014), Caldara et al.
(2016), Fernandez-Villaverde et al. (2011), Fernandez-Villaverde et al. (2013), Leduc and Liu (2016).
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TABLE 1
Relationship between employment, IP, and volatility

Employment Industrial production

v1 −0.10∗∗ 0.05 −0.09∗ 0.16
(0.04) (0.07) (0.05) (0.12)

rv −0.14∗∗ −0.23∗
(0.07) (0.13)

Note: Results from regressions of changes in log employment and IP on the current value and four lags of implied (v1)
and realized volatility (rv) (in logs). The coefficients and standard errors in the table are for the average of the coefficients
on each variable. Standard errors are calculated using the Newey–West (1987) method with twelve lags.

distinguish between different types of uncertainty and examine reverse causation from activity
to uncertainty.7 Caldara et al. (2016) use a penalty-function based identification scheme to
distinguish between the effects of uncertainty and financial conditions.

Many different concepts of uncertainty have been studied in the literature. This article aims
to understand the effects of uncertainty about the aggregate economy, and, similar to past work,
we focus on uncertainty about the aggregate stock market. Our negative results therefore do not
rule out potential effects of other factors, such as uncertainty about idiosyncratic shocks (e.g.
Christiano et al. (2014)) or policies with cross-sectional effects.

2. PRELIMINARY EVIDENCE

We begin by briefly presenting simple regressions that illustrate the basic results of the article.
Table 1 reports results of regressions of monthly growth rates of employment and industrial
production (IP) on the current value and four lags of realized S&P 500 volatility and option-implied
volatility. We discuss the data in more detail below, but realized volatility (RV ) is calculated as the
sum of daily squared returns on the S&P 500 index each month, and option-implied volatility (V1)
is nearly identical to the VIX and it is calculated based on option prices at the end of each month.
Realized volatility therefore measures current conditions, while implied volatility is related to
uncertainty about the future. All variables are converted to z-scores to aid interpretation of the
coefficients. We report only the average of the coefficients on realized and implied volatility (they
are relatively stable across lags).

The first column in the two sections of Table 1 shows results from regressions that include
only option-implied volatility (V1):

yt =a+b(L)V1,t +εt, (1)

where yt corresponds to the different macroeconomic measures, and the table reports the average
of the coefficients in the fourth-order lag polynomial b. The results show that high option-implied
volatility is correlated with declines in employment and IP.

The second column of each section adds realized volatility — the sum of daily squared stock
returns during month t (RVt) — and its lags to the regression:

yt =a+c(L)RVt +b(L)V1,t +et . (2)

Once realized volatility is included, implied volatility no longer carries negative coefficients
— the coefficients are actually positive on average in both regressions. That result implies that

7. Other papers arguing that causality could run from real activity to volatility and uncertainty include Decker et al.
(2016), Berger and Vavra (2013), Ilut et al. (2015), Kozlowski et al. (2016), Creal and Wu (2017), and Cesa-Bianchi et al.
(2018). See also Carriero et al. (2016) and Popiel (2017) for alternative identification schemes.
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implied volatility is not associated with downturns because of the fact that it represents uncertainty
about the future, but rather because it is correlated with how volatile returns are in month t. But
contemporaneous volatility is conceptually distinct from uncertainty about the future. Table 1
gives the simplest way to see the article’s basic result that uncertainty about the future is not
associated with declines in real activity.

2.1. Identification and expectation biases

The regressions in Table 1, and our main empirical analysis below, use option-implied volatility
to help measure uncertainty, and interpreting them requires making assumptions about the
relationship between option-implied uncertainty and that of the average person. Suppose the
true statistical measure of uncertainty, Ut , and the uncertainty of the average consumer in the
economy, U∗

t , are (ignoring constants throughout)

Ut = u1RVt +u2V1,t (3)

U∗
t = u∗

1RVt +u∗
2V1,t . (4)

If agents extrapolate excessively, we would say that u∗
1 >u1 (they put too much weight on RV ) and

perhaps u∗
2 <u2 (they ignore some of the information in V1), while u∗

1 =u1 and u∗
2 =u2 represents

rationality.8

The relationship between output and volatility has two components. First, agents’ uncertainty
might have a direct impact on output Yt . Second, it is possible that output and RV share a common
shock. We show in our structural model in Section 8 that will happen if shocks to output are skewed
left — then relatively large shocks, with high RV , will tend to be negative. So we have the system,

Yt = −bUU∗
t −Jt (5)

RVt = Ut−1 +bRV Jt, (6)

where −Jt is a binary variable representing a downward jump that reduces output and increases
RV . Note that while it is the agents’ perceived uncertainty U∗

t that determines the macroeconomic
response in (5), the conditional mean of RV is by definition the statistical measure of uncertainty,
Ut , in (6).

Suppose we regress Yt on RVt and V1,t and their lags, as above. Combining the above equations,

Yt =b−1
RV Ut−1 −

(
bUu∗

1 +b−1
RV

)
RVt −bUu∗

2V1,t . (7)

RV can have a negative coefficient in these regressions either because uncertainty causes declines
in output or because RV and output share a common shock, J . Observing a negative relation
between output and RV therefore does not prove the existence of negative effects of uncertainty.
Moreover, the negative relationship between output and RVt is not causal; RVt just helps measure
a level shock to output.

Most importantly, the coefficient on implied volatility shows that as long as u∗
2 >0, i.e. as long

as there is some relationship between agents’ uncertainty and option-implied volatility, then if
uncertainty has contractionary effects, at least the sign of this relationship will be identified from
the coefficient on V1,t .

8. This specification tries to capture in reduced form different potential sources of extrapolative expecta-
tions and other behavioural biases, studied in a vast literature. See, for example, Barberis and Shleifer (2003),
Greenwood and Shleifer (2014), Greenwood and Hanson (2014), Barberis et al. (2016, 2015), Gennaioli et al. (2016),
and Bordalo et al. (2017).
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2.2. Challenges

The article’s basic result is in Table 1: realized volatility drives out implied volatility, indicating
that uncertainty shocks are not contractionary. Table 1 is insufficient by itself to convincingly
make that point, though. First, the simple linear regressions allow only very minimal dynamics,
they do not allow us to estimate IRFs or identify structural shocks, and they do not yield variance
decompositions to help understand the sources of variation in output. Second, one might naturally
ask whether the identification scheme used here would work in leading models of uncertainty
shocks. Third, even if we find empirically with more sophisticated methods that identified
uncertainty shocks do not affect real activity, the model above shows that could be because
u∗

2 =0 rather than u2 =0 – agents forecast volatility based only on its past realizations. Fourth,
what kind of model would be required to rationalize the result that realized volatility predicts
contractions but uncertainty and implied volatility do not?

The remainder of the article addresses those four issues. We examine shocks to realized and
implied volatility in a VAR, show that the results are robust to a wide range of specification
and identification choices, show that the identification scheme successfully uncovers structural
shocks in three different theoretical models, and provide evidence on u∗

2 from uncertainty surveys
and returns on stock options. Finally, we develop a novel model with skewed shocks that can
rationalize the empirical results.

3. GENERAL EMPIRICAL FRAMEWORK

This section describes how we define, measure, and identify uncertainty shocks in the data.

3.1. Conditional variances

Denote the log of the total return stock index as st . Uncertainty about the future value of the
stock market relative to its value today is measured in this article as the conditional variance,
Vart

[
st+n

]
.

The one-period log stock return is rt ≡st −st−1. If returns are unpredictable and time periods
are sufficiently short that Etrt+1 ≈0, we have:

Vart
[
st+n

]≈Et

⎡
⎣n−1∑

j=1

r2
t+j

⎤
⎦. (8)

The conditional variance of stock prices on some future date is equivalent to the expected total
variance of returns over that same period. Under standard conditions on the returns process, as
the length of a time period approaches zero, (8) becomes an equality. This equation therefore says
that uncertainty about future returns is equal to the expectation of future squared returns.

So a shock to uncertainty is a shock to expected future volatility. That is conceptually distinct
from a shock to current squared returns, r2

t . Realized and expected volatility may be correlated, but
they are not the same object, and the results in Table 1 suggest that they have distinct relationships
with real activity.

Since the data on real activity are measured at the monthly frequency but stock returns are
available at a daily frequency, realized volatility is measured as the sum of daily squared returns
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over each month,9

RVt ≡
∑

days∈t

r2
daily. (9)

We then have

Vart
[
st+n

]≈Et

⎡
⎣ n∑

j=1

RVt+j

⎤
⎦. (10)

3.2. VARs

To identify uncertainty shocks and estimate their effects, we estimate VARs of the form[
RVt
Yt

]
=C+F (L)

[
RVt−1
Yt−1

]
+Aεt, (11)

where RVt is realized volatility from (9), Yt is a vector including measures of real activity, variables
that help forecast future values of realized volatility, and other controls, C is a vector of constants,
and F (L) is a matrix polynomial in the lag operator, L. εt is a vector of uncorrelated innovations
with unit variances. (11) can be estimated by ordinary least squares. The VAR has a moving
average representation, [

RVt
Yt

]
= (I −F (1))−1C+B(L)Aεt (12)

where B(L) =
∞∑

j=0

BjL
j =(I −F (L))−1 . (13)

The shocks to realized volatility and uncertainty are identified under a timing restriction (which
is relaxed in Section 6.1.2 and Section A.3 of the Online Appendix). The realized volatility shock
is treated as moving first, so that its IRFs are defined as

∂E
[
Yt+j |RVt,RVt−1,Yt−1]

∂RVt
=BjA(:,1), (14)

where A(:,1) denotes the first column of A. E denotes the expectation operator conditional on the
VAR (11) and RVt−1 and Yt−1 are the histories of RV and Y up to date t−1. As in Hamilton
(1994), the impulse response is defined as the average change in expectations for the future
following a unit innovation in realized volatility. We do not view the realized volatility shock as a
structural shock — obviously volatility in the stock market depends on many different underlying
shocks. Instead, the IRF tells us on average how the economy (output, employment, etc.) changes
when realized volatility changes.

The second estimated shock is the residual innovation in uncertainty over the following n
periods, Vart

[
st+n

]
or, equivalently, the residual innovation in expectations of future volatility.

9. Calculating RV with just the monthly return — or with monthly output or TFP growth — would yield a much
noisier measure of actual volatility. If returns are i.i.d., for example, and there are on average twenty-one trading days
in a month, then the variance of the sum of daily squared returns is twenty-one times smaller than the variance of the
squared monthly return. So daily data can give a much more accurate estimate of the true underlying current volatility
(as the sampling frequency becomes infinite, volatility can potentially be estimated without error, in fact).
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It is the component of Et
∑n

j=1RVt+j −Et−1
∑n

j=1RVt+j that is orthogonal to RVt −Et−1RVt . In
other words, the uncertainty shock is ordered second, following realized volatility.

The identifying assumption is that on average, structural uncertainty/volatility news shocks
do not cause changes in realized volatility on impact, while realized volatility can potentially
affect uncertainty. The latter effect, as discussed above, is sometimes called a GARCH effect
— high volatility today predicts high volatility in the future. The motivation for the assumption
that uncertainty shocks do not affect realized volatility on impact is that while a large increase in
uncertainty should drive stock prices down, generating a large squared return, a large reduction in
uncertainty drives stock prices up, thus also generating a large squared return. That is, the causal
effect of uncertainty shocks on realized volatility is approximately quadratic. On average, then,
the effect of uncertainty on RV on impact will be near zero. Section 6.1.1 shows that this intuition
in fact holds in three theoretical models, and that the timing assumption successfully identifies
structural uncertainty shocks in those cases.

To construct the news shock, we use the total change in cumulative expected volatility up to
time t+n, which is

Et

n∑
j=1

RVt+j −Et−1

n∑
j=1

RVt+j =
⎛
⎝e1

n∑
j=1

Bj

⎞
⎠Aεt, (15)

where e1 = [1,0,...]. The parameter n determines the horizon over which the news shock is
calculated. Cumulative expected volatility depends on the sum of the first rows of the MA
coefficient matrices up to lag n. The innovation to expectations over horizon n, i.e. the news
about future volatility, is then the linear combination of shocks represented by e1

∑n
j=1BjA. As in

Barsky et al. (2014) and Barsky and Sims (2011), we orthogonalize that linear combination with
respect to the innovation to RVt so that the impact shock to RVt is uncorrelated with the news
shock.10

The uncertainty shock, denoted ut , is equal to the component of
(

e1
∑n

j=1Bj

)
Aεt that is

orthogonal to the RV shock, e1Aεt , and its impulse responses are defined as

∂E
[
Yt+j |ut,RVt,RVt−1,Yt−1

]
/∂ut . (16)

Again, the VAR yields the average behaviour of the economy following a unit increase in
uncertainty (conditional on RVt), as measured by ut .

The two impulse responses are only identified up to some normalization. We scale them so
that they have the same effect on uncertainty. The uncertainty/news shock is reported as a unit
standard deviation impulse, while the realized volatility shock is rescaled so that its cumulative
effect on uncertainty (i.e. its IRF for realized volatility over the next 24 months) is the same as
that for the news shock. The shocks then have equal effects on uncertainty about the future and
differ only in their effect on realized volatility on impact.

We set n=24 months. Past work finds that volatility shocks have half-lives of 6–12 months,
so 24 months represents the point at which the average shock has dissipated by 75% or more.
Choosing n between 12 and 60 months yields similar results.

10. The orthogonalized innovation is simply e1
∑n

j=1 BjĀεt , where Ā is equal to A but with the first column set to
zero.
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4. DATA

4.1. Macroeconomic data

As in other work in this literature (Bloom, 2009; Leduc and Liu, 2016), we use monthly data to
maximize statistical power, since fluctuations in both expected and realized volatility are often
relatively short-lived. Real activity is measured by the Federal Reserve’s measure of IP for the
manufacturing sector and total non-farm private employment.

4.2. Financial data

We obtain data on daily stock returns of the S&P 500 index from the CRSP database and use it
to construct RVt at the monthly frequency. Option-implied volatilities, Vn,t , are included in the
state vector to help forecast future volatility (the assumption is not that they represent statistical
forecasts of future volatility). They are constructed using prices of S&P 500 options obtained from
the Chicago Mercantile Exchange (CME), with traded maturities from one to at least 6 months
since 1983 (with IV in month t calculated as the average over the last three days of the month).
We thus have a substantially longer sample of implied volatility than has been used in past work.
Given that shocks to stock market volatility have half lives estimated to be approximately six to 9
months (see Bloom (2009) and Drechsler and Yaron (2011)), 1- to 6-month options will contain
information about the dominant shocks to stock market uncertainty. Technically, Vn,t is defined
as the option-implied variance of the stock index on date t+n under the pricing measure Q,11

Vn,t ≡VarQ
t
[
st+n

]
. (17)

The online appendix provides the details of the calculation. We use the measure of VarQ
t
[
st+n

]
in

(17) because it maps directly to our object of interest, the conditional variance of log stock prices.
In practice, it is extremely close to the VIX calculated by the CBOE and other related model-free
implied volatility measures. In the remainder of the article we focus on the logs of realized and
option-implied volatility (rvt ≡ logRVt , vn,t ≡ logVn,t) due to their high skewness.

Figure 1 plots the history of realized volatility along with 1-month option-implied volatility in
annualized standard deviation terms. Both realized and option-implied volatility vary considerably
over the sample. The two most notable jumps in volatility are the financial crisis in 2008 and
the 1987 market crash, which both involved realized volatility above 75 annualized percentage
points and rises of V1,t to 65%. More generally, realized volatility tends to be highest in periods
when the market falls, and that relationship is strongest around extreme events. In particular,
the monthly correlation between realized volatility and S&P 500 stock returns is −0.28. The
correlation between the cubes of those variables, which emphasizes extreme returns, is −0.71.
On the other hand, the correlation between the cube roots of realized volatility and S&P 500
returns is only −0.23 (these correlations are all significant at the 1% level). The months with the
most extreme realized volatility also tend to have the most extremely negative returns — the four
highest realizations of realized volatility all have negative returns for the S&P 500, including the
two lowest over our sample.

At lower frequencies, the periods 1997–2003 and 2008–12 are associated with persistently
high uncertainty, while it is lower in other periods, especially the early 1980s, early 1990s, and
mid-2000s. There are also distinct spikes in uncertainty in the summers of 2010 and 2011, likely

11. The pricing measure, Q, is equal to the true (or physical) pricing measure multiplied by Mt+1/Et
[
Mt+1

]
, where

Mt+1 is the pricing kernel.
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Figure 1

Time series of realized volatility and expectations.

Note: Time series of realized volatility (RV ), and 1-month option-implied volatility (V1), in annualized standard deviation units. Grey bars
indicate NBER recessions.

due to concerns about the stability of the Euro zone and the willingness of the U.S. government
to continue to pay its debts. Those events will be particularly important for our identification.

5. VAR RESULTS

All VARs below use four lags, as suggested by the Akaike information criterion for the main
specification. The vector of variables in the benchmark specification is

[
rvt,v1,t,FFRt,ipt,empt

]
,

where the latter three variables are the Fed Funds rate, log industrial production, and
log employment, respectively. The benchmark specification imposes the restriction that the
coefficients on the lags of FFR, ip, and emp in the equations for rv and v1 are equal to zero,
which helps reduce overfitting and is consistent with predictive regressions discussed in Section
6.3.1. A χ2 test of the validity of those restrictions yields a p-value of 0.61, implying that they are
consistent with the data. Section 6.3.2 examines the issue of overfitting the volatility equations
in more detail.

5.1. Benchmark specification

Figure 2 has three columns for the responses of rv, employment, and IP to the shocks. As discussed
above, these IRFs are scaled so that the two shocks — current rv and the identified uncertainty
shock — have the same total effect on volatility expectations (uncertainty) 2–24 months in the
future (i.e. not counting the impact period). Each panel shows the point estimate for the IRFs
along with 1-standard deviation (68%) and 90% bootstrapped confidence intervals.

The first row shows the response of the economy to the rv shock. The shock to realized volatility
is very short-lived: the IRF falls by half within 2 months, and by three-fourths within 5 months,
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Figure 2

IRFs from benchmark VAR.

Note: Responses of rv, employment, and IP to shocks to rv and the identified uncertainty shock, in a VAR with rv, v1, federal funds rate,
log employment, and log IP. The IRFs are scaled so that the two shocks have equal cumulative effects on rv over months 2–24 following
the shock. The sample period is 1983–2014. The dotted lines are 68% and 90% confidence intervals.

showing that realized volatility has a highly transitory component. Those transitory increases in
realized volatility are associated with statistically and economically significant declines in both
employment and IP. So, consistent with past work, we find a significant negative relationship
between volatility and real activity. But this result does not imply that an uncertainty shock is
contractionary, since the realized volatility shock is a combination of shocks to both current
realized volatility and also expectations about the future. In the language of Section 2.1, the rv
shock may include the shock to the level of output, J .

The second row of panels in Figure 2 plots IRFs for the identified pure uncertainty shock,
which has no contemporaneous effect on rv. The news shock forecasts high realized volatility in
the future at a high level of statistical significance — p-values testing whether the IRF is positive
range between 0.001 and 0.05 — indicating that the identified news shock contains statistically
significant news about uncertainty, even after controlling for the contemporaneous rv shock.

Surprisingly, though, the second-moment news shocks are associated with no significant
change in either employment or IP; the IRFs both stay very close to zero at all horizons. And the
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confidence bands are sufficiently narrow that the point estimates for the responses of employment
and IP to the rv shock are outside the 90% confidence bands for the uncertainty shock.

To further examine the relative magnitudes, the bottom row of panels in Figure 2 reports the
difference in the IRFs for the uncertainty and realized volatility shocks along with confidence
bands. The two shocks have the same cumulative impacts on the future path of realized volatility
(by construction, due to the scaling of the IRFs), and they have different effects on rv on impact
due to the identifying assumptions. The difference in the IRFs is statistically significant for
employment, weakly so for IP. So innovations in rv are followed by statistically significant
declines in real activity, while uncertainty shocks are not, and that difference itself is statistically
significant in one case.

An alternative way to interpret the bottom row of Figure 2 is that it represents the response
of the economy to a pure shock to realized volatility that has no net effect on forward-looking
uncertainty. By construction, the shock in the third row has a positive effect on rv on impact, but
the IRF for rv over the following twenty-four periods sums to zero. The figure shows that such a
shock has negative effects on the economy.

Overall, then, Figure 2 shows that under our baseline identification scheme, shocks to rv are
associated with statistically significant subsequent declines in output, while uncertainty shocks
are not, and the difference between those two results is itself statistically significant. That result
is notable given that past work (e.g. Bloom (2009), Basu and Bundick (2017), Leduc and Liu
(2016)) has found that increases in option-implied volatility are followed by declines in output
(a result we also obtain in our data; see Online Appendix Figure A.5). The results here show that
it is actually realizations of volatility that seem to drive such effects, as opposed to shocks to
uncertainty about the future. These results are essentially the same as those in Table 1, simply
with more controls, a flexible lag structure, and a formal identification scheme.

5.2. Variation in volatility and uncertainty

To further understand the importance of the uncertainty and rv shocks, Figure 3 reports forecast
error variance decompositions (FEVDs). As in Figure 2, we report the effect of the rv shock, the
uncertainty shock, and their difference.

The first column reports variance decompositions for uncertainty, again defined as

Et

[∑24
j=1rvt+j

]
. At the point estimates the rv shock accounts for 65% of the variance of

uncertainty, while the uncertainty shock accounts for the remaining 35%. The confidence bands
are wide enough, though, that at most horizons we cannot reject the hypothesis that the rv and
news shocks account for equal fractions of the variance of uncertainty at even the 32% significance
level.

To further examine the relative importance of the two shocks for uncertainty, Figure 4 plots
fitted uncertainty from the VAR along with the parts driven by the rv and identified uncertainty
shocks.12 Ignoring constants, total uncertainty is equal to the sum of those two parts (which
follows from the linearity of the model). The component from the uncertainty shocks does not

12. In the VAR, there exists a vector B such that

Et

⎡
⎣ 24∑

j=1

rvt+j

⎤
⎦=B

[
Ỹ ′

t ,Ỹ
′
t−1,...,Ỹ

′
t−4

]′
, (18)

where Ỹt ≡
[
Y ′

t ,RVt
]′

. The time series Ỹ rv is constructed by using the VAR structure and setting all the estimated shocks

to zero except for the rv shock. Similarly, Ỹ news is constructed by setting all estimated shocks except the news shock to
zero. The parts of uncertainty coming from rv and news are then BỸrv and BỸnews, respectively.
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Figure 3

Forecast error variance decomposition.

Note: Fraction of the forecast error variance of uncertainty (the expected sum of rv over the next 24 months), employment, and IP due to
shocks to rv and uncertainty in the VAR of Figure 2. The bottom row is the difference between the first two.

represent total uncertainty because shocks that affect rv can also affect uncertainty (e.g. through
GARCH effects). The component from the uncertainty shocks is the part generated by the pure
news shocks.

The standard deviation of the part of uncertainty coming from news is only 22% smaller than
that coming from rv, which is visible from the similar overall variation in the two series. The
periods with the largest increases in news-driven uncertainty are associated with events that are
clearly associated with uncertainty: the 1987 and 2008 market crashes and the third quarter of 2011
(debt ceiling and Euro crisis). At lower frequencies, the news-driven component of uncertainty is
high around the 1990 recession (i.e. around the First Gulf War), in the late 1990s (Asian financial
crisis, Russian default, LTCM), and between 2010 and 2012 (debt ceiling debates, Euro crisis).
These are all periods that are plausibly related to high forward-looking uncertainty about real
events.

The financial crisis and 9/11, on the other hand, are periods of high uncertainty, but driven by
rv rather than pure uncertainty shocks. In the context of the model, they would be driven by the
jump shock, J . Intuitively, those were real events that had first-moment effects on the economy,
while simultaneously affecting uncertainty.
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(a)

(b)

Figure 4

Fitted uncertainty. (a) Decomposition of total uncertainty in the benchmark specification; (b) Total uncertainty in

benchmark versus unrestricted specification.

Note: The top panel reports a decomposition of total uncertainty (the conditional expectation of the sum of rv over the next 24 months)
between the component driven by the rv shock and the component driven by the uncertainty shock in the benchmark model. The bottom
panel reports the total uncertainty in the benchmark model and in the unrestricted specification.
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The identified shocks are also both strongly correlated with returns on the S&P 500.
Specifically, the correlations of the identified rv and uncertainty shocks with S&P 500 returns are
as follows:

Correlations with S&P 500 returns
rv shock: −0.412
Uncertainty shock: −0.405

The rv and uncertainty shocks (which are uncorrelated with each other by construction)
have substantial negative and nearly identical correlations with stock returns. So not only is
the uncertainty shock significantly associated with future volatility, but it is also associated
with substantial declines in stock returns.13 These facts make it all the more surprising that
the uncertainty shock is not associated with any significant change in real activity.

5.3. Forecast error variance decompositions for employment and IP

In addition to the FEVDs for uncertainty, Figure 3 also reports FEVDs for the two real outcomes,
employment and IP. The realized volatility shock explains 25% of the variance of employment
and 10% of the variance of IP at the two-year horizon, while the point estimates for the fraction
of the variance accounted for by second-moment news are 2% or less, and the upper ends of the
90% confidence intervals are near 5% for the first year.

Note also that the lack of importance of the uncertainty shock for real outcomes is not simply
due to its size. Again, the pure uncertainty shock in the second row accounts for 35% of the total
variance of uncertainty. So if we scale up the variance decompositions for employment and IP
by multiplying them by 3, the point estimates still say that all uncertainty variation accounts for
less than 5% of the total variance of employment and IP.

Looking at the third row, the behaviour of the rv and news shocks is again significantly
different. For employment, the variance accounted for by the rv shock is larger at the 90% level,
while for IP, they differ at only a 1-standard-deviation level.

6. IDENTIFICATION CHALLENGES

This section addresses numerous potential concerns about the VAR results, including threats to the
identification scheme, the interpretation of the identified shocks, and sensitivity to specification
choices.

6.1. The identification scheme

This subsection first shows that the baseline identification scheme successfully identifies structural
uncertainty shocks in three theoretical models, then shows that the empirical results also hold
under milder restrictions than the strict timing assumption used in the baseline case.

6.1.1. Identification in structural models. The benchmark identification scheme
involves a timing restriction: it identifies uncertainty shocks that do not affect realized volatility

13. Note that this result is entirely consistent with our identification scheme. The assumption is not that uncertainty
shocks do not cause on average changes in returns, but changes in realized volatility, which is a quadratic function of
returns.
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contemporaneously. In Section 2.1, that is imposed by the assumption that RVt does not depend
on uncertainty on date t. Obviously, there are data generating processes that will violate that
assumption. We ask, though, whether it should be expected to be violated in theoretical models.

A natural worry about the timing assumption is that a shock that increases uncertainty about
the future would be expected to reduce stock prices and thus create realized volatility. But a shock
that decreases uncertainty also changes stock prices, just in the opposite direction, also creating
realized volatility. Since there is a quadratic relationship between shocks and realized volatility —
both large positive and large negative shocks create high RV — the average (i.e. expected) effect
of uncertainty shocks on RV can be close to zero, which is what is required for our identification
scheme to work.14

To test the identification scheme and its performance, we examine state-of-the-art models of
uncertainty shocks from Basu and Bundick (2017; BB) and Bloom et al. (2018; RUBC).15 The
BB and RUBC models capture the two most prominent channels through which uncertainty has
been proposed to affect the economy: precautionary saving and wait-and-see effects, respectively.
We also develop a model below that can rationalize the empirical results through left skewness
in technology shocks, so we refer to it as the RSBC model — “really skewed business cycles” —
to highlight the key difference with Bloom et al.’s (2018) RUBC — “really uncertain business
cycles”.

To test the identification in these models, we estimate the VAR specification in simulations.16

The correlations of the identified uncertainty shock with the true shock to uncertainty in the three
models are as follows:

Correlation of VAR-identified uncertainty shock
with structural uncertainty shock:

BB RUBC RSBC
0.94 0.98 0.87

The identification scheme robustly identifies the true structural innovation to uncertainty across
three very different structural models. That happens because in all three cases the identifying
assumptions hold. The uncertainty shocks in the models all increase the future volatility of stock
returns, and they are uncorrelated with realized volatility on impact:

Contemporaneous correlation of structural
uncertainty shocks with realized volatility:

BB RUBC RSBC
−0.01 −0.10 0.00

These correlations confirm, for the three models, the identifying assumption discussed in
Section 3.2 (which also appeared in the model of Section 2.1).

14. As a formal example, if shocks to uncertainty are symmetrically distributed and they have a linear relationship
with stock returns, then the average effect of an uncertainty shock onto squared stock returns is exactly zero. Empirically,
monthly changes in the log of S&P 500 implied volatility are indeed close to symmetric: the 10th, 25th, 75th, and 90th
percentiles are −0.59, −0.34, 0.25, and 0.62 (see also Amengual and Xiu (2014)).

15. The simulations of the BB model are carried out with the replication files available from Econometrica’s website.
Stephen Terry generously provided simulations of the RUBC model.

16. The three models are all specified in discrete time with time periods equal to a quarter in the case of BB and
RUBC and a month in the case of RSBC, so there is not an exact mapping in the models to the daily realized volatility
that we study empirically. We approximate it here as the square of the total realized return in the model in each period,
after subtracting mean returns as a normalization.
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Figures A.6 and A.7 in the Online Appendix report the IRFs estimated using the VAR in the
BB and RUBC models. They show that in both models, the estimated uncertainty shocks drive
output down significantly (which is the effect of structural uncertainty shocks in the models),
while realized volatility shocks have no effect, the opposite of what we find empirically. Section
8 and Figure 9 below show that the RSBC model, on the other hand, qualitatively and quantatively
matches the empirical VAR results.

A reason that it is important to control for RV first in the VAR is that RV itself may raise future
uncertainty. That effect is a standard result in the finance literature on volatility, often referred
to as a GARCH (generalized autoregressive conditional heteroskedasticity) effect (Engle, 1982;
Bollerslev, 1986). We can also use the simulations of the models to explore what happens if the
assumed timing of the shocks is reversed, failing to control for realized volatility in identifying
the uncertainty shock. That is, what if we assume that uncertainty shocks move first and realized
volatility second? In that case, the identifying assumption is that the change in uncertainty is
affected by no other shocks in the economy. In the three simulated models, we then find that
the VAR-identified uncertainty shock is less strongly correlated with the true uncertainty shock.
Specifically, in the BB, RUBC, and RSBC models, the correlations between the VAR-identified
and the true uncertainty shock become 0.94, 0.66, and 0.80, respectively. In the BB model, the
timing is not relevant because in the VAR in that model innovations to realized volatility and
uncertainty are uncorrelated (which is strongly at odds with the data). In the other two models,
though, realized volatility and uncertainty are more correlated, and the ordering of the variables
does in fact matter.

To summarize, then, our identification scheme does extremely well in capturing the true
uncertainty shock across the three models; conversely, none of the shocks in the reverse ordering
correctly captures the uncertainty shock in general.

6.1.2. Weakening the timing assumption. Section A.3 of the Online Appendix reports
results from a Bayesian version of the estimation that uses a somewhat different identification
scheme. Rather than making a strict timing assumption to identify the shocks, it sets a prior that
the RV shock has a larger effect on RV on impact than in the future, while the news shock has
a larger effect in the future than on impact (i.e. the effect is hump-shaped). There are also some
more minor technical differences from the main specification.

The results of the Bayesian estimation are in Figures A.17 and A.18 in the Online Appendix.
The first figure reports the IRFs for employment, the second for IP. The RV shock again is
associated with significant declines in employment and IP while the news shock is not. Moreover,
that zero appears to be well identified, at least for employment, in the sense that the posterior
probability bands are smaller than the priors by 60%, showing that the data are informative. For
IP, the confidence band is wider, but the point estimate is in fact substantially positive. As in the
main results, the difference between the IRFs of the RV and news shocks for employment and IP
is significant at the 10% level (though in this case that difference is not reported in the bottom row
of panels, instead we report the third shock so that the figure summarizes the full set of parameter
priors and estimates). Figures A.17 and A.18 of the Online Appendix therefore show that the
results do not rely on the strict timing assumption, nor do they necessarily rely on the exact VAR
structure used in the baseline analysis.

6.1.3. Time aggregation. Since the main analysis involves a timing assumption at the
monthly level, it is subject to a standard time-aggregation critique (Christiano and Eichenbaum,
1986; Bansal et al., 2016). That is, if the true joint process for real activity, implied volatility,
and realized volatility is determined at, say, the daily frequency, but we estimate the model at
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the monthly frequency, then the identifying assumptions may be invalid, even if they are actually
valid at the daily frequency. Specifically, the potential bias in the present case is that there might be
changes in implied volatility within month t, say on day 1, which then also affect realized volatility
in month t (starting on day 2), making monthly uncertainty shocks no longer contemporaneously
uncorrelated with monthly realized volatility.

The question of the correct frequency at which to estimate models of this sort depends on
the decision frequency of agents and on the dynamic process for volatility. If agents respond on
a daily basis to every change in implied volatility, then there could be a bias. If their decision
frequency is at the monthly or quarterly level, though, as is assumed in general in the empirical
literature and in the models that we are focused on testing, then a monthly identification scheme
will be valid. This issue has been widely examined in the asset pricing literature, and Bansal et al.
(2016) find that a monthly decision frequency fits the data best.17

An important feature of this study that distinguishes it from most past work is that we have
high-frequency data on implied and realized volatility. Much of the past work on uncertainty
has used timing assumptions subject to the time-aggregation critique, and the data involved have
been quarterly or monthly. Using daily data allows us to evaluate the importance of the time
aggregation problem.

To account for time aggregation, we estimate a daily VAR with implied and realized volatility
and use it to construct an alternative time series of realized volatility and uncertainty shocks that
is purged of the within-month time aggregation bias and satisfies the timing assumption at the
monthly level by construction.18 Section A.4 of the Online Appendix describes the details of the
procedure. Its key difference is that the identifying assumption that the true uncertainty shock
is uncorrelated with innovations to realized volatility holds at the daily level instead of at the
monthly level. Figure A.19 in the Online Appendix shows that when using daily data to construct
estimates robust to time-aggregation bias, the main results are highly similar to the baseline,
implying that time aggregation is not a serious problem in practice in our setting. We also find
that Table 1 is essentially entirely unchanged (see Table A.1 in the Online Appendix).

6.2. Validating the identified uncertainty shocks

The key question in Section 2.1 is how agents form expectations about future volatility. In
particular, to what extent do their expectations match statistical forecasts (i.e. does u2 =u∗

2?).
One way to evaluate that question is to examine how our statistical forecasts relate to survey-
based measures. Table 2 reports results from regressions of four alternative uncertainty indexes
on the VAR-implied rv and news components of uncertainty. The first three measures are from
Bloom et al. (2015); they are their total uncertainty index and the components from monetary
policy and the stock market. These are not surveys of, say, household beliefs, so we do not take
them as somehow more direct measures of uncertainty. Rather, they let us understand what our
measure is related to. The fourth measure is from the Michigan Consumer Survey and used by
Leduc and Liu (2016) and is a more direct measure, but it only asks about whether uncertainty
has affected a household’s recent car purchases, so it is rather narrow.

Across the four regressions, the coefficients are all positive, but typically only significantly
so for the rv-driven component of uncertainty. However, we can never reject the hypothesis, at
even marginal significance levels, that the coefficients on the rv- and news-driven components are

17. The bias will be most important if uncertainty varies primarily at frequencies greater than a month. Among
others, Drechsler and Yaron (2011) argue that volatility shocks with half-lives of 6 months fit the data well, suggesting
that the within-month bias may not be important quantitatively.

18. The Online Appendix shows how this can be confirmed in a simulated example.
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TABLE 2
VAR-implied and alternative measures of uncertainty

RV News p(difference)

BBD 14.6∗∗∗ 7.1 0.28
(2.3) (6.8)

BBD (monetary) 23.2∗∗∗ 10.5 0.20
(7.1) (8.9)

BBD (stock market) 38.7∗∗∗ 19.7 0.26
(14.4) (18.1)

Michigan 0.79∗ 0.82 0.96
(0.44) (0.59)

Note: The table shows regressions of alternative measures of uncertainty on the components of VAR-implied uncertainty
from rv and news shocks. BBD is the Bloom et al. (2015) measure, BBD (monetary) and BBD (stock market) are the
corresponding subcomponents of that measure, and Michigan is a measure of uncertainty from the Michigan Consumer
Survey (used by Leduc and Liu (2016)). The last column reports the p-value for a test of the difference between the two
coefficients.

equal (the third column reports the p-value for the test of their difference). So while the t-statistics
suggest that the relationship of these alternatives may primarily be with realized volatility rather
than expectations of the future, a formal test of a difference in the relationships shows no support.
In other words, these regressions do not reject the hypothesis that u2 =u∗

2, but they also do not
provide strong affirmative evidence.

Figures A.14, A.15, and A.16 in the Online Appendix report results replacing implied volatility
with the alternative indexes in the VAR. The responses of IP and employment to uncertainty
shocks constructed with the other indexes are actually positive. Furthermore, the response of
rv to these news shocks remain statistically significantly positive, showing that the alternative
uncertainty indexes contain information about uncertainty beyond what is contained in current
realized volatility. That is, people do not appear to simply extrapolate past realized volatility
when forming expectations about the future. In the context of the model in Section 2.1, this
means that u∗

2 >0, which is necessary for us to have identification. The figures therefore show that
whether we construct volatility expectations using implied volatility or other recent uncertainty
measures, there is no evidence that uncertainty shocks are contractionary, and in many cases
realized volatility continues to have statistically significantly more negative effects.

6.3. Predicting future volatility

Uncertainty is identified in the VAR as expected future realized volatility. The baseline case, and
the model of Section 2.1, uses current realized and option-implied volatility as the only forecasting
variables. This section examines the justification for that choice and then allows more variables
to potentially forecast volatility in the VAR.

6.3.1. Volatility forecasting regressions. Table 3 reports results of regressions of future
realized volatility,

∑6
j=1rvt+j, on various predictors. The first column uses rvt and v1,t , as in

the main VAR. v1,t has a substantially larger t-statistic, indicating that it has greater explanatory
power. The marginal R2 of v1,t is 0.0554, while that of rvt is smaller by a factor of eight at 0.0069.
rvt is in fact only significant at the 10% level. Given that asset prices are expected to aggregate
information efficiently, it is not surprising that option-implied volatility is a substantially stronger
predictor of future volatility.

The second column of Table 3 shows that the results are unaffected by including a lagged
value of rv. In fact, if we include six lags of rv, their combined marginal R2 is still only half
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TABLE 3
Predictability of 6-month rv

Predictors (1) (2) (3) (4) (5)

rvt 0.16∗ 0.15 0.16∗ 0.13 0.09
(0.10) (0.09) (0.09) (0.09) (0.09)

v1,t 0.57∗∗∗ 0.46∗∗∗ 0.60∗∗ 0.58∗∗∗ 0.60∗∗∗
(0.14) (0.16) (0.29) (0.15) (0.15)

v6,t −0.03
(0.30)

rvt−1 0.12∗∗
(0.05)

FFR 0.01
(0.01)

�empl −4.98
(10.87)

�ip −4.81
(3.57)

PC1 −0.010
(0.009)

PC2 −0.017
(0.012)

PC3 −0.011
(0.007)

RS&P 0.12
(0.41)

Default spread 0.07
(0.09)

Adj. R2 0.44 0.45 0.44 0.45 0.46

Note: Results of linear predictive regressions of realized volatility over the next 6 months on lagged rv, option-implied
volatility, and various macroeconomic variables, with Hansen–Hodrick (1980) standard errors using a 6-month lag
window. PC1–3 are principal components from the data set used in Ludvigson and Ng (2007). The default spread is the
difference in yields on Baa and Aaa bonds. The sample is 1983–2014.

the marginal R2 of v1,t . The third column of Table 3 adds the 6-month implied volatility, v6,t ,
and finds that it adds no incremental information. We obtain similar results using a principal
component of the term structure of implied volatilities.

The fourth and fifth columns of Table 3 show that adding various macroeconomic and financial
indicators also has no effect, and that they are not significant, which is why they are excluded
from the analysis. Table A.2 in the Online Appendix shows that when rv and v1 are excluded
from the regression, a number of the macroeconomic and financial variables become significant
predictors of future volatility. In other words, the macro and financial time series on their own
can help predict future volatility, but their forecasting power is subsumed by current realized and
option-implied volatility.

Table A.3 in the Online Appendix shows, in regressions analogous to those in Table 3, that v1
is predicted only by its own lags and those of rv. Duffee (2011) shows that in standard linear term
structure models, except for in knife-edge cases (even allowing for time-varying risk premia),
investor expectations of the future can be extracted from observed asset prices. In our setting,
that result corresponds to the view that the current state of the term structure of option-implied
volatilities and rv should, together, encode all available information about future values of rv
and option-implied volatility. The fact that macro variables are driven out of these regressions is
therefore not surprising.

6.3.2. Allowing more variables to predict future volatility.

Lasso. While the assumption that current v1 and rv contain all available information about
future volatility is consistent with economic theory, the regressions in Table 3, and a χ2 test in

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article-abstract/87/1/40/5364025 by Yale U

niversity user on 01 June 2020

https://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdz010#supplementary-data
https://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdz010#supplementary-data
https://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdz010#supplementary-data
https://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdz010#supplementary-data


Copyedited by: ES MANUSCRIPT CATEGORY: Article

[16:22 12/12/2019 OP-REST190009.tex] RESTUD: The Review of Economic Studies Page: 60 40–76

60 REVIEW OF ECONOMIC STUDIES

the VAR, it is still important to examine robustness to relaxing it. We do that here with lasso
(Tibshirani, 1996), which adds to the objective a penalty on the sum of the absolute values of
the coefficients. The advantage of using lasso for our purposes is that it is economically agnostic
and driven by statistical considerations. It thus yields restrictions on the VAR to help reduce
overfitting similarly to our benchmark specification, but without imposing the set of restrictions
based purely on theory.

Section A.2 of the Online Appendix describes the details of our implementation. In the
estimation, lasso restricts many of the coefficients on the macro variables in the equations for rv
and v1 to zero, but not all of them. It also restricts the coefficients on some of the lags of rv and v1
to be zero (they were not restricted in the benchmark). So it reduces the restrictions on the macro
variables but increases them on the lags of the volatility measures.

The third row in Figures 5 and 6 reports results using lasso for the estimation instead of the
benchmark restrictions. The results remain highly similar to the benchmark case, showing that
the restrictions applied in the benchmark model do not drive the results.

Completely unrestricted model. The bottom rows in Figures 5 and 6 report results that put
no restrictions on the VAR coefficients and include v6,t as an additional potential predictor of
volatility to maximize explanatory power. These are thus our most general and least constrained
results. Shocks to realized volatility continue to be contractionary, and we again find no evidence
that the news shock has negative effects on output, but the confidence bands for the news shock
in this case become so wide as to be uninformative. The difference between the IRFs for rv and
news is now statistically insignificant. We obtain similar results when we include other predictors
of future volatility instead of v6,t such as the default spread.

The unrestricted specification has low power for identifying the effect of news shocks because
the news shock itself is difficult to identify. There are, in this case, twenty-four potential predictors,
and noise in the estimated coefficients on them is inherited by the identified news shock. That
is why the specifications with restrictions and using lasso, which both have fewer coefficients to
estimate, are much more stable.

Beyond power, though, the unrestricted model is potentially problematic because the news
shock may be overfit. That can be seen partly from the fact that the news shock in this case actually
accounts for a substantially larger amount of the variance of uncertainty than the rv shock does
— up to 60% of the total variance at short horizons.

As further evidence of overfitting, the bottom panel of Figure 4 plots total uncertainty,

Et

[∑24
j=1rvt+j

]
, from the benchmark and completely unrestricted specifications. In the

unrestricted specification, uncertainty varies much more — its standard deviation is higher by a
factor of 1.6. Moreover, it rises well in advance of the 2008 financial crisis, even though realized
and option-implied volatility were low. That is, the unrestricted model seems to have seen the crisis
coming before investors, consistent with overfitting. Uncertainty in the unrestricted model leads
the benchmark specification in a number of other episodes. This lead–lag relationship can also be
confirmed by examining cross-correlations. Finally, whereas Section 6.2 shows that uncertainty in
the restricted model is positively correlated with alternative measures of uncertainty, the Baker–
Bloom–Davis index and the Michigan index, in the unrestricted model uncertainty is actually
substantially negatively correlated with those series (with coefficients of −0.25 and −0.30),
again emphasizing the implausibility of this specification.

6.4. Alternative specification choices

Figures 5 and 6 report impulse responses for employment and IP to the two identified shocks and
their difference across a number of perturbations of the benchmark specification.
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(a)

(b)

(c)

(d)

Figure 5

Response of employment to rv and uncertainty shocks across specifications. (a) rv and v1 ordered last; (b) Replacing v1

with v6; (c) Lasso; (d) Unrestricted.

Note: Response of employment to RV shocks (left panels) and news shocks (middle panels) with the difference in the right panel and
different model specifications in each row. Row (a) orders rv and v1 last. Row (b) uses v6 instead of v1. Row (c) uses lasso to estimate the
VAR (see Section A.2 of the Online Appendix for details). Row (d) estimates the benchmark VAR without any coefficient restrictions.
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(a)

(b)

(c)

(d)

Figure 6

Response of IP to rv and uncertainty shocks across specifications. (a) rv and v1 ordered last; (b) Replacing v1 with v6;

(c) Lasso; (d) Unrestricted.

Note: See Figure 5.
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First, we consider alternative orderings of the variables in the VAR. The effects of the ordering
depend ultimately on the correlation matrix of the innovations, which we report below:

rv v1 Fed Funds Empl. IP
rv 1
v1 0.73 1
Fed Funds 0.01 −0.06 1
Empl. 0.01 0.05 0.05 1
IP −0.04 0.01 0.04 0.54 1

The shocks to rv and v1 are correlated with each other, but almost completely uncorrelated
with those to the other variables, implying that if the news shock were orthogonalized not just to
the shock to rvt but to all the macro variables also, its IRF would remain unchanged, which the
top panels of Figures 5 and 6 confirm by ordering rv and v1 last.

The second row of panels in Figures 5 and 6 reports results when we substitute v6 for v1. The
6-month option-implied volatility seems like potentially a more natural variable to include since
it might represent a more realistic economic decision horizon. As the figure shows, in that case
we find results even less favourable to uncertainty shocks, with these shocks now having slightly
expansionary effects on employment and IP.

The goal of the main analysis is to identify a pure shock to uncertainty that has no
contemporaneous impact on realized volatility. A natural question is what happens if we reverse
the ordering of the identification so that the first shock is the entire shock to uncertainty, while the
second captures the residual variation in rv. In this case, then, the first shock is a combined shock
to uncertainty and rv, while the second shock is a pure shock to realized volatility that has no net
effect on uncertainty. Figure A.8 in the Online Appendix reports results from such a specification.
It shows that both these shocks have essentially the same effect on employment and IP, exactly
as should be expected from our main analysis. When two shocks have the same initial effect on
rv, they have the same effects on output (Figure A.8 in the Online Appendix) whereas when they
have different effects on rv, they have different effects on output (Figure 2). In other words, it is
the impact of a shock on contemporaneous realized volatility, not its effect on uncertainty, that
determines how it affects output.

Figures A.9 and A.10 in the Online Appendix report results from four additional robustness
tests:

(1) Replacing our volatility measure with the VIX.
(2) Limiting the sample to 1988–2006 to remove the jumps in volatility in 1987 and 2008.
(3) Controlling for the S&P 500 in the VAR before the identified shocks.
(4) Using RV and V1 – i.e. levels rather than logs.

The results of those robustness tests are qualitatively and quantitatively consistent with our
baseline results.

Figures A.11 and A.12 in the Online Appendix report results from a quarterly VAR similar to
what is estimated in Basu and Bundick (2017) with the set of variables now rv, v1, GDP, aggregate
consumption, aggregate investment (all in real terms), the GDP deflator, and the Fed funds rate.
The large number of variables and smaller number of time series observations gives this VAR
specification much lower power overall than our benchmark monthly specification. Furthermore,
since uncertainty shocks typically die out over a period of only a few months (see Figure 2 and
similar results in Bloom (2009)), even with a long time series the quarterly specification would
have trouble identifying the effects of such shocks.
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As in the benchmark results, output, consumption, and investment all fall following an increase
in rv in the quarterly specification. However, in this case the confidence bands around the
uncertainty shock are wide enough to render the estimates essentially uninformative. When we
use v1 to help measure uncertainty, the shock appears slightly contractionary, while using v6
makes it appear actually expansionary. While the quarterly data does not yield sufficient power to
draw firm conclusions, it in no way conflicts with our main results, and it reinforces the robustness
of the finding of contractionary effects for realized volatility shocks.

Figure A.13 in the Online Appendix reports results from a factor-augmented VAR using
the first three principal components from the set of macroeconomic time series studied by
Ludvigson and Ng (2007). The advantage of the FAVAR specification is that it incorporates
information from an extremely broad range of variables, instead of just using employment and
IP (we use the setup of Bernanke et al. (2005)). The results are highly similar to the benchmark.

7. EVIDENCE FROM RISK PREMIA

We now show that investors have historically paid large premia for insurance against increases in
realized volatility, but not for insurance against increases in market-implied uncertainty, which
suggests that investors do not view periods in which uncertainty rises as having high marginal
utility — i.e. as being bad times — consistent with our VAR results. This fact has been established
in past work; here we review the evidence and extend the time series further back than in other
analyses.19

A 1-month variance swap is an asset whose final payoff is the sum of daily squared log returns
of the underlying index (the S&P 500, in our case) over the next month. That asset gives the buyer
protection against a surprise in equity return volatility (rv) over the next month. If investors are
averse to periods of high realized volatility, then, we would expect to see negative average returns
on 1-month variance swaps, reflecting the cost of buying that insurance. A simple way to see that
is to note that the Sharpe ratio of an asset, the ratio of its expected excess return to its standard
deviation, is

Et
[
Rt+1 −Rf ,t+1

]
SDt

[
Rt+1

] =−corrt
(
Rt+1,MUt+1

)×std
(
MUt+1

)
(19)

for any return Rt+1, where Rf ,t+1 is the risk-free rate and MUt+1 denotes the marginal utility
of consumption on date t+1. Assets that covary positively with marginal utility, and hence are
hedges, earn negative average returns. So if realized volatility is high in high marginal utility
states (in most models, bad times), then 1-month variance swaps will earn high Sharpe ratios.

The first point on the left in the left-hand panel of Figure 7 (which is drawn from
Dew-Becker et al. (2017)) plots average annualized Sharpe ratios on 1-month S&P 500 variance
swaps between 1996 and 2014.20 The average Sharpe ratio is −1.4, approximately three times
larger (with the opposite sign) than the Sharpe ratio on the aggregate equity market in that period.
Investors have historically paid extraordinarily large premia for protection against periods of high
realized volatility, suggesting that they view those times as particularly bad (or as having very
high marginal utility).

19. See, for example, Egloff et al. (2010); Ait-Sahalia et al. (2015); Dew-Becker et al. (2017). A large literature
in finance studies the pricing of realized and expected future volatility. See, among many others, Adrian and Rosenberg
(2008), Bollerslev et al. (2009), Heston (1993), Ang et al. (2006), Carr and Wu (2009), Bakshi and Kapadia (2003),
Egloff et al. (2010), and Ait-Sahalia et al. (2015) (see Dew-Becker et al. (2017) for a review).

20. The data are described in Dew-Becker et al. (2017); it is obtained from a large asset manager and Markit, but
may be closely approximated by portfolios of options, for which prices are widely available (e.g. from Optionmetrics).
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(a) (b)

Figure 7

Forward variance claims: returns and prices. (a) Sharpe ratios; (b) Average prices.

Note: Panel A shows the annualized Sharpe ratio for the forward variance claims, constructed using variance swaps. The returns are
calculated assuming that the investment in an n-month variance claim is rolled over each month. Dotted lines represent 95% confidence
intervals. All tests for the difference in Sharpe ratio between the 1-month variance swap and any other maturity confirm that they are
statistically different with a p-value of 0.03 (for the second month) and <0.01 (for all other maturities). The sample used is 1996–2013.
For more information on the data sources, see Dew-Becker et al. (2017). Panel B shows the average prices across maturities of synthetic
forward variance claims constructed from option prices for the period 1983–2014. All prices are reported in annualized standard deviation
units. Maturity zero corresponds to average realized volatility.

Now consider a j-month variance forward, whose payoff, instead of being the sum of squared
returns over the next month (t+1), is the sum of squared returns in month t+j (so then the 1-
month variance swap above can also be called a 1-month variance forward). If an investor buys a
j-month variance forward and holds it for a single month, selling it in month t+1, then the variance
forward protects her over that period against news about volatility in month t+j. If between t and
t+1 investors receive news that volatility will be higher in the future — i.e. if uncertainty rises —
the holding period return on that j-period forward will increase. The left-hand panel of Figure 7
also plots 1-month holding period Sharpe ratios for variance forwards with maturities from 2 to
12 months. For all maturities higher than 2 months, the Sharpe ratios are near zero, and in fact
the sample point estimates are positive. The Sharpe ratios are also all statistically significantly
closer to zero than the Sharpe ratio on the 1-month variance swap.

The left panel of Figure 7 therefore shows that investors have paid large premia for protection
against surprises in realized volatility, but news about future uncertainty has had a premium that
is indistinguishable from zero, and may even be positive. Realized volatility thus appears to
have a large positive correlation with marginal utility, while shocks to expected volatility have a
correlation that is close to zero or negative.

Using the options data described above, it is possible to extend those results further, back to
1983. The right-hand panel of Figure 7 reports the average shape of the term structure of variance
forward prices constructed from data on S&P 500 options (we study the term structure with this
data because it is estimated more accurately than returns). The variance forwards are constructed
from synthetic variance swaps, a calculation almost identical to our calculation of VarQ

t
[
st+n

]
.

The term structure reported here is directly informative about risk premia. The average return on
an n-month variance claim is:

E

[
Fn−1,t −Fn,t−1

Fn,t−1

]
︸ ︷︷ ︸

Average return of the forward

≈

Average slope of the forward curve︷ ︸︸ ︷
E
[
Fn−1

]−E [Fn]

E [Fn]
, (20)
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where Fn,t is the price on date t of an n-month volatility forward. The slope of the average term
structure thus indicates the average risk premium on news about volatility n months forward. If
the term structure is upward sloping, then the prices of the variance claims fall on average as their
maturities approach, indicating that they have negative average returns. If it slopes down, then
average returns are positive.

The right-hand panel of Figure 7 plots the average term structure of variance forward prices for
the period 1983–2013. The term structure is strongly upward sloping for the first 2 months, again
indicating that investors have paid large premia for assets that are exposed to realized variance
and expected variance 1 month in the future. But the curve quickly flattens, indicating that the
risk premia for exposure to fluctuations in expected variance further in the future have been much
smaller.

The asset return data says that investors appear to have been highly averse to news about
high realized volatility, while shocks to expected volatility do not seem to have been related to
marginal utility. Figure 7 therefore confirms and complements the results from our VAR, that
show that shocks to rv are associated with recessions but uncertainty shocks are not.

8. EQUILIBRIUM MODEL AND SKEWNESS EVIDENCE

The article thus far has provided empirical evidence on two basic points: first, surprises in realized
volatility in the stock market are associated with future declines in real activity, while uncertainty
shocks, identified as second-moment news, are not; second, investors have historically paid large
premia to hedge shocks to realized volatility, but have paid premia that have averaged to nearly
zero to hedge shocks to uncertainty.

In this section, we present a simple structural model that is consistent with those features of
the data. The key ingredient is asymmetry in fundamental shocks. Intuitively, when fundamental
shocks are skewed to the left, large shocks, which are associated with high realized volatility,
tend to be negative.21 That is simply the definition of left skewness: the squared innovation is
negatively correlated with the level of the innovation. We first discuss evidence that there is left
skewness in economic activity and then describe the model and show that estimated impulse
responses to uncertainty and realized volatility shocks in the model match what we find in the
data.

8.1. Skewness

A potential source of negative correlation between output and realized volatility is negatively
skewed shocks. Specifically, if some shock ε is negatively skewed, then E

[
ε3]<0⇒cov

(
ε,ε2)

<0. There are large literatures studying skewness in both aggregate stock returns and economic
growth. We therefore provide a brief overview of the literature and basic evidence.

Table 4 reports the skewness of monthly and quarterly changes in a range of measures of
economic activity. It includes both the standard skewness based on the scaled third moment and
also the Kelley skewness based on percentiles, with bootstrapped standard errors. Nearly all the
variables are negatively skewed, at both the monthly and quarterly levels.

21. Skewness in equilibrium quantities could arise because the fundamental shocks are skewed, or because
symmetrical shocks are transmitted to the economy asymmetrically (perhaps because constraints, such as financial
frictions, bind more tightly in bad times; see Kocherlakota (2000), or because firms respond to shocks in a concave
manner, as in Ilut et al. (2015)).
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TABLE 4
Skewness

Skewness Kelley Skewness

Panel A: real economic activity Monthly Quarterly Monthly Quarterly Sample
Employment −0.31 −0.87∗∗∗ −0.14∗∗∗ −0.23∗∗∗ 1952–2016

(0.33) (0.19) (0.04) (0.07)
Capacity utilization −1.06∗∗∗ −1.20∗∗∗ −0.03 −0.15 1969–2016

(0.31) (0.37) (0.05) (0.11)
IP 0.14 −0.63∗∗ −0.05 −0.09 1952–2016

(0.50) (0.30) (0.04) (0.08)
IP, starting 1960 −0.87∗∗ −0.99∗∗ −0.07 −0.16∗∗ 1960–2016

(0.32) (0.35) (0.04) (0.08)
Output −0.32 0.02 1952–2016

(0.24) (0.07)
Non-durable consumption −0.33 0.09 1952–2016

(0.34) (0.08)
Durable consumption −0.25 −0.14∗∗ 1952–2016

(0.43) (0.06)
Investment −0.62∗∗ 0.03 1952–2016

(0.26) (0.10)
Residential investment −0.41 −0.13∗ 1952–2016

(0.29) (0.07)
Non-residential investment −0.76∗∗ −0.21∗∗∗ 1952–2016

(0.32) (0.06)

Panel B: skewness of S&P 500 monthly returns
Estimate Std. Err.

Implied (since 1990) −1.90∗∗∗ (0.09)
Realized (since 1926) 0.19 (0.54)
Realized (since 1948) −0.54∗∗∗ (0.20)
Realized (since 1990) −0.67∗∗∗ (0.20)

Note: Panel A reports the skewness of log growth rates of measures of real activity. The first column reports the skewness
of monthly changes, the second column the skewness of quarterly changes. Kelley skewness is computed as KSK =
P(90)+P(10)−2P(50)

P(90)−P(10) ∈[−1,1] where P(∗) denotes percentiles. Panel B reports the realized skewness of S&P 500 monthly
returns in different periods, as well as the implied skewness computed by the CBOE using option prices. Standard errors
are constructed by bootstrapping with 1,000 replications.

In addition to real variables, Table 4 also reports realized and option-implied skewness for
S&P 500 returns.22 The implied and realized skewness of monthly stock returns is substantially
negative and similar to the skewness of capacity utilization. The realized skewness of stock returns
is less negative than option-implied skewness, which is consistent with investors demanding a
risk premium on assets that have negative returns in periods when realized skewness is especially
negative (i.e. that covary positively with skewness).

In addition to the basic evidence reported here, there is a large literature providing much
more sophisticated analyses of asymmetries in the distributions of output and stock returns.
Morley and Piger (2012) provide an extensive analysis of asymmetries in the business cycle and
review the large literature (e.g. McKay and Reis (2008)). Estimating a wide range of models, they
show that those that fit aggregate output best have explicit non-linearity and negative skewness.
Even after averaging across models using a measure of posterior probability, they find that their
measure of the business cycle is substantially skewed to the left, consistent with the results

22. We obtain option-implied skewness from the CBOE’s time series of its SKEW index, which is defined as
SKEW =100−10×Skew(R). We thus report 10−SKEW/10.
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reported in Table 4. More recently, Salgado et al. (2016) provide evidence that left skewness is a
robust feature of business cycles, at both the macro and micro levels and across many countries.

The finance literature has also long recognized that there is skewness in aggregate
equity returns and in option-implied return distributions (Campbell and Hentschel, 1992;
Ait-Sahalia and Lo, 1998; Bakshi et al., 2003). The skewness that we measure here appears to
be pervasive and has existed in returns reaching back even to the 19th century (Campbell and
Hentschel 1992).

Taken as a whole, then, across a range of data sources and estimation methods, there is a
substantial body of evidence that fluctuations in the economy are negatively skewed. If negative
skewness drives our results, then we might expect that it would be the downward component of
returns that would be most relevant for the VAR analysis in the previous section. To see that, we
define the downward component of realized volatility as

rvdown
t ≡

∑
days∈t

r2
t ×1{rt <0}, (21)

where 1{·} is the indicator function. rvdown
t therefore isolates the downward component of realized

volatility. We construct the upward part of realized volatility not as the squared returns on positive
days but rather as the part of rvt that is orthogonal to rvdown

t , i.e.

rvup
t ≡rvt −proj

(
rvt |rvdown

t

)
, (22)

where proj
(

rvt |rvdown
t

)
is the projection of rvt onto rvdown

t . In this way, rvup
t represents the part

of rvt that is separate from downward movements.
Figures A.20 and A.21 in the Online Appendix report results from estimates of the benchmark

specification where we replace rvt with rvdown
t and rvup

t , respectively. The top panels show that
shocks to rvdown are associated with declines in employment and IP while news shocks are not,
as in the main results. In the middle panels, though, shocks to rvup have no effect, while the news
shocks are now associated with declines. This result follows from the fact that the news shock
is still a linear function of the shock to v1, and we know from past work, e.g. Bloom (2009),
that v1 by itself, when we do not control for rv, is followed by declines. So Figures A.20 and
A.21 in the Online Appendix show that when controlling for rv, as in our main analysis, what is
relevant is controlling for the downward component, rather than the upward part.23 Finally, the
bottom panels of Figures A.20 and A.21 show that if we replace rv with a measure of just jumps
in stock prices,24 the results are again similar to the benchmark, suggesting that our results can
be accounted for purely through large movements in stock prices.

8.2. Equilibrium model

We now present a simple extension to the RBC model consistent with our empirical findings
that (1) shocks to realized volatility are associated with declines in real activity, while shocks to
expected volatility are not; (2) Sharpe ratios on short-term claims to volatility are much more
negative than those on longer-term claims; and (3) output growth and equity returns are negatively
skewed.

23. The experiment can be reversed, with rvup being defined by rv on days when the market rises and rvdown as the
residual part of rv, and the results are similar.

24. The jump serioes here is constructed as the difference between realized volatility and bipower variation, where
bipower variation is a measure of the diffusive part of returns each month. We obtain the data on bipower variation from
the Oxford-Man Institute Realized Library (https://realized.oxford-man.ox.ac.uk/).
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8.3. Model structure

Firms produce output with technology, At , capital, Kt , and labour, Nt ,

Yt =A1−α
t Kα

t N1−α
t . (23)

We set α=0.33, consistent with capital’s share of income. Capital is produced subject to
adjustment costs according to the production function

Kt =
⎡
⎣(1−δ)+ It−1

Kagg
t−1

− ζ

2

(
It−1

Kagg
t−1

−I/K

)2
⎤
⎦Kt−1exp(−Jνt), (24)

where It is gross investment, Kagg
t is the aggregate capital stock (which is external to individual

firm decisions), ζ is a parameter determining the magnitude of adjustment costs and I/K is the
steady-state investment/capital ratio. The term exp(−Jνt) is associated with downward jumps in
productivity that are described below — those jumps destroy both technology and capital, similar
to Gourio (2012). We set δ=0.08/12 (corresponding to a monthly calibration) and ζ =0.5.25

Given the structure for adjustment costs and production, the equilibrium price and return on a
unit of installed capital are

PK,t = 1

1−ζ
(

It/Kt−1

I/K
−1
) (25)

RK,t = αA1−α
t Kα−1

t−1 N1−α
t +(1−δ)PK,t

PK,t−1
. (26)

A representative agent maximizes Epstein and Zin (1991) preferences over consumption and
leisure,

Vt =argmax
C,N

log
(

Ct+j −bCagg
t+j−1

)
−θ

N1+χ
t+j

1+χ
+ β

1−γ
logEt exp

(
(1−γ )Vt+1

)
, (27)

where Cagg is aggregate consumption, subject to the budget constraint

Ct +It ≤Yt . (28)

Agents have log utility over consumption minus an external habit. We set the magnitude of the
habit to b=0.8 to help generate smoothness in consumption. β is set to 0.991/12, χ to 1/3 for
a Frisch elasticity of 3, and θ to generate steady-state employment of 1/3 (e.g. working 8 of 24
hours). γ is set to 12 to generate a Sharpe ratio on a claim to capital of 0.35, similar to what is
observed for U.S. equities.

25. See, e.g., Cummins et al. (1994) for estimates of adjustment costs similar to this value. Jermann (1998) use a
similar values. ζ =0.5 is on the lower end of estimates based on aggregate data and more consistent with micro evidence,
but our results are not sensitive to the choice of this parameter.
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The model is closed by the Euler equation and the optimization condition for labour,

1 = Et

[
β

exp
(
(1−γ )Vt+1

)
Et exp

(
(1−γ )Vt+1

) Ct −bCagg
t−1

Ct+1 −bCagg
t

RK,t+1

]
(29)

θNχ
t

(
Ct −bCagg

t−1

)
= (1−α)A1−α

t Kα
t−1N−α

t . (30)

We model realized volatility as in the empirical analysis as the square of the levered excess
return on capital,

RVt =
(
λ
(
RK,t+1 −Rf ,t

)+Rf ,t
)2

, (31)

where Rf ,t is the risk-free rate and the parameter λ determines the leverage of equity. We set
λ=9.2 to match the volatility of the aggregate stock market.

The only exogenous variable in the model is technology, At , which follows the process

�logAt = σt−1σ̄εεt −J (νt − p̄)+μ (32)

logσt = φσ logσt−1 +σσ ηt +κσ,ννt (33)

εt,ηt ∼ N (0,1) (34)

νt ∼ Bernoulli(p̄). (35)

Technology follows a random walk in logs with drift, μ, set to 2% per year. εt is a normally
distributed innovation that affects technology in each period, while νt is a shock that is equal to
zero in most periods but equal to 1 with probability p̄. It induces downward jumps in technology,
with J determining the size of the jump and p̄ the average frequency. σt determines the volatility of
normally distributed shocks to technology. It is itself driven by two shocks: an independent shock
ηt (volatility news) and also the jumps νt .26 Downward jumps in technology can be associated with
higher volatility, generating GARCH-type effects. The volatility process thus has two features
that will be important in matching the data: it has news shocks, and it is countercyclical for
κσ,ν <0.

φσ and σσ are calibrated so that logσt has a standard deviation of 0.35 and a 1-month
autocorrelation of 0.91, consistent with the behaviour of the VIX. κσ,ν is set to −0.7, which
implies that a jump in technology increases σt by 2 standard deviations, generating countercyclical
volatility. σ̄ε is set so that normally distributed shocks on average generate a standard deviation
of output growth close to the value of 1.92 we observe empirically. Jumps on average reduce
technology by 8% (which is 3.2 times σ̄ε, the average standard deviation of the Gaussian TFP
shocks) and are calibrated to occur once every 10 years on average. We thus think of them as
representing small disasters or large recessions (consistent Backus et al. (2011) and with the view
of skewed recessions in Salgado et al. (n.d.)), rather than depression-type disasters.27 While the
size of the jump seems large initially, recall that the model is calibrated to match the standard
deviation of output growth.

We solve the model by projecting the consumption and value functions on a set of Chebyshev
polynomials up to the sixth order (a so-called global solution) to ensure accuracy not only for real

26. There are various mechanisms through which skewness could arise, e.g. financial frictions (Kocherlakota, 2000),
investment dynamics (Gilchrist and Williams, 2000), or employment dynamics (McKay and Reis, 2008). Here we use a
simple setup in which skewness comes directly from technology shocks.

27. A realistic extension of the model would be to allow for jumps to be drawn from a distribution, rather than all
having the same size. See, e.g., Barro and Jin (2011).
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TABLE 5
Model calibration

Panel A: Moments Model Data

Mean Std. Skewness Mean Std. Skewness

Output 1.99 1.75 −3.02 1.33 1.92 −0.11
Investment 1.99 2.87 −4.27 2.35 7.43 −0.03
Consumption 1.99 1.46 −4.83 1.20 1.06 −0.28
Returns 5.92 15.00 −3.30 7.46 14.77 −0.48
VIX 19.57 1.20 1.75 20.05 7.75 1.94

Panel B: Corr. of VAR and structural shocks Structural shocks

Jvt ηt εt

VAR identified shocks
RV 0.79 0.00 0.07

Uncertainty 0.24 0.87 −0.02

Note: Panel A reports the mean, standard deviation, and skewness of financial and macroeconomic variables in the data
and in the model (returns are reported in annualized terms). Panel B shows the correlation between the structural shocks
in the model and the shocks identified in the VAR.

dynamics but also for asset prices and realized volatility. Integrals are calculated using Gaussian
quadrature with twenty points. Euler equation errors are less than 10−5.0 across the range of the
state space that the simulation explores and have an average absolute value of 10−5.3. The use
of a global solution method allows for high accuracy in the solution, but also makes it infeasible
to search over many parameters or estimate the model, which is why we explore just a single
calibration here.

8.4. Simulation results

We examine three sets of implications of the model: basic moments of real and financial variables,
risk premia, and VAR estimates. All results are population statistics calculated from a simulation
lasting 10,000 years.

Table 5 reports basic moments of returns on capital and growth rates of output, consumption,
and investment. The model generates negative skewness in output, consumption, and investment,
consistent with the data, but the skewness is much larger than is observed empirically. Mean
growth rates of real variables are similar to the data. The standard deviation of output is very
close to the data, while consumption is more and investment less volatile; the gap between the
two is smaller than observed empirically, however. Table 5 thus suggests that the model generates
moments that are broadly consistent with the data, in particular generating comovement among
aggregate variables (the three growth rate series in Table 5 have correlations between 0.53 and
0.96) and volatilities that are empirically reasonable.

The model also fits the financial variables well. It is calibrated in order to match the mean and
volatility of stock returns (through the choice of leverage and risk aversion), and they are also
skewed down (though again more than in the data). For the VIX — 1-month implied volatility
— the model is able to match the positive variance risk premium in the data: implied volatility is
on average 1/3 higher than realized volatility. While the VIX in the model is less volatile than in
the data, it does share the observed right skewness.

Figure 8 plots the Sharpe ratios of volatility claims in the model that correspond to the forward
volatility claims examined in Figure 7. As in the left panel of Figure 7, the Sharpe ratio of the
1-month asset, which is a claim to realized volatility, is far more negative than the Sharpe ratios
for the claims with longer maturities. Intuitively, this is because shocks to volatility expectations,

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article-abstract/87/1/40/5364025 by Yale U

niversity user on 01 June 2020



Copyedited by: ES MANUSCRIPT CATEGORY: Article

[16:22 12/12/2019 OP-REST190009.tex] RESTUD: The Review of Economic Studies Page: 72 40–76

72 REVIEW OF ECONOMIC STUDIES

Figure 8

Annual Sharpe ratios on forward claims (simulated structural model).

Note: Annual Sharpe ratios on forward variance claims in the simulated model of Section 8. The Sharpe ratios are constructed as in Figure 7.

ηt , have relatively small effects on consumption and lifetime utility, hence earning a small risk
premium. Shocks to realized volatility, on the other hand, tend to isolate the jumps, νt, (as we
will show below), so they earn larger premia.

Finally, Figure 9 plots IRFs from the estimation of our VAR in the simulation of the model.
The grey shaded regions represent confidence bands from the VAR in the empirical data.28 The
red lines are the population IRFs from the VAR estimated in the simulated model. The IRFs here
represent responses to unit standard deviation impulses to the identified shocks.29

The model matches well in terms of how an uncertainty shock predicts future stock market
volatility and output. Most importantly, it generates a large and empirically reasonable decline
in output following the realized volatility shock and an economically small response of output to
the identified uncertainty shock. Both IRFs lie within the confidence bands at most horizons. The
model performs more poorly in matching the behaviour of employment. Employment responds
little to either of the shocks, so it matches the empirical IRF for the news shock, but not the
realized volatility shock.

The VAR results are notable because they replicate the behaviour of output observed
empirically even though there is no structural “realized volatility shock” in the model. Rather,
the identified RV shock comes from the jump in TFP in the model (Jνt). To see that, we report
the correlations between the VAR-identified shocks and the structural shocks in the model in the
bottom section of Table 5. The RV shock is correlated nearly exclusively with Jνt , the jump shock
in the model. So the VAR successfully identifies the jumps as realized volatility shocks, which
are then structurally, but obviously not causally, related to declines in output.

28. These confidence bands are slightly different from what is reported in Figure 2 because they use the levels of
RV and option-implied volatility instead of their logs (since the model is in discrete time and realized volatility is the
monthly squared return, it can approach zero, causing the log transform to break down).

29. Note that this differs from the empirical analysis above, which scaled the realized volatility shock to have the
same effect on uncertainty (expected future volatility) as the news shock. The reason for the difference here is that realized
volatility in the model is a relatively weak predictor of future volatility, making the scaling sometimes explode to infinity.
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Figure 9

IRFs from structural model.

Note: IRFs from data simulated from the model in Section 8. Solid lines correspond to IRFs estimated using our VAR methodology as in
Figure 2. Dashed lines correspond to IRFs for the two structural shocks Jνt and ηt .

The identified uncertainty shock, as we would hope, is almost purely correlated with ηt , the
volatility news shock. So, as discussed above, and similar to the BB and RUBC models, our main
VAR specification does a good job in this setting — a non-linear production model — of actually
identifying true structural shocks and also fitting the qualitative behaviour of our empirical VAR
analysis.

To further illustrate the mechanisms driving the model, the dotted blue lines in Figure 9 plot
the dynamic responses of the variables to the true structural shocks in the model. In the top row,
the dotted lines plot the responses to the jump shock, νt , while in the bottom row they plot the
responses to the uncertainty shock, ηt (again in both cases scaled to be unit standard deviations).
In four of the cases, the response to the structural shock is essentially identical to the estimate
from the VAR. The responses of output are slightly different (since the VAR is not a perfect
representation of the structural model) but still very close to the VAR.

The fact that the response of employment to the jump shock is small is a consequence of
the use of preferences consistent with balanced growth following King et al. (1988). Since the
jumps in technology also involve destruction of capital, they represent essentially a shift along
the balanced growth path. In the absence of habit formation, they would have precisely zero effect
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on employment; the habit causes a slight positive response. Obtaining more negative responses
of employment would require adding frictions or changing the preferences, which we leave to
future work.

The results in this section show that two features of the model explain the behaviour of the
VAR in the simulations. First, the negative relationship between realized volatility and output
comes from the fact that realized volatility is high in months with jumps, and all jumps are
negative. Second, the lack of a relationship between output and uncertainty comes from the fact
that the true uncertainty shock has essentially zero effect on output.

In the end, then, this section shows that a simple production model can match the basic features
of the data that we have estimated in this article: output responds negatively to shocks to realized
volatility but not to shocks to uncertainty, there is a much larger risk premium for realized than
expected volatility, and economic activity and stock returns are both skewed to the left.

9. CONCLUSION

The key distinction that this article draws is between realized volatility and uncertainty. Volatility
matters for output, but it is the realized part that is robustly followed by downturns. Changes
in expected volatility — uncertainty shocks — appear to have no significant negative effects.
Evidence from asset prices and risk premia is consistent with these findings, and we develop a
simple model that can rationalize the data and also justifies our identification scheme.

The empirical results are inconsistent with theories in which pure shocks to aggregate
uncertainty play an important role in driving real activity. Moreover, the identification scheme
used in this article is shown to successfully identify true structural shocks to uncertainty in leading
recent models.

More constructively, this article aims to lay out a specific view of the joint behaviour of stock
market volatility and the real economy. There appear to be negative shocks to the stock market
that occur at business cycle frequencies, are associated with high realized volatility and declines
in output, and are priced strongly by investors. The simple idea that fundamentals are skewed
left can explain our VAR evidence, the pricing of volatility risk, and the negative unconditional
correlation between economic activity and volatility.
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