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In this paper, we explore a novel dataset of daily credit default swap (CDS) positions 

cleared by the largest CDS clearinghouse along with posted margins to study how collat- 

eral varies with portfolio risks and market conditions. Contrary to many theoretical mod- 

els, where collateral constraints follow Value-at-Risk rules, we find strong evidence that 

collateral requirements are set an order of magnitude larger than what Value-at-Risk rules 

imply. The panel variation in collateralization rates is well captured by measures of ex- 

treme tail risks. We develop a model of endogenous collateral, which explains the conser- 

vativeness of collateral levels through disagreement about extreme states. 
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1. Introduction 

Collateral plays a central role for sustaining risk sharing in the economy. However, as highlighted during the financial 

crisis of 20 08–20 09, it can also amplify fundamental shocks and create self-reinforcing death spirals that can affect the

entire economy. 

The role of the “collateral channel” in amplifying fundamental shocks has been studied by a vast theoretical literature. At 

the core of models in this literature is the collateral rule , which determines how margins are set and how they respond to

changes in economic conditions. Different models have made different assumptions about the collateral rule. Some studies 

have specified the rule exogenously (e.g., Brunnermeier and Pedersen (2009) assume a Value-at-Risk (VaR) criterion; Gromb 

and Vayanos (2002) assume a maximum-loss constraint). Other works have determined collateral levels endogenously via 

general equilibrium models (e.g., Geanakoplos (1997) and Fostel and Geanakoplos (2015) ). 

Understanding how collateral is set, and how it responds to changes in market or portfolio conditions, is central for 

understanding the mechanisms through which shocks propagate and are amplified. Yet, empirical evidence on the collateral 

rule is scarce. 

In this paper, we aim to fill this gap by studying the collateral rule in depth, first empirically and then theoretically, in a

large market that was at the very center of the financial crisis: the credit default swap (CDS) market. Using a novel dataset of

positions and corresponding margins in the cleared CDS market, we document several novel facts about the way collateral is 

determined, and the way it is adjusted in response to changes in individual and macroeconomic risks. Appendix A constructs

a theoretical model of the endogenous collateral rule in derivatives markets, building on the work of Geanakoplos (1997) ,

Fostel and Geanakoplos (2015) , and Simsek (2013) , that allows us to interpret our empirical findings and connect them to

the existing literature ( Appendix A and Online Appendix OA.A reproduce results from Du et al. (2020) ). 

The CDS market is a trillion-dollar market for credit risk transfer, which has experienced remarkable growth in the 

years before the global financial crisis. Over the past decade, the CDS market has transitioned towards mandatory clearing: 

after two parties enter a bilateral CDS contract, all counterparty obligations are transferred to a clearinghouse. That is, the 

clearinghouse becomes the counterparty to each of the original trading parties, referred to as clearing members . Operating as 

a central counterparty (CCP), the clearinghouse insulates members from default risk, but requires them to post daily-settled 

collateral (margin). Our dataset, collected and maintained by the U.S. Commodity Futures Trading Commission (CFTC), is 

built from the universe of CDS trades cleared by ICE Clear Credit (ICC), the largest clearinghouse for these contracts. In our

data, we can observe each CDS position of every member in this market, covering a total of more than 26,0 0 0 contracts.

More importantly, we also observe the amount of collateral posted each day by each member to the clearinghouse. Our 

sample covers the period 2014–2020 at the daily frequency. 

Using this data set, we document several new empirical findings on collateral setting in the cleared CDS market. First, 

we show that there is a large amount of heterogeneity (both across clearing members and over time) in the collateralization

rate – the value of collateral posted as a fraction of the total size of the members’ portfolios. This indicates that clearing

members trade portfolios with very different risk characteristics, which command different levels of collateralization. 

Next, we study what determines the amount of collateral posted by clearing members. The natural benchmark to evaluate 

the level of collateralization of a portfolio is the widely-used Value-at-Risk (VaR) rule, under which collateral levels should 

be set to cover a certain fraction of losses occurring over a limited period of time. The VaR rule is especially important in

this setting, not only because it is the rule assumed by many theoretical models, 1 but also because most clearinghouses

(including ICC itself) explicitly use it when they describe their collateral requirements ( Ivanov and Underwood (2011) ). The

benchmark rule in this context is a 5-day 99%-level VaR, according to which collateral should be sufficient to cover 99%

of the 5-day loss distribution of each member’s portfolio. 2 The VaR rule tries to strike a balance between the ability to

recover payments in case of counterparty default and the cost of keeping cash immobilized as collateral. Under this rule, 

we should therefore observe losses from individual member portfolios that exceed the posted collateral in about 1% of all 

5-day periods. 

The second finding of our empirical analysis is that, in the cleared CDS market, collateral levels far exceed those implied

by the benchmark VaR. For our entire sample period, 2014–2020, exceedances (i.e., losses above the posted collateral) oc- 

curred only in 0 . 008% of cases (specifically, only on two consecutive days, for a single member), and were observed during

the COVID-19 pandemic period. 

More strikingly, this conservativeness in collateral levels holds true even when we incorporate in our analysis the history 

of CDS price movements since 2004, therefore including the large shocks occurred to the CDS market during the financial 

crisis. To perform this analysis, we collect historical CDS prices since 2004, and for each portfolio observed in our sample we

build the time series of returns that the portfolio would have realized over that much longer time period. We can therefore

ask, for each portfolio, how that portfolio would have performed on any 5-day interval since 2004. While in this case a

small number of exceedances would have been observed, they still represent a fraction that is two orders of magnitudes 
1 For example, see Figlewski (1984) , Brunnermeier and Pedersen (2009) , Hull (2012) and Glasserman et al. (2016) . 
2 As discussed later, ICC Europe instead uses a 99.5% level instead. Throughout the paper we use 99% as baseline, but the results apply similarly to a 

99.5% level. 
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smaller than the one implied by the standard 99% VaR. To sum up, our second finding is that collateral levels are set orders

of magnitude more conservatively than standard benchmarks imply. 

Motivated by this result, and guided by the theoretical literature, we then explore in our data what factors determine 

margins in our panel. We begin by estimating a panel model relating margins to VaR as well as other portfolio risk measures

that have been proposed in the theoretical literature: maximum shortfall (maximum potential loss obtained from historical 

simulations), and aggregate short notional (total notional of short positions only). 

We show that these two variables – maximum shortfall and aggregate short notional – explain a significant portion of 

the panel variation with an overall R 2 of 72% (and 85% if member fixed effects are added). The two variables significantly

improve over standard VaR, which falls short to explain not only the average level of margins, but also the panel variation.

Interestingly, Duffie et al. (2015) assume a theoretical collateral rule based precisely on a combination of these two vari- 

ables. Our empirical analysis provides direct evidence in favor of that assumption. These two variables have an interesting 

economic interpretation: they are much more related to extreme tail risks than VaR. In comparison, VaR focuses on less 

extreme losses, and has a correlation of 0.98 with simple volatility (see Table OA.2 in the Online Appendix). 3 

Given that the maximum shortfall of a portfolio is based on its historical performance, it captures the experienced maxi- 

mal loss in the data (which, of course, is more severe than the 99th loss quantile used by VaR). Aggregate short notional, on

the other hand, captures the fact that in the CDS market the biggest tail losses occur on the short side: if a default occurs

suddenly (“jump-to-default”) the liability of the short side can jump to the notional value of the CDS (less the recovery).

Hence, the aggregate short notional represents the maximum potential loss of a portfolio if all short positions default simul- 

taneously (and the recovery rate of the underlying bond is zero). In this sense, aggregate short notional captures the most

extreme form of tail risk, and provides a measure that is also less sensitive to the exact specification of the portfolio loss

distribution compared to other tail risk measures. Finally, we explore how market variables enter the collateral rule: because 

collateral rules adapt to market conditions, we expect collateral levels to respond to variables that capture the state of the

economy. We incorporate in our panel analysis measures of aggregate risk and risk premia, such as VIX and the average CDS

spread of all dealers, and measures of individual member funding opportunity costs. We find that margins increase for all 

members when risk in the economy increases, suggesting that the collateral rule adapts to the state of the economy. 

To sum up, we find that while VaR does help explain a nontrivial portion of the panel variation, maximal shortfall and

aggregate short notional – two extreme tail risk measures – significantly outperform VaR in describing the collateral rule in 

this market; in addition, the collateral rule also depends on aggregate market conditions. 

A few caveats are important in interpreting our results. First, the fact that the collateral rule depends on extreme loss

variables does not imply that it will cover every possible loss in practice. Instead, it shows that it is the very extreme tail

risks that the clearinghouse is concerned about: risks that are much farther out in the left tail than standard VaR would

capture. Second, it goes without saying that our results only apply to the specific market that our data covers (the cleared

CDS market, whose main clearinghouse is ICC). Different collateral rules may be applied in other markets. We believe that 

the setting we study is particularly interesting because the potential for large and sudden changes in values of CDS contracts

makes collateral especially important to prevent default. 

Finally, it is worth emphasizing that the goal of this paper is not to reverse-engineer the procedure that ICC uses to set

collateral. As we describe in greater detail in the next sections, ICC follows a complex set of procedures to determine col-

lateral levels, that include calibration of different scenarios and simulations. The methodology also includes a discretionary 

component, like the choice of several parameters, that can change over time. The aim is to identify and quantify the main

economic determinants of the variation in collateral over time and across members that are induced by this methodology. 

That is, the goal is to produce a simple empirical characterization of the collateral rule that allows us to distill its main

economic drivers, and that can be mapped into the simple rules that are used in theoretical models. Note that the col-

lateral rule we estimate, being a reduced-form estimate of the relationship between collateral posted with portfolio and 

market conditions, reflects not only the (exogenous) set of calculations ICC makes to determine the collateral level, but also 

the endogenous choice of parameters that ICC uses when applying the procedure, which can change over time as market 

conditions vary. 

These empirical results have direct implications for models of financial markets and intermediation, in which the collat- 

eral constraint plays an important role. For models in which the collateral constraint is specified exogenously , our findings 

provide support for defining it as a function of extreme tail risks, such as a maximum-loss constraint ( Gromb and Vayanos

(2002) ), instead of a standard, less conservative VaR (as in Brunnermeier and Pedersen (2009) ). The difference is signifi-

cant: empirically, VaRs are very closely related to volatility, and do not fully capture the extreme tail risks; in models that

assume VaR rules, the dynamics of collateral requirements will mostly reflect movements in portfolio volatility. Instead, as 

we have shown, collateral levels are driven by extreme tail events, that capture nonlinear effects beyond volatility (for ex- 

ample, jumps): collateral demand may not be very sensitive to small changes in portfolio or market risks, but may change

significantly if large shocks occur. 

Our results also have implications for models of the endogenous collateral rule, like Fostel and Geanakoplos (2015) . A

key prediction of Fostel and Geanakoplos (2015) is that in a binomial economy (i.e., when there are two states of nature

only), any collateral equilibrium is equivalent to one in which there is no default – that is, where collateral covers the most
3 All these results hold also when we look at different time periods, and when we separately look at high-yield and low-yield CDS portfolios. 
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extreme losses. Intuitively, therefore, the results in this paper support the key intuition of this model, which argues for very

conservative collateral rules. However, it is difficult to link tightly our empirical results on the CDS markets with this model,

because (1) the conclusions only hold if there are two states of nature, and (2) defaults on CDS obligations do sometimes

arise in practice. 

Appendix A overcomes these two limitations by developing a new general equilibrium model, which explains the conser- 

vativeness of collateral levels through disagreement of market participants about the extreme states of the world, in which 

CDSs pay off and counterparties default. The model features a continuum of states, as opposed to just two, and non-zero 

counterparty default probability in equilibrium. Trade in this model occurs because of differences in beliefs. Optimists natu- 

rally sell insurance (CDS protection) to pessimists. Pessimists require that the sellers post collateral in the form of cash. The

collateralization rate on CDS contracts arises endogenously in the model. Appendix A shows that this model can generate 

high margin requirements (akin to what we see in the data) and low default probabilities, and that this occurs when the

pessimists attach a large weight to the negative tail events where the seller of the CDS contract is expected to pay out the

most. After developing the model, we provide some empirical support for its mechanism by constructing a proxy for the 

pessimists’ and optimists’ beliefs about each CDS portfolio, linking our dataset to the IBES earning forecasts data for the 

firms held in each CDS portfolio. 

A related literature on the role of collateral in risk management and enforcement of payments (see for instance Rampini

and Viswanathan (2010) and Gorton and Ordonez (2014) ) takes a different approach in modeling the collateral constraints 

that arise in equilibrium. In these models, agents’ decisions endogenously affect the total amount of collateral available in 

the economy; but the amount one can borrow against each unit of collateral is set exogenously. In contrast, the model in

Appendix A has a fixed supply of collateral, but allows the amount of collateral required to back a given promise to be

determined endogenously in equilibrium. Since in this paper we are interested in the determinants of margin requirements 

for a given portfolio of CDS contracts, the approach adopted in Appendix A is better suited for our purposes. 

In summary, the model in Appendix A and data together suggest that the clearinghouse, i.e., the pessimist in the model,

focuses on the very extreme events when setting collateral rules; in equilibrium, these collateral requirements may be 

viewed as onerous from the members, i.e., the optimists in the model, but are not so onerous as to fully prevent default

when viewed from the clearinghouse’s perspective. To sum up, our empirical results provide new evidence in favor of models 

where collateral is determined endogenously. 4 

This paper relates to a large theoretical literature on the relation between margin requirements and asset prices, and 

the collateral equilibrium. Noticeable contributions include Brunnermeier and Pedersen (2009) , Gromb and Vayanos (2002) , 

Coen-Pirani (2005) , and Chabakauri (2013) , in which the collateral rule is exogenous; and Geanakoplos (1997) , Holmström

and Tirole (1997) , Brunnermeier and Sannikov (2014) , and Simsek (2013) in which collateral requirements arise endoge- 

nously, and depend both on market conditions and specific characteristics of market participants. A recent theoretical lit- 

erature has focused specifically on cleared derivative markets, like Koeppl et al. (2012) and Biais et al. (2016) . The impact

of central clearing reforms on the collateral demand for derivatives transactions is investigated in Heller and Vause (2012) ,

Sidanius and Zikes (2012) , and Loon and Zhong (2014) , assuming exogenously specified margin requirements based on VaR, 

expected shortfall, or a mix of the two. 5 

Empirical work on the determinants of collateral is scarce, mostly for the difficulty of obtaining data on positions and 

collateral. 6 The papers in this area mostly focus on margining in the futures market ( Figlewski (1984) , Gay et al. (1986) ,

Fenn and Kupiec (1993) , Hedegaard (2014) ). Our study of collateral in the cleared CDS space enriches the existing empirical

evidence on collateral rules along several dimensions. First, while prior studies have looked at headline margin requirements 

for individual securities, their approaches are less applicable in the modern setting of portfolio margining, where margins 

are set at the portfolio level rather than for individual contracts (as in the case of CDS clearinghouses). Our disaggregated,

granular CDS data provide a valuable source of information for analyzing portfolio-level collateral requirements and the 

associated systemic risk implications. Second, we consider a market where payoffs are highly skewed (default probabilities 

can jump upward suddenly, and defaults can occur instantaneously), which implies that collateral plays a crucial role in 

allowing this market to function properly. Third, while existing studies focus mostly on the cross-sectional dimension of 

margins, we focus on both the cross-sectional and time-series variation. Fourth, we consider not only portfolio-specific risk 

measures, but also aggregate risk and funding measures as potential determinants of collateral – all factors that can play an 

important role in the amplification of aggregate shocks via the collateral-feedback channel. Fifth, we document that margins 

are best captured by using a combination of tail risk measures (maximum shortfall and short notional). As the short notional
4 Of course, there are differences between the theoretical models of collateral and our empirical setting. Among them, it is worth noting that we analyze 

empirically a clearinghouse that determines collateral rules in an oligopolistic setting (given that ICC is the largest clearinghouse with a certain degree 

of market power), whereas the theoretical models of endogenous collateral assume a competitive market. That said, we still believe existing theoretical 

models give us important insights on the determinants of collateral. 
5 Other works ( Cruz Lopez et al. (2017) , Menkveld (2017) ) have studied the determination of collateral requirements accounting for systemic interdepen- 

dencies. 
6 Collateral data for non-cleared OTC markets is often scattered among a variety of participants, with no centralized data sets available. Clearinghouse 

data contain proprietary information of large market participants and are often disclosed only under strict confidentiality and anonymity arrangements. 

Due to such data limitations, there is little empirical work focusing on portfolio-level margins (as opposed to individual-security collateral requirements), 

and on how well conventional risk measures relate to the required collateral levels. 
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does not depend on historical probabilities and correlations nor on the state of the market, this shows that clearinghouses 

use a rule that is robust to the exact specification of the model for tail events. 

2. Institutional details and data 

In this section, we introduce the main institutional details of our setting. We also describe our data, and show our first

finding: collateralization rates vary substantially across clearinghouse members and over time. 

2.1. Clearinghouse margining in practice 

Clearinghouses have significant discretion over modeling assumptions and parameters used to generate and justify mar- 

gin requirements. They set them taking into account market conditions, the demand for trading, and collateral quality. In 

practice, margining rules involve a wide range of scenarios and simulations to arrive at a portfolio loss distribution, requiring 

the clearinghouses to make various modeling and statistical assumptions. 

Most clearinghouses, including ICC (e.g., Ivanov and Underwood (2011) ), state that their margins are broadly “set to cover 

five days of adverse price/credit spread movements for the portfolio positions with a confidence level of 99%”, which we 

refer to as a 5-day 99% Value-at-Risk (VaR) margining rule. 7 However, this is only a simplified description of their actual

margining rules. Scenario-specific add-ons are often applied to produce the final margin requirement ( CME Group (2010) , 

ICE Clear US (2015) ). 8 In particular, the margin requirement set by ICC is the sum of seven components. In addition to con-

sidering (i) losses due to credit quality (changing credit spreads), the methodology also considers losses due to (ii) changing 

recovery rates and (iii) interest rates. There are additional charges capturing (iv) bid-offer spreads, (v) large, concentrated 

positions, (vi) basis risk arising from different trading behavior of indices and their constituents. Finally, there is (vii) an 

additional jump-to-default requirement due to the potential large payouts associated with selling credit protection on sin- 

gle name contracts. Similar to the Basel capital requirements, the ICC margin framework follows a bucket approach. It first 

calculates each of the seven components (“buckets”), and the final collateral requirement is simply the sum of these compo- 

nents. Importantly, even if clearinghouses were restricted to using VaR based margining rules, the confidence level, margin 

period of risk, and the distributional assumption of losses are inputs that give the clearinghouse significant freedom in 

setting the actual margin levels. 

Overall, clearinghouses employ complex rules to determine the amount of required margins. These rules make it difficult 

to understand what the main economic determinants of collateral requirements are, partly because they depend on the 

interactions of several variables and calibration choices, and partly because they do not explicitly take into account variables 

that may still matter indirectly: for example, aggregate volatility or default risks do not directly enter into the calculations, 

but may still affect the collateral rule because they affect the scenarios used by the clearinghouse to simulate portfolio 

losses, or affect the choice of discretionary parameters. The goal of this paper is not to reverse-engineer this complicated 

procedure, but rather to identify and quantify the main economic determinants of collateral both in the level and in its

panel variation. 

2.2. Data and summary statistics 

In this section, we provide an overview of our data and present descriptive statistics for the key variables. We construct 

a database of the entire universe of CDS positions cleared by ICE Clear Credit (ICC), for the period between May, 1 2014

and May, 08, 2020. ICC managed a significant fraction of the U.S. cleared CDS market, totaling 56% in 2015 and 2016, 52%

in 2017, and 70% in 2018 and 2019. The absolute value of the cleared amount increased from nearly 9 billion in 2015, 2016,

and 2017 to about 12 billion in 2018 and 2019. 9 Hence, it has always remained the largest CDS clearinghouse throughout

our sample. 

Clearinghouse collateral data: the Part 39 data set 

The Dodd–Frank Wall Street Reform and Consumer Protection Act grants the U.S. Commodity Futures Trading Commission 

(CFTC) authority over Derivative Clearing Organizations (DCOs). As a result, major clearinghouses recognized as DCOs are 

required to report confidential swap trade data to CFTC on a daily basis. The data are collectively referred to as “Part 39

data,” as the relevant rules and regulations are codified in Title 17, Chapter I, Part 39 of the Code of Federal Regulations.

Part 39 data provides a complete overview of the centrally cleared swaps in the U.S. 

We obtain clearing member data from the CFTC Part 39 database. Our data set consists of both positions data and account

summary data for CDS trades cleared by ICE Clear Credit (ICC) (combined with ICEU, the European arm of ICE’s CDS clearing,
7 The CDS initial margin methodology adopted by ICE Clear Europe provides coverage for index, single Name and Western European Sovereign CDS 

products using at least, a 5-day for house positions, and 7-day for client positions, 99.5% Value-at-Risk measure. See https://www.theice.com/publicdocs/ 

ICE _ CDS _ Clearing _ Margin _ Calculator _ Overview.pdf for details. 
8 These rule are not described in detail in publicly available documents, but they are available to CFTC officials. For ICC’s public disclosure, see https: 

//www.theice.com/publicdocs/clear _ credit/ICE _ CDS _ Margin _ Calculator _ Presentation.pdf . 
9 These percentages are computed from the quantitative disclosure statements of the three clearinghouses in the CDS market, i.e., ICE Europe ICC, and 

LCH CDSClear. These documents disclose the notional of cleared positions for the house accounts of their members. 

62 

https://www.theice.com/publicdocs/ICE_CDS_Clearing_Margin_Calculator_Overview.pdf
https://www.theice.com/publicdocs/clear_credit/ICE_CDS_Margin_Calculator_Presentation.pdf


A. Capponi, W.-S.A. Cheng, S. Giglio et al. Journal of Monetary Economics 126 (2022) 58–86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

they account for over 90% of the cleared CDS market registered in the database). Our sample period covers nearly five years,

from 05/01/2014 to 05/08/2020, for a total of 1554 business days. 

CDS positions data 

Credit default swaps (CDS) are credit derivatives used to trade the credit risk of a reference entity (a bond). The protec-

tion buyer (the long side of the contract) is obligated to pay a quarterly premium to the protection seller (the short side

of the contract) up until contract maturity or the arrival of a credit event for the reference entity, whichever occurs earlier.

Upon arrival of the credit event, the seller pays to the buyer the difference between the face value and the market value of

the reference obligation. If the reference entity is a sovereign or corporate entity, the CDS is referred to as a single name

CDS, and is uniquely identified by its coupon rate (the quarterly premium), maturity, reference bond seniority, and doc 

clause (which defines what constitutes a credit event), typically rolled out quarterly. If the reference entity is a weighted 

basket of bonds from various sovereign or corporate entities, it is referred to as an index CDS, typically rolled out semi-

annually. When components of the reference basket default, the protection seller pays a pro rata cash flow depending on 

the weights of the components. The index contract is then reversioned (i.e., the basket is updated), and coupon payments 

and the contract notional are reduced accordingly. A CDS index contract is identified by its notional, coupon rate, maturity, 

reference basket, version, and doc clause. Our data set includes both single name and index contracts. 

The CDS position component of the Part 39 data set contains daily reports of each account’s end-of-day (EOD) position 

in each cleared CDS contract, for each account used by a clearinghouse member (see below). For each day/account/contract 

combination, we observe long/short gross notional, EOD prices for the contract, the currency denomination and exchange 

rates, and the mark-to-market (MtM) value of the position. 10 

In the sample period considered, the most liquid CDS index contracts were mandatorily required to be cleared through 

a clearinghouse. Many other CDS contracts were cleared as well, but only voluntarily; as a result, our data presents only

a partial view of the entire CDS market (which is inconsequential for the goals of this paper). Our data set includes CDSs

on 631 distinct reference entities, 620 single names and 11 indices. A total of 26,603 distinct contracts referencing these 

reference entities were cleared during our sample period (multiple CDS contracts are written on each underlying reference 

entity). 11 

We adjust for changes in reference entities due to spin-offs, split-offs, or combined firms from mergers and acquisitions. 

After accounting for this, we are left with a total of 620 distinct reference entities. 

Account and margin data 

The cleared CDS market is dominated by a handful of clearing members who act as dealers to the outside market. Smaller

clearing participants access the cleared market by becoming customers to clearing members. Each clearing member may 

have several accounts with ICC. The account is designated as a “customer account” if the account positions are taken on be-

half of a customer, and designated as a “house” account if the positions are proprietary. Customer accounts are commingled; 

that is, they consist of multiple sub-accounts for many customers, and segregated customer specific data are not reported. 

We observe 45 accounts in total, each identified by a distinct clearing firm identification number. Of these accounts, 14 are

designated as customer accounts and 31 are house accounts. 

Many house accounts are set up to help with the processing of client trades, but have little open interest, as clearing

members usually use one house account to hold the majority of their proprietary positions. We thus define a house account

to be “auxiliary” if there are little to no positions associated with them. We refer to the remaining house accounts as “active”

house accounts. 12 

Clearing members only hold positions with the clearing house. Any contract initiated between two clearing members 

which is then cleared through ICC is broken up into two contracts, where the clearinghouse is the intermediate link. Hence,

the portfolio held by each house account with the clearinghouse represents effectively all and only the exposure of the 

clearinghouse to that member. 

For each clearing member account, the account summary portion of the Part 39 data set contains daily reports of EOD in-

formation. For each day/account combination, we observe the so-called initial margin requirement, the initial margin posted, 

the currency denomination and exchange rates, and the MtM value of the portfolio. The initial margin requirement is the 

level of collateral the clearinghouse demands from the account holders, whereas the margin posted is the actual amount 
10 We report in Online Appendix OA.B a brief overview of standardized CDS price quote conventions. 
11 CDS contracts written on the same underlying may differ by seniority, doc clause (definition of credit event), and maturity/expiration date (for every 

maturity, a new series is issued in a rolling way, typically every 6 months, each counted as a different contract). For single names in our data, for each 

reference entity we have on average 1.9 doc clauses outstanding, 1.01 seniorities, and 26.57 different maturity dates. For indexes, all contracts have the same 

credit event definitions and seniority, and we have on average 18.6 series per reference index, and 19.8 maturities outstanding. If every combination of 

seniority, doc clause, and maturity date was issued, we would have a total of 1.9x1.01x26.57x620 single name contracts, and 18.6x19.8x11 index contracts, 

for a total of 35,663 contracts. In our data, we see 26,603 distinct contracts, as not all combinations actually get issued. 
12 To be precise, a house account is auxiliary if (i) the average gross notional is less than $15 billion USD, (ii) the average number of distinct CDS contracts 

traded is less than 500, or (iii) the number of distinct CDS reference entities traded is less than 100. Our empirical conclusions are robust to changes in 

these thresholds. 

63 



A. Capponi, W.-S.A. Cheng, S. Giglio et al. Journal of Monetary Economics 126 (2022) 58–86 

Fig. 1. Histogram of margin/notional ratio observations. Note: For each active house account/day combination, we compute the margin to notional ratio 

by dividing initial margins with aggregate net notional. We obtain the aggregate net notional by computing the net notional for each reference name 

and then summing the absolute net notional values across names. The figure reports the histogram of margin/notional ratio across all 23,310 account/day 

observations. 

 

 

 

 

 

 

 

 

 

 

 

 

that account holders supply; the two are almost always the same, or extremely close. 13 The collateral posted is entirely held

in cash deposits and money market funds, and thus there is no variation in liquidity of the collateral posted. 

It is important to emphasize that what is referred to as the initial margin in this market – the collateral requirement we

study in this paper – is the collateral kept by the clearinghouse with the purpose of buffering against potential future losses

in case clearing members default on their obligations. Despite the name “initial” margin, this margin is not just posted at 

initiation of a CDS position: instead, it is updated every day and it covers the entire portfolio of an account. It therefore

corresponds directly to what is typically referred to as collateral requirement in standard theoretical models. We will use 

the terms initial margin, margin requirements, and collateral requirements interchangeably. 14 

We provide descriptive statistics for each of the three account categories (active house, customer, and auxiliary house) in 

Table 1 . Table 1 reports, for each account, the pooled averages of the key variables over our sample period. Pooled averages

are computed by averaging point observations within the account categories and across the sample time period. The table 

shows that we identify 15 active house accounts, which on average own more than 3500 distinct contracts, for a total

average notional position of $136bn, and post an average amount of $654m collateral to ICC. Auxiliary accounts have activity 

levels that are one order of magnitude smaller. 15 Customer accounts have similarly small activity levels, but post higher 

amounts of collateral because of the lower diversification. In the remainder of the paper, the focus will be exclusively on the

active house accounts. This is because customer accounts are commingled and margins information aggregated. Therefore, 

the observed margins are not associated with a specific institution’s portfolio in our data set, so that we cannot study the

relationship between collateral posted and portfolio characteristics. We also exclude auxiliary house accounts because there 

are little to no positions associated with them. 

To gain further insight into active house account margins, we compute the level of collateralization for cleared portfolios. 

We measure this with the margin to net notional ratio, which accounts for varying sizes of cleared portfolios; it is computed

by taking the ratio of the initial margins requirement and aggregate net notional. The results are reported as a histogram in

Fig. 1 . The figure shows that there is substantial heterogeneity in collateralization rate across time and accounts, from a low

close to zero to a high above 20% (the observations that cluster around 15% all belong to one specific clearing member). In
13 Margin requirements are reported separately in USD and Euro; we combine them using the appropriate exchange rate and express the total initial 

margin requirement of the entire portfolio in USD. The actual collateral posted is often reported entirely in USD, and covers both the USD and Euro margin 

requirements. 
14 All cleared contracts are marked to market daily, so that the change in current value of the portfolio is transferred to the clearinghouse by the next 

day. This transfer is referred to as variation margin , and is distinct from the initial margin as it does not represent a stock of collateral meant to cover for 

future changes in the value of the portfolio, but rather a cash flow reflecting the mark-to-market process. So the variation margin will play no role in our 

analysis, as it is different from what we typically refer to as collateral. 
15 In fact, five auxiliary house accounts had zero margins throughout, indicating no trading activity at all. We excluded these accounts when calculating 

descriptive statistics of auxiliary house accounts. 
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the remainder of this paper, we analyze what characteristics of the members’ portfolios drive this significant heterogeneity 

in collateralization rates. 

Market events during our sample period 

Mandatory clearing of standardized CDS contracts was imposed only after the financial crisis. Thus, our data set does not 

include the years of the crisis in which the financial system (and the CDS market) underwent significant stress, which are

particularly interesting times for understanding collateral requirements and their relation with the broader economy. How- 

ever, several important events happened during this period, among which commodity market events (e.g., the drop in oil 

prices in November 2014), currency market events (the plunge in the Euro in 2015), political events (the Brexit referendum 

and Trump’s election in 2016), credit events (Venezuela’s default in 2017), and the COVID 19 pandemic. Online Appendix 

OA.C reviews in detail the most important events that occurred during our sample period. 

It should be remarked that, while we do not have positions data going back to the financial crisis, we do observe CDS

spreads going back to 2004. This allows us to do counterfactual simulations of portfolio returns, and to assess how well

current collateral buffers can absorb shocks of magnitudes as large as those observed in 20 08–20 09. 

3. Collateral requirements and the Value-at-Risk rule 

In this section, we test whether the standard VaR margining rule is a good description of the collateral rule in the

cleared CDS market. Using two different approaches, we show that that is not the case: actual collateral levels are orders of

magnitude more conservative than predicted by the standard VaR rule. 

3.1. Notation 

Consider a set of dates T := { 1 , . . . , T } , a set of contracts I := { 1 , . . . , I} , and a set of market participants (clearing mem-

bers) N := { 1 , . . . , N} . The portfolio held by participant n at time t is a vector X 

n 
t ∈ R 

I , whose i -th component X n 
i,t 

is the

portfolio’s notional position in contract i . X n 
i,t 

can be positive or negative, depending on whether n has a long or a short

position in the contract i . 

We denote the end-of-day (EOD) quoted prices of cleared contracts at time t by P t , whose i -th component, P i,t , is the

EOD quoted price of contract i . As explained in detail in Online Appendix OA.B, the market value of a position with one

dollar notional and quoted price P i,t is simply (1 − P i,t ) ; we follow this conventional notation here, and express all quantities

in terms of quoted prices P i,t . 

The mark-to-market value of the portfolio X 

n 
t held by market participant n at time t , denoted by MtM t (X 

n 
t ) , can be

computed as 16 

MtM t (X 

n 
t ) = 

∑ 

i 

X 

n 
i,t ( 1 − P i,t ) (1) 

The profit and loss (P & L ) between times t and t + M (for a given time- t portfolio X 

n 
t ) is given by 

�M,t (X 

n 
t ) := MtM t+ M 

(X 

n 
t ) − MtM t (X 

n 
t ) = X 

n 
t · ( P t − P t+ M 

) . 

We use V aR M,α
t (·) to denote the α−th quantile of the profit-and-loss (P&L) distribution of the portfolio X 

n 
t held by market

participant n at time t over an M−day period starting at t . 17 Hence, Value-at-Risk ( V aR ) is defined by 

P (�M,t (X 

n 
t ) < −V aR 

M,α
t (X 

n 
t ) |F t ) = α, 

where F t represents the information set available at time t . M is commonly referred to as the margin period of risk (or

liquidation period), and 1 − α is the confidence level. 

3.2. Testing the Value-at-Risk rule 

The standard VaR collateral rule assumed in the literature stipulates that collateral requirements (initial margins) at time 

t are set equal to V aR M,α
t (·) , for a certain confidence level α and margin period of risk M. That is, under the VaR rule, initial

margins are set as 

H 0 : IM t (X 

n 
t ) = V aR 

M,α
t (X 

n 
t ) , 

where IM t (X 

n 
t ) is the margin required by the clearinghouse at time t for holding portfolio X 

n 
t . 

We test the VaR hypothesis H 0 using two different approaches. The first approach can be applied if α and M are known.

For instance, CDS clearinghouses typically claim that initial margins are set to cover 5-day losses with 99% confidence 

( Ivanov and Underwood (2011) ), so α = 1% and M = 5 . If initial margins are set to be a certain conditional quantile of the
16 There is an additional adjustment factor for CDS indices that have been reversioned after the default of a component, which we omit here for ease 

of exposition but account for in our empirical analysis. The adjustment factor is smaller than one and accounts for a proportional decrease in effective 

notional due to the contract payout. 
17 By definition, this assumes that margins cannot be increased during the M days between t and t + M. 
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Fig. 2. Histogram of realized return on margins for cleared portfolios. Note: We compute the realized 5-day ahead returns on margins as the 5-day ahead 

P& L divided by posted margins. We compute this for each account/day and obtain 23,310 observations. The figure plots the histogram of the return on 

margins.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

returns distribution (say the 1% quantile), the fraction of times the portfolio loss exceeds the posted collateral is expected to

be on average equal to that quantile (1% of the time). We refer to this approach as the time-series test of the VaR hypothesis;

this is in fact equivalent to the “backtesting” procedure advocated by the Basel Accords ( Hull (2012) ). 

A second approach can be considered in the cases that α and M are unknown. Rather than testing the rule jointly across

all counterparties, this test looks at whether the same VaR rule is applied to all counterparties, similar to the approach

implemented by Gay et al. (1986) . That is, no matter what α and M are, under VaR margining we would expect the same

margining rule to be applied to all counterparties. This test reveals whether the proposed rule ( V aR ) is able to capture all

portfolio- and counterparty-specific factors that are relevant for determining margin requirements. We refer to this as the 

cross-sectional test of the VaR hypothesis. 

3.3. Time-series test of the VaR hypothesis 

We start with the time-series test of the V aR hypothesis, using the null H 0 described by the clearinghouse: M = 5 days

and α = 1% . Since IM t (X 

n 
t ) is observable in our data set, the main step of our analysis is to estimate the empirical distri-

bution of the P&L of the portfolio over M days ( �M,t ). We consider two different approaches, one using the realized P&Ls

during our sample period, 2014–2020; the other using simulated P&Ls for the period 2004–2020. 

Using realized returns 

The first tests asks the question: how often does one see a 5-day portfolio P&L �5 ,t (X 

n 
t ) negative enough to exceed the

collateral that had been posted against it (we refer to this as an exceedance )? If we define the return on margin as the ratio

of the realized 5-day P&L to the initial margin, we can restate the question as: how often do we see a 5-day return on

margin below -100%? Under the null of a VaR rule, one should see these exceedances approximately 1% of the time; we

can then simply test the null by looking at the empirical proportion of exceedances in our data. Note that this test does not

require us to observe or specify the information set F t – since under the null, the initial margin fully takes it into account. 

Fig. 2 reports the empirical distribution of realized 5-day-ahead returns on margins. We compute returns on margins for 

each account/day in our sample and obtain 23,310 observations. A few interesting patterns emerge from the figure. First, the 

dispersion of returns in our sample period is quite small relative to the amount of collateral posted. Second, the distribution

of returns on margins does not exhibit distinctly heavy tails, despite the fact that several important events occurred during 

our sample period, including the recent COVID crash (see Online Appendix OA.C). With probability 99 . 45% , the return on

margins lies in the [ −26% , 26%] interval. Third, and most relevant for the analysis of margining and losses, only in 2 out

of 23,310 cases (that is, 0 . 008% of the time) an exceedance occurred, far from the 1% frequency corresponding to the 99%

VaR rule. In fact, in our sample margins have been about 7 times as high as what the 99% VaR rule would imply (the 99th

percentile of the empirical distribution of losses). 
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Fig. 3. Histogram for historically simulated return on margins (left), with zoom on left tail (right). Note: The figure shows the histogram of simulated 

return on margins. Due to the large number of observations clustering around zero, we only display observations between ±50% in Fig. 3 a, and report 

the left tail of the histogram in Fig. 3 b. We use the DV01 formula to approximate the 5-day ahead P& L with the product of net exposures to a reference 

name and the change in 5-year credit spreads for rolling 5-day windows from 2004 / 01 / 01 up to each position date t + 5 days (for all business days from 

2014 / 05 / 01 to 2020 / 05 / 08 , adjusted for an average duration of d = 3 . We compute the DV01 for each account/day/historical 5-day window and obtain 

81,130,350 observations.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to formally test the hypothesis H 0 , we perform a statistical test comparing the observed empirical frequency

( 0 . 008% ) to the one predicted by the model ( α). The distribution of the test statistic (the difference between the empirical

frequency and α) is derived in Online Appendix OA.D. Not surprisingly, our statistical test strongly rejects the VaR null (p-

value < 0.001). Overall, this first test provides a strong indication that margins are set more conservatively than the standard

VaR rule. 

Counterfactual return estimates (historical simulation) 

Next, we use historical simulation methods to estimate the distribution of returns on margins over a longer time period. 

Such a time period covers the financial crisis, the most significant period of market distress since the Great Depression. More

specifically, the idea of our counterfactual simulation is as follows. First, we collect CDS price data on all the CDS in our Part

39 sample, going back to 2004, from Markit and Bloomberg. For each day in our sample period (2014–2020), we observe

the portfolio held by each member, X 

n 
t . By looking at the history of (joint) price movements for all the constituents of those

portfolios, we can then ask what the historical distribution of returns of that specific portfolio would have been, starting 

from 2004 and up until t + 5 , that is, including the realized 5-day return that begins on date t . The resulting distribution

of P&L therefore includes the large price changes that occurred during the financial crisis, and incorporates the dramatic 

increase in correlations observed in those years. 

The clearinghouse aims to estimate the probability that initial margins IM t (X 

n 
t ) posted by a member n who holds the

portfolio X 

n 
t at time t are exceeded. We can answer this question by effectively backtesting the strategy using the historical 

empirical distribution of returns of that portfolio. Our historical simulation approach generates the return that the portfolio 

X 

n 
t would have attained at every time in the past, to assess how often it would have had experienced a loss greater than

IM t . In summary, we backtest the ability of current (2014–2020) initial margins to prevent exceedances due to CDS price

movements similar to those observed since 2004. While this approach does not obviously produce the actual conditional 

exceedance probabilities, it produces an estimate based on the historical performance of the portfolio components, and 

complements the analysis in Section 3.3 that looks at the realized exceedance frequencies but over a shorter time window. 18 

Implementing this test involves a few additional steps. Since there are new contracts issued and old contracts expiring 

every quarter, historical prices for a currently traded contract are not always available. To deal with this practical obstacle, 

we follow exactly the methodology of Duffie et al. (2015) , designed specifically for this purpose. We first aggregate net

exposures by name (reference entity), and then use the historical 5-year CDS spread on those names (for which we have
18 It is worth highlighting that the purpose of our simulation exercise is not to provide information about the historical positions and historical mark-to- 

market losses of clearing members. Rather, we use past data to answer the question: how would today’s portfolio X n t have performed in scenarios occurred 

in the past? Our aim is not to assess how well collateralized were positions held in the past, but rather to understand how such positions might fare in 

the future, were a similar scenario to realize. 
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accurate spreads data) to compute counterfactual returns for all days for which CDS spreads are available, starting from 

2004 / 01 / 01 . We review the details of the methodology in Appendix B . 19 

Using this approach, for each observed portfolio held by account n on each day t , we compute all returns on margins

that could have occurred to that portfolio in each 5-day window since 2004 and up to t + 5 . This procedure yields a total

of 81,130,350 simulated 5-day returns on margins. 

We report the distribution of counterfactual returns on margins in Fig. 3 . Due to the large number of observations clus-

tering around zero, we only display the histogram in the range [ −50% , +50%] in Fig. 3 a, and zoom in on the left tail of the

histogram in Fig. 3 b. We see that the distribution is sharply peaked, and that most returns on margins lie between ±20% .

The frequency of returns decreases rapidly as we move away from the mean. 

When we consider counterfactual returns, we again observe a very small number of margin exceedances: the portfolios 

held during 2014–2020 would have sometimes experienced losses larger than the posted collateral if prices moved as they 

did during the financial crisis, but only in 0.007% of all 5-day periods. This fraction is two orders of magnitude smaller than

the 1% predicted by the standard VaR. On average, posted margins were 7 times higher than the empirical 99th percentile

of 5-day simulated losses starting in 2004. 

We also extend the formal statistical test of the previous section to include all the historical counterfactual returns for 

each portfolio held in each day by each account. As before, the test compares the empirical frequency of margin exceedances

(0.007%) with that predicted by the VaR rule (1%). To fully account for potential time-series and cross-sectional correlation 

of the errors, we double-cluster the standard errors of the test statistic at both the day and the account levels (as described

in Petersen (2009) ). Online Appendix OA.E reports the details of the test statistic and its distribution. Not surprisingly, the

test again strongly rejects the null of a 5-day 99% VaR rule (p-value < 0.001). 

To sum up, both versions of the time-series test strongly reject the null that collateral is set by a 5-day, 99% VaR rule.

We observe only two exceedances in the period 2014–2020 both of which occur during the COVID-19 period, and historical 

simulations that include the financial crisis imply exceedances only in 0.007% of cases. Instead, we find that posted collateral 

levels are one order of magnitude (700%) higher than the 99% percentile of realized and simulated losses. The collateral rule

in this market appears very conservative. 

3.4. Cross-sectional test of the VaR hypothesis 

We conclude by performing the cross-sectional test of the VaR hypothesis, that requires no assumptions about the con- 

fidence level 1 − α. 20 Recall that the margining rule requires that 

P (�M,t (X 

n 
t ) < −IM t (X 

n 
t )) = α for all n, 

that is, the exceedance ratios should be the same across clearing members. We analyze the validity of this rule by testing

that the empirical frequencies of exceedances across accounts are the same, using a G-test described in Online Appendix 

OA.F. 

The test strongly rejects the null (p-value < 0.001) that exceedance ratios are the same across clearing members. There is

therefore direct evidence against equality of exceedance probabilities, and thus against the null hypothesis that there exists 

a VaR rule which can explain observed initial margins for all counterparties. 

4. The determinants of the collateral rule: Portfolio risk and market risk 

The previous section has shown that a simple VaR rule fails to capture observed margins along different dimensions. 

This suggests that other variables (both at the level of the individual member’s portfolio and marketwide) might enter the 

collateral rule. 

In this section, we consider two groups of potential explanatory variables. Portfolio variables are those which are specific 

to the portfolio that an account holds with the clearinghouse, and are conventionally used to measure the risk of positions.

These include, in addition to VaR, expected shortfall (ES), maximum shortfall (MS), aggregate net notional (AN), aggregate 

short notional (AS), net-to-gross notional ratio (NGR), and the volatility of the portfolio (SD). We describe these in detail 

below. Market variables are those which are determined by market forces, and include the clearing members’ CDS spreads, 

the LIBOR-OIS spread, the average clearing member CDS spread, and aggregate volatility as measured by VIX. Table 2 sum-

marizes the list of key variables for convenience. 

4.1. Description of portfolio and market variables 

Portfolio variables 
19 A day is included in our data analysis only if prices are observed for at least 250 out of the 593 reference entities; this filter excludes few days in the 

early part of the sample for which price information was not uniformly available across contracts. 
20 We perform the test using the counterfactual returns over the period 2004–2019. The results obtained using only the period 2014–2019 are trivial: 

there were no exceedances for any account, so a VaR with 100% confidence level fits the cross-section perfectly. 
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Table 1 

Descriptive statistics for different account categories. 

Active House Customer Auxiliary House 

Number of accounts 15 14 12(16) 

Number of contracts 3571.3 305.9 166.3 

Number of names 302.3 101 63.1 

Gross notional (billions $) 136.2 33 9.2 

Initial margins (millions $) 654 1038.7 61.6 

Note: The table reports the pooled averages of key variables within our data 

set depending on account type over our sample period. The number of con- 

tracts/names for each account counts those contracts/names for which the ac- 

count has a non-zero position. Gross notional is computed by summing the abso- 

lute notional exposure for all contracts in the account. Margins are computed by 

summing the USD margin requirement and the Euro margin requirement, after 

adjusting for the historical exchange rates. Four auxiliary house had zero mar- 

gins throughout, indicating no trading activity at all. We excluded these accounts 

when calculating auxiliary house account descriptive statistics. 

 

 

 

 

 

 

 

 

 

Let �k denote the set of CDS contracts with reference entity k (that differ by maturity, doc clauses, etc...). For each

reference entity k , net notionals are defined by 

Y n k,t := 

∑ 

i ∈ �k 

X 

n 
t,i . 

The aggregate short notional, AS n t , is defined as in Duffie et al. (2015) : 

AS n t := 

∑ 

Y n 
k,t 

< 0 

| Y n k,t | . 

The aggregate short notional plays an important role because of the highly asymmetric nature of CDS payoffs. While the 

premium leg makes fixed payments, the protection leg (i.e. the short side of the CDS position) is exposed to jump-to-

default risk. Such an asymmetry induces strong left skewness in the payoff function of a short position, which is why it is

typically the seller of protection that posts the most collateral. 

The net-to-gross notional ratio NGR n t is defined as the ratio between net notional and gross notional, both aggregated 

across reference entities for each account n on a given day t . The corresponding expression is 

NGR 

n 
t := 

∑ 

k ∈ K Y 
n 

k,t ∑ 

k ∈ K 
∑ 

i ∈ �k 
| X 

n 
t,i 
| . 

This quantity is expected to be low for well-diversified accounts, such as those held by large clearing members. 

Duffie et al. (2015) propose to approximate the initial margin rule in the CDS market with the following combination of

portfolio variables: 

DSV 

n 
t = MS 5 (X 

n 
t ) + 0 . 02 × AS(X 

n 
t ) , (2) 

where MS M 

(·) represents the maximum shortfall of the portfolio for a M−day margin period of risk, computed using his-

torical simulations. This formula – clearly different from Value at Risk – is assumed by Duffie et al. (2015) to approximately

model the much more complex procedure that ICC uses; we refer to this rule as the “DSV model”. Note that whereas in

Duffie et al. (2015) this rule was directly assumed to hold, we evaluate here how well it captures the panel variation in

initial margins, comparing it to alternative models like VaR. 21 

Finally, we also consider a modified version of the DSV model, MDSV: 

M DSV 

n 
t = w 1 × M S 5 (X 

n 
t ) + w 2 × AS(X 

n 
t ) , (3) 

that estimates the weights w 1 and w 2 from the data instead of using the ones calibrated by Duffie et al. (2015) . The corre-

sponding estimates are reported in Table 4 and given by w 1 = 0 . 632 and w 2 = 0 . 029 . 

We estimate the empirical distribution of the simulated series ψ := 

{
ˆ �5 , t (X 

n 
t ) 

}T 

t=1 
of 5-day ahead P&L via the historical 

simulation approach discussed in Section 3.3 . Using the empirical distribution, we form estimates of volatility (SD, standard 

deviation), 99% Value-at-Risk (VaR), expected shortfall (ES, the expected loss conditional on exceeding the VaR), and maxi- 

mum shortfall of the portfolio (MS, the maximum loss experienced in simulations). All portfolio variables are in millions of 

USD to conform with the level of initial margins. 
Market variables 

21 While Duffie et al. (2015) compute maximum shortfall for a fixed look-back period of 10 0 0 days, we use a longer price series starting from the year 

2004. As both ours and their time series data cover the years of the crisis, when the largest losses occurred, the difference between the initial margins 

computed by the two approaches is negligible. We also explore robustness with respect to this choice in Section 4.4 . 
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Table 2 

Portfolio and market variables. 

Notation Units Definition 

ψ millions $ Empirical 5-day distribution of profit and losses for a portfolio 

IM millions $ Observed initial margins posted for a portfolio 

Y millions $ Net notional aggregated over reference names for a portfolio 

Portfolio Variables 

VaR millions $ 1 percent quantile of ψ

ES millions $ Average of profit and losses smaller than or equal to VaR 

MS millions $ Minimum of ψ

SD millions $ Sample standard deviation of ψ

AS millions $ Aggregate short notional (by reference entity) of portfolio 

DSV millions $ Initial margin estimate used by Duffie et al. (2015) , equal to MS + 0 . 02 × AS

MDSV millions $ Adjusted initial margin from DSV , with estimated weights 

Market Variables 

OIS bps End of day 3-month Overnight Index Swap spreads 

LOIS bps End of day 3 month USD LIBOR-OIS spreads 

CDS bps End of day market quote for clearing member specific 5-year CDS spread 

ACDS bps Average end of day clearing member 5-year CDS spread 

DCDS bps Deviation of end of day 5-year CDS spreads from the average, equal to C DS − AC DS

V IX bps End of day CBOE Volatility Index 

Note: This table displays the key variables and notation we use in our regression analyses. Portfolio variables are those which 

are specific to the portfolio that an account holds with the clearinghouse, and are conventionally used to measure the risk of 

positions. Market variables are those that are determined by market forces. Portfolio variables estimated from the empirical 

distribution via the historical simulation method outlined in Section 3.3 include Value-at-Risk, expected shortfall, maximum 

shortfall, and standard deviation. Portfolio variables estimated directly from positions include aggregate net notional and 

aggregate short notional. We record portfolio variables in millions USD. Market variables include the Overnight Index Swap 

(OIS) spread, the LIBOR-OIS spread, clearing member CDS spreads, the average clearing member CDS spread, and the aggregate 

volatility as measured by VIX. We record market variables in basis points. 

 

 

 

 

 

 

 

 

 

 

We collect from Bloomberg time series data of the 3-month Overnight Index Swap (OIS) spread, the 3-month USD LIBOR 

rates, clearing member 5-year CDS spreads, and aggregate volatility as measured by VIX. CDS spreads on the members 

themselves can be interpreted as a measure of individual member counterparty risk, or potentially as a measure of funding 

cost for a clearing member, because higher spreads make it more costly for a member to borrow funds. We include in our

analysis both individual CDS spreads and average CDS spreads of the members. As an alternative to the average credit spread

ACDS t , we also consider the LIBOR-OIS spread to control for market distress. The LIBOR-OIS spread 

LOI S t := LI BOR t − OI S t . 

is typically viewed as a measure of financial sector stress, capturing mainly the interest rate differential between uncollater- 

alized and collateralized loans. All market variables are recorded in basis points (bps) to conform with market convention. 

Summary statistics 

Table 3 displays summary statistics of our key portfolio variables and initial margins, in millions of USD. Note that each

portfolio variable (like SD, VaR, etc) is computed separately for each time t and each member n ; in the table, in addition to

the pooled mean and standard deviations (which we also refer to as dispersions) across all n and t , we also describe other

measures of portfolio dispersion in the time series and in the cross-section. 

We observe that all measures of dispersion increase in the order of extreme tail risk captured. That is, as more weight

is put into the tail of the distribution, variability in the computed measures increases both across time and across accounts.

The measure with the smallest value is the standard deviation ( SD ), followed in order by Value-at-Risk ( V aR ), expected

shortfall ( ES), and maximum shortfall ( MS). 

Consistent with the results of the previous section, Table 3 shows that V aR is about one order of magnitude smaller than

initial margins on average. Interestingly, even ES and MS, that do capture more extreme tails, are much smaller than the 

posted margins – suggesting that these variables alone should not be able to explain the observed level of margins either. 

On the other hand, the table also shows that the DSV model matches well not only the level of margins, but also all the

dispersion measures; the modified DSV model does even better. 

Table OA.1 in the Online Appendix reports summary statistics of our key market variables and initial margins, in basis 

points and millions of USD. 

4.2. Margins and portfolio-specific risks 

In this section we perform a panel analysis relating observed margins to portfolio variables. In particular, we estimate 

the following panel regression model with time and account fixed effects: 

IM 

n 
t = αn + ηt + 

∑ 

v ∈ PV 

βv v n t + u 

n 
t , (4) 
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Table 3 

Initial margins and portfolio variables summary statistics . 

Portfolio variables, in millions $ 

Summary Statistic In. Margins ( IM n,t ) Portfolio SD ( SD n,t ) VaR ( VaR n,t ) Exp. Shortfall ( ES n,t ) Max Shortfall ( MS n,t ) 

Pooled mean (over all n and t): μ( x n,t ) 654.0 25.3 78.2 116.3 240.3 

Std. deviation (over all n and t): σ ( x n,t ) 427.4 17.7 57.0 83.3 205.9 

Time-series variation of cross-sectional averages: σ ( ̄x t ) 108.4 3.2 8.4 18.9 83.0 

Mean cross-sectional dispersion: μ( σt ( x n,t ) ) 421.0 17.8 57.7 81.8 171.5 

Cross-sectional dispersion of time-series averages: σ ( ̄x n ) 360.7 14.5 46.7 67.3 137.2 

Mean time-series dispersion: μ( σn ( x n,t ) ) 225.4 9.3 29.9 44.8 131.3 

Portfolio variables, in millions $ 

Summary Statistic Aggr. Notional ( AN n,t ) Aggr. Short Notional ( AS n,t ) Duffie et al. ( DSV n,t ) Modified DSV ( MDSV n,t ) 

Pooled mean (over all n and t): μ( x n,t ) 25,058.4 12,436.9 489.1 512.6 

Std. deviation (over all n and t): σ ( x n,t ) 15,733.3 9,333.1 348.5 361.6 

Time-series variation of cross-sectional averages: σ ( ̄x t ) 2,731.6 2,238.2 118.6 108.1 

Mean cross-sectional dispersion: μ( σt ( x n,t ) ) 15,988.8 9,169.7 324.9 348.3 

Cross-sectional dispersion of time-series averages: σ ( ̄x n ) 14,890.4 6,926.6 264.1 277.4 

Mean time-series dispersion: μ( σn ( x n,t ) ) 5,823.1 5,334.9 204.8 206.8 

Note: Table 3 displays summary statistics of our key portfolio variables and initial margins, in millions of USD. Definitions of portfolio variables are reported in Table 2 . In addition to the pooled 

mean and standard deviations (dispersions), we report panel statistics that describe properties of panel variables both across accounts and time. In particular, for panel data x n,t , we define x̄ t := 

1 
N 

N ∑ 

n =1 

x n,t , x̄ n := 

1 
T 

T ∑ 

t=1 

x n,t , σ 2 
t (x ) := 

1 
N−1 

N ∑ 

n =1 

(x n,t − x̄ t ) 2 , σ 2 
n (x ) := 

1 
T−1 

T ∑ 

t=1 

(x n,t − x̄ n ) 2 . Above, we refer to σ ( ̄x t ) as the time-series variation of cross-sectional averages , σ̄t (x n,t ) as the mean cross- 

sectional dispersion , σ ( ̄x n ) as the cross-sectional dispersion of time-series averages , and σ̄n (x n,t ) as the mean time-series dispersion . 
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Table 4 

Regression results for explaining initial margins with portfolio variables . 

Panel (a): No Fixed Effects 

Dependent variable: 

Initial margins (IM) - Daily Frequency 

(1) (2) (3) (4) (5) (6) (7) (8) 

Value-at-Risk (VaR) 5.624 ∗∗∗ 1.867 ∗∗ 1.704 ∗∗ 1.446 1.708 ∗

(1.018) (0.866) (0.874) (0.974) (0.863) 

Maximum shortfall (MS) 0.328 ∗∗ 0.327 ∗∗ 0.632 ∗∗∗ 0.571 ∗∗∗

(0.163) (0.158) (0.199) (0.177) 

Aggregate short notional (AS) 0.025 ∗∗∗ 0.027 ∗∗∗ 0.029 ∗∗∗ 0.032 ∗∗∗

(0.002) (0.004) (0.004) (0.005) 

Net-To-Gross ratio (NGR) 49.359 106.951 49.544 

(99.976) (104.737) (100.346) 

Duffie et al. model (DSV) 1.016 ∗∗∗ 0.818 ∗∗∗

(0.116) (0.115) 

Modified DSV model (MDSV) 0.993 ∗∗∗

(0.142) 

Adjusted R 2 0.563 0.734 0.735 0.716 0.722 0.686 0.698 0.735 

Panel (b): Fixed Effects 

Dependent variable: 

Initial margins (IM) - Daily Frequency 

(1) (2) (3) (4) (5) (6) (7) (8) 

Value-at-Risk (VaR) 3.618 ∗∗∗ 1.621 ∗∗ 1.657 ∗∗ 1.125 1.813 ∗∗∗

(1.049) (0.501) (0.493) (0.797) (0.502) 

Maximum shortfall (MS) 0.274 ∗∗ 0.275 ∗∗ 0.519 ∗∗∗ 0.522 ∗∗∗

(0.127) (0.126) (0.123) (0.130) 

Aggregate short notional (AS) 0.018 ∗∗∗ 0.016 ∗∗∗ 0.020 ∗∗∗ 0.019 ∗∗∗

(0.003) (0.005) (0.004) (0.005) 

Net-To-Gross ratio (NGR) -39.324 -19.746 -31.167 

(128.532) (128.891) (121.450) 

Duffie et al. model (DSV) 0.738 ∗∗∗ 0.615 ∗∗∗

(0.090) (0.148) 

Modified DSV model (MDSV) 0.623 ∗∗∗

(0.139) 

Adjusted R 2 0.798 0.862 0.862 0.853 0.853 0.845 0.850 0.862 

Note: We perform least squares regressions using initial margins as the dependent variable. We use portfolio variables as explanatory 

variables. In Panel (a) we do not consider any fixed effects. In Panel (b), we consider both time and account fixed effects. The number of 

observations in both regression panels is 23,310. Two-way clustered (by time and account) standard errors are reported in parentheses 

and used for the significance tests. ∗ corresponds to p < 0.1; ∗∗ to p < 0.05; and ∗∗∗ to p < 0.01. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where P V is the set of portfolio variables included in the panel regression. Note that in the model specification of Eq. (4) ,

the regression coefficients do not depend on the specific clearing member n , a necessary condition if margining rules are

implemented uniformly across accounts. 

We start by examining the set of portfolio variables to include in the regression. First, we note that aggregate net notional

( AN) serves primarily as a measure of portfolio size. As portfolio size is already accounted for by risk measures such as V aR ,

MS and AS, all expressed in dollar units, we drop this variable from our regression. 22 Second, we perform a check for

multicollinearity, reported in Online Appendix Table OA.2. The table shows that V aR explains more than 96% of the variation

of both expected shortfall and standard deviation. This strongly points to multicollinearity issues, and thus we leave out 

standard deviation and expected shortfall in our panel model specification. 

Our final set of portfolio variables includes Value-at-Risk, maximum shortfall, aggregate short notional, and the DSV 

model given in Eq. (2) ; we also construct a “modified” DSV variable (MDSV) where the weights on AS and MS are chosen

to maximize in-sample fit (specifically, 0.5 on MS, 0.02 on AS, see (3) ). We report all the results in Table 4 , with time and

account fixed effects in panel (b), and without them in panel (a). We use double-clustered standard errors (by time and

account) as in Petersen (2009) , thus accounting for potential correlation in the errors, both within each account over time,

and across accounts within each day. The signs of the coefficients are in line with intuition: because larger values for each

of the explanatory variables point to a riskier portfolio, all coefficients are expected to be positive. 

Column (1) of Table 4 shows that Value-at-Risk alone can explain 56% of the variation in initial margins (panel (a)), and

79.8% of the variation if fixed effects are added to the regression (panel (b)). The estimated slope coefficient, however, is

much higher than unity in either case. A multiplier of 360% is needed for the regression fit with fixed effect, and 562%

without fixed effects: this shows, in a different way, that collateral requirements are set much more conservatively than 

what would be implied by the conventional 5-day 99% VaR rule. Column (2) in the two panels introduces maximum shortfall
22 We have conducted a regression analysis including AN as an explanatory variable, and found that, qualitatively, our results are largely unaffected. 
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Table 5 

Distribution percentiles of Spearman’s correlation coefficients between { VaR n,t } , { IM n,t } , and 

{ DSV n,t } . 
Percentiles 

1% 5% 10% 25% 50% 75% 90% 95% 99% 

VRIM 0.643 0.693 0.721 0.782 0.829 0.864 0.882 0.893 0.921 

DSIM 0.739 0.779 0.800 0.843 0.875 0.900 0.918 0.929 0.936 

Note: For each day t in our sample, we compute the Spearman’s cross-sectional rank-correlation 

coefficient between the margins predicted by the DSV model and the actual margins posted; 

we denote this daily cross-sectional rank correlation as DSIM t . Similarly, we compute V RIM t 

as the daily cross-sectional rank-correlation between VaR and actual margins posted. The table 

reports the percentiles of the distributions implied by the constructed time series { V RIM } T t=1 

and { DSIM } T t=1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( MS) and aggregate short notional ( AS) as explanatory variables in conjunction with Value-at-Risk. The inclusion of these 

variables brings the R 2 to 73%, even without fixed effects (86% with fixed effects). Moreover, the magnitude of the VaR

slope coefficients are much closer to unity once these variables are included. Our results therefore show that initial margins 

depend on risk characteristics which cannot be captured only by VaR, and in particular they depend on more extreme tail

risks. 

It is worth remarking that while both MS and AS relate to the extreme tails of the distribution, they differ significantly

in their nature. MS represents the maximum experienced loss in the historical data. As such, it depends on the experienced

realization of shocks and historical correlations across portfolio components. AS, instead, captures the maximal potential loss 

if all short CDS positions jump to default simultaneously, and recovery rates are zero; in this sense, it represents a theoretical

worst-case scenario for the potential loss, and represents a measure of tail risk that is less sensitive to the specification of

the loss distribution (as well as of the correlations between portfolio components). 

Column (3) in the two panels adds the net-to-gross ratio as a potential explanatory variable. A counterparty with large 

gross positions might pose a risk to the clearinghouse even if it has low net positions (since it could default only on the

short position). We expect the clearinghouse’s model to capture this (through either a higher MS or a higher AS, which

specifically focuses only on the short positions). The table shows that indeed, once MS and AS are controlled for, the net-

to-gross ratio appears insignificant and does not seem to contribute in a meaningful way to the panel R 2 . 

Next, motivated by the DSV model that only features MS and AS, we drop Value-at-Risk as an explanatory variable in

column (4), and find that there is little loss in explanatory power compared to columns (2) and (3). Maximum shortfall

is positively correlated with Value-at-Risk, and dropping Value-at-Risk increases the coefficient of the maximum shortfall 

loading. 23 Interestingly, the aggregate short notional coefficient estimate remains very stable (in the 2–3% range) and highly 

significant for all the estimated models. 

Columns (6)–(8) in the two panels investigate the usefulness of the DSV margin model in explaining empirically observed 

margins. Column (6) shows that the DSV model captures a significant portion of the variation in initial margins; it strongly

outperforms Value-at-Risk in terms of explanatory power (column (1)), and the coefficient of the DSV variable is much 

closer to 1. The significance of the DSV slope coefficient persists when we introduce Value-at-Risk (column (7)), and the 

explanatory power remains roughly the same, showing again that Value-at-Risk has little explanatory power beyond that 

already captured by DSV. The overall explanatory power improves further when we consider MDSV (column (8)), whose 

coefficients are based on the estimates reported in column (4) (so we should expect a similar explanatory power). Again, 

Value-at-Risk still has little explanatory power beyond that already captured by our modified DSV model. 

To provide further support to our claim that initial margins are better captured by the DSV model than by VaR, we

compute the relative cross-sectional ordering of margins implied by the VaR and by the DSV model, and compare them 

with the actual initial margins posted. Specifically, separately for each day t , we compute the Spearman rank-order cross- 

sectional correlation between VaR and initial margins, and refer to this daily correlation as V RIM t . Similarly, for each day

we compute DSIM t as the cross-sectional rank correlation between DSV’s predicted margins and actual initial margins. We 

then use these correlations to understand whether VaR or DSV better align with the ordering of initial margins in the cross

section. We find that on average (across days), the cross-sectional rank correlation between DSV and initial margins is 0.867, 

higher than the average rank correlation between VaR and initial margins, amounting to 0.815. In addition, we report the 

percentiles of the distribution (across days) of each of the two measures of rank correlations in Table 5 . All percentiles of the

DSV-IM rank correlation distribution are higher than the corresponding quantiles of the VaR-IM distribution. Furthermore, 

we find that V RI M t > DSI M t (that is, the cross-sectional ordering implied by DSV is better aligned with actual initial margin

than the ordering implied by VaR) for 1277 out of 1554 days (82%) in our sample. Hence, while both VaR and DSV are related

to initial margins, these results reinforce our message that DSV provides a better description of the collateral rule than VaR,

and additionally shows that our claim is robust to the use of non-parametric and nonlinear measures of associations. 
23 Given that maximum shortfall corresponds to the realized maximal loss, it is not surprising that its estimate can be noisy, which can sometimes reduce 

its statistical significance. 
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We next analyze whether the credit risk profile of the underlying portfolio impacts the dependence of initial margins on 

VaR and tail risk. For each day and account, we calculate the notional-weighted average of the credit spreads of the CDS

in the portfolio. We then split each day into high yield accounts (for which this average falls at or above the median), and

low-yield accounts (for which this average falls below the median). We then conduct our panel regressions separately for 

the high-yield and low-yield groups, in the two panels of Table 6 . A comparison of Table 4 and Table 6 shows that there is

qualitatively little variation in our results across these subsamples, even though the results are starker from a quantitative 

standpoint in the high-yield accounts. 

We then investigate whether initial margins are more sensitive to VaR and tail risk measures at the beginning of the

sample period, when the cleared market was smaller and historically closer to the global 20 07–20 08 financial crisis. We

split the sample into two subperiods of equal length, the first covering the period May 2014 through May 2017, and the

second spanning period May 2017 through May 2020. Table 7 shows that the statistical and economic significance of our 

results is qualitatively similar across the two subperiods (though quantitatively the results are stronger in the first half of 

the sample). 

To sum up, our empirical results provide strong support for the DSV model (in which the parameters were calibrated, 

not estimated). More generally, the results show that tail risk variables like maximum shortfall and aggregate net notional 

work significantly better than VaR alone in explaining the observed collateral rule. 

While our proposed measures capture significant variation in initial margins, the explanatory power is obviously not 

100%. On the one hand, that’s to be expected, since we are estimating a simple approximation of the true collateral rule,

which is far more complex. On the other hand, it leaves open the possibility that other factors might help explain the

margin setting, which are not captured by standard portfolio risk measures. 

4.3. Funding cost, collateral rates and other market variables 

In this section we incorporate market variables into our panel analysis and assess their ability to explain margin require- 

ments. The included market variables are chosen to capture variation in margins that is due to changes in default risk and

funding costs. We consider the following panel regression model: 

IM 

n 
t = αn + ηt 

∑ 

v ∈ PV 

βv v n t + 

∑ 

v ∈ MV 

βv v n t + u 

n 
t , (5) 

where P V = { V aR, MS, AS, DSV, M DSV } and M V = { LOIS, CDS, ACDS, V IX} are, respectively, the portfolio and market variables

included in the panel regression. Because market variables are often not account-specific (e.g. the LIBOR-OIS spread), time 

fixed effects cannot be included in the regression. Thus, in this section we only consider time fixed effects when non-

account-specific variables are excluded. 

We estimate the model in Eq. (5) using least squares regressions, choosing initial margins as the dependent variable and 

portfolio and market variables as explanatory variables. The results with double-clustered (by account and time) standard 

errors are reported in Table 8 . 

Columns (1) and (2) report the results when member CDS spreads, average CDS spreads, and the VIX are included, and

the portfolio variables VaR and MDSV are controlled for. There is a small but significant increase in explanatory power 

compared to models that include only portfolio variables ( Table 4 ). Both the VIX and the average CDS spreads do not appear

significant. There is strong evidence that funding costs, proxied by the individual members’ CDS spread, matter when we 

account for fixed effects. Overall, while market variables do seem to influence margin levels, their effects seem to be much

smaller than that of portfolio variables. 

Columns (3) and (4) report our results when we replace the average CDS spread with the LIBOR-OIS spread. There is

no change in explanatory power and the loadings on the portfolio variables remains very similar; the LIBOR-OIS spread 

appears insignificant. Columns (5) and (6) report the results when maximum shortfall and aggregate short notional are used 

together instead of MDSV. The increase in explanatory power is small when compared to the results in columns (1) and (2).

Interestingly, the estimated coefficient for aggregate short notional is significant and in the range of 2–3%, again showing 

the robustness of our previous results in Table 4 (MS has a magnitude comparable with that of the previous table). 

Across columns, we find that among all market measures, the VIX is the only one that robustly seems to affect the

collateral rule. The magnitude of the VIX’s effect, however, is substantial. In our estimates, a one-point increase in the VIX

increases required margins by an amount between $1.5 and $3 millions. During crisis episodes movements of the VIX of even

50 points are possible, these estimates imply large potential effects on prices and systemic stability through the collateral 

channel, consistent the model of Brunnermeier and Pedersen (2009) . 24 

4.4. Robustness 

Two of the portfolio variables (Value-at-Risk and maximum shortfall) used in our analysis were based on P&L generated 

from our entire sample of credit spreads. Because our data set covered the financial crisis, the risk measures captured 
24 Of course, these estimates are obtained in a relatively calm period, so it is hard to extrapolate the estimates to times of crisis; however, they give a 

sense of the magnitude of these effects. 
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Table 6 

Regression results for explaining initial margins with portfolio variables. 

Panel (a): High-Yield Accounts 

Dependent variable: 

Initial margins (IM) - Daily Frequency 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Value-at-Risk (VaR) 4.819 ∗∗∗ 2.624 1.866 ∗∗∗ 1.851 ∗∗∗ 0.983 0.472 1.326 ∗∗ 1.292 ∗∗∗

(0.756) (1.835) (0.613) (0.576) (0.688) (0.731) (0.567) (0.359) 

Maximum shortfall (MS) 0.163 0.217 ∗∗ 0.510 ∗∗∗ 0.501 ∗∗∗

(0.115) (0.110) (0.146) (0.147) 

Aggregate short notional (AS) 0.024 ∗∗∗ 0.025 ∗∗∗ 0.027 ∗∗∗ 0.024 ∗∗∗

(0.001) (0.004) (0.003) (0.006) 

Duffie et al. model (DSV) 0.916 ∗∗∗ 0.794 ∗∗∗ 0.789 ∗∗∗ 0.756 ∗∗∗

(0.085) (0.200) (0.117) (0.227) 

Modified DSV model (MDSV) 0.828 ∗∗∗ 0.843 ∗∗∗

(0.038) (0.147) 

Adjusted R 2 0.547 0.724 0.816 0.876 0.788 0.861 0.744 0.8399 0.753 0.840 0.808 0.872 

Account Fixed Effect N Y N Y N Y N Y N Y N Y 

Time Fixed Effect N Y N Y N Y N Y N Y N Y 

Panel (b): Low-Yield Accounts 

Dependent variable: 

Initial margins (IM) - Daily Frequency 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Value-at-Risk (VaR) 6.551 ∗∗∗ 4.634 ∗∗∗ 1.892 2.544 ∗∗∗ 2.528 2.731 ∗∗∗ 1.809 2.565 ∗∗∗

(1.205) (0.597) (1.792) (0.752) (1.690) (0.583) (1.806) (0.941) 

Maximum shortfall (MS) 0.472 ∗ 0.267 ∗ 0.703 ∗∗ 0.556 ∗∗∗

(0.269) (0.138) (0.284) (0.202) 

Aggregate short notional (AS) 0.027 ∗∗∗ 0.012 ∗ 0.034 ∗∗∗ 0.020 ∗∗∗

(0.007) (0.006) (0.006) (0.004) 

Duffie et al. model (DSV) 1.132 ∗∗∗ 0.742 ∗∗∗ 0.751 ∗∗∗ 0.382 ∗∗∗

(0.173) (0.117) (0.191) (0.143) 

Modified DSV model (MDSV) 0.758 ∗∗∗ 0.359 ∗∗∗

(0.143) (0.153) 

Adjusted R 2 0.597 0.856 0.672 0.868 0.663 0.857 0.634 0.852 0.651 0.866 0.672 0.868 

Account Fixed Effect N Y N Y N Y N Y N Y N Y 

Time Fixed Effect N Y N Y N Y N Y N Y N Y 

Note: We perform least squares regressions using initial margins as the dependent variable and portfolio variables as explanatory variables. For each day and account, we calculate 

the notional weighted average of the held credit spreads. We then split each day into the high-yield accounts where this average falls at or above the aggregate median (by 

reference entity), and the low-yield accounts where this average falls strictly below the aggregate median. In panel (a), we report the regression results for high-yield accounts, 

and in panel (b) we report the corresponding results for low-yield accounts. The number of observations is 13,012 for panel (a), and 10,298 for panel (b). Two-way clustered (by 

time and account) standard errors are reported in parentheses and used for the significance tests. 
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Table 7 

Regression results for explaining initial margins with portfolio variables. 

Panel (a): First Half of the Sample Period 

Dependent variable: 

Initial margins (IM) - Daily Frequency 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Value-at-Risk (VaR) 5.662 ∗∗∗ 4.432 ∗∗∗ 2.314 ∗∗ 1.903 1.591 ∗∗∗ 0.956 1.488 ∗∗ 0.891 

(0.994) (0.940) (0.950) (1.386) (0.603) (1.380) (0.596) (1.401) 

Maximum shortfall (MS) 0.453 0.243 1.239 ∗∗∗ 0.760 ∗∗

(0.601) (0.501) (0.436) (0.377) 

Aggregate short notional (AS) 0.021 ∗∗∗ 0.019 ∗∗∗ 0.022 ∗∗∗ 0.021 ∗∗∗

(0.005) (0.007) (0.005) (0.007) 

Duffie et al. model (DSV) 1.152 ∗∗∗ 0.913 ∗∗∗ 0.903 ∗∗∗ 0.771 ∗∗∗

(0.106) (0.062) (0.098) (0.223) 

Modified DSV model (MDSV) 0.791 ∗∗∗ 0.668 ∗∗∗

(0.089) (0.192) 

Adjusted R 2 0.607 0.819 0.743 0.852 0.725 0.848 0.724 0.847 0.739 0.848 0.737 0.847 

Account Fixed Effect N Y N Y N Y N Y N Y N Y 

Time Fixed Effect N Y N Y N Y N Y N Y N Y 

Panel (b): Second Half of the Sample Period 

Dependent variable: 

Initial margins (IM) - Daily Frequency 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Value-at-Risk (VaR) 5.497 ∗∗∗ 2.924 ∗∗∗ 1.294 1.461 ∗∗∗ 1.108 1.614 ∗∗ 1.019 1.378 ∗∗∗

(1.386) (0.535) (1.243) (0.488) (1.613) (0.628) (1.141) (0.508) 

Maximum shortfall (MS) 0.358 ∗∗ 0.175 ∗∗ 0.544 ∗∗∗ 0.285 ∗∗∗

(0.157) (0.089) (0.164) (0.092) 

Aggregate short notional (AS) 0.028 ∗∗∗ 0.014 ∗∗∗ 0.031 ∗∗∗ 0.017 ∗∗∗

(0.004) (0.004) (0.005) (0.003) 

Duffie et al. model (DSV) 0.970 ∗∗∗ 0.415 ∗∗∗ 0.817 ∗∗∗ 0.282 ∗∗∗

(0.143) (0.082) (0.211) (0.098) 

Modified DSV model (MDSV) 0.867 ∗∗∗ 0.414 ∗∗∗

(0.118) (0.075) 

Adjusted R 2 0.540 0.929 0.721 0.941 0.713 0.937 0.657 0.932 0.663 0.937 0.720 0.941 

Account Fixed Effect N Y N Y N Y N Y N Y N Y 

Time Fixed Effect N Y N Y N Y N Y N Y N Y 

Note: We perform least squares regressions using initial margins as the dependent variable and portfolio variables as explanatory variables. We split the sample period into two 

subsamples of equal size. The first subsample covers the period from May 2014 to May 2017, and the second subsample covers the period from May 2017 through May 2020. For 

each subsample, we perform least squares regressions using initial margins as the dependent variable and portfolio variables as explanatory variables. In panel (a), we report the 

regression results for the first half of the sample, and in panel (b) we report the corresponding results for second half of the sample. The number of observations is 11,655 for 

both panels. Two-way clustered (by time and account) standard errors are reported in parentheses and used for the significance tests. 

7
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Table 8 

Regression results for explaining initial margins with portfolio and market variables . 

Dependent variable: 

Initial margins (IM) - Daily Frequency 

(1) (2) (3) (4) (5) (6) 

Value-at-Risk (VaR) 1% 1.686 ∗∗ 1.412 ∗∗∗ 1.754 ∗∗ 1.404 ∗∗∗ 2.264 ∗∗∗ 1.648 ∗∗∗

(0.851) (0.517) (0.823) (0.445) (0.765) (0.508) 

Modified DSV Model (MDSV) 0.779 ∗∗∗ 0.626 ∗∗∗ 0.764 ∗∗∗ 0.622 ∗∗∗

(0.051) (0.076) (0.040) (0.054) 

Maximum Shortfall (MS) 0.208 ∗ 0.286 ∗∗

(0.116) (0.118) 

Aggregate Short Notional (AS) 0.025 ∗∗∗ 0.019 ∗∗∗

(0.002) (0.003) 

CBOE Volatility Index (VIX) 0.016 0.033 ∗ 0.015 0.022 ∗ 0.032 ∗∗ 0.039 ∗∗

(0.013) (0.018) (0.014) (0.011) (0.013) (0.016) 

Member CDS Spread (DCDS) 2.485 ∗∗ 1.064 2.496 ∗∗ 1.048 2.615 ∗∗ 1.142 

(1.163) (0.771) (1.126) (0.774) (1.142) (0.734) 

Average CDS Spread (ACDS) 0.549 0.017 0.277 -0.064 

(1.092) (1.110) (1.124) (1.106) 

LIBOR-OIS Spread (LOIS) 0.573 0.876 

(0.869) (1.023) 

Adjusted R 2 0.758 0.859 0.758 0.859 0.765 0.859 

Account Fixed Effect N Y N Y N Y 

Time Fixed Effect N N N N N N 

Note: We perform least squares regressions using initial margins as the dependent variable and portfolio 

and market variables as explanatory variables. The number of observations in the regressions is 23,310. 

Two-way clustered (by time and account) standard errors in parentheses are reported and used for the 

significance tests. We consider both the case of with and without fixed effects. Because market variables are 

often dependent only on time, we consider only account fixed effects when such variables are introduced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

extreme movements and may thus be viewed as overly conservative for estimating portfolio losses. In Online Appendix OA.G, 

we consider using only the last 10 0 0 days (approximately 4 years) of credit spreads data to generate P&L, as in Duffie et al.

(2015) . The results of our analysis presented in the appendix show that the results remain qualitatively similar to those

reported in Tables 4 and 8 . 

5. A theoretical model of collateral requirements 

Our empirical results demonstrate that extreme tail risk measures have a higher explanatory power for observed col- 

lateral requirements than standard VaR. To interpret these findings via models of endogenous collateral requirements, 

Appendix A constructs a general equilibrium model where investors agree to disagree; optimists post cash as collateral 

when they sell CDS insurance to pessimists (given the asymmetry of CDS payoffs, there is little need for collateral from a

buyer – both in the theory and in the data). In the model, high margin requirements and a low (but positive) probability

of default can arise in equilibrium, when pessimists attach a large weight to the negative tail events in which the CDS is

expected to pay out the most. 

The model is an adaptation of the analytical framework of Simsek (2013) , where asset prices and margin requirements

are determined endogenously. Unlike Simsek (2013) who considers standard debt contracts, allowing for short selling and for 

a completely unrestricted contract space (whereby every Arrow-Debreu equilibrium corresponds to a general equilibrium), 

the model in the Appendix is specialized to an economy where the only contracts available for trading are state contingent

promises (CDSs) backed by risk-free collateral. 

In the model of Appendix A , trading in CDS is driven by belief disagreements. However, it is not the disagreement per

se that generates high margin requirements. In fact, as described in the Appendix, an increase in disagreement could either 

increase or decrease margins (depending on the parameter configuration). However, movements in beliefs about tail events 

do map into margin requirements in an unequivocal way: the model implies that the equilibrium level of collateral increases 

when either the clearing members or the clearinghouse become more pessimistic about the realization of extreme tail 

events. In the former case, disagreement decreases, while in the latter case, disagreement increases. So, while the model 

cannot be tested by looking only at disagreement, it can be tested if both optimists’ and pessimists’ beliefs are separately

observable. 

Unfortunately, we do not have a direct measure of the beliefs of clearinghouse members (the optimists in the model) 

or the clearinghouse (the pessimist in the model), especially as it concerns tail events. However, we provide in this section

some empirical support for the theory by building a proxy for pessimist and optimist beliefs using analyst forecasts from 

IBES (following a procedure similar to Diether et al. (2002) ). We proceed as follows. In every month, and for every com-

pany whose CDS appear in our data, we compute the average earnings forecast of the 20% most optimistic forecasters and

the average forecast of the 20% most pessimistic forecasters at the 1-year horizon. For each company and in each month,
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Table 9 

Regression results for explaining initial margins with portfolio variables as well as pessimist and optimist beliefs. 

Dependent variable: 

Initial margins (IM) - Daily Frequency 

(1) (2) (3) (4) (5) (6) (7) (8) 

Value-at-Risk (VaR) 1.528 ∗∗∗ 1.541 ∗ 1.849 ∗∗∗ 1.976 ∗∗∗

(0.888) (0.863) (0.472) (0.470) 

Maximum shortfall (MS) 0.347 ∗∗ 0.564 ∗∗∗ 0.245 ∗ 0.522 ∗∗∗

(0.152) (0.164) (0.131) (0.133) 

Aggregate short notional (AS) 0.027 ∗∗∗ 0.031 ∗∗∗ 0.014 ∗∗∗ 0.017 ∗∗∗

(0.004) (0.005) (0.005) (0.006) 

Net-to-Gross Ratio (NGR) 47.050 96.924 47.590 –94.880 –61.561 –86.390 

(101.383) (104.118) (100.554) (130.853) (138.252) (116.143) 

Pessimist Beliefs (P20) –0.364 –0.380 –0.366 -2.555 ∗∗∗ 0.015 –0.249 –0.007 –1.044 

(0.558) (0.569) (0.569) (0.788) (0.624) (0.711) (0.614) (0.857) 

Optimist Beliefs (P80) –0.335 –0.213 –0.339 3.598 ∗∗∗ –0.549 –0.743 –0.581 0.614 

(0.687) (0.743) (0.713) (0.832) (0.809) (0.940) (0.777) (0.689) 

Modified DSV model (MDSV) 0.983 ∗∗∗ 0.537 ∗∗

(0.135) (0.126) 

Number of observations 23,310 23,310 22,994 22,994 23,310 23,310 22,994 22,994 

Adjusted R 2 0.730 0.721 0.730 0.141 0.864 0.852 0.863 0.725 

Account Fixed Effect N N N N Y Y Y Y 

Time Fixed Effect N N N N Y Y Y Y 

Note: We perform least squares regressions using initial margins as the dependent variable and portfolio variables along with pessimist and 

optimist beliefs as explanatory variables. The number of observations is slightly smaller for regressions which contains beliefs as explanatory 

variables. This is because some accounts are composed only of iTraxx indices, single name CDSs, or earlier CDX series for which we do not 

have information to construct beliefs. Two-way clustered (by time and account) standard errors are reported in parentheses and used for 

the significance tests. We consider both the case with and without (time and account) fixed effects. P20 and P80 are the rescaled beliefs of 

optimists and pessimist from IBES data as described in the text. 

 

 

 

 

 

 

 

 

 

 

 

 

we center and rescale each of these measures using the cross-sectional mean and standard deviation of the earnings fore- 

casts across all analysts at that point in time. For each account and month, we then aggregate these rescaled optimist and

pessimist beliefs weighting them by the notional of the CDS held. Therefore, for each account and each month, this yields

a measure of optimists’ beliefs about a CDS portfolio (referred to as P80), and a measure of pessimists’ beliefs about the

portfolio (referred to as P20). Given that our other measures are daily, we assume this measure is constant within each

month. 

The theory’s prediction is that conditional on the optimists’ tail beliefs, a worsening of the pessimists’ tail beliefs (increas- 

ing disagreement about the tails) would increase margin requirements; similarly, conditional on the pessimists’ tail beliefs, 

a worsening of the optimists’ tail beliefs (decreasing disagreement) would increase margin requirements. Our empirical re- 

sults for this test are reported in Table 9 . Column (4) in the table shows how margins depend on optimist and pessimist

beliefs (P80 and P20, respectively) in the data, without any controls. The table shows that indeed, when pessimists become 

more pessimistic (P20 decreases) initial margins increase (i.e., the coefficient in the table is negative), consistent with the 

predictions of the theoretical model. On the other hand, the same column also shows that the beliefs of the optimists affect

margins in the opposite way, which is inconsistent with the theoretical predictions of a negative coefficient. Overall, the 

explanatory power of these variables for margins is nonzero but small (14% R 2 ), which is not surprising given that these

quantities are clearly difficult to measure. 

Since it is unlikely that the regression of column (4) captures all determinants of collateral, it is important to add controls

to minimize omitted variable bias concerns. The other columns of the table add various controls, most importantly the MDSV 

measure that we argue to capture the actual collateral rule of the clearinghouse. We see in column (3) that once we control

for the MDSV model (or, alternatively, its components MS and AS in columns (1) and (2)), the magnitude and significance

of the beliefs of optimists and pessimists decrease dramatically, while the sign of both variables switches to negative, as 

predicted by the theory. The results are confirmed in columns (5)-(8), which include fixed effects. 

To sum up, we view these results as overall supportive of the theory (though not very strong). Without any additional

controls, there is a statistically significant relationship between initial margins and beliefs. The sign of this relation is neg- 

ative for pessimistic beliefs (as predicted by our theory) and positive for optimistic beliefs (whereas the model would have 

predicted negative). When controls are added, the signs of both optimist and pessimist belief variables become negative, 

as predicted by the theory, while the magnitude decreases as the explanatory power is captured by the better-measured 

portfolio risk variables. 

There are several obvious caveats with this analysis. First, our IBES-based measures of pessimists’ and optimists’ forecasts 

do not necessarily capture the views of the clearing members and clearinghouse, respectively. Second, the model’s predic- 

tions are about tail beliefs rather than expectations (which is what our IBES measure really captures). Third, the amount of

statistical noise and measurement error makes strong conclusions difficult. 
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More generally, while we believe this analysis lends some support to the model, we do not view the model as represent-

ing the unique explanation for the empirical results. Theories of endogenous collateral constraints typically involve several 

variables that are difficult to observe, and are often very stylized. In fact, this class of models has never, to the best of our

knowledge, been directly tested empirically. 

Nevertheless, while our body of empirical evidence does not allow us to distinguish clearly between different models 

within this class, it is still useful for calibrating models, whether they feature endogenous or exogenous collateral constraints. 

The main empirical result – that measures of extreme tail risk dominate VaR in driving posted margins – has important 

quantitative implications for essentially all models based on collateral constraints. 

6. Conclusions 

The cleared CDS market is a large market in which counterparty risk plays an important role, and thus provides a fertile

ground to study the empirical determinants of collateral requirements. Our analysis exploits the availability of a unique data 

set on clearing members’ portfolio exposures and associated margin levels. Margins in this market are set at the portfolio 

level rather than at the individual security level; this allows us to study how risk measures like VaR and other portfolio

characteristics affect mar gins. We also study how market variables – in addition to portfolio variables – affect collateral 

requirements, highlighting the implications of our findings for models of the collateral feedback channel. 

We document four novel empirical results on the collateral rule in this market. First, we show that there is large variabil-

ity in the collateralization rate across accounts and over time, suggesting corresponding variability in the risk characteristics 

of the clearinghouse members’ portfolios. 

Second, we show that collateral in this market is set much more conservatively than what would be implied by a stan-

dard VaR rule – a rule that is at the core of many theoretical models with collateral constraints and that clearinghouses

themselves state they use. In fact, the amount of collateral appears about 7 times larger than what would be needed to

cover 99% of 5-day losses (which is the standard for VaR in this context). 

Third, we find that other portfolio variables dominate VaR in explaining the time-series and cross-sectional variation in 

margins. In particular, two measures of extreme tail risk suggested by Duffie et al. (2015) , maximum shortfall (the largest

experienced portfolio loss) and aggregate short notional (the notional amount held by a member in short CDS positions, 

representing the theoretical maximal loss on all CDS positions simultaneously) dominate VaR in explaining the panel varia- 

tion of required collateral. These two variables alone account for almost 72% of the entire variation in margins in our panel.

Whereas empirically VaR is strongly related to simple portfolio volatility, these measures capture much more extreme tail 

risks, that are more strongly related to jump-to-default risk and less related to volatility. These measures are conceptually 

(and empirically) quite different from VaR. 

Finally, we find that shocks to some market variables (particularly the VIX) increase the total amount of required col- 

lateral, even after controlling for portfolio-level risks, suggesting that average margin levels vary with aggregate market 

conditions beyond what individual portfolio measures capture. 

Our findings have several implications for theoretical models of the collateral feedback channel. First, the fact that ex- 

treme tail risk measures explain margins better than VaR indicates that the clearinghouse is worried about more extreme 

losses than what the standard VaR captures. Given that standard VaR is highly correlated with volatility, it suggests that the

margin spiral mechanisms examined in many theoretical models (in which the collateral rule is exogenously specified) could 

operate through the direct effects of shocks on the extreme tail of the distribution, rather than through changes in volatility.

In other words, our results suggest that collateral levels may respond little to small changes in risks (like an increase in the

variance of the portfolio), but may spike if the probability of an extreme event increases or the worst-case-scenario wors- 

ens. This nonlinearity can potentially play an important role in general equilibrium models, amplifying the largest shocks 

but dampening moderate-sized shocks. 

Second, our empirical results are consistent with some of the key results of the theoretical literature on endogenous 

collateral, like Geanakoplos (1997) and Fostel and Geanakoplos (2015) . These models cannot directly be mapped to our 

data (because they counterfactually assume a binomial world and feature no default in equilibrium). Appendix A therefore 

develops a new model of the endogenous collateral equilibrium, based on Simsek (2013) , that is specifically suited for the

CDS market. The model features a continuum of states and a non-zero default probability in equilibrium. In this model, trade

occurs because of difference in beliefs, that also determine the equilibrium collateralization rate. The model can rationalize 

the observed empirical patterns of extremely high collateralization rates with disagreement about the extreme events in 

which members would default on their obligations to the clearinghouse. 

Finally, collateral requirements are directly affected by market conditions: increases in aggregate risks directly induce an 

increase in collateral requirements, holding the portfolios fixed. Our empirical analysis therefore documents the existence of 

two channels for the amplification of fundamental shocks (studied, for example, in Brunnermeier and Pedersen (2009) ): at 

the portfolio level, where an increase in perceived tail risk following a shock may affect the member’s margin requirement; 

and at the macro level, where an increase in aggregate risk can increase the collateral requirements of all members. 

Taken together, our empirical findings and theoretical results in Appendix A and OA.A provide guidance for building 

empirically grounded models of the collateral feedback channel. 

It is worth highlighting that in this study we focus exclusively on ICC. Despite ICC being the largest one, there exist other

clearinghouses for CDSs (e.g. the London Clearing House) that market participants can access. ICC is unable to see clearing 
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members’ positions at other clearinghouses, so the collateral requirements cannot depend directly on them. However, the 

overall collateral rule followed by ICC could potentially be indirectly influenced by the presence of other clearinghouses; 

for example, ICC could be prompted to charge higher initial margins to compensate for unseen exposures that the members 

might have with the other clearinghouses. 25 We leave the investigation of more structural reasons behind the determination 

of margin requirements for future research. 

Declaration of Competing Interest 

None. 

Appendix A. Theoretical Model of Collateral Requirements 

The empirical results presented in the main body of this paper demonstrate that extreme tail risk measures have a 

higher explanatory power for observed collateral requirements than standard VaR. To interpret these findings via models of 

endogenous collateral requirements, Du et al. (2020) constructs an equilibrium model where optimists post cash as collateral 

when they sell CDS insurance to pessimists (given the asymmetry of CDS payoffs, there is little need for collateral from a

buyer - both in the theory and in the data). We present the model developed by Du et al. (2020) in this Appendix. 

The model is an adaptation of the analytical framework of Simsek (2013) to the CDS market. In Du et al. (2020) , the only

contracts available for trading are state contingent promises (CDSs) 26 , and the only way to enforce delivery is to post cash

as collateral. Counterparties in the CDS market trade due to differences in beliefs about the uncertain states of the world.

Du et al. (2020) shows that it is the nature - rather than the degree - of these belief differences that determines collateral

requirements in equilibrium. In other words, what matters for collateral requirements is what the market participants dis- 

agree on, rather than the extent of such disagreements per se. In line with the empirical results presented in this paper, Du

et al. (2020) suggests that the high collateral requirements we observe in practice may be explained by the clearinghouse’s 

concerns over extreme tail events. 

A1. Model setup 

Consider an economy with two periods t = { 0 , 1 } and two risk-neutral agents: one optimist and one pessimist. All agents

trade in period t = 0 and consume in period t = 1 . Uncertainty is captured by a continuum of states s ∈ S = 

[
s min , s max 

]
realized in period t = 1 , with s min normalized to zero for simplicity. The pessimist, denoted by i = 0 , holds prior beliefs over

S given by the distribution F 0 and corresponding density f 0 . The optimist, denoted by i = 1 , has prior beliefs characterized

by the distribution F 1 and density f 1 . The optimist has a higher expectation than the pessimist on the state in period 1, i.e.,

E 1 [ s ] > E 0 [ s ] . These prior beliefs are common knowledge for all agents. 

At the start of period t = 0 , each agent i = { 0 , 1 } is endowed with n i units of the numeraire consumption good which

can be safely stored without depreciation for consumption at period t = 1 . We assume that the only other asset available

is cash, which also yields one unit of the consumption good in period t = 1 , but - unlike the consumption good - cash can

be used as collateral in CDS contracts. At t = 0 , the entire endowment of cash (normalized to 1) is held by an un-modeled

third party, who can sell cash in exchange for the numeraire consumption good at the equilibrium price p. The price of the

consumption good is normalized to 1. 

The optimist and pessimist have identical (linear) preferences over the consumption good, so trading between the two 

is driven purely by differences in beliefs. We assume that the only class of financial contracts available to trade is a simple

CDS contract. Recall that the payoff of a CDS contract is zero if there is no default of the underlying (in our model, when s

high), and 1 − R in the case of default, where R is the recovery rate of the underlying bond. Since the recovery R worsens

as the fundamentals of the underlying deteriorate, the payoff of the CDS becomes larger as the state s becomes worse. We 

model the promised payoff of a CDS in a simple way, i.e., as s max − s . We can think of the case s = s max as the event in

which the underlying bond does not default, so that the CDS does not pay anything; 0 < s < s max as the intermediate case

in which the underlying bond defaults, but there is positive recovery, so that the CDS pays off some amount; and s = 0 as

the extreme case of zero recovery, where the payoff of the CDS is maximal (and equal to s max ). 

To enforce payment of the promise of s max − s , the seller of CDSs needs to post some amount of collateral. Following

the endogenous collateral literature, we consider the family of CDS contracts B 

CDS = { [ s max − s ] s ∈S , γ } , each composed of a 

promise of ( s max − s ) units of the consumption good in state s at t = 1 , backed by γ units of cash as collateral. We denote

by q ( γ ) the t = 0 price of such a CDS contract with collateral level γ . In general, multiple CDS contracts may coexist in

equilibrium: they have the same promised payment ( s max − s ), but different amounts of collateral posted γ , and – as a

consequence – trade for different prices q (γ ) . Thus we can index the different CDS contracts in B 

CDS by γ . 

Since the promised payment on a CDS contract is enforceable only through the potential of seizing the collateral, the 

actual delivery on each contract in state s is given by the minimum of the promised payment and the value of the collateral
25 Glasserman et al. (2016) proposes a theoretical model consistent with this argument. 
26 In comparison, Simsek (2013) studies a different set of contract spaces that include: (1) simple debt contracts, (2) short selling; and (3) a completely 

unrestricted contract space whereby every Arrow-Debreu equilibrium is equivalent to a general equilibrium. 
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in that state: δ( s, γ ) : = min { s max − s, γ } . In other words, in any state ˜ s such that s max − ˜ s > γ , the seller of the CDS contract

would default on her promise, and the buyer would only receive the value of the collateral γ . 

Denote by μ+ 
i 
, μ−

i 
, respectively, agent i ’s long and short positions on CDS contracts (where a long position means that

the agent has purchased the corresponding CDS contract). Let a i ∈ R + denote agent i ’s holding of the numeraire consumption

good; and c i ∈ R 

+ be her cash holdings. Then agent i ’s budget constraint can be written as: 

a i + pc i + 

∫ 
γ ∈B CDS 

q ( γ ) dμ+ 
i 

≤ n i + 

∫ 
γ ∈B CDS 

q ( γ ) dμ−
i 
, (A.1) 

where the left hand side represents the total value of the agent’s portfolio, comprised of her holding of the numeraire good

a i , the value of her cash holding pc i and her long-position in CDS contracts 
∫ 
γ ∈B CDS q ( γ ) dμ+ 

i 
. The right hand side represents

the total value of the funding available to the agent, comprising of her endowment of the consumption good n i and the

amount she can raise by shorting CDS contracts, 
∫ 
γ ∈B CDS q ( γ ) dμ−

i 
. If an agent i has a short position on the CDS contracts,

then she is also subject to the collateral constraint: ∫ 
γ ∈B CDS 

γ dμ−
i 

≤ c i , (A.2) 

which means that agent i must have sufficient cash holdings to satisfy the collateral requirements for the CDS contracts 

sold. In contrast, the purchaser of the CDS contracts (the party who is long) is not subject to any collateral requirements. 

The optimization problem for each agent i is given by: 

max 
( a i ,c i ,μ+ 

i 
,μ−

i ) ∈ R 4 + 
a i + c i + E i 

[∫ 
γ

min { s max − s, γ } dμ+ 
i 

]
− E i 

[∫ 
γ

min { s max − s, γ } dμ−
i 

]
(A.3) 

subject to the budget constraint (A.1) and the collateral constraint (A.2) . 

Definition 1. A collateral equilibrium is a set of portfolio choices 
(

ˆ a i , ̂  c i , ˆ μ+ 
i 
, ˆ μ−

i 

)
i ∈ { 0 , 1 } and a set of prices 

( p ∈ R + , q : γ → R + ) such that the portfolio choices solve the optimization problem (A.3) of each agent i ∈ { 0 , 1 } ; and the 

prices are such that the market for cash clears 
∑ 

i ∈ { 0 , 1 } ̂  c i = 1 , and the CDS markets clear 
∑ 

i ∈ { 0 , 1 } μ+ 
i 

= 

∑ 

i ∈ { 0 , 1 } μ−
i 

. 

We will show that although the entire family of CDS contracts will be priced, only one contract will be traded in equilib-

rium. This result is line with the literature on collateral equilibrium ( Fostel and Geanakoplos (2015) , Simsek (2013) ). Further-

more, the collateral level γ of the actively traded CDS contract, and the price of cash p, will be determined endogenously.

The equilibrium level of collateral requirement γ will depend on the nature of belief differences between the optimist and 

the pessimist. 

A2. Existence and uniqueness of the collateral equilibrium 

Following the approach in Simsek (2013) , it is possible to show that (under suitable assumptions over initial endowments 

and beliefs) the collateral equilibrium exists, is unique, and is equivalent to a principal-agent equilibrium where the optimist 

chooses her cash holdings and the optimal CDS contract to sell, subject to the pessimist’s participation constraint. To this 

end, we impose the following assumptions on initial endowments and prior beliefs, that parallel similar assumptions in 

Simsek (2013) (Assumption A1 of Simsek (2013) , page 12): 

Assumption A1. [Restriction on Initial Endowments] 

n 1 < 

E 1 [ s ] 

s max 

and n 0 > 

E 0 [ s 
max − s ] 

E 1 [ s max − s ] 
− n 1 

The first inequality ensures that the optimist’s initial endowment is not large enough to purchase the entire supply of cash

in the economy with her own resources alone (that is, she will need to raise some more of the numeraire consumption

good by selling CDS contracts). 27 The second inequality ensures that the initial endowment of the pessimist ( n 0 ) is large

enough that the pessimist will always have some residual consumption after paying for the CDS. 28 

Since the pessimist is risk neutral, this implies that her expected return on any CDS contracts purchased must also be

equal to 1 in equilibrium. Thus the equilibrium price of a CDS contract with collateral γ must be given by: 

q ( γ ) = E 0 [ min ( s max − s, γ ) ] . 

This pricing equation serves as a convenient characterization of the pessimist’s participation constraint (as in Simsek (2013) ). 
27 For a more detailed discussion of this, see Online Appendix OA .A .1. 
28 More specifically, this inequality implies that the sum of the endowments needs to be greater than the maximum price cash can take in equilibrium 

(which we will show is bounded from above by 
(

E 0 [ s 
max −s ] 

E 1 [ s max −s ] 

)
). 
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We can now formulate the optimist’s problem as choosing the level of cash holdings c 1 , and the CDS contract γ to sell,

so as to maximize the expected payoffs, subject to the pessimist’s participation constraint of achieving an expected return 

of 1 on the CDS contract sold: 

max 
( c 1 ,γ ) ∈ R 2 + 

c 1 − c 1 
γ

E 1 [ min { s max − s, γ } ] (A.4) 

s.t. pc 1 = n 1 + 

c 1 
γ

E 0 [ min { s max − s, γ } ] 
This leads us to define the principal-agent equilibrium as follows: 

Definition 2. A principal-agent equilibrium is a pair of optimist’s portfolio choices 
(
c ∗

1 
, γ ∗) and price for cash ( p ∗) such that 

the optimist’s portfolio solves her optimization problem (A.4) , and the market for cash clears: c ∗1 = 1 . 

In order to show equivalence between the principal-agent equilibrium outlined here and the collateral equilibrium de- 

fined previously, we need to impose further restrictions on the nature of belief differences: 

Assumption A2. [Restrictions on Prior Beliefs] The probability densities of the optimist’s and the pessimist’s beliefs satisfy 

the monotone likelihood ratio property: 

f 1 ( s 1 ) 

f 0 ( s 1 ) 
> 

f 1 ( s 0 ) 

f 0 ( s 0 ) 
for every s 1 > s 0 

Note that this assumption implies: (1) first-order stochastic dominance: F 1 ( s ) < F 0 ( s ) , ∀ s ∈ 

(
s min , s max 

)
; (2) monotone hazard

rate: 
f 1 ( s ) 

1 −F 1 ( s ) 
< 

f 0 
1 −F 1 ( s ) 

, ∀ s ∈ 

(
s min , s max 

)
; and (3) 

f 0 ( s ) 
F 0 ( s ) 

< 

f 1 ( s ) 
F 1 ( s ) 

, ∀ s ∈ 

(
s min , s max 

)
(which in turn implies d 

ds 

F 0 ( s ) 
F 1 ( s ) 

< 0 ). 

We can then prove the following Proposition: 

Proposition 1. [Existence, Uniqueness, and Equivalence of Equilibria] Under Assumptions A1 and A2 : 

1. There exists a unique principal-agent equilibrium 

(
p ∗, 

(
c ∗

1 
, γ ∗)) s.t. p ∗ > 1 . 

2. There exists a collateral general equilibrium, 
(

ˆ a i , ̂  c i , ˆ μ+ 
i 
, ˆ μ−

i 

)
i ∈ { 0 , 1 } , whereby the optimist sells CDS to the pessimist (i.e. 

ˆ μ+ 
1 

= ˆ μ−
0 

= 0 ), and only a single CDS contract is actively traded (i.e. ˆ μ+ 
0 

is a measure that puts weight only at one

contract ˆ γ ∈ B 

CDS ). This collateral equilibrium is unique in the sense that the price of cash ˆ p and the price of the traded

CDS contract q 
(

ˆ γ
)

are uniquely determined. 

3. The collateral equilibrium and the principal-agent equilibrium are equivalent: 

ˆ p = p ∗, ˆ c 1 = c ∗1 , ˆ γ = γ ∗

and q 
(

ˆ γ
)

= E 0 [ min ( s max − s, γ ∗) ] 

The detailed proof is reported in Online Appendix OA .A . Intuitively, because under assumption A1 the pessimist will hold

a surplus of the consumption good in equilibrium (he has a larger endowment than what the optimist would want to

borrow), he must be indifferent between holding the consumption good (with a sure return of 1) and holding the CDS sold

by the optimist. Hence, the optimist effectively holds all the bargaining power when deciding which CDS they should trade, 

and will only trade in the contract that maximizes the optimist’s expected return. Assumption A2 provides the sufficient 

conditions for there to exist a unique contract γ ∗ that solves the optimist’s principal agent problem. 

A3. Characterizing the equilibrium 

This section shows that, in equilibrium, the optimist will wish to sell CDS contracts to the pessimist (so as to bet on the

events she thinks are more likely). But, to do so, the optimist must first obtain more units of the numeraire good from the

pessimist by selling CDS contracts, in order to purchase the cash required to collateralize the CDS contracts. 29 Because cash

is the only asset that can be used as collateral, its equilibrium price will exceed its fundamental value ( p > 1 ), so cash is

held exclusively by the optimist in equilibrium. 

To formally characterize the equilibrium, we first substitute c 1 = 

n 1 (
p− 1 

γ E 0 [ min { s max −s,γ } ] 
) from the optimist’s constraint into 

his objective function. This reduces the dimension of the problem by one, and allows us to restrict attention to choosing

only the optimal contract γ . The resulting first order condition characterizes the optimal contract choice for given p: 

Proposition 2. Under assumptions A1 and A2 , and fixing a price for cash p, the optimal CDS contract, s̄ , with respect to the

optimist’s problem (A.4) is given by the unique solution to: 

p = F 0 ( s 
max − s̄ ) + ( 1 − F 0 ( s 

max − s̄ ) ) 
E 0 [ s 

max − s | s ≥ s max − s̄ ] 

E 1 [ s max − s | s ≥ s max − s̄ ] 
= : p opt ( ̄s ) (A.5) 
29 This mechanism is analogous to a mortgage contract, where the borrower is raising funds from the lender in order to purchase the collateral (i.e. the 

house) required to back the mortgage. 
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Inverting p opt ( ̄s ) gives the optimal CDS contract s̄ for the optimist, for given price of cash p. This first order condi-

tion effectively determines how much collateralization the optimist (seller) chooses for the CDS contract, since the states 

s ≤ s max − s̄ are the ones where the optimist is defaulting on the promise of delivering the CDS payment and is instead

relinquishing the collateral. Once the equilibrium price of cash p ∗ is known (see Eq. (A.6) below), we can use Eq. (A.5) to

derive the equilibrium level of collateral γ ∗ by setting p ∗ = p opt ( γ ∗) . 
Equation (A.5) also implies that the price of cash is composed of two parts: (a) the pessimist’s assessment of the proba-

bility of default on the CDS: ( F 0 ( s 
max − s̄ ) ) , multiplied by the pessimist’s valuation of cash in the default state (1); plus (b)

the pessimist’s assessment of the probability of the no-default state, multiplied by the value of cash to the optimist in the

non-default state (each unit of cash allowed the optimist to borrow 

1 
s̄ 

E 0 [ s 
max − s | s ≥ s max − s̄ ] fr om the pessimist, with an 

expected actual delivery of 1 
s̄ 

E 1 [ s 
max − s | s ≥ s max − s̄ ] ). Gi ven the differences in beliefs, the optimist expects to deliver less 

than what the pessimist envisages on the CDS contract: 
E 0 [ s max −s | s ≥s max −s̄ ] 
E 1 [ s 

max −s | s ≥s max −s̄ ] 
≥ 1 . Hence, p ≥ 1 , i.e., cash generates collateral

value. Consistent with the “Asymmetric Disciplining of Optimism” result in Simsek (2013) , the pessimist’s beliefs are used 

in assigning weights to the default and non-default states. The belief of the optimist enters only in determining the value

of collateral in the non-default state. 

Further, it is shown in the proof of Proposition 2 that p opt ( ̄s ) is an increasing function of s̄ . To see this intuitively, denote

the optimist’s perceived interest rate on (borrowing through selling) the CDS contract as 

1 + r per 
1 ( ̄s ) : = 

E 1 [ min { s max − s, ̄s } ] 
E 0 [ min { s max − s, ̄s } ] 

Under assumption A2 , it can be shown that the perceived interest is decreasing in s̄ ( 
d ( 1+ r per 

1 ( ̄s ) ) 
d ̄s 

< 0 ). In other words, given

the nature of belief differences, offering a CDS contract with higher margin requirements is more attractive for the optimist. 

Thus the higher the margins s̄ posted, the greater the discrepancy between expected deliveries becomes, and the more 

attractive selling the CDS is to the optimist. Thus, increasing s̄ increases the collateral value of cash. 

To close the model, one needs to impose the market clearing condition for cash. The budget constraint in equation

(A.4) implies that the optimist’s demand for cash is given by: 

c 1 = 

n 1 

p − 1 
s̄ 
E 0 [ min { s max − s, ̄s } ] 

Since the supply of cash is normalized to 1, it holds: 

p = n 1 + 

1 

s̄ 
E 0 [ min { s max − s, ̄s } ] = : p mc ( ̄s ) (A.6) 

It can be shown that p mc ( ̄s ) is a decreasing function of s̄ , 30 with boundary conditions p mc 
(
s min 

)
> p opt 

(
s min 

)
and

p mc ( s max ) < p opt ( s max ) . Hence, the unique intersection between p opt ( ̄s ) and p mc ( ̄s ) pins down the equilibrium price for cash 

p ∗ and margin requirement γ ∗. 

Proposition 3. Under Assumptions A1 and A2 , there is a unique principal-agent equilibrium 

(
c ∗

1 
, γ ∗, p ∗

)
characterized by: 

c ∗1 = 1 

p ∗ = p mc ( γ ∗) = p opt ( γ ∗) 

where p opt ( ·) and p mc ( ·) are respectively defined in equations (A.5) and (A.6) . 

Proof. See Online Appendix OA .A . �

A4. Comparative statics and illustrative example 

This section presents a simple example to illustrate the collateral equilibrium and performs comparative statics, before 

presenting the more general results as propositions. 

Suppose that the starting endowments of the numeraire consumption good are n 0 = 3 and n 1 = 0 . 5 for the pessimist and

the optimist respectively. Let the set of states and the prior beliefs be given by: S = [ 0 , 1 ] and 

F 0 ( s ) = s 
1 
2 ∀ s ∈ S 

F 1 ( s ) = s 3 ∀ s ∈ S 

Panel A of Fig. A.1 plots the upward sloping cash price schedule 
{

p opt ( ̄s ) 
}

s̄ ∈ [0 ,s max ] 
( equation (A.5) ), and the downward slop-

ing cash price schedule { p mc ( ̄s ) } s̄ ∈ [0 ,s max ] schedule ( equation (A.6) ), the intersection of which characterizes the equilibrium 

price of cash p ∗ and the equilibrium margin requirement γ ∗. 
30 p mc ( ̄s ) is downward sloping because 1 
s̄ 

E 0 [ min { s max − s, ̄s } ] is decreasing in s̄ . Intuitively, even though a CDS contract with higher margin requirements 

demands a higher price (i.e. E 0 [ min { s max − s, ̄s } ] is increasing in s̄ ), the need to post more margins reduces the number of such contracts the optimist 

can sell with a single unit of cash as collateral. The overall effect is that posting more margins reduces the total amount that the optimist can borrow, 
1 
s̄ 

E 0 [ min { s max − s, ̄s } ] , and this reduction in the purchasing power of optimists reduces the market clearing price of cash. 
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Fig. A.1. Collateral Equilibrium and Comparative Statics. Note: Panel A illustrates the upward-sloping p opt ( ̄s ) schedule ( eqn A.5 , blue line) and the 

downward-sloping p mc ( ̄s ) schedule ( eqn A.6 , red line), the intersection of which gives the collateral equilibrium ( γ ∗, p ∗) . The p opt ( ̄s ) schedule is increasing 

in the level of collateralization ( ̄s ) because the pessimist is willing to pay a higher price for a better collateralized CDS, which in turn increases the col- 

lateral value of cash ( p) for the optimist. The p mc ( ̄s ) schedule is decreasing in the level of collateralization ( ̄s ) because even though each unit of a more 

collateralized CDS contract is worth more, the scarcity of collateral implies that a fewer number of such contracts can be written and the total amount of 

funding the optimist can raise from the pessimist is lower. Therefore, in order for the market of collateral (i.e., cash) to clear, its equilibrium price ( p ) must 

fall as the level of collateralization increases. Panel B illustrates the case where the optimist becomes “less optimistic”, in the sense that her beliefs changes 

from F 1 ( s ) to ˜ F 1 ( s ) where f 1 ( s 1 ) 
˜ f 1 ( s 1 ) 

> 

f 1 ( s 0 ) 
˜ f 1 ( s 0 ) 

for every s 0 , s 1 ∈ 
[
s min , s max 

]
and s 1 > s 0 . When the optimist becomes more pessimistic, the p opt ( ̄s ) schedule shifts 

down to ˜ p opt ( ̄s ) (yellow dashed line). Intuitively, this is because trading in CDSs becomes less attractive for both as the optimist and pessimist’s beliefs 

converge, thus the optimist’s demand for cash (the required collateral) falls (weakly) for every level of collateralization. The resulting equilibrium is one 

where the price of cash (its collateral value) is lower and the level of collateralization is higher. Panel C illustrates the case where the pessimist becomes 

more concerned about the tail risks associated with the default states { s ∈ S : s < s max − γ ∗} . Specifically, the pessimist’s beliefs changes from F 0 ( s ) to 
˜ F 0 ( s ) , where f 0 ( s ) > 

˜ f 0 ( s ) ∀ s ∈ [ s max − γ ∗, s max ] . A greater concern for tail events increases the value of highly collateralized CDS contracts, and decreases 

the value of less collateralized contracts, so the collateral value of cash for the optimist is higher only when it is used to back highly collateralized CDS 

contracts (the p opt schedule pivots to ˜ p opt , yellow upward-sloping dashed line). The total amount of the numeraire good the optimist can raise through 

selling such CDS contracts also rises, pushing up the market clearing price for cash (the p mc schedule shifts up to ˜ p mc , purple downward-sloping dashed 

line). The resulting equilibrium is one where the equilibrium level of collateralization ( γ ∗) is higher (see Proposition 5 ). Note that under the specific beliefs 

outlined in the illustrative example section of the main text, the equilibrium level of collateral in Panel C is 0.8251, and the optimist believes default will 

occur with probability 0.0053.. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

Suppose instead that the optimist becomes less optimistic, such that: 

˜ F 1 ( s ) = s 
3 
2 ∀ s ∈ S 

Then one can see from equation (A.5) that the decreased optimism of the optimist shifts the p opt ( ̄s ) schedule downwards

and leaves the p mc ( ̄s ) schedule untouched. The resulting equilibrium, as illustrated in panel B of Fig. A.1 , is comprised of a

lower price for cash ˜ p ∗ and higher margin requirements ˜ γ ∗. 

This intuition is generalized in the following general proposition: 

Proposition 4. [ Change in optimist’s beliefs ] Suppose that the optimist’s beliefs becomes ’less optimistic’ in the sense that it

changes from F 1 to ˜ F 1 , s.t. the monotone likelihood ratio condition is satisfied: 
f 1 ( s 1 ) 
˜ f 1 ( s 1 ) 

> 

f 1 ( s 0 ) 
˜ f 1 ( s 0 ) 

for every s 0 , s 1 ∈ 

[
s min , s max 

]
and

s 1 > s 0 . Then the equilibrium level of collateral ( γ ∗) increases, and the equilibrium collateral value ( p ∗) falls. Conversely, when

the optimist’s beliefs becomes ’more optimistic’ s.t. 
f 1 ( s 1 ) 
˜ f 1 ( s 1 ) 

< 

f 1 ( s 0 ) 
˜ f 1 ( s 0 ) 

for every s 0 , s 1 ∈ 

[
s min , s max 

]
and s 1 > s 0 , then the equilibrium

level of collateral falls and the equilibrium collateral value rises. 

Proof. See Online Appendix OA .A . �

While the changes in the optimist’s beliefs lead to unambiguous changes in the equilibrium, the same is not true for the

pessimist’s beliefs. Since the pessimist’s beliefs feature in the both the optimal CDS contract schedule for the optimist ( p opt )
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and the market clearing schedule for cash ( p mc ), a given change in the pessimist’s beliefs can either increase or decrease

equilibrium collateral levels depending on the initial equilibrium. Intuitively, when the pessimist becomes more pessimistic, 

she is willing to pay more for any given CDS contracts (i.e. E 0 [ min { s max − s, ̄s } ] increases). This means that the optimist is

now both: a) able to raise more funding from selling CDS contracts; and b) willing to pay more for each unit of collateral.

The former effect shifts up the market clearing schedule p mc , and the latter effect can push up the p opt schedule. Therefore,

whether the equilibrium collateral level increases depends on the interaction of these two effects. Moreover, since the p opt 

schedule also depends on the pessimist’s evaluation of the default probability (i.e. F 0 ( s 
max − s̄ ) ) 31 , the effect of increased

pessimism is not always monotone along S = [ 0 , 1 ] . For low levels of collateral s̄ , the protection offered may be deemed

insufficient, so the new p opt schedule may be lower than before; but for high levels of collateral, the new p opt schedule

might be higher. In short, the p opt schedule may pivot as well as shift in response to a change in pessimist’s beliefs, creating

further ambiguity in the direction of the equilibrium collateral level γ ∗. 

Instead, it can be shown that a sufficient (but not necessary) condition for the equilibrium collateral level to increase

is for the pessimist to become more concerned about the tail risks (i.e. to place a larger weight on the default states

{ s ∈ S : γ < s max − s } ) such that the probability density she attaches to all the non-default states are consistently lower 

than before ˜ f 0 ( s ) < f 0 ( s ) ∀ s ∈ [ s max − γ ∗, s max ] . 

For illustration, consider a change in pessimist’s beliefs from F 0 (eqn. A.4) to ˜ F 0 : 

˜ F 0 ( s ) = s 
1 
4 ∀ s ∈ S 

Then the equilibrium collateral level and collateral value both increase (Panel C of Fig. A.1 ). Note that under the specific

beliefs outlined here, the equilibrium level of collateral in Panel C is 0.8251, and the optimist believes default will occur

with probability 0.0053. This is consistent with our empirical finding that extreme tail risk measures are important in ex- 

plaining the high collateral levels and low default frequencies observed in practice. This result is stated more formally in 

the following proposition. 

Proposition 5. [ Pessimist’s concern for tail events ]: For any given initial equilibrium ( γ ∗, p ∗) , if the pessimist becomes “more

concerned about tail events” in the sense that her beliefs changes from F 0 to ˜ F 0 , such that: ˜ f 0 ( s ) < f 0 ( s ) ∀ s ∈ [ s max − γ ∗, s max ] ,

then the equilibrium collateral level ( γ ∗) increases. 

Proof. See Online Appendix OA .A . �

Finally, note that the key to high collateral requirements in the model is the nature – rather than the degree – of the

belief difference between the two agents. The equilibrium level of collateral increases both when the optimist becomes 

more pessimistic (which reduces the extent of the disagreement), and when the pessimist becomes more concerned about 

the tail events (which increases the extent of the disagreement). What the market participant disagree about matters more 

than how much they disagree per se. 

A5. Summary of the theoretical results 

In the previous sections, it has been shown that under suitable assumptions, a unique collateral equilibrium exists for 

the trading of CDS contracts between optimists and pessimists. In this equilibrium, the pessimist buys CDS contracts from 

the optimist. Since selling a CDS contract requires posting cash as collateral, the optimist seeks to obtain extra cash from the

market. In equilibrium, the price of cash will be higher than the non-collateralizable value of the numeraire consumption 

good, reflecting its value as collateral. 

In the equilibrium, only one CDS contract with a particular level of collateral γ ∗ will be actively traded. Default on the

CDS obligations will, in general, happen with positive probability. In particular, the higher the clearinghouse’s concern about 

the probability of states in which counterparty defaults may occur (i.e. the left tail of the distribution), the higher the margin

requirements ( γ ∗) in equilibrium, and the higher the CDS price ( q ( γ ∗) ) the buyer is willing to pay. 

The model can therefore explain the particularly high collateral levels ( γ ∗) that are observed in the data described in 

this paper. Viewed through the lens of this endogenous collateral framework, the empirical results in this paper point to 

disagreement about the states of the world in which CDS sellers would default on their obligations to the clearinghouse as

the fundamental reason why collateral levels are set so high. 

Appendix B. Procedure to compute counterfactual Returns 

Following Duffie et al. (2015) , we group together all I contracts written on the K underlying reference entities, and denote 

the net position in that reference entity by Y k . Precisely, let �k denote the collection of contracts referencing name k , then 

Y n t,k := 

∑ 

i ∈ �k 

X 

n 
t,i . 
31 Recall from equation (A.5) the p opt is the weighted average of 1 and E 0 [ s 
max −s | s ≥s max −s̄ ] 

E 1 [ s max −s | s ≥s max −s̄ ] 
> 1, with weights F 0 ( s 

max − s̄ ) and ( 1 − F 0 ( s 
max − s̄ ) ) respectively. 
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For each reference entity, therefore, Y k indicates the net exposure to reference entity k , aggregating together the CDS 

contracts on that reference entity across maturities, seniority level, and doc clause. We then collect historical on-the-run 5- 

year credit spread series for each reference entity, S t ∈ R 

K , where the spread is the coupon payment that equates the value

of premium and protection leg. Under standard assumptions on the loss rate, S t can be converted to P t . We do not report

the exact conversion formula here, but observe that, given that the market value of a CDS position at t is the notional of

the position multiplied by (1 − P t ) (see also (1) ), then S t is increasing in 1 − P t . Unlike P t , i.e., the quoting price following

the Big Bang convention according to which the buyer makes an upfront payment of 1 − P t and then pays a running fixed

spread premium throughout the life of the contract, S t is not a price. Hence, P & L can only be approximated via the DV01

formula, given by 

�5 ,u (X 

n 
t ) ≈ d × Y 

n 
t · (S u +5 − S u ) , 

where d is the effective duration of the position. We use d = 3 as in Duffie et al. (2015) , meaning that the average duration

of CDS positions is 3 years (corresponding to the median maturity of the CDS market). 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.jmoneco.2021.12. 

003 . 
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