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Abstract

The historical returns on equity index options are well known to be strikingly nega-

tive, with large negative CAPM alphas. That is typically explained either by investors

having convex marginal utility over stock returns (e.g. crash/variance aversion) or by

intermediaries demanding a premium for hedging risk. This paper shows that over the

last 15 years, the returns of traded options have become significantly less negative, to

the point that their CAPM alpha (and, relatedly, that of the variance risk premium)

is now statistically indistinguishable from zero. We also build dynamically replicated,

or synthetic, options, and show that over the period 1926–2022 they always had zero

alpha. To explain these facts, the paper develops a model where the negative alpha of

traded options between the late 80s and the early 2000s was driven by the risk that

intermediaries in the options market had to bear; those alphas did not reflect the risk

preferences of the average equity investor. Instead, synthetic options, based entirely

on the price of the equity index, directly reflect the representative investor’s risk pref-

erences: those show that the average investor never, over the last century, required

high risk compensation for market downturns. Over time, as the quantity of risk borne

by intermediaries declined, the risk premium of the traded options converged to those

of the synthetic options. We provide empirical evidence on risk exposures of dealers

consistent with the model.
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1 Introduction

Background

A major empirical fact in financial markets is that equity index options have been over-

priced historically relative to simple benchmark models. Investors who purchase options

have, on average, earned significant negative returns and negative CAPM alphas.1 Bates

(2022) discusses two classes of explanations for that fact. First, marginal utility for the rep-

resentative investor might be convex in market returns. Periods with large negative returns

have state prices that are higher than would be expected if marginal utility were linear in

the market return as in the CAPM. That convexity can be due, for example, to aversion to

crashes, aversion to high volatility, time-varying risk aversion, or behavioral factors.2

But option prices also have features that are difficult to reconcile with standard utility

theory, for example often implying negative risk aversion in certain states. A second class of

explanations focuses on intermediaries, explaining option overpricing as the result of inter-

mediaries being net short options and charging a premium for their concentrated risk.3 In

that case, option prices reveal the preferences and constraints of the specialist investors that

trade in options markets, and not necessarily those of the average equity investor.

Understanding which of the two explanations is correct is important because, in addition

to being intrinsically interesting, option prices are often used to measure many features

of financial markets, including investor expectations of various moments of the conditional

distribution of returns, investor preferences across market return states, and the drivers of

risk premia.4 They can also reveal potential amplification mechanisms for macroeconomic

1For analyses of returns, see Coval and Shumway (2001), Bakshi and Kapadia (2003), Broadie, Chernov,
and Johannes (2007), Constantinides, Jackwerth and Savov (2013), Chambers, Foy, Liebner, and Lu (2014),
Dew-Becker et al. (2017), and Muravyev and Ni (2020), among many others. For structural models, see
Backus, Chernov, and Martin (2011), Drechsler and Yaron (2011), Gabaix (2012), Drechsler (2013) , Seo
and Wachter (2019), and Schreindorfer (2020). Note, though, that those models are almost exclusively
endowment economies.

2See Cuesdeanu and Jackwerth (2018) for an extensive review of such models and their empirical support,
along with a discussion of models of intermediary frictions. On risk aversion, see Ait-Sahalia and Lo (2000),
Jackwerth (2000), Rosenberg and Engle (2002), and Schreindorfer and Sichert (2022). On the variance
risk premium, see, in addition to work cited elsewhere here, see Lamoreaux and Lastrapes (1993), Coval
and Shumway (2001), Bakshi and Kapadia (2003), Du (2011), Dew-Becker et al. (2017), and Ait-Sahalia,
Karaman, and Mancini (2020).

3See Jackwerth (2000), Bollen and Whaley (2004), Bates (2008), Han (2008), Garleanu, Pedersen, and
Poteshman (2008), Jurek and Stafford (2015) , Haddad and Muir (2021), Frazzini and Pedersen (2022),
among many others. A related literature has also explored the link between option markets, returns in
various asset classes, and the role of risk taking by intermediaries: for example, Brunnermeier, Nagel and
Pedersen (2008), Bao, Pan and Wang (2011), Longstaff et al. (2011), Nagel (2012), and Chen, Joslin and Ni
(2019).

4On preferences over market states, see Ait-Sahalia and Lo (2000), Jackwerth (2000), and Rosenberg
and Engle (2002). For conditional moments, see the CBOE VIX index and, among many others, Carr and
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shocks,5 and are a key input in understanding the importance of stabilization policy, as

optimal policy depends on agents’ subjective valuations of different possible states of the

world.6

Contribution

This paper has theoretical and empirical components. Theoretically, it develops a novel

approach to measuring the average investor’s risk preferences by studying synthetic options

– dynamic portfolios that attempt to replicate returns on traded options by dynamically

trading the underlying. While that result is totally general, we also illustrate it in a general

equilibrium model. Empirically, the paper measures returns on synthetic options over nearly

a century of data, compares them to traded option returns, and examines how both have

changed over time, along with the frictions that might drive that variation.

Methods and results

The paper first provides a simple theoretical framework to ground the interpretation of

option returns – traded and synthetic. The theory gives conditions under which the CAPM

alpha of a traded option on the stock market measures curvature in marginal utility with

respect to the market return.7 The CAPM appears as a benchmark here not because marginal

utility might be “truly” linear in any sense, but rather to take an empiricist’s approach of

starting with a linear null and then measuring the degree of nonlinearity.

Since options have payoffs that are convex in the market return, when marginal utility

is also convex options have relatively high prices and consequently low returns – negative

CAPM alphas. The connection between option alpha and curvature of marginal utility relies

on integration between equity and option markets, and is violated when frictions induce

segmentation across the two markets.

The paper also provides circumstances under which convexity in marginal utility also

implies negative CAPM alphas for synthetic options. While the required conditions are

relatively strong, the paper provides some empirical evidence in their favor and also gives

bounds on the potential magnitude of the bias due to their violation.

Empirically, the paper then examines monthly returns on synthetic and traded options.

Madan (1998), Carr and Wu (2009), and Martin (2017). Options have also been used to measure jump risk
(e.g. Bollerslev and Todorov (2014)), micro uncertainty (Dew-Becker and Giglio (2020)), and option implied
skewness (Kozhan, Neuberger, and Schneider (2013), Dew-Becker (2022). Bollerslev and Todorov (2011)
and Beason and Schreindorfer (2022) use option prices to measure the drivers of risk premia.

5E.g. He and Krishnamurthy (2013), Hall (2017) , and Muir (2017).
6Alvarez and Jermann (2004) is an example of how asset prices can be used to measure the cost of

fluctuations. De Paoli and Zabczyk (2013) study optimal policy under time-varying risk aversion.
7Importantly, this is a reduced-form statement. Option prices do not measure a structural effect of the

market return on marginal utility. They measure the average value of marginal utility conditional on a return
state.
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The synthetic options are constructed back to 1926 using data on the CRSP market return,

while monthly traded option returns are available since August, 1987. Empirically, repli-

cation works quite well: synthetic options have returns that are over 90 percent correlated

with traded option returns and, most importantly, hedge all realized crashes over the last

century effectively. That does not mean that options could have been synthesized in real

time historically, though – trading costs and other frictions would have made that infeasible

(and in fact replication frictions are central to our intermediary-based explanation of the

results).

The key question, and one of the paper’s central results, is what alphas the synthetic

options earn. Whereas traded options have strongly negative CAPM alphas, synthetic op-

tions have historical alphas that are indistinguishable from zero, with confidence bands that

are economically narrow. In the benchmark full-sample results, the lower bound for the

confidence bands for the information ratios is -0.2. That result is robust over time, across

strikes, across maturities, and to modifying various details in the construction.8

On the other hand, the alphas of traded options have not been so consistent (see also

Bates (2022)). The paper’s second key empirical result is that according to various estimation

methods, there is a break in the returns somewhere around 2010. In the period since 2010,

in fact, the alphas of the traded options have converged to zero, consistent with the synthetic

options. Since the gap between traded and synthetic option returns is literally a delta-hedged

return, another way to state this second result is that the alpha of delta-hedged options has

gone to zero. Relatedly, the paper also shows that the CAPM alpha of the variance risk

premium has shrunk towards zero.

Note that this paper is not novel for building a replication strategy – every analysis using

delta hedging also does so (e.g. Bakshi and Kapadia (2003)). It is novel because it focuses

on the delta hedge by itself, which allows us to extend the analysis to the beginning of the

20th century (long before traded options become available), and because it documents large

variation in the alphas of traded (but not synthetic) options over the recent decades.

The final section of the paper asks what might have caused such a shift. We first develop

a general equilibrium model with heterogeneous investors that can simultaneously explain

the empirical patterns. It shows that a decline in trading frictions can explain the decline in

option overpricing. Intuitively, the idea behind the model is that with investor heterogeneity,

when retail investors are unable to sell options – the model’s core friction – the equilibrium

8That result is consistent with the option pricing literature – the large negative return on delta-hedged
returns going back to Bakshi and Kapadia (2003) is equivalent to finding that traded options have more
negative returns than synthetic options. The novelty in this dimension is in pointing out that the small
alpha for synthetic options extends back to 1926.
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price of options will be driven by the investors with the greatest demand. But as the frictions

decline, overpricing will also, because the investors willing to supply options become free to

do so.

The model also delivers additional testable implications. The most important is that

the option premium should be related to the amount of risk borne in equilibrium by dealers

(similar to Bates (2022) and Garleanu, Pedersen, and Poteshman (2008)). We show that

the net S&P 500 gamma exposure of dealers and market makers for Cboe options shifted

from being consistently negative to being zero or positive following the financial crisis. Other

factors driving hedging costs, including trading frictions and basis risk, also declined, which,

according to the model, also contributes to the decline in the traded option alpha.

Broader implications

The paper’s basic findings have two additional implications beyond what has been dis-

cussed so far. First, the paper’s results imply that derivatives prices, up until relatively

recently, were distorted away from those implied by the preferences of whoever is the typical

investor pricing equities. When estimating and testing a representative-agent model, the

results imply that fitting the behavior of syntehtic options is more appropriate than fitting

the behavior of traded options. And that can be done not only for the overall equity market

– synthetic options can be created on any underlying.

Second, the analysis finds clear evidence of nonstationarity – both in option returns and in

positions and other measures of frictions. So when studying traded option returns, attention

must be paid to the exact sample being used and how the results may have changed over

time. Synthetic option returns, on the other hand, have stable characteristics.

Outline

The remainder of the paper is organized as follows. Section 2 compares traded and

synthetic options and discusses the assumptions needed to interpret their CAPM alphas in

terms of investor risk preferences. Section 3 shows the empirical results on the time series

patterns of traded and synthetic options and their implications for the shape of marginal

utility. Section 4 focuses on the decline in alpha of traded options in the last decade and

presents a general equilibrium model that can explain the empirical patterns we document,

and provides additional testable implications. Section 5 concludes.

2 Traded and synthetic options: theoretical framework

This section introduces the two types of options, and explores under which assumptions

average returns on traded and synthetic options can provide a measure of curvature in
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marginal utility with respect to the market return.

2.1 Definitions and notation

The market return between periods t and t + j is Rm
t,t+j. The change in marginal utility is

Mt,t+j (i.e. u
′
t+j/u

′
t, where u is utility over consumption).9 Since Mt,t+j is a ratio of marginal

utilities, we immediately have that Mt,t+2 = Mt,t+1Mt+1,t+2, etc. Since any deviations of

investors’ subjective probability measure from the truth can also be incorporated into Mt,t+j,

we refer to it more generally as subjective marginal utility, or SMU.

Definition 1 A return Rt,t+j is priced by subjective marginal utility, denoted Mt,t+j , over

t → t+ j if

1 = Et [Mt,t+jRt,t+j] (1)

where Et is the expectation operator under the physical probability measure conditional on

information available on date t.

Note that this definition may potentially only hold for certain t and j – i.e. only on

some dates or over just some horizons. It does not imply that markets are complete, so

marginal utility need not be identical across agents. They only must agree on equation (1)

for whichever assets are priced by marginal utility. In addition, it does not require rational

expectations – irrational beliefs can be accommodated by Mt,t+j as long as they satisfy basic

axioms for probability measures.

For simplicity, the theoretical analysis takes the risk-free rate to be zero (equivalently, all

returns can be interpreted as on forward contracts). That implies that EtMt,t+j = 1 for all

t and j. The analysis is straightforward to recapitulate in the case where the risk-free rate

is nonzero, and the empirical analysis accounts for nonzero interest rates.

The paper’s goal is to understand how marginal utility varies with the state of the equity

market. To that end, define, for an arbitrary variable Xt,t+j, the nonlinear projection on the

market return,

X̄t,t+j ≡ E
[
Xt,t+j | Rm

t,t+j

]
, (2)

and X̂t,t+j = Xt,t+j − X̄t,t+j (3)

X̄t,t+j is the component of Xt,t+j that can be written as a function of the market return

and X̂t,t+j is the residual. We say X̄t,t+j is the (nonlinearly) spanned part and X̂t,t+j the

9If agents have biased probability measures, then the bias will also be part of Mt,t+j . We would in that
case just require that there are internally consistent in that Mt,t+2 = Mt,t+1Mt+1,t+2.
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unspanned part.10

M̄t,t+j is the paper’s primary object of interest – how marginal utility varies with the

market return (again, not causally, just in a conditional expectation sense). It is what the

past literature on option-implied pricing kernels has focused on, since, as the next section

shows, it is what options carry information about.

2.2 Interpreting traded option returns

Define the gross return on some arbitrary option (or derivative) on the market to be RO
t,t+j.

The part of that return (linearly) correlated with the market can always be subtracted, and

we have

RO⊥
t,t+j ≡ RO

t,t+j −
covt

(
RO

t,t+j, R
m
t,t+j

)
vart

(
RO

t,t+j, R
m
t,t+j

) (Rm
t,t+j − 1

)
(4)

αO
t,t+j = Et

[
RO⊥

t,t+j − 1
]

(5)

where αO
t,t+j is the CAPM alpha of RO

t,t+j. It will become clear in a moment why we create

these objects. First, though, note that RO⊥
t,t+j is not a dynamically or delta-hedged return;

rather, one might say it is beta-hedged: the hedge is a fixed position in the underlying,

conditioned on date-t information. Since it just adds a static position in the market, RO⊥
t,t+j

has the usual kinked relationship with Rm
t,t+j, just tilted compared to RO

t,t+j. Figure 1 gives

example for an out-of-the-money and at-the-money put option.

Figure 1: Hypothetical option payoffs

-0.05

0

0.05

0.1

0.15

0.2

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Market return

At-the-money put option

RO⟂RO

-0.05

0

0.05

0.1

0.15

0.2

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Market return

5% out-of-the-money put option

RO⟂

RO

Note: Hypothetical net payoffs RO
t,t+j and RO⊥

t,t+j for two different strikes.

10Throughout the paper, the term “span” is used in the Hilbert space sense of a conditional expectation.
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Proposition 2 If RO
t,t+j and Rm

t,t+j are priced over t → t+ j, then M̄t,t+j has the represen-

tation,

M̄t,t+j = const.−
Et

[
Rm

t,t+j − 1
]

vart
[
Rm

t,t+j

] Rm
t,t+j −

αO
t,t+j

vart
(
RO⊥

t,t+j

)RO⊥
t,t+j + resid. (6)

where the residual term is orthogonal to Rm
t,t+j and RO⊥

t,t+j.

The alpha of an option measures nonlinearity in marginal utility relative to the market

return. Specifically, equation (6) is a regression of M̄t,t+j on two functions of the market

return: a linear term (Rm
t,t+1) and a nonlinear term (RO⊥

t,t+j, which is, conditionally, an exact

nonlinear function of the market return). The result comes from the fact that the covariances

in the numerators of the regression coefficients can be replaced here by the two risk premia

– e.g. Et

[
Rm

t,t+j − 1
]
= − covt

(
Rm

t,t+j,Mt,t+j

)
.

−Et[Rm
t,t+j−1]

vart[Rm
t,t+j]

therefore measures the average slope of marginal utility with respect to the

market return. RO⊥
t,t+j is a piecewise linear function of the market return, so its coefficient,

−αO
t,t+j

vart(RO⊥
t,t+j)

, measures how the slope of M̄t,t+j changes across the strike.

Figure 2 illustrates that idea, plotting SMU, normalized to equal 1 for Rm
t,t+j = 1, relative

to the market return. Under the CAPM (the black line), SMU is linear in the market return,

all alphas are zero, there is no convexity, and the slope is recovered simply as
−Et[Rm

t,t+j−1]
vart[Rm

t,t+j]
.

The dashed red line plots the SMU implied by the alphas observed for 5% out-of-the-

money listed S&P 500 puts between 1987 and 2022. Historical put returns imply that

effective risk aversion – as measured by the slope of SMU – is significantly higher when the

market falls. The non-monotonicity here is a typical, if surprising, empirical finding.

2.3 Interpreting synthetic option returns

It is well known that option returns can be approximated through dynamic trading in the

underlying asset – the market return in this case. Do the approximated returns then also

approximately measure nonlinearity in M̄t,t+j?

By synthetic option return, we simply mean a return that is replicated via dynamic trad-

ing in the underlying. Denote the weight on the underlying each day by δSt (which depends

only on information up to date t, ensuring feasibility, at least if trading is frictionless). In

the Black–Scholes (1973) replication, for example, δSt is exactly the delta of the option being

replicated, which depends on the level of the market index and its volatility.
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Figure 2: SMU estimated using exchange-traded and synthetic puts
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Note: The figure shows estimated SMU under different models and estimated in different samples. The

solid black line reports the estimated SMU as a function of the market alone (as in the CAPM). The

other lines model SMU as a function of the market and the orthogonalized returns on traded and synthetic

options in various samples.

The return on the synthetic option from t to t+ j is then

RS
t,t+j ≡

t+j−1∑
s=t

δSs
(
Rm

s,s+1 − 1
)
+ 1 (7)

Synthetic options will earn a CAPM alpha if they productively time the market – i.e. if δSs

is correlated with variation in the market risk premium (see section 3.3.3).

Note that in general RS
t,t+j ̸= RO

t,t+j and the replication of an option will not be perfect.

Nevertheless, we have the following result:

Proposition 3 If Rm
t,t+1 is priced by SMU for all s → s+ 1 for t ≤ s < t+ j, then

M̄t,t+j = const.−
Et

[
Rm

t,t+j − 1
]

vart
[
Rm

t,t+j

] Rm
t,t+j −

(
αS
t,t+j + covt

(
M̂t,t+j, R̂

S
t,t+j

))
vart

(
RS⊥

t,t+j

) R̄S⊥
t,t+j + resid. (8)
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where αS
t,t+j is the CAPM alpha of RS

t,t+j and the residual is orthogonal to Rm
t,t+j and R̄S⊥

t,t+j.
11

There is again an expression for SMU in terms of two returns, with coefficients depending

on their risk premia. Proposition 3 gives three conditions under which αS
t,t+j can be used to

measure convexity in SMU:

1. R̄S
t,t+j is a convex function of the market return

2. Rm
t,t+1 is priced by SMU for all t → t+ 1

3. covt

(
M̂t,t+j, R̂

S
t,t+j

)
is zero

The first condition just says that synthetic options have returns that are convex in the

market, which can be checked empirically. The second and third conditions are harder to

evaluate because they are statements about SMU, which is not directly observable. The

pricing condition might fail at the daily level if there are frictions allowing market prices to

deviate from their fundamental values at high frequency (see section 3.6.2).

The third condition requires that the unspanned part of synthetic option returns not

be priced. Section 3.4 discusses it extensively, both looking at what variables R̂S
t,t+j is

correlated with and also using the method of Cochrane and Saa-Requejo (2000) to bound

the covariance.12

Those three conditions are the key point of the general theoretical analysis. They show

what is required in order to use synthetic options to measure nonlinearity in marginal utility.

2.3.1 Feasibility

A surprising feature of the three conditions for interpreting synthetic option returns is that

none of them directly requires that options synthesis be feasible in practice. The requirement

that the market is priced correctly every day, for example, does not say that every investor

can trade every day. In many models, the market is correctly priced even though there is

no trade in equilibrium (this also holds in the general equilibrium model of section 4.2).

There is no question that for the vast majority of investors over the vast majority of the

empirical sample, replicating options dynamically would have been expensive and time-

consuming. And in fact frictions associated with the replication are ultimately central to the

11Recall that overbars denote components spanned by the market return and hats the unspanned compo-
nents.

12Condition 3 holds in any model where Rm
t,t+j is a sufficient statistic for SMU (so that M̂t,t+j = 0); for

example if marginal utility is a function of current wealth and that wealth returns are perfectly correlated with
stock market returns (which can hold under Epstein–Zin preferences). If the exact path of the market return
matters or if there are other state variables that affect marginal utility and are independent of market returns,
they will appear in M̂t,t+j . Condition 3 also holds when nonlinear payoffs on the market can be replicated

via dynamic trading, e.g. when the market follows a binomial tree, so that R̂S
t,t+j = 0. In reality neither of

those conditions holds literally, and the question becomes how large the bias from cov
(
M̂t,t+j , R̂

S
t,t+j

)
is.

10



paper’s theoretical explanation. But frictions also prevent many investors from freely trading

options, which violates the assumptions needed to use traded options to infer marginal utility.

What is important in the end is not whether agents can trade continuously or perfectly

replicate options. Rather, the question is whether the price of the stock market – or that of

traded options – is close to “fair” – in the sense of definition 1. The paper will return to this

issue throughout the analysis.

3 Empirical analysis: traded and synthetic option re-

turns

This section documents the properties of returns of traded and synthetic options over time,

as well as their difference. It also derives the SMU that are implied by the CAPM alphas of

the two instruments.

3.1 Data

Option synthesis Throughout the analysis, t is taken to be a day. The weight δSt is equal

to the delta of the option – the partial derivative of the value with respect to the price of the

underlying. Different models give different exact expressions for delta. The main analysis

uses a method from Hull and White (2017) that corrects the Black–Scholes delta for the

leverage effect, but this is largely immaterial – the unadjusted Black–Scholes delta delivers

similar results (see section 3.6).

Section 3.6.2 discusses potential effects of market microstructure biases. To avoid the

effects of stale prices (see Bates (2012)), δSt is constructed based only on information lagged

by a day in the main analysis.

The return volatility needed to calculate delta is obtained from a heterogeneous autore-

gressive model (Corsi (2009)) that forecasts 1-month volatility as a function of past two-week

volatility and the past three months of volatility (with the lags chosen based on the Bayesian

information criterion). The model is estimated on an expanding window, so that when the

delta is computed only past information is used. Robustness to the various choices here is

examined in section 3.6.

The market return is measured as the (daily) CRSP value-weighted stock market return

and the risk-free rate is the one-month Treasury bill rate from Kenneth French’s website.
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Traded options The dataset for traded options splices together CME futures options for

the period 1987–1995 with CBOE SPX options from Optionmetrics for 1996–2022. Following

Broadie, Chernov, and Johannes (2009), we study a monthly rolling strategy, where options

are purchased on the third Friday of every month and then held to their maturity on the

following month’s third Friday.

In parts of the analysis that involve direct comparisons of synthetic and traded options,

we align the returns – comparing returns over the same third-Friday-to-third-Friday period.

However, when looking at univariate statistics, the analysis uses 21-day overlapping windows

for the synthetic options to maximize statistical power (since there is no need to only use a

single return per month).

For both the synthetic and traded options, excess returns are scaled with the price of

the underlying in the denominator, rather than the price of the option, as in Büchner and

Kelly (2022). The scaling is the return perceived by an investor who is buying options in

proportion to the underlying. It is a payoff per unit of insurance, rather than per unit of the

insurance premium that is paid. See appendix B for further discussion.

3.2 The relationship between RS
t,t+j and Rm

t,t+j

The top panel of Figure 3 plots RS
t,t+j for put options against R

m
t,t+j, where j = 21 days and

the strike used to construct δSt is 95% of the initial level of the market (corresponding to

approximately a unit standard deviation decline). The plot for call options with the same

strike is identical but rotated 45 degrees counterclockwise.

There is clearly significant nonlinearity – for values of the market return above the strike

the slope is near zero, while for values below it the slope is approximately -1, consistent with

the fact that RS
t,t+j is constructed to mimic a put option. The red line plots the nonparametric

estimates of R̄S
t,t+j ≡ E

[
RS

t,t+j | Rm
t,t+j

]
.13 They formally quantify the relevant nonlinearity,

showing that R̄S
t,t+j is close to piecewise linear in the market return.

Importantly, R̄S
t,t+j rises with a consistent slope as Rm

t,t+j falls, regardless of how large

the decline is. If it was not possible to span large declines in the market with time-varying

weights, e.g. due to large jumps, R̄S
t,t+j would flatten out for the very negative values of

Rm
t,t+j. Figure A.1 replicates figure 3 across strikes and shows the results are highly similar.

The table below reports the most extreme 21-day returns in the five most extreme events

in the US stock market in the sample. As a benchmark, the 5% OTM synthetic puts would

ideally generate a return that is 5% lower than the negative of the market return, minus the

13Conditional expectations are calculated via a local linear regression on Rm
t,t+j with a Gaussian kernel

and the bandwidth set to 0.01.
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Figure 3: Synthetic put returns as a function of the market

(a) RS vs. Rm

(b) Local standard deviation of redsiduals (R̂S
t,t+j)

Note: Panel (a) plots returns on synthetic options, RS , against the returns of the market, Rm. The red

line is a kernel estimate of the local mean. Panel (b) plots the local standard deviation of the residuals.
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initial cost of the position. In all five cases, the synthetic puts have highly positive returns,

providing economically meaningful insurance against these crashes.

Returns on the market and synthetic puts, five most extreme events

Rm
t,t+j R̄S

t,t+j R̄S
t,t+j (no lag in δSt ) Ideal return

Nov. 1929 -41% 31% 32% 35%

Mar. 2020 -33% 25% 25% 28%

Oct. 2008 -31% 22% 22% 24%

Oct. 1987 -30% 17% 23% 24%

Oct. 1931 -29% 22% 22% 24%

Recall that in the benchmark results, δSt depends on data only up to date t−1 in order to

avoid microstructure biases. The third column in the table shows that when δSt uses date-t

information, the hedge becomes noticeably better, particularly in 1987.14 This shows that

using lagged information for hedging is conservative for fit.

Even though the synthetic options fit well, the claim is not that the replication was

implementable. The results just show that the hypothetical returns are nonlinear in the

market, so that the first required condition from section 2.3 is satisfied empirically. In

addition, even though the synthetic strategy did a good job of hedging the crashes that have

occurred in US data over the last century, it is always possible that investors worry about a

disaster that has not been realized yet in which the replication would perform worse.

To begin to evaluate the third condition from section 2.3, that the residual risk is small,

the bottom panel of figure 3 plots the conditional standard deviation of the residuals R̂S
t,t+j ≡

RS
t,t+j − R̄S

t,t+j.
15 That standard deviation is always less than 3%, and in many cases less

than 1%. In addition, we have the following variance decomposition:

var
(
RS

t,t+j

)︸ ︷︷ ︸
3.1×10−4

= var
(
R̄S

t,t+j

)︸ ︷︷ ︸
2.5×10−4

+ var
(
R̂S

t,t+j

)
︸ ︷︷ ︸

0.6×10−4

(10)

21% of the variation in synthetic option returns in this case are unspanned by the market

return. The amount of residual risk measured here is again a conservative estimate due to

14Using date t information means that the investment held during day t + 1 (e.g. Wednesday) is chosen
based on information at the end of date t (Tuesday afternoon; as opposed to the benchmark using info from
Monday afternoon).

15The local volatility is estimated from a second kernel regression,

η2t,t+j = h
(
Rm

t,t+j

)
+ residual (9)

where for the function h we set the bandwidth to 0.05 due to there being greater variation in the squared
residuals around the fitted value.
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the fact that δSt is constructed using only lagged information. If δSt uses date-t information,

the fraction of the variance of RS
t,t+j from R̂S

t,t+j falls to 15%. The more important question,

though, is whether that variation is correlated with a typical investor’s marginal utility,

which we return to in section 3.4.

Finally, to directly compare synthetic and traded option returns, figure A.2 compares

standard deviations and betas for traded and synthetic options across strikes and finds they

are highly similar. Figure A.9 plots synthetic against traded option returns for different

strikes and reports pairwise correlations, which range between 0.85 and 1.00.16

3.3 Risk premia

3.3.1 Varying strikes at the monthly maturity

Figure 4 reports the paper’s key results for long-run average option risk premia. It includes

results for three different periods: the full sample available for synthetic returns (1926–2022),

the full sample available for both synthetic and traded returns (1987–2022), and the 1987–

2005 sample used by Broadie, Chernov, and Johannes (BCJ; 2009), who report an extensive

analysis of the performance of traded options. In all cases, the figure gives results for put

options. For alphas and information ratios, results for puts and calls are guaranteed to be

identical for synthetic options at a given strike, and they are highly similar for traded options

(in both cases due to put-call parity).17

The left-hand column of Figure 4 plots average returns. In all three panels, returns

decline as the strike rises, which is to be expected as the betas also become more negative

for higher strikes. In the periods of overlap between synthetic and traded options, traded

options always have lower average returns than synthetic.

The middle column reports CAPM alphas, which are the paper’s key object of interest

based on the theoretical analysis. The bottom two panels show that the estimated alphas of

traded options are negative across all strikes in both the 1987–2022 and BCJ samples. The

statistical evidence for the alphas being negative is stronger in the earlier BCJ sample, with

the magnitudes falling by half in the longer sample.

16For all results that study returns for a range of strikes above and below the spot, we compute the returns
of the traded options at that strike by averaging the returns of the actual put (whether in the money or out
of the money) with the return from the put implied by the traded call, as implied by put-call parity. This
averages out some of the noise due to the fact that put-call parity doesn’t hold exactly with traded options.
All the results are similar if using only puts for strikes below the spot and only calls for strikes above the
spot.

17For traded options, results are not numerically identical between puts and calls because put-call parity
doesn’t hold exactly with traded options. To mitigate noise, we average the return of the put and that
obtained from the call via put-call parity, with minor effects on the results.
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Figure 4: Average option returns across strikes
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Note: Means, CAPM alphas, and CAPM information ratios across various samples for traded and syn-

thetic put options. Shaded regions represent 95-percent confidence intervals. In the top panel, for the

full post-1926 period, only synthetic options are available. The overlapping sample in the middle row is

1987–2022.

In the same post-1987 period, though, and regardless of whether the post-2005 period

is included, synthetic options have estimated alphas very close to zero, with no evidence of

mispricing relative to the CAPM. The top panel shows that the same result holds in the full

sample. The paper’s claim that synthetic options have been fairly priced historically relative

to the CAPM is based on the results reported here for alphas.

The right-hand column of Figure 4 plots information ratios – the Sharpe ratio of the

part of option returns uncorrelated with the market. Again, they are generally statistically

insignificant – some are if anything weakly positive. The confidence bands are also econom-

ically tight in that they reject information ratios below -0.2 at the 95% confidence level for

all strikes, and for the strikes with most of the put volume (0.95 to 1), they reject negative

information ratios entirely. The traded options, on the other hand, have information ratios
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as negative as -0.75 in the BCJ sample, which is larger than the Sharpe ratio of the overall

stock market.

While the confidence bands overlap slightly in some cases, the alphas and information

ratios are in general statistically significantly different from each other, especially in the BCJ

sample (and, again, it is an important part of the paper’s story that the difference actually

weakens after that sample). Figure A.3 in the appendix shows that result formally. The

reason that the difference is well estimated even though the individual confidence bands

overlap somewhat is that the two series are very highly positively correlated.

The figures therefore provide economically and statistically significant evidence that syn-

thetic options have had much less negative alphas and information ratios than traded options.

Figure A.4 replicates 4, but varying the maturity instead of the strike price, figure A.5

scales the moneyness in volatility units, and figure A.6 puts the price of the option in the

denominator instead of the level of the underlying. The results are similar to the baseline in

all three cases.

3.3.2 Cumulative alphas and variation in risk premia over time

The top panel of figure 5 plots cumulative CAPM alphas for synthetic 5% OTM options over

the period 1926–2022 and for traded put options over the period 1987–2022. For readability,

the cumulative returns are normalized to zero in July 1987 when the data for the traded

options begins.

For synthetic options, the figure reinforces the result that over the full sample the alphas

have been slightly positive. Covid jumps out in 2020 as a large positive innovation, due to

the significant decline in the level of the stock market. The fact that the synthetic portfolio

captures that gives clear evidence that it is able to capture economically significant large

declines in the market. The bottom panel of figure 5 plots information ratios over rolling

10-year windows and again shows that the returns on synthetic options have been stable,

with a brief period in the 1930’s when the returns were statistically significantly positive. In

no period were they significantly negative.

Traded put returns have two striking features. On the one hand, the month-to-month

variation appears very similar to that for the synthetic options, consistent with the results

presented so far. On the other hand, the average return is drastically different. The returns

are highly negative, especially in the period up to 2010. The returns were roughly flat from

then until the large market decline with Covid. In fact, the overall cumulative return on

traded puts is zero between March, 2009 and the end of the sample in December, 2022.

The bottom panel of figure 5 shows how, over ten-year windows, the return on traded puts
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Figure 5: Cumulative returns
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Note: The top panel plots cumulative CAPM alphas for traded and synthetic -5% put options. The lines

are constructed to equal zero in July, 1987, when the true put options become available. The bottom panel

plots 10-year rolling CAPM information ratios, with the shaded regions representing 95-percent confidence

intervals.
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actually turned positive at the end of the sample.

Since a synthetic put is a delta hedge, the difference between the returns on the traded

and synthetic put returns is exactly the return on a delta-hedged put, which is a version

of the variance risk premium (Bakshi and Kapadia (2003)). To see that, figure A.11 in

the appendix plots cumulative alphas for delta-hedged puts and straddles. They have been

approximately zero since 2010. Section 4 revisits this point in more detail and reports formal

tests for a structural break.

3.3.3 A conditional CAPM interpretation

Since synthetic options are created by trading the market dynamically, any monthly CAPM

alpha they earn has to come from timing the market risk premium. For both synthetic puts

and calls, the investment in the market, δSt , declines – becoming more negative for a put and

less positive for a call – when the market declines and rises when the market rises. Synthetic

options are therefore bets on momentum. To get a negative alpha (which would be consistent

with traded option returns) would require mean reversion in returns.

Formally, one can derive from results in Lewellen and Nagel (2006) that

αS
t,t+j ≈ cov

(
δSt ,
[
Et

[
Rm

t,t+1

]
− E

[
Rm

t,t+1

]]
−

E
[
Rm

t,t+1 − 1
]

var
(
Rm

t,t+1

) [
vart

(
Rm

t,t+1

)
− var

(
Rm

t,t+1

)])
(11)

The first part of the covariance is the usual conditional CAPM intuition, which says that if

δSt covaries positively with the market risk premium, then αS
t,t+j will be positive. The second

part is a contribution from the comovement of δSt with conditional volatility – the movement

of deltas with volatility is second-order (and its sign is ambiguous), so this term is small

quantitatively. The equation can also be interpreted in the opposite direction: if synthetic

puts earn a negative alpha then (ignoring second-order volatility effects) expected returns

must be countercyclical. That is, convexity in SMU implies countercyclical risk premia.18

18How does time-varying volatility affect this analysis? If the CAPM holds period-by-period with constant
risk aversion (in the sense of the pricing kernel being linear in Rm

t,t+1), then Et

[
Rm

t,t+1 − 1
]
∝ vart

(
Rm

t,t+1

)
,

which would imply that the covariance in (11) is identically zero. If risk aversion is countercyclical, as with
a convex pricing kernel, then even if volatility rises when the market falls, Et

[
Rm

t,t+1 − 1
]
will rise by enough

to offset that effect, so that the covariance term is negative and αS
t,t+j < 0. In other words, if both volatility

and risk aversion are countercyclical, equation (11) implies that αS
t,t+j is negative.
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3.4 The effect of unspanned variation – R̂S
t,t+j and M̂t,t+j

Recall from section 2.3 that the curvature of marginal utility is determined by αS
t +covt

(
M̂t,t+j, R̂

S
t,t+j

)
where the variables with hats are the components unexplained by any nonlinear function of

the market return. So far the analysis has ignored the covariance term. The questions

are whether that covariance is zero and if not, how large it might be. This section exam-

ines what risk factors R̂S
t,t+j might be correlated with and then bounds the magnitude of

covt

(
M̂t,t+j, R̂

S
t,t+j

)
using the method of Cochrane and Saa-Requejo (2000).

3.4.1 Relationship of R̂S
t,t+j with risk factors

Table 1 reports correlations between the unspanned part of synthetic option returns, R̂S
t,t+j,

and statistical innovations in prominent macro and financial variables.19 Since R̂S
t,t+j is

orthogonal to the market return by construction, we also orthogonalize the innovations in

all of the other macro and financial time series with respect to the market return.

Among the macro time series, the correlations are all economically small and statistically

insignificant. The only notable correlations are for financial series: the excess bond premium

(EBP), the VIX, and realized volatility. In months in which shocks to these financial series,

after orthogonalizing with respect to the market return, are unexpectedly high, R̂S
t,t+j tends

to be low.20 If those are bad states of the world, that would make R̂S
t,t+j risky, which

proposition 3 shows would imply more convexity in SMU than implied by αS
t,t+j.

The results suggest that options do not look risky to an investor whose marginal utility

depends on either the level of the stock market or to macroeconomic variables. They do

look risky, though, to an investor who cares about the path that the market return takes,

suggesting that intermediaries might be relevant for pricing.

The bottom row of table 1 reports the maximum correlation of R̂S
t,t+j with any linear

combination of the innovations. It is less than 0.5, so we take that as an upper end for a

reasonable estimate of the correlation of R̂S
t,t+j with M̂t,t+j, but we also examine results with

the correlation set to 1.

19For R̂S
t,t+j we take the return from the beginning to the end of a month. For the variables that are

measured at a fixed point in time, we take the statistical innovation in the value at the end of the month
relative to the lags of the variable (information available at the beginning of the month). For the other
variables, we take the statistical innovation in the monthly value relative to data available in the previous
month. The different time series are available for different time periods and each correlation is computed
using the longest period available for that variable.

20The correlations of the unspanned option returns with the SMB and HML factors are also very small –
0.02 and -0.05, respectively.
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Table 1: Correlation of residuals with macro variables

All data Excluding 2020
Unemployment -0.08 -0.06
Ind. Pro. Growth 0.06 0.07
Employment growth 0.07 0.06
FFR -0.01 -0.01
Term Spread 0.02 0.02
Default Spread -0.01 -0.01
EBP -0.11 -0.14
VIX -0.21 -0.21
VXO -0.14 -0.12
rv -0.35 -0.38
Maximal corr 0.35 0.41

Note: Table reports the correlations between the residuals of the nonlinear fit of RS onto the market and

various macroeconomic variables: unemployment, industrial production growth, employment growth, the

federal funds rate, the term spread (10 year minus 1 year), the default spread (BAA-AAA spread), the

excess bond premium (EBP) from Gilchrist et al. (2021), the VIX, the VXO, and realized volatility. All

variables are orthogonalized to the market. The last row reports the maximal correlation between any

linear combination of these variables and the residuals. The second column replicates the results excluding

2020.

3.4.2 Robust uncertainty bands

If covt

(
M̂t,t+j, R̂

S
t,t+j

)
is not equal to zero, how large of a bias does it create in measuring

curvature in marginal utility? To bound the magnitude of covt

(
M̂t,t+j, R̂

S
t,t+j

)
, following

Cochrane and Saa-Requejo (2000), start from the identity,∣∣∣covt (R̂S
t,t+j, M̂t,t+j

)∣∣∣ = ∣∣∣corrt (R̂S
t,t+j, M̂t,t+j

)∣∣∣ stdt (R̂S
t,t+j

)
stdt

(
M̂t,t+j

)
(12)

std
(
R̂S

t,t+j

)
can be estimated based on the empirical time-series of R̂S

t,t+j.
∣∣∣corr (R̂S

t,t+j, M̂t,t+j

)∣∣∣
is not observable, but the results in the previous section imply 0.5 as an estimate, and the

upper bound is 1. Finally, to get std
(
M̂t,t+j

)
we assume that the volatility of the unspanned

part of SMU, M̂t,t+j, is no greater than that from the part of SMU spanned by the market,

M̄t,t+j. That implies that

std
(
M̂t,t+j

)
≤ E

[
Rm

t,t+j − 1
]
/std

(
Rm

t,t+j

)
(13)

21



Intuitively, that restriction says that the Sharpe ratio available from any investment inde-

pendent of the market return can be no greater than that of the market itself, similar to

Cochrane and Saa-Requejo (2000) (see also references therein).21

The parameter of interest, which measures convexity in SMU, is

αS,adjusted
t,t+j ≡ αS

t,t+j + covt

(
M̂t,t+j, R̂

S
t,t+j

)
(14)

It has two sources of uncertainty: estimation uncertainty in αS
t,t+j and the unobservable value

of covt

(
M̂t,t+j, R̂

S
t,t+j

)
. Appendix C shows how those two sources of uncertainty can be

combined geometrically, essentially treating cov
(
R̂S

t,t+j, M̂t,t+j

)
as another Gaussian source

of error.

Figure 6 reports an alternative version of figure 3 that now incorporates these robust

uncertainty bands instead of the original confidence bands based only on estimation error.

The left-hand panels assume that corr
(
R̂S

t,t+j, M̂t,t+j

)
based on the results in the previous

section, while the right-hand panels use the most conservative possible value of 1.22

The uncertainty bands in figure 6 are guaranteed to be wider than in the baseline. How-

ever, they can still reject information ratios of -0.5 in all but a few cases with the shortest

sample. In the top-center panel, which is the most powerful case, using the longest sample

and corr
(
R̂S

t,t+j, M̂t,t+j

)
= 0.5, the bound can reject even small negative information ratios.

So even when accounting for unspanned risk, the curvature of SMU implied by synthetic

options remains small. That said, naturally these bounds are dependent on what one takes

to be the maximum available Sharpe ratio. There is always a price for the residual risk such

that any curvature of SMU may lie within the confidence bands.

3.5 Implications for marginal utility

Figure 2 plots, in blue, the shape of SMU implied by the synthetic option returns for a strike

of -5% at maturity of one month for various samples. In all cases, the synthetic options imply

that marginal utility is if anything weakly concave, consistent with the positive measured

alphas and implying risk aversion falls slightly in bad times. While there are no confidence

bands plotted in figure 2, the change in the slope across the strike is measured by the alphas

reported above, and so the confidence bands apply here.

21The 1 here represents the gross-risk-free rate. Again, in the empirical analysis the actual risk-free rate
is used.

22Equivalently, the right-hand panel can be taken as treating the market Sharpe ratio as 1 instead of 0.5
(and leaving the correlation at 0.5).

22



Figure 6: Average option returns with robust uncertainty intervals
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Note: These graphs replicate the main results, but the shaded uncertainty intervals here incor-

porate the bound on the effect from potential pricing of unspanned risk in the synthetic option

returns.
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As discussed above, the red lines corresponding to traded options imply significant con-

vexity due to the large negative estimated alphas, so that effective risk aversion rises strongly

as market returns fall.

The analysis in section 2 of how to estimate SMU based on the returns on the market and

a single option is a special case of the minimum-variance SDF of Hansen and Jagannathan

(1991) and naturally extends to using multiple options simultaneously.

Figure 7 plots the minimum-variance SMU for the traded and synthetic options separately

using strikes at 5% moneyness intervals from 90 to 110 percent (for 1926–2022 for synthetic

options and 1987–2022 for traded). The mean-variance optimal portfolio is calculated based

on the full-sample estimates of mean returns and covariances, with both a lasso- and ridge-

type adjustment for robustness.23

As in the benchmark case, estimated SMU is convex for the traded options and concave

for the synthetic options. For the synthetic options, the concavity is fairly consistent, though

it may change signs at large positive strikes. For the traded options, the convexity appears

strongest around market returns of zero. While traded options again imply non-monotone

marginal utility, the synthetic options do not.

3.6 Robustness

The baseline results use deltas from the method of Hull and White (2017). The left column

of figure A.10 shows (for different sample periods) that the results are highly similar simply

using the standard Black–Scholes delta.

Constructing the weights for the synthesis requires a forecast of volatility. The benchmark

analysis uses a recursively estimated HAR model (Corsi (2009). The middle column of figure

A.10 shows that the alphas are very similar to those in the baseline if the volatility used to

calculate the hedge weights is simply set to 0.15 on all dates. That shows that the results

are driven by how δSt depends on the level of the market, rather than its volatility.

The benchmark analysis uses Hansen–Hodrick asymptotic standard errors. Since option

returns can be highly non-normal, convergence to the asymptotic distribution might be slow,

which can be addressed via bootstrapping. Results with block-bootstrapped standard errors

with block length equal to two months are reported in right column of figure A.10, and they

are highly similar to the baseline.

23Mean-variance optimization requires inverting the covariance matrix. We make two modifications to
ensure that the inversion is well behaved. First, we inflate the main diagonal of the covariance matrix
by 10%, which corresponds to a ridge-type adjustment. Second, in constructing the inverse, we drop any
eigenvalue smaller than 0.01 times the largest (in practice this eliminates one eigenvalue). These adjustments
only affect the weights in the tangency portfolio.
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Figure 7: Estimated SMU using all options jointly
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Note: The figure reports the estimated SMU obtained by using options of all strikes jointly. The blue

line uses synthetic puts (sample 1926–2022), and the red line uses traded puts (sample 1987–2022).

3.6.1 Effects of conditioning on betas

In the theoretical analysis, all alphas and betas are conditional, and hence potentially time-

varying.24 Figure A.7 examines possible ways of accounting for time-variation in conditional

betas. The left-hand column of panels plots the baseline results. In the middle column, betas

are estimated from a rolling three-month window. The right-hand panels model conditional

beta as a function of lagged (i.e., end of previous month) variables: the market return

volatility forecast (which is most important), the market return itself, industrial production

growth, and the corporate bond default spread. In both cases, the results are highly similar

to the benchmark qualitatively and quantitatively.

3.6.2 Effects of daily mispricing

Recall the second condition for using synthetic options to measure curvature in marginal

utility from section 2.3 that the market is priced correctly every day. Obviously no such

condition is literally true, so the question is how pricing errors might bias the results. Ap-

24Note that in the theoretical analysis, all conditioning for an option return between dates t and t + j is
taken as of date t. That is, for monthly returns, we must condition on information available at the beginning
of the month, not over the course of the month.
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pendix D shows that if pricing errors create spurious serial correlation in returns, e.g. via

stale prices or bid-ask bounce, they will bias the results. The bias can be eliminated, though,

by using information lagged beyond the order of autocorrelation in returns.

To examine this effect in the data, the top panel of figure A.8 reports the autocorrelations

of daily returns in the full sample and pre- and post-1973 separately. In the pre-1973 sample,

there is clear evidence of one-day positive serial correlation, consistent with the presence of

stale prices. The two-day autocorrelation, on the other hand, is negative, which is one reason

why the analysis only uses a single-day lag in constructing the weights.

To see the effects of different choices for the information set for δSt , the bottom panel

of figure A.8 plots three versions of the cumulative alphas for synthetic options: with the

baseline one-day lag, with no lag, and with a two-day lag. Switching from the baseline to

no lag causes a large increase in alphas, entirely due to the positive autocorrelation, which

is why it shows up only in the first half of the sample. Going from a one-day to a two-day

lag also increases the alphas (by a lower amount). None of the lag choices leads to negative

average alphas.

4 The decline of option overpricing and the role of in-

termediaries

This section shows that over the last 10-15 years the negative alpha associated with traded

options has essentially disappeared and the risk premium of traded options has converged

to that of synthetic options. It then develops a simple general equilibrium model that can

explain that pattern as well as those documented in the previous section. Last, it shows that

the decline in overpricing was contemporaneous with a decline in the risk borne by financial

intermediaries, consistent with the model.

4.1 The decline of option overpricing: empirical evidence

Figure 5, presented in the previous section, already showed some suggestive evidence that the

returns on traded options may have trended towards zero in recent years. Figure 8 examines

that behavior in greater detail. The left-hand panel of figure 8 plots information ratios over

rolling 10-year windows for traded and synthetic puts along with their difference for the

1987–2022 sample.25 The synthetic options consistently had zero or positive returns, while

25The main results use the overlapping 21-day returns for synthetic option. In this section, all results
use synthetic option returns that match exactly the roll dates of the traded options, in order to ensure
comparability. This has only minor effects, and in any case they run against the main conclusions of this
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the traded options consistently had strongly negative returns until 2009, when they begin to

trend up, eventually turning starkly positive in 2020. In the early periods, the information

ratio for the traded options was very large – about equal to the size of the market risk

premium itself.

The difference between the information ratios on traded and synthetic options, plotted

in the middle panel of figure 8, has also nearly converged to zero over the same period.

The confidence bands show that the change in the information ratio appears to be highly

statistically significant, something that is tested more formally below, in section 4.1.1.

Figure 8: Changes in premia over time

Note: The left-hand panel plots 10-year rolling CAPM information ratios for traded and synthetic 5The

middle panel plots the difference between those two series for each 10-year window along with a 95-percent

confidence band. The right-hand panel plots information ratios for three other related measures of the

difference between traded and synthetic options.

The difference in the information ratios between traded and synthetic options is very

closely related to the return on delta-hedged options, which have been studied widely in

the past literature and used as a proxy for the variance risk premium (e.g. Bakshi and

Kapadia (2003)). To examine that idea more directly, the right-hand panel of figure 8 plots

the rolling 10-year information ratios for delta-hedged 5% OTM put options and at-the-

money straddles. Both have risen over time, converging to zero in 2020 (with a complete

convergence for the ATM straddles coming even before Covid). As an even simpler test,

the green line in the same plot proxies for the payoff of a variance swap simply as the gap

between realized variance and the squared VIX (Carr and Wu (2009)). The information

ratio of RV-minus-VIX behaves highly similarly to the other series, also converging to zero

over the sample.26

section.
26Specifically, define a (pseudo-) return RRV

t =
(
RVt − V IX2

t−1

)
/V IX2

t−1, where RVt is (annualized)
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Again, most or all of the convergence occurred before the large market declines due to

Covid in March, 2020. As of January, 2020, the difference in rolling information ratios in

the middle panel of figure 8 is no longer significant.

The results here do not mean that the variance risk premium is zero by the end of the

sample. There is still a premium for variance risk, but the results imply that the premium

is no larger than what would be expected from the CAPM beta. That is, the variance risk

premium can be decomposed into parts coming from CAPM alpha and beta, and the results

here just show that the alpha contribution has shrunk.

Variance rises when the market falls, so it has a negative beta and carries a negative

premium. In the past, the premium from trading variance via delta-hedged options was even

larger than is implied by the CAPM beta (i.e. there was also a negative alpha), but by the

end of the sample that is no longer true. These results are consistent with those in Heston,

Jacobs, and Kim (2022), who also find that there is a negative variance risk premium, but

that it cannot be distinguished from simple market (beta) risk.

4.1.1 Statistical tests

We now test statistically that the information ratios have changed between the early part

of the sample and the late part of the sample. To maximize power, we divide the sample in

two parts. The general equilibrium model in the next section predicts that the risk premium

of traded options, relative to synthetic options, should depend on the total gamma (i.e.,

hedging) risk borne by intermediaries – when the intermediaries have to hold a lot of this

risk, they require extra compensation from option-buyers. As the next section will show,

intermediaries switched from being net short to having zero or slightly positive net exposure

around 2012 (specifically, a break test identifies 2012m5 as the break date). We therefore

use this date to distinguish the “early” and “late” part of our sample. That said, the results

of this section are very similar for the other break dates around 2010.

Table 2 reports, respectively for traded options (left), synthetic options (middle), and

for their difference (i.e., the delta-hedged options, right), the information ratio before and

after that break date, as well as a p-value for their difference. As the table shows, the

information ratio of traded options changed not only economically (from -0.6 to 0.09) but

also statistically significantly over this time period. Similarly, the difference between traded

and synthetic options also showed a significant change, both economically and statistically.

But synthetic options didn’t see a significant change in the information ratio during this

realized variance in month t and V IXt−1 is the level of the VIX at the end of month t− 1. The information
ratio is then the CAPM alpha of RRV

t divided by the residual standard deviation.
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Table 2: Test for change in risk premia over time

IR (traded) IR (synthetic) IR (traded-synth)
Before After p-value Before After p-value Before After p-value
-0.60 0.09 0.06 0.06 0.35 0.46 -0.66 -0.25 0.02

Note: Table reports time-series tests of whether the average information ratio of traded (left), synthetic

(middle), and their difference (right) are different before 2012m5 and after, with the p-value for their

difference. Full sample is 1987-2022.

period. Therefore, consistent with the graphs showed in the previous section, the gap between

traded and synthetic options has fallen significantly over time, by traded options converging

to synthetic options, rather than the opposite.

4.2 A general equilibrium model of the options market

This section presents a simple equilibrium model that can qualitatively match the results

presented so far – that synthetic options have earned zero CAPM alpha while traded options

earned a large negative premium that has converged to zero. In the model, that shift is

driven by a decline in frictions inhibiting investors (other than dealers) from selling – but

not buying – options.

In order to model frictions in trade, we consider an overlapping-generations model in

which agents can only trade equity and options at “birth”. The “lives” of the investors will

be calibrated to be equal to the maturity of options. In that sense, these investors can be

thought of as simply myopic portfolio decisions and rebalancing once a month. The goal

of the model is to understand the circumstances under which synthetic and traded options

do and do not earn CAPM alphas. Note that since investors can only trade equities once,

the model captures the idea that typical investors cannot themselves dynamically replicate

options.

The agents in the model represent those who face investment frictions. They can be

thought of as retail investors, but more generally they are agents who are not market-makers

or dealers and hence not fully integrated with financial markets.

4.2.1 Model setup

There are two types of agents, indexed by i. Agents live for J + 1 periods. They consume

in each period and also have a bequest motive. The agents differ in how their effective risk

aversion varies over time.
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Budget constraints. For an agent who was born on date t, and hence has J periods

remaining to live,

Ci,J,t +Bi,J,t + PX
t Xi,t + PO

t Oi,t︸ ︷︷ ︸ = PX
t

If options are tradable

(15)

where Ci,j,t is consumption on date t of an agent of type i with j periods remaining to

live, Bi,j,t is the same for the holding of the riskless bonds, and PX
t Xi,t and PO

t Oi,t are the

purchases of equity and J-period options, respectively, for agents of type i born on date t

(these do not require j subscripts because equity and options can ony be traded at birth).

The right-hand side represents each agent’s endowment – they are each born with a unit

allocation of equity.

Agents with 0 < j < J periods left to live receive dividends, trade bonds, and consume:

Ci,j,t +Bi,j,t = DtXi,t−(J−j) +RB
t Bi,j+1,t−1 (16)

where RB
t is the risk-free rate from date t− 1 to t and Dt is the dividend paid by equity on

date t.

Terminal wealth is

Wi,t = Xi,t−J

(
PX
t +Dt

)
+Oi,t−JX

O
t +RB

t Bi,1,t−1 (17)

where XO
t is the payoff of a J-period option on date t.

Objective. Agents have log utility over consumption. On the day they are born their

objective is

maxEi
t

[
logCi,J,t +

J−1∑
k=1

βk logCi,J−k,t+k + βJ log (Ci,0,t+J)

]
(18)

where Ei
t is agent i’s expectation on date t.

Since the agent has log utility, the consumption-wealth ratio is constant. We therefore

model terminal consumption as

Ci,0,t =
Ci,J,t

PX
t

Wi,t (19)

where PX
t is the wealth of an agent born on date t, so that Ci,J,t/P

X
t is their consump-

tion/wealth ratio. Intuitively, this is just a way to capture a bequest motive, or, more

realistically, the marginal utility of wealth at date t+J when the agent is able to reoptimize.

In general log utility does not generate realistically large risk premia. To do so, we modify

the expectation operator to make agents pessimistic over the distribution of shocks. That
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pessimism can be thought of as a reduced-form for risk or ambiguity aversion, or simply

as behavioral. To generate demand for options, we additionally assume that the pessimism

(which determines effective risk aversion) varies over time.27 Specifically, in the model there

will be a single fundamental shock εt ∼ N (0, 1), and on date t, agent i believes that

εt+1 ∼ N (−µi,t, 1) (20)

µi,t = ϕµi,t−1 + (1− ϕ) µ̄+ κiεt (21)

µ̄ determines average pessimism. Pessimism is procyclical when κi > 0 and countercyclical

for κi < 0.

Option specification. For both tractability and simplicity, we model “options” as quadratic

contracts on equity, with payoff

XO
t =

(
J−1∏
j=0

Rt−j − 1

)2

(22)

where Rt =
PX
t +Dt

PX
t−1

(23)

A quadratic contract is equivalent to a particular portfolio of options (Bakshi and Madan

(2000)). On any given date, its exposure to the underlying is proportional to the cumulative

return since inception. And that is exactly why it plays a role for investors in the model.

Following positive equity returns, agents with countercyclical pessimism are relatively more

optimistic about future returns, increasing their desired allocation to equities. Since they

cannot change their exposure after their first period of life, the option is valuable to them for

inducing that dynamic reallocation automatically. Agents with countercyclical pessimsm will

thus tend to demand options, while those with procyclical pessimism (intuitively, agents who

think returns display momentum, rather than mean reversion) will tend to supply options.

Agents here thus have a desire to buy and sell options precisely because they cannot replicate

them dynamically.

4.2.2 Calibration and solution.

The equilibrium concept is standard:

27Similar to the habit formation of Campbell and Cochrane (1999), or the endogenous time-varying pes-
simism in Bidder and Dew-Becker (2016).
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Definition 4 An equilibrium is a set of processes for prices,
{
PX
t , PO

t , RB
t

}
, and the agents’

demands, {Ci,j,t, Bi,j,t, Xi,t, Oi,t}, such that markets clear,

∑
i Xi,t =

∑
i 1,

∑
iOi,t = 0,

∑
i

∑J
j=1 Bi,j,t = 0

and agents maximize (18).

The model is calibrated to the weekly frequency. Since the model is meant to match

behavior of monthly options, that implies J = 3. We calibrate the volatility of dividends in

order to generate equity returns with similar volatility to that of the aggregate stock market,

so we set

logDt = logDt−1 +
15%√
52

εt (24)

εt ∼ N (0, 1) (25)

We set µ̄ = −1
2

√
1/52 to generate an annualized Sharpe ratio for equities of about 1/2 (the

additional risk aversion from log utility makes it slightly higher). We set ϕ = 0.79, so that

pessimism has a half-life of one month. κ for the procyclical and countercyclical agent are

set to ±µ̄
√
1− ϕ2, which implies that the unconditional standard deviation of pessimism is

equal to its mean.

Finally, the rate of time preference is calibrated to 5% per year in order to generate a

plausible risk-free interest rate.

We numerically approximate and solve the model via a fourth-order perturbation using

Dynare.

4.2.3 Results

To analyze the model, we consider two periods – one in which all agents may buy but not

sell options, and a second in which they are free to both buy and sell. This change is meant

to capture the decline in frictions to trading options. In the early period, when agents can

buy but not sell options, the market clearing price is the one such that the maximum option

demand across all agents is equal to zero (some agents may have negative demand – they

would like to sell but can’t). When they can both buy and sell, we look for the standard

market-clearing price.

Table 3 reports simulation results for Sharpe and information ratios. The first pair of

columns report results for the heterogeneous-agent version of the model where the pessimism

of one agent is countercyclical and the other procyclical. Column 1 corresponds to the
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early and column 2 the late period. Across the two columns, the Sharpe ratio of equities

is the same, since options do not change the total equity risk that must be borne. In

the early period, traded options earn significant negative Sharpe and information ratios.

Synthetic options earn no premium, though, and therefore delta-hedged option returns are

also significantly negative. The correlation between traded and synthetic options, at 0.81, is

large but also meaningfully different from 1. In the late period, the results are similar except

that traded options, with or without delta-hedging, no longer earn a negative premium.

Why do synthetic options earn no premium? In this model, average effective risk aversion

– coming from the combination of curvature in utility and the tilt in the expectation operator

– is constant. Following negative shocks, when one agent becomes more risk averse, the

other’s risk aversion declines by exactly the same amount. So marginal utility averaged across

agents, which ultimately determines the market SDF, has a constant slope with respect

to market returns. Synthetic options therefore correctly capture that marginal utility is

effectively linear – the convexity for half the agents is canceled out by the concavity of the

other half.

Another way to look at it is that the agents who are able to trade equities (those who

have just been born) have the same average risk aversion as those who cannot trade. So

even though not everybody trades all the time, equity is priced as if all agents trade. Going

back to section 2, equities here are priced by a representative – average – investor each day

– and therefore, synthetic options recover the preferences of the representative investor. On

the contrary, traded options are not priced by the average investor in the period when their

trade is restricted, and thus do not measure the preferences of the average agent: instead,

they represent the preferences of just the subset of agent who desire to buy options (whose

demand drives prices and who price options on the margin).

Overall, the first two columns qualitatively match the empirical results reported so far:

there is an early period in which traded options (both alone and delta-hedged) earn significant

negative risk premia and a later period in which that premium disappears, while synthetic

options never earn a premium. In addition, since the model matches the behavior of both

synthetic and traded options, it also matches the behavior of delta-hedged options, whose

returns are just the difference between traded and synthetic options.

The second pair of columns reports results for a version of the model with homogeneous

agents with countercyclical pessimism. Since the agents are identical, it is irrelevant whether

they can trade or not, so the two columns are identical. As in the heterogeneous case with

restricted trade, options again earn negative returns and with an magnitude. Intuitively,

this is because the agents who effectively drive the price of options in the first column –
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the countercyclical agents with high option demand – are identical to the agents in the ho-

mogeneous case. The difference here, though, is that now synthetic options also earn large

negative premia – which also means that delta-hedged options earn no premium. Just like

before, synthetic options successfully recover the preferences of the representative agent. In

the homogeneous case, average effective risk aversion is countercyclical, so are risk premia,

and so the momentum strategy embodied in a synthetic option has negative market tim-

ing. The result then is that while the homogeneous-agent model generates a large options

premium, it fails to match data on synthetic options and on delta-hedged option returns.

It is worth stressing that in all cases, synthetic options successfully recover the preferences

of the average investor even if no investor can actually build the synthetic trading strategy

– i.e., cost of trading for any investor after the period they are born is infinite.

Table 3: Model results

Heterogeneous Homogeneous
Early Late Early Late

Equity SR 0.65 0.65 0.67 0.67
Traded option SR -0.22 0.00 -0.22 -0.22
Synthetic option SR 0.00 0.00 -0.28 -0.28
Traded option IR -0.29 -0.06 -0.29 -0.29
Synthetic option IR -0.07 -0.07 -0.35 -0.35
Delta-hedged option IR -0.37 0.01 0.09 0.09
Corr(synthetic,traded) 0.81 0.81 0.77 0.77

Note: Table reports various statistics from the calibrated model. SR is the Sharpe ratio and IR is the

information ratio.

4.3 Empirical implications and tests of the model

4.3.1 Dealer gamma exposure and option returns

The analysis above takes price in the frictional period to be the greatest willingness to pay

of any agent. In the real world that would be the market clearing price if there was a very

small set of agents who could sell options – i.e. with risk-bearing capacity far smaller than

the demand of retail investors.

That is often how intermediaries are modeled – they are small and take exogenous de-

mand from retail investors as given, for example in Garleanu, Pedersen, and Poteshman
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(GPP; 2009).28 A core feature of GPP’s model is that the correct measure of the risk that

intermediaries must bear is measured by their unhedgeable risk. Up to second order, that

is measured by gamma. The size of the option premium then should be related to dealer

gamma.

In the context of the previous section’s model, that gamma should have declined to zero

once retail investors are able to both buy and sell options, since dealers no longer need to

bear asymmetric demand. This section tests that hypothesis – has dealer gamma

exposure gone from negative to zero? It also tests the core mechanism in the model –

that the price of gamma risk, i.e. the difference in the risk premium of traded and synthetic

options, should have declined at the same time as gamma exposure went to zero.

Figure 9: Net dealer gamma over time
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Note: Figure plots the net gamma of intermediaries over time, based on CBOE open-close and Option-

metrics data.

28For example, GPP include a motivating quote from a derivatives trader, “The number of players in the
skew market is limited. ... there’s a huge imbalance between what clients want and what professionals can
provide.”
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Figure 9 plots net dealer purchases and sales of gamma in S&P 500 options over the period

1996-2022, constructed using the CBOE open-close data.29 Dealer gamma was significantly

negative until around the Global Financial Crisis, which has been noted widely in previous

work. However, since the Global Financial Crisis, net dealer gamma has trended to zero or

even positive. The timing of that switch is highly similar to the timing of the shift in the

premium on options.

Table 4: Dealer gamma and option risk premia

Traded Synthetic Difference
Market maker net gamma 0.78 -0.28 0.98***

(0.69) (0.66) (0.25)

Spot-future basis volatility -1.22* 0.04 -1.30***
(0.68) (0.65) (0.23)

Note: Table reports the coefficient of a regression of traded options, synthetic options, and their difference

on the lagged net gamma of market markers and on the lagged volatility of the spot-future basis. Both

are filtered through an exponentially-weighted moving average. Sample is 1987-2022.

To further understand that change over time, table 4 reports the coefficients of a regres-

sion of the information ratios onto lagged dealer gamma (exponentially-weighted to remove

the very high-frequency fluctuations). To reduce the influence of outliers, the estimation

is performed via maximum likelihood with a student-t error distribution, but results are

similar using OLS regression. The table shows that the difference between traded options

and synthetic options loads positively on the intermediaries’ net gamma, as predicted by the

model: as intermediaries started bearing less risk over time (gamma became less negative),

the delta-hedged alpha became less negative as well (generating a positive coefficient in this

regression). This table therefore provides direct evidence in support of the model presented

in this section.

29This is the same dataset used in the previous literature on option frictions, e.g. GPP, as well as Chen,
Joslin and Ni (2019) and Constantinides and Lian (2015). The dataset classifies, for each option, the total
daily buy and sell orders by type of entity (customer, firm, and broker dealer). We compute the total gamma
bought and sold each day by intermediaries (defined, as in GPP, as entities that are neither customer or
firms) by combining this data with the gamma of each option from Optionmetrics. We use options with 10
to 180 days maturity.
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4.3.2 Additional potential drivers of option premia

In order to generate further implications of excess retail options demand that we can take

to the data, appendix E.3 extends GPP’s model to add three additional realistic frictions

that dealers may face: unspanned risk, basis risk, and hedging costs (see proposition 7).

Unspanned risk is any risk left after discrete hedging with the underlying (e.g. jump risk and

unspanned volatility). Basis risk represents the deviation between the hedging instrument –

e.g. S&P 500 futures – and the actual underlying index. And hedging costs represent the

cost to dealers due to the actual cost of synthesizing a hedge, such as transaction costs or

price pressure. Figure A.12 examines how each of these may have changed over time.

The top two panels of figure A.12 show that trading costs, measured both by posted and

effective spreads (Roll (1984)) declined as option premia shrunk. So, in addition to dealers

bearing less option risk over time, they also pay smaller costs to hedge the risk they do bear.

We measure basis risk empirically from the gap between the level of the S&P 500 index

and the futures price. The middle-left panel of figure A.12 plots the three-month rolling

standard deviation of that gap. The y-axis is again on a log10 scale. Over time, basis risk

has fallen by about an order of magnitude. While there is a large decline early in the sample,

similar to trading frictions, basis risk seems to settle at its current level around the early

2000’s.

Finally, figure A.12 plots three measures of unhedgeable risk. The first is the standard

deviation of the daily delta-hedged options return, which measures the gap between the

return on the option and the daily rebalanced hedge. It shows no clear trend, particularly

once the 1987 crash is no longer included in the moving average. Second, following Bollerslev

et al. (2009), figure A.12 plots the difference between quadratic and bipower variation, which

is a measure of realized jump variation. It rose during the 2008 financial crisis, and has been

lower subsequently, but again does not have a clear trend. Finally, unhedgeable risk is, more

broadly, driven by higher moments in returns, so the bottom-right panel of figure A.12 plots

the measure of S&P 500 return skewness developed in Neuberger (2012). Realized skewness

has, over time, trended consistently more negative (implied skewness does the same; see the

CBOE’s SKEW index and Dew-Becker (2022)). So if higher moments drove the options

premium, it should have grown instead of shrunk over time. The decline that we observe in

the overpricing of options cannot be driven by declines in jump or higher moment risk, as

measured here, since none of those sources of risk have declined. Instead, consistent with

the model, the decline in the premium can be driven by a reduction in how much of this risk

is borne by intermediaries, and in the frictions they face.

Overall, figure A.12 shows that hedging costs and basis risk have declined – indicating
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a reduction in frictions faced by intermediaries – while unhedgable risk does not appear to

have shrunk.

The second row of table 4 shows that information ratios of traded options and of delta-

hedged options moved negatively relative to basis risk, measured as the lagged exponentially-

weighted average of the standard deviation of the basis pictured above: as the basis on

average became less volatile over time, traded and delta-hedged information ratio became

less negative, again in line with the predictions of the theory.

4.3.3 Summary

Over time, dealers have borne a smaller amount of unhedgeable S&P 500 risk, as measured by

their gamma exposure. That shift correlates well with the decline in the observed premium

on options. Additionally, other frictions that they face, including trading costs and basis

risk have also shrunk. All of these factors can help explain why the options premium has

converged to zero, in light of the predictions of the model.

The model is stark, in that it has just two regimes: no option selling and free selling.

What would have allowed dealers to take on less gamma? While some of it may very well

be retail investors having an easier time selling options themselves, there is also the rise of

alternative investors who can bear that risk. For example, Jurek and Stafford (2015) show

that hedge fund returns are highly similar to those from writing S&P 500 puts. As the

hedge fund sector has grown over the past three decades, it may have contributed to the

supply of options, increasing risk-bearing capacity and reducing premia. Similarly, Calvet

et al. (2024) show using micro evidence that increase access to structured products directly

decreased option prices. What is important here is not necessarily who exactly is selling

options, but rather that the capacity to do so has grown, driving their price down.

5 Conclusion

This paper studies returns on traded and synthetic options on the S&P 500. The key

empirical result is that while their returns used to be drastically different – with synthetic

options having CAPM alphas near zero for a century while traded options had significantly

negative alphas – that has changed: returns on traded options have converged up to those

on synthetic options.

Theoretically, the paper gives conditions under which synthetic options can measure

the shape of marginal utility with resppect to market returns, and it develops a general

equilibrium model that can fit the data. The model’s core mechanism is that in the early
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period when traded options were overpriced, that was due to the fact that while many could

buy options, it was hard for many to sell, causing financial intermediaries to bear a large

amount of risk and price that risk accordingly. Then, more recently, as constraints relax so

that more agents can sell options, the risk is borne by a greater number of agents – not just

dealers anymore – and its price falls. Consistent with the model, dealer net gamma has gone

from being consistently negative prior to 2012 to being centered around zero for the past

decade.

There are two additional implications of the results that we would like to highlight.

First, they show that it is important to take nonstationarity in options returns into account

in empirical analyses. The results that one obtains for options premia are very sensitive to

the sample used, and research using the full sample currently available through 2023 will get

answers that are both economically and statistically significantly different from earlier work

using data only through the 1990’s.

Second, if synthetic options premia are the superior measure of the preferences of the

typical investor – with derivatives markets being segmented – that suggests in the future

calibrating and estimating structural models not based on the returns on traded options,

but on those for synthetic options. The synthetic options have the added benefits of being

available over the same period that equity returns are available and being able to be con-

structed not only for the total stock market, but also for bonds, anomaly portfolios, or any

other asset class.
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A Proofs from section 2

A.1 Proposition 2

Consider a regression of Mt,t+j on Rm
t,t+j and RO⊥

t,t+j. Since R
m
t,t+j and RO⊥

t,t+j are, by construc-

tion, conditionally uncorrelated with each other, we have

Mt,t+j = const. +
covt

(
Rm

t,t+j,Mt,t+j

)
vart

[
Rm

t,t+j

] Rm
t,t+j +

covt
(
RO⊥

t,t+j,Mt,t+j

)
vart

(
RO⊥

t,t+j

) RO⊥
t,t+j + resid. (26)

Additionally, Rm
t,t+j is conditionally uncorrelated with M̂t,t+j by construction, so that

cov
(
Rm

t,t+j,Mt,t+j

)
= cov

(
Rm

t,t+j, M̄t,t+j

)
(27)

The same fact works for RO⊥
t,t+j since, conditional on date-t information, RO⊥

t,t+j is a (nonlinear)

function of Rm
t,t+j. We then can replace Mt,t+j on the left-hand side above with M̄t,t+j.

Under the assumption that Rm
t,t+j and RO⊥

t,t+j are priced,

cov
(
Rm

t,t+j,Mt,t+j

)
= −Et

[
Rm

t,t+j − 1
]

(28)

cov
(
RO⊥

t,t+j,Mt,t+j

)
= −Et

[
RO⊥

t,t+j − 1
]

(29)

But since RO⊥
t,t+j is uncorrelated with Rm

t,t+j, its (conditional) CAPM beta is zero by construc-

tion, and hence

Et

[
RO⊥

t,t+j − 1
]
= αO

t,t+j (30)

The result then follows.

A.2 Proposition 3

The proof follows similar lines to that for proposition 2. The only required adjustment is to

note that

covt
(
RS

t,t+j,Mt,t+j

)
= −Et

[
RS

t,t+j − 1
]
= −αS

t,t+j (31)

and

covt
(
RS

t,t+j, M̄t,t+j

)
= covt

(
RS

t,t+j,Mt,t+j

)
− covt

(
M̂t,t+j, R̂

S
t,t+j

)
(32)

= −
(
αS
t,t+j + covt

(
M̂t,t+j, R̂

S
t,t+j

))
(33)
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B Synthetic puts and replicating portfolio

B.1 Standard delta-hedging

Consider an option with price Pt, and the underlying with price St. The payoff from holding

the option from time 1 to T is:

Πoption
1,T = PT − P1 =

T−1∑
t=1

(Pt+1 − Pt)

The Black-Scholes-Merton replication portfolio is a dynamic strategy that buys a time-

varying number of shares of the underlying, ∆t, and invests a time-varying amount Bt in the

risk free rate. These numbers are chosen so that, in the original setup of Black and Scholes,

they guarantee an exact replication of the option value as it evolves over time: equivalently,

they guarantee that at maturity the payoff of the option and the replicating portfolio are

equal, while cash flows are zero in every period except the first and the last.

To achieve this, ∆t is chosen as the Black-Scholes delta, and Bt is chosen as the difference

between the BS option value Pt and the cost of buying the underlying ∆tSt:

Bt = Pt −∆tSt

This portfolio costs Bt +∆tSt to buy at time t, and has a value of Bt(1 +
rt
365

) + ∆tSt+1

at time t+ 1, where rt is the annualized interest rate at time t. At time t+ 1, the strategy

requires buying the new portfolio Bt+1 +∆t+1St+1, and so on. In every period between the

first and the last one, this strategy generates an intermediate cash flow of:

ICFt+1 = (Bt(1 +
rt
365

) + ∆tSt+1)− (Bt+1 +∆t+1St+1)

and at the last period T , it generates a final cash flow of BT−1(1 +
rT−1

365
) +∆T−1ST which is

equal to the option payoff. In the BS model, the portfolio is self-financing, so ICFt+1 = 0.

Therefore, the total P&L that this replication portfolio generates is:

Πhedge
1,T =

T−2∑
t=1

[
(Bt(1 +

rt
365

) + ∆tSt+1)− (Bt+1 +∆t+1St+1)
]

︸ ︷︷ ︸
=0under BS

+
[
B0T−1(1 +

rT−1

365
) + ∆T−1ST

]
︸ ︷︷ ︸

final cash flow

− [B1 +∆1S1]︸ ︷︷ ︸
initial cost

(34)
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This can be also rewritten in the following way:

Πhedge
1,T =

T−1∑
t=1

[
(Bt(1 +

rt
365

) + ∆tSt+1)− (Bt +∆tSt)
]
=

T−1∑
t=1

∆t(St+1−St)+
T−1∑
t=1

Bt
rt
365

(35)

which corresponds to the formula of Bakshi and Kapadia (2003) and Buchner and Kelly

(2022) when setting Bt = Pt −∆tSt. When the assumptions of Black-Scholes do not hold,

the rebalancing of the portfolio generates intermediate cash flows (i.e., CFt is not zero),

which is accounted for by the formula above.

Finally, we examine excess returns of the delta-hedged portfolio. Both Πoption
1,T and Πhedge

1,T

are dollar payoffs that correspond to initial investments of P1 and B1 +∆1S1, respectively.

If the objective is to compute delta-hedged returns, then one can compute:

Πoption
1,T − Πhedge

1,T =
T−1∑
t=1

(Pt+1 − Pt)−
T−1∑
t=1

∆t(St+1 − St)−
T−1∑
t=1

Bt
rt
365

(36)

and this is an excess return: the cost of buying the option is P1, the income from shorting the

hedge portfolio is B1+∆1S1 = (P1−∆1S1)+∆1S1 = P1. This is because the hedge portfolio

is designed to borrow exactly an amount B1 that fully matches the price of the option P1

(which, in this case, is observed). The hedge strategy updates Bt over time by always setting

Bt = Pt −∆tSt, using the observed price of the option Pt at each point in time. Therefore,

the delta-hedging strategy described above (eq. 36) is an excess return whether Pt conforms

or not to the BS prices. The only difference is, if the BS model is correct, then the ICFt

and the last period cash flow will all be zero.

B.2 Synthetic options: P&L of zero-cost strategy

Next, we consider the case in which we do not observe the option price Pt. In that case,

we cannot use it as an input for computing Bt and ∆t. We also cannot obviously compute

Πoption
1,T . However, we note that equation (34) still describes the total P&L of any dynamic

trading strategy that at each point in time buys ∆t units of the underlying and invests Bt in

the risk free rate, whether or not those are chosen as per the BS model. Therefore, we can

still compute Πhedge
1,T for a choice of Pt and ∆t

30 (and hence Bt). In particular, we determine

the Black-Scholes price of an option, Pt, using as input the current underlying St and an

estimated value for σ2
t , and then build the hedging portfolio for that idealized option. The

30∆t corresponds to δSt,t+j in the main text. To evaluate ∆t, we follow Hull and White (2017); specifically,
we use equation (5) of the referenced paper and select a = −0.25, b = −0.4, c = −0.5.

47



fact that that option is not directly tradable is irrelevant, in the sense that the P&L we build

as described above is an actual return of a portfolio that is just a dynamic portfolio of the

market.

While the delta-hedged P&L, Πoption
1,T −Πhedge

1,T , is, as described above, the P&L of a zero-

cost portfolio, Πhedge
1,T is not. So we next describe the P&L of hedge portfolios that yield

Πoption
1,T and Πhedge

1,T separately but are funded at the risk-free rate at inception. For the option

(i.e. when we do observe Pt), we have:

Πoption,exc
1,T = PT − P1(1 +

r1
365

)T

Funding the hedge portfolio requires borrowingB1+∆1S1 = Pt, where Pt is the theoretical

BS price of an option. So the total P&L can be written as:

Πhedge,exc
1,T =

T−2∑
t=1

[
(Bt(1 +

rt

365
) + ∆tSt+1) − (Bt+1 + ∆t+1St+1)

]
︸ ︷︷ ︸

=0under BS

+
[
BT−1(1 +

rT−1

365
) + ∆T−1ST

]
− [B1 +∆1S1] (1 +

r1
365

)T

Note that in these formulas the intermediate cash flows are assumed not to be reinvested.

One can also reinvest them to obtain:

Πhedge,exc
1,T =

T−2∑
t=1

(1 + rt+1)
T−t−1

[
(Bt(1 +

rt
365

) + ∆tSt+1)− (Bt+1 +∆t+1St+1)
]

+
[
BT−1(1 +

rT−1

365
) + ∆T−1ST

]
− [B1 +∆1S1] (1 +

r1
365

)T

An alternative procedure is to get the same exposure ∆t every period, but entirely fund it

at the risk-free rate every period. The P&L of this zero-cost portfolio is:

Π̃hedge,exc
1,T =

T−1∑
t=1

∆t(St+1 − St(1 +
rt
365

)) =
T−1∑
t=1

∆t(St+1 − St)−
T−1∑
t=1

∆tSt
rt
365

Note that this relates closely to Πhedge,exc
1,T , since

Πhedge,exc
1,T =

T−1∑
t=1

∆t(St+1 − St) +
T−1∑
t=1

(Pt −∆tSt)
rt
365

− P1[(1 +
r1
365

)T − 1]

where the latter term is the total interest paid on the original loan of P1. So we can write:

Πhedge,exc
1,T − Π̃hedge,exc

1,T =
T−1∑
t=1

Pt
rt
365

− P1[(1 +
r1
365

)T − 1]
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The difference is effectively only coming from the different timing of the borrowing (every

period vs. at the beginning of the month), and is unlikely to make any substantial difference

empirically.

In fact, we can also consider funding the original hedging strategy, Πhedge
1,T day by day

instead of once at the very beginning. Modifying eq. (35):

Π̂hedge
1,T =

T−1∑
t=1

[
(Bt(1 +

rt
365

) + ∆tSt+1)− (Bt +∆tSt)(1 +
rt
365

)
]
=

T−1∑
t=1

∆t(St+1−St(1+
rt
365

))

So that:

Π̂hedge,exc
1,T = Π̃hedge,exc

1,T ≃ Πhedge,exc
1,T

B.3 P&L and returns

The P&Ls described above (Π̃hedge,exc
1,T and Πhedge,exc

1,T ) correspond to strategies that have zero

cost. Therefore, they also represent excess returns. Scaling that excess return by any time-1

quantity is also an excess return. Just like Buchner and Kelly (2022), we scale P&Ls by the

underlying at time 1:

Rhedge,exc
1,T =

Πhedge,exc
1,T

S1

and

R̃hedge,exc
1,T =

Π̃hedge,exc
1,T

S1

Finally, we consider another related zero-cost trading strategy. Instead of scaling by S1,

we scale the position of the strategy that funds every day (Π̃hedge
1,T ) by St every day:

R̃hedge,scaled
1,T =

T−1∑
t=1

∆t

St+1 − St(1 +
rt
365

)

St

Defining RM
t+1 =

St+1−St

St
we obtain:

St+1 − St(1 +
rt
365

)

St

=
St+1 − St

St

− (1 +
rt
365

) = RM
t+1 −Rf

t+1

and therefore

R̃hedge,scaled
1,T =

T−1∑
t=1

∆t(R
M
t+1 −Rf

t+1)

A final point concerns dividends. While dividends make a small difference over short time
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horizons, we can incorporate them easily in our analysis since we are not trying to hedge a

traded option. In other words, we consider a synthetic option that aims to hedge a value St

that tracks the value of an investment in the underlying that reinvests all the dividends. In

that case, RM is the one-day gross return (including dividends) of the market.

B.4 Comparison of the different approaches

In this section, we compare our baseline excess returns (Rhedge,exc
1,T , with reinvested interme-

diate cash flow) to the one obtained by funding the position each day, R̃hedge,scaled
1,T . The

table below reports, for different combinations of maturity M and strike K, the correlation

between Rhedge,exc
1,T and R̃hedge,scaled

1,T and the information ratio of each of them.

C Robust confidence bands for alpha

To combine statistical uncertainty with uncertainty from covt

(
R̂S

t,t+j, M̂t,t+j

)
, we treat them

as two independent sources of error. Specifically, suppose one starts with a diffuse prior for

αS,adjusted
t,t+j ≡ αS

t,t+j + covt

(
M̂t,t+j, R̂

S
t,t+j

)
(37)

Denote by αS,estimated
t,t+j the empirical estimate. Asymptotically, αS,estimated

t,t+j ∼ N
(
αS
t,t+j, SE

2
)
,

where SE is the standard error for the estimate. We also treat the second term as though

it is drawn from the distribution,

covt

(
M̂t,t+j, R̂

S
t,t+j

)
∼ N

0,

(
1

2
× 0.5× stdt

(
R̂S

t,t+j

) E
[
Rm

t,t+j − 1
]

std
(
Rm

t,t+j

) )2
 (38)

Recall from the main text that we take 0.5 × stdt

(
R̂S

t,t+j

)
E[Rm

t,t+j−1]
std(Rm

t,t+j)
as an upper bound

for covt

(
M̂t,t+j, R̂

S
t,t+j

)
. To incorporate that with the estimation uncertainty, we treat

covt

(
M̂t,t+j, R̂

S
t,t+j

)
as though it has a standard deviation of 0.5 × stdt

(
R̂S

t,t+j

)
E[Rm

t,t+j−1]
std(Rm

t,t+j)
,

so that the upper bound is two standard deviations from the prior mean – i.e. at the edge

of a ±2 standard deviation interval.

Given those two assumptions along with the diffuse prior, we then have

αS,adjusted
t,t+j ∼ N

αS,estimated
t,t+j , SE2 +

(
1

2
× 0.5× stdt

(
R̂S

t,t+j

) E
[
Rm

t,t+j − 1
]

std
(
Rm

t,t+j

) )2
 (39)
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D Effects of daily mispricing

Suppose that the “true” market return that satisfies 1 = Et

[
Mt,t+1R

m
t,t+1

]
every day, Rm

t,t+1,

is unobservable and instead we can only see some contaminated return Rm∗
t,t+1, with

Rm∗
t,t+1 = Rm

t,t+1 + εt+1 (40)

where εt+1 is the contamination. Depending on the properties of εt+1, it may be that 1 ̸=
Et

[
Mt,t+1R

m∗
t,t+1

]
even if Rm

t,t+1 is in fact priced each day.

If we define RS∗
t,t+j to be the return on an option synthesized from the contaminated

market return, Rm∗
t,t+1, then

E
[
RS∗

t,t+j

]
= E

[
RS

t,t+j

]
+

j−1∑
s=0

E
[
δSt+sεt+s+1

]
(41)

In order for the contamination, εt+1, to not affect measured risk premia, it must have zero

mean and be uncorrelated with past values of the weights δSt . On the other hand, the errors

need not be i.i.d., for example, or necessarily independent of anything else.

As discussed in Bates (2012), observed positive serial correlation in daily market index

returns is evidence of stale prices.31,32 When there is a positive return in the underlying, the

hedge weight δSt rises, both for puts and calls. That leads to the result that cov
(
εt+1, δ

S
t

)
> 0

when εt is positively serially correlated, which would lead to a positive bias, E
[
RS

t,t+j

]
>

E
[
RS∗

t,t+j

]
. That is why the main results use lagged information, so that δSt does not depend

on Rm∗
t .33

31For example, suppose on each day 50% of stock prices are updated. If there is good news on date t, that
will be impounded into half of stock prices on date t, 1/4 on t+1, 1/8 on t+2, etc., inducing positive serial
correlation in the “errors” εt relative to the “true” market return that would be observed if all stock prices
were updated every day.

32Another type of error that can arise is bid-ask bounce, which, as discussed in Jegadeesh and Titman
(1995), creates negative serial correlation in returns. In contrast to stale prices, that would bias the estimate
of synthetic option returns downward, implying the true alphas for synthetic options are even more positive
and in even stronger conflict with the alphas on traded options than is suggested by the baseline results.

33One might also ask about the effect of mispricing on estimated betas. First, as an empirical matter,
recall that the data shows that the betas of synthetic and traded options are highly similar, implying that
there is not a severe bias. Second, while stale prices and bid-ask bounce can affect betas at high frequencies,
those effects tend to shrink at lower frequencies, hence the more common focus on, say, monthly data in
studies of equity returns.
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E Theoretical results for intermediary model

This section presents our version of the GPP model in more detail. The vast majority of

the content is due to them; the only change is the addition of the trading friction and

index-futures basis.

E.1 Basic setup

There is a constant gross risk-free rate Rf . The underlying index has an exogenous excess

return RI
t+1. We consider a simplified version of the model where there is a single option

traded that has some price Pt. Its excess return is then RO
t+1 = Pt+1 −RfPt.

Dealers/intermediaries maximize discounted utility over consumption Ct,

Et

∞∑
j=0

ρj
(
−γ−1

)
exp (−γCt) (42)

subject to a transversality condition and budget constraint, which is

Wt+1 = (Wt − Ct)Rf +DtR
O
t+1 + FtR

F
t+1 −

κ

2
F 2
t (43)

where Wt is wealth. The intermediaries optimize over Dt, Ft, and Ct subject to the budget

constraint and taking the returns as given.

As described in the text, the term κ
2
F 2
t is a deviation from GPP, as is the distinction

between RF and RI .

It is assumed that the futures contract on the underlying that the dealers trade is available

in infinite supply. For the options, there is some exogenous demand from outside investors,

dt, and the market clearing condition is Dt + dt = 0.

Lemma 5 In this model, assets are priced under a probability measure d which is equal to

the measure P multiplied by the factor exp(−k(Wt+1+G(dt+1,Xt+1)))
Et[exp(−k(Wt+1+G(dt+1,Xt+1)))]

. In addition,

κFt = Ed
t

[
RF

t+1

]
(44)

Pt = R−1
f Ed

t Pt+1 (45)

where Pt is the price of the option (equivalently, 0 = Ed
t R

O
t+1).
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Proof. The value function and budget constraint satisfy

Vt = max
Ct,Dt,Ft

−γ−1 exp (−γCt) + ρEtVt+1 (46)

Wt+1 = (Wt − Ct)Rf +Dt (Pt+1 −RfPt) + FtR
F
t+1 −

κ

2
F 2
t (47)

Now guess that

Vt = −k−1 exp (−k (Wt +Gt))

for some variable Gt that is exogenous to the dealers, and where

k = γ
Rf − 1

Rf

(48)

We have

∂

∂Wt

Vt = −kVt (49)

and
dWt+1

dCt

= −Rf (50)

So then the FOC for consumption under this guess is

0 = exp (−γCt) + kRfρEtVt+1 (51)

Noting that

Vt = −γ−1 exp (−γCt) + ρEtVt+1 (52)

ρEtVt+1 = Vt + γ−1 exp (−γCt) (53)

We have

exp (−γCt) = exp (−k (Wt +Gt)) (54)

Now consider the FOC with respect to Ft. First,

dWt+1

dFt

= RF
t+1 − κFt (55)
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And hence the FOC is

0 = ρEt

[
exp (−k (Wt+1 +Gt+1))

(
RF

t+1 − κFt

)]
(56)

κFt = Ed
t

[
RF

t+1

]
(57)

where Ed is the expectation under the risk-neutral measure, which is the physical measure

distorted by the factor
exp (−k (Wt+1 +Gt+1))

Et [exp (−k (Wt+1 +Gt+1))]
(58)

Next, for Dt,
dWt+1

dDt

= RO
t+1 (59)

So then

0 = ρEt

[
exp (−k (Wt+1 +Gt+1))R

O
t+1

]
(60)

0 = R−1
f Ed

t R
O
t+1 (61)

It is straightforward to get a recursion for Gt by following the derivation in GPP.

Proposition 6 The effect of options demand on prices is

∂Pt

∂Dt

= −γ (Rf − 1)Ed
t

[(
RO

t+1 − β̂tR
F
t+1

)
Pt+1

]
(62)

where

β̂t ≡ βF
t

Ed
t

[(
RF

t+1

)2]
Ed

t

[(
RF

t+1

)2]
+ k−1Rfκ

(63)

βF
t ≡

covdt
(
RF

t+1, R
O
t+1

)
vardt

(
RF

t+1

) (64)

Proof. Based on the analysis from the previous proof, the pricing kernel can be written as

md
t+1 ≡

exp
(
−k
(
FtR

F
t+1 +DtR

O
t+1 +Gt+1

))
RfEt exp

(
−k
(
FtRF

t+1 +DtRO
t+1 +Gt+1

)) (65)
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Differentiate md
t+1 with respect to Dt to get

∂md
t+1

∂Dt

=
−k
(
RO

t+1 +RF
t+1

∂Ft

∂Dt

)
exp

(
−k
(
FtR

F
t+1 +DtR

O
t+1 +Gt+1

))
RfEt exp

(
−k
(
FtRF

t+1 +DtRO
t+1 +Gt+1

)) (66)

−
exp

(
−k
(
FtR

F
t+1 +DtR

O
t+1 +Gt+1

))(
RfEt exp

(
−k
(
FtRF

t+1 +DtRO
t+1 +Gt+1

)))2 (67)

×Et

[
−kRfPt+1 exp

(
−k
(
FtR

F
t+1 +DtR

O
t+1 +Gt+1

))]
(68)

= −k

(
RO

t+1 +RF
t+1

∂Ft

∂Dt

)
md

t+1 −
exp

(
−k
(
FtR

F
t+1 +DtR

O
t+1 +Gt+1

))
RfEt exp

(
−k
(
FtRF

t+1 +DtRO
t+1 +Gt+1

)) (69)

×Et

[
−kRfR

O
t+1

exp
(
−k
(
FtR

F
t+1 +DtR

O
t+1 +Gt+1

))
RfEt exp

(
−k
(
FtRF

t+1 +DtRO
t+1 +Gt+1

))] (70)

= −k

(
RO

t+1 +RF
t+1

∂Ft

∂Dt

)
md

t+1 (71)

Next, we differentiate the first-order condition for Ft with respect to Dt,

κ
∂Ft

∂Dt

= Et

[
∂

∂Dt

md
t+1R

F
t+1

]
(72)

= Et

[
−k

(
RO

t+1 +RF
t+1

∂Ft

∂Dt

)
RF

t+1m
d
t+1

]
(73)

Solving for the derivative yields

k−1κ
∂Ft

∂Dt

= Et

[
−RO

t+1R
F
t+1m

d
t+1 −RF

t+1

∂Ft

∂Dt

RF
t+1m

d
t+1

]
(74)

k−1κ
∂Ft

∂Dt

+
∂Ft

∂Dt

R−1
f Ed

t

[(
RF

t+1

)2]
= R−1

f Ed
t

[
−RO

t+1R
F
t+1

]
(75)

∂Ft

∂Dt

= −
Ed

t

[
RO

t+1R
F
t+1

]
Ed

t

[(
RF

t+1

)2]
+ k−1Rfκ

≡ −βF
t

Ed
t

[(
RF

t+1

)2]
Ed

t

[(
RF

t+1

)2]
+ k−1Rfκ

(76)

where

βF
t ≡

Ed
t

[
RO

t+1R
F
t+1

]
Ed

t

[(
RF

t+1

)2] =
covdt

(
RF

t+1, R
O
t+1

)
vardt

(
RF

t+1

) (77)
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The price sensitivity comes from differentiating the pricing equation for the option

∂Pt

∂Dt

= Et

[
∂md

t+1

∂Dt

Pt+1

]
= −kEt

[(
RO

t+1 +RF
t+1

∂Ft

∂Dt

)
md

t+1Pt+1

]
= −kEt

[(
RO

t+1 − β̂tR
F
t+1

)
md

t+1Pt+1

]
= −γ (Rf − 1)Ed

t

[(
RO

t+1 − β̂tR
F
t+1

)
RO

t+1

]
where the last line uses the fact that Ed

t

[
RO

t+1

]
= Ed

t

[
RF

t+1

]
= 0 since they are excess returns

that are fairly priced under the pricing measure d.

E.2 Proof of proposition 7

The proof involves simply analyzing the expectation in 6 above. We have

Ed
t

[(
RO

t+1 − β̂tR
F
t+1

)
RO

t+1

]
= Ed

t

[(
RO

t+1 − βF
t R

F
t+1 −

(
β̂t − βF

t

)
RF

t+1

)
RO

t+1

]
(78)

= Ed
t

[(
εFt+1 −

(
β̂t − βF

t

)
RF

t+1

) (
βF
t R

F
t+1 + εFt+1

)]
(79)

= vardt
[
εFt+1

]
−
(
β̂t − βF

t

)
βF
t E

d
t

[(
RF

t+1

)2]
(80)

= vardt
[
εFt+1

]
−

 −k−1Rfκ

Ed
t

[(
RF

t+1

)2]
+ k−1Rfκ

(βF
t

)2
Ed

t

[(
RF

t+1

)2]
(81)

Next, we want to further decompose vardt
[
εFt+1

]
. We have

RF
t+1 = RI

t+1 + zt+1 (82)

βF
t = βI

t

σ2
I,t

σ2
I,t + σ2

z,t

(83)

where σ2
I,t = vardt

(
RI

t+1

)
. We can write

RO
t+1 = βI

tR
I
t+1 + εIt+1 (84)
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where βI
t is the (d-measure) regression coefficient. Then

εFt+1 = RO
t+1 − βF

t R
F
t+1 (85)

= βI
tR

I
t+1 + εIt+1 − βI

t

σ2
I,t

σ2
I,t + σ2

z,t

(
RI

t+1 + zt+1

)
(86)

= βI
t

σ2
z,t

σ2
I,t + σ2

z,t

RI
t+1 + εIt+1 − βI

t

σ2
I,t

σ2
I,t + σ2

z,t

zt+1 (87)

vardt
[
εFt+1

]
=
(
βI
t

)2 σ2
z,tσ

2
I,t

σ2
I,t + σ2

z,t

+ σ2
ε,t (88)

where σ2
ε,t ≡ vardt

[
εIt+1

]
.

Up to first order in κ and σ2
z ,

∂Pt

∂Dt

= −γ (Rf − 1)

(βI
t

)2
σ2
z,t︸ ︷︷ ︸

Basis risk

+ σ2
ε︸︷︷︸

Unhedgeable risk

+ κR2
f

(
βI
t

)2︸ ︷︷ ︸
Imperfect hedging

(89)

E.3 GPP model

This section studies a simple extension of the model of Garleanu, Pedersen, and Poteshman

(GPP; 2009) to help clarify how various frictions can affect option prices when markets are

segmented. The only addition to their framework is to allow for transaction costs and index-

futures basis risk. The main text describes just the key parts of the setup and predictions

of the model. The details are in appendix E.

E.3.1 Setup

In GPP’s model, the price of the underlying – which we take here to be the market index –

is determined exogenously (presumably by a much larger mass of traders, for example retail

investors optimizing between index funds and cash), as is the demand or supply for a set

of derivative claims, such as options. GPP show empirically that in general retail investors

appear to be long index options, so that dealers must be net short.34

The dealers are assumed to have time-additive CARA preferences over consumption with

34A simple model for the source of asymmetry in retail demand is that it is easier in practice to buy than
sell options – buying options does not require posting margin, it has limited downside risk, and it can be
done in both regular and tax-protected accounts. So if retail investors are roughly split between those who
would to buy and sell, the net demand can still be positive due to asymmetry in frictions. And as those
frictions decline, so should the asymmetry.
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risk aversion γ. The key equation in the model is the dynamic budget constraint,

Wt+1 = (Wt − Ct)Rf +DtR
O
t+1 + FtR

F
t+1 −

κ

2
F 2
t (90)

Wt is wealth and Ct consumption. The risk-free rate, Rf is constant for simplicity, RF
t+1 is

the gross return on index futures, and RO
t+1 is the return on the derivatives. The dealers

endogenously choose consumption and the allocations to derivatives and futures Dt and Ft,

respectively.

We add two frictions: a quadratic trading cost, κ
2
F 2
t , and a wedge between the futures

return, RF
t+1, and the underlying index return, RI

t+1,

RF
t+1 = RI

t+1 + zt+1 (91)

zt+1 represents basis risk. Ideally the dealers would like to hedge the options they trade with

the underlying, like the S&P 500. But the S&P 500 is not itself directly tradable (except at

significant cost by buying 500 stocks). Instead, dealers must buy futures (or ETFs or other

instruments) whose price is not guaranteed to perfectly track the index. zt+1 captures the

risk associated with imperfect tracking.35

While the dealers choose Dt, markets must clear, meaning that in equilibrium their choice

of Dt must perfectly offset the (exogenous) demand from retail investors. The core idea in

GPP is to understand how derivative prices, denoted by Pt, vary with quantities, Dt.

E.3.2 Predictions

In the model, intermediaries hedge their options each period with a position in the underlying

– it can be thought of as a delta hedge that is adjusted each period. The optimal position, in

the absence of any frictions, is denoted by βI
t (which is simply the local sensitivity of option

returns to the underlying index). The unhedgeable risk is defined as

σ2
ε,t ≡ vardt

(
RO

t+1 − βI
tR

I
t+1

)
(92)

where vardt is a variance taken under the intermediaries’ pricing measure d based on date-t

information.

The model’s key prediction is for the sensitivity of option prices, PO
t , to demand:

35The S&P 500 index is the underlying for CBOE options, but not CME futures options. For the futures
options, an interpretation of basis risk would be that intermediaries price options based on a model for the
underlying, meaning that deviations of the futures price from the index create risk.
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Proposition 7 Up to first order in the transaction cost κ and the index-futures basis risk

vardt (zt+1),

∂PO
t

∂Dt

= −γ (Rf − 1)

 σ2
ε,t︸︷︷︸

Unhedgeable risk

+
(
βI
t

)2
vardt (zt+1)︸ ︷︷ ︸

Basis risk

+ κR2
f

(
βI
t

)2︸ ︷︷ ︸
Imperfect hedging

(93)

The sensitivity is proportional to risk aversion, γ, and has three terms.

The first component, σ2
ε,t, is the unhedgeable risk from (92). Dealers hedge by taking

positions exposed to the underlying, but since options have nonlinear exposure, that hedge is

inevitably imperfect, due to discrete hedging, jumps, and unspanned volatility. The synthetic

options studied in our empirical analysis exactly map into the hedge that the dealers use

here – they are updated discretely and inherit risk from deviations between the discrete

replication and the traded option return.

The second term represents basis risk. When there are larger random gaps between the

hedging instrument and the true underlying index, dealers face greater risk and thus demand

larger premia. Finally, the third term arises due to the quadratic trading cost, κ, which causes

dealers to hedge incompletely, further raising their risk from holding derivatives.

In the context of the general theoretical analysis in section 2, this is a model in which

traded options are not priced by the marginal utility of retail equity investors, but instead by

that of dealers. And the exogenous option demand, since it must be borne only by dealers,

drives option prices up, creating negative CAPM alphas.
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F Additional figures
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Figure A.1: Synthetic put returns for various strikes

Note: these figures replicate figure 3 varying the strike used for the synthetic option.

61



Figure A.2: Risk measures for synthetic and traded options.
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Figure A.3: Difference between traded and synthetic options
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Figure A.4: Synthetic option returns across maturities
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maturity). Note that the two series plotted are not traded versus synthetic options but rather synthetic

options in two different samples (the longer maturities are much less liquid for the traded options, especially
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Figure A.5: Option returns for moneyness in volatility units
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Figure A.6: Option returns scaling by option price
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Note: Reports results where the denominator of the return is the price of the option instead of the

underlying – so purching a fixed dollar amount of insurance, instead of insurance on a fixed number of

units of the underlying.
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Figure A.7: Information ratios under various specifications for beta
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Note: Information ratios under various specifications for the betas. The left-hand column uses the full-

sample beta, which is the benchmark specification. The middle column uses betas estimated from a rolling

three-month window. Finally, the right-hand column instruments for the conditional beta, as described in

the text.
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Figure A.8: Daily autocorrelation of returns
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(b) Cumulated returns of synthetic options

Note: Panel (a) plots the autocorrelations of daily returns up to 21 lags, using the full sample (1926-

2022), and using the pre- and post-1973 data separately. Panel (b) plots cumulative CAPM alphas on

the synthetic puts built using one-day lagged weights (the benchmark case), no lag, and two-day lagged

weights.
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Figure A.9: Synthetic versus traded option returns

Note: The scatter plots are for traded verus synthetic option returns over the period 1987–2022. The

returns are monthly, rolling on the third Friday.
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Figure A.10: Robustness for information ratios
-1

.0
0

-0
.5

0
0.

00
0.

50
Fu

ll 
sa

m
pl

e

0.90 0.95 1.00 1.05 1.10
Strike

IR, no Hull-White adj.

-1
.0

0
-0

.5
0

0.
00

0.
50

0.90 0.95 1.00 1.05 1.10
Strike

IR, IV=15%

-1
.0

0
-0

.5
0

0.
00

0.
50

0.90 0.95 1.00 1.05 1.10
Strike

IR, Bootstrap SE

-1
.0

0
-0

.5
0

0.
00

0.
50

O
ve

rla
pp

in
g 

sa
m

pl
e

0.90 0.95 1.00 1.05 1.10
Strike

-1
.0

0
-0

.5
0

0.
00

0.
50

0.90 0.95 1.00 1.05 1.10
Strike

-1
.0

0
-0

.5
0

0.
00

0.
50

0.90 0.95 1.00 1.05 1.10
Strike

-1
.0

0
-0

.5
0

0.
00

0.
50

B
C

J s
am

pl
e 

(1
98

7-
20

05
)

0.90 0.95 1.00 1.05 1.10
Strike

-1
.0

0
-0

.5
0

0.
00

0.
50

0.90 0.95 1.00 1.05 1.10
Strike

-1
.0

0
-0

.5
0

0.
00

0.
50

0.90 0.95 1.00 1.05 1.10
Strike

Note: The figure reports information ratios for synthetic options of different strikes, for alternative choices

in the construction of the option returns. The first column uses standard Black-Scholes to compute delta

(instead of Hull-White). The second column fixes implied volatility at 15% instead of estimating it using

historical data. The last column computes standard errors via block bootstrap. The three rows correspond

to different samples: the full 1926-2022 sample, the sample in which both traded and synthetic options

are available (1987-2022) and the BCJ sample (1987-2005).
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Figure A.11: Cumulative alphas for delta-hedged options

Note: This graph reports results analogous to those in figure 5, but giving cumulative alphas for delta-

hedged option returns.
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Figure A.12: Various measures of hedging risk figure frictions.jpg

Note: The top-left panel plots bid-ask spreads: for the Dow-30 from Jones (2002) and the DIA and SPY

ETFs from CRSP. The top-right panel plots effective spreads based on the Roll estimator for S&P 500

futures. The middle-left panel plots the three-month rolling average of the (log10) standard deviation of

the gap between the S&P 500 futures price and the level of the index based on 15-minute averages for

each. The middle-right panel plots the 10-year rolling standard deviation of the gap between synthetic and

traded option returns (which is simply the volatility of the delta-hedged return). The bottom-left panel

plots jump variation for the S&P 500 measured as total quadratic variation minus bipower variation from

15-minute returns. The bottom-right panel plots realized skewness of S&P 500 returns from Dew-Becker

(2022). 72


