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We study the pricing of shocks to uncertainty and volatility using a wide-ranging set of 

options contracts covering a variety of different markets. If uncertainty shocks are viewed 

as bad by investors, they should carry negative risk premiums. Empirically, however, un- 

certainty risk premiums are positive in most markets. Instead, it is the realization of large 

shocks to fundamentals that has historically carried a negative premium. In other words, 

we find that the return premium for gamma is negative, while that for vega is positive. 

These results imply that it is jumps, for which exposure is measured by gamma, not 

forward-looking uncertainty shocks, measured by vega, that drive investors’ marginal util- 

ity. In further support of the jump interpretation, the return patterns are more extreme for 

deeper out-of-the-money options. 
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1. Introduction 

1.1. Background 

It is well established that a wide range of measures of

economic volatility and uncertainty vary over time. Uncer-

tainty about all features of the aggregate economy, includ-

ing productivity, the level of the stock market, inflation, in-

terest rates, and energy prices, varies substantially, often

as the direct result of policy choices. It is therefore impor-

tant to understand how uncertainty affects the economy,
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both to reveal the basic drivers of economic fluctuations 

and also to guide policymakers. 

There are numerous theories, both in macro and fi- 

nance, that explore the relation between uncertainty and 

real activity. This literature highlights that causation runs 

in both directions, so even the sign of the relation be- 

tween the two is ambiguous in many cases. 1 The empir- 

ical literature studying uncertainty in macroeconomics has 

focused almost entirely on analyzing raw correlations or 

using vector autoregressions (VAR) with varying identify- 

ing assumptions, and thus far it has not resolved the ques- 

tion of whether uncertainty is contractionary in either the 
1 For example, see Schwert (1989) , Caballero (1999) , Bloom (2009) , 

Schwert (2011) , Pástor and Veronesi (2009) , Bachmann and 

Moscarini (2012) , and a summary discussion in Bloom et al. (2018) about 

the potentially expansionary effects of uncertainty shocks. In fi- 

nance, see the finance literature on good and bad uncertainty, e.g., 

Bekaert et al. (2015) and Segal et al. (2015) . 

https://doi.org/10.1016/j.jfineco.2021.05.053
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jfec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfineco.2021.05.053&domain=pdf
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short- or long-run: that is, whether uncertainty is typically

good or bad. 

Parallel to the macro literature, there is a long-running

literature in finance that studies how uncertainty and

volatility are priced in financial markets. That literature

distinguishes between the pricing of shocks to uncertainty

about the future – i.e., shocks to conditional variances

or implied volatilities – and realized volatility, or the ac-

tual occurrence of jumps. Constantinides et al. (2013) and

Cremers et al. (2015) , for example, study the pricing of

uncertainty and jump risk, looking at option portfolios

with different vega (implied volatility) and gamma (real-

ized volatility or jump) exposure. 

1.2. Contribution and methods 

This paper takes a finance approach to evaluating the

effects of uncertainty shocks, building on the work of

Constantinides et al. (2013) , Cremers et al. (2015) , and

Dew-Becker et al. (2019) . Instead of studying a VAR with

all of the associated identification challenges, as in the

macro literature, we use one of the key insights of the

finance literature, that financial markets provide a direct

window on how investors perceive shocks. 2 The main con-

tribution of this paper relative to past work is to use op-

tions across a wide range of underlyings and maturities

to measure the risk premiums associated with shocks to

uncertainty and to realized volatility. Those premiums can

furthermore be used to construct implied premiums on

shocks to major macro uncertainty indexes and hence shed

light on the question of how uncertainty shocks affect the

real economy. 

If investors are willing to accept negative average re-

turns on portfolios that hedge uncertainty shocks, as they

would on an insurance contract, that implies that they

view uncertainty as being bad in that it rises in high

marginal utility states. On the other hand, if the hedg-

ing portfolios have positive average returns, then investors

view uncertainty as typically rising in low marginal util-

ity (good) states. So rather than running sophisticated re-

gressions of output on uncertainty, we follow the finance

tradition of letting investors speak to the question. 

While there is a large literature that estimates

the risk premiums for uncertainty about the S&P 500

based on the pricing of options, 3 recent evidence in

Ludvigson et al. (2015) and Baker et al. (2016) shows that

aggregate uncertainty has multiple dimensions beyond the

financial uncertainty captured by the S&P 500. This paper

contributes to the literature by estimating risk premiums

associated with uncertainty and realized volatility (jumps)

in 19 different markets covering a range of features of the

economy, including financial conditions, inflation, and the

prices of real assets. The broad range allows the analy-
2 To be clear, the analysis of risk premiums does not identify structural 

shocks; it only reveals the correlation of innovations in marginal utility 

with reduced-form innovations to uncertainty (since there is no structural 

identification here, we will use the terms “shock” and “innovation” inter- 

changeably). 
3 See Egloff et al. (2010) , Dew-Becker et al. (2017) , Van Binsbergen and 

Koijen (2017) , Andries et al. (2015) , and Ait-Sahalia et al. (2019) . 
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sis to uncover consistent patterns in investors’ attitudes to 

different types of uncertainty. We also use all the options 

together to construct hedging portfolios for aggregate un- 

certainty measures developed in the literature, specifically, 

the JLN indexes in Jurado et al. (2015) and the economic 

policy uncertainty (EPU) index of Baker et al. (2016) . Fitting 

those indexes actually requires using more than just the 

S&P 500: the results show that to span uncertainty about 

the real economy, it is important to have implied volatili- 

ties for real assets, like energies and metals, underscoring 

the value of the breadth of our data set. 

In each of the 19 markets, we construct straddles and 

strangles at maturities of one to five months, and measure 

two-week holding period returns. We show, both theoreti- 

cally and empirically, that the different maturities have dif- 

ferent loadings on the underlying risks, allowing estima- 

tion of risk premiums using standard factor models. We 

examine risk premiums for two types of shocks: to un- 

certainty, and to realized volatility (jumps). An uncertainty 

shock represents an increase in the dispersion of agents’ 

conditional distribution for future outcomes, and an op- 

tion’s exposure to uncertainty shocks is measured (approx- 

imately) by its vega. The second shock is to the realiza- 

tion of large outcomes, i.e., exposure to realized volatility, 

or gamma (formally, exposure to squared returns). 

Vega and gamma – exposures to implied and real- 

ized volatility – have a formal link to theoretical mod- 

els. Whereas uncertainty in models is a forward-looking 

conditional variance, realized volatility is a contempora- 

neous sample variance. That is, for some shock ε, with 

v ar t ( ε t+1 ) = σ 2 
t , uncertainty is σ 2 

t , while volatility is ε 2 t . 

Vega is literally the exposure of an option to σ 2 
t , while 

gamma is exposure to ε 2 t . The distinction between σ 2 
t and 

ε 2 t is crucial from a theoretical point of view: models in 

which forward-looking uncertainty matters for the econ- 

omy have predictions about σ 2 
t but not about ε 2 t . 

To summarize, then, the basic method in the paper is to 

measure risk premiums on implied and realized volatility 

(jumps), or vega and gamma, using a typical factor pric- 

ing model on a panel of option returns across maturities, 

strikes, and numerous different underlyings. The estimated 

premiums are then used to infer the relation of marginal 

utility with uncertainty and realized volatility, both for 

specific underlyings and also for prominent macro uncer- 

tainty indexes. 

1.3. Results 

The main results focus on straddles, because the op- 

tions in the portfolio are initially at the money and hence 

most liquid. The empirical analysis yields three key find- 

ings. First, across 19 option markets, the risk premium 

for hedging uncertainty shocks, vega, is in the majority 

of cases positive. For nonfinancial underlyings and the JLN 

macro and inflation uncertainty indexes, the premiums are 

statistically and economically significantly positive, with 

Sharpe ratios near 0.5. The results imply that investors in 

these markets view periods of high uncertainty about the 

real economy as being good on average. For the financial 

sector (including the S&P 500) and the JLN financial uncer- 
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5 See Basu and Bundick (2017) Berger et al. (2020) , Bloom (2009) , 

Bloom et al. (2018) , Leduc and Liu (2016) , Gourio (2013) , Gilchrist and 

Williams (2005) , and Bloom et al. (2018) . 
6 See also Decker et al. (2016) , Berger and Vavra (2013) , 

Ilut et al. (2015) , Kozlowski et al. (2016) , Cesa-Bianchi et al. (2018) , 

and Diercks et al. (2019) . 
tainty and EPU index, the premium on uncertainty is not

clearly distinguishable from zero. 

The second empirical result runs in the opposite direc-

tion: consistently across both the financial and real sectors

of the economy, portfolios that hedge realized volatility,

or jumps, earn statistically and economically significantly

negative returns. Investors on average therefore view peri-

ods in which shocks to fundamentals themselves are large

as being bad. 

It is well known that both volatility and uncertainty are

countercyclical, but their overall correlation is not as high

as one might expect – only about 65% on average across

markets – and the average correlation between their inno-

vations is only 0.2. The results here show that innovations

in realized volatility identify the states of the world that

investors view as actually negative, whereas surprise in-

creases in implied volatility, which is high in other, mostly

unrelated, states of the world, are not on average perceived

as bad. 

Our findings for realized volatility contribute to the

growing literature studying skewness risk in the economy:

if shocks to the economy (i.e., aggregate consumption) are

skewed to the left, then large shocks tend to be bad. 4

An explanation for the pricing of realized volatility could

then simply be that hedging realized volatility helps hedge

downward jumps and disasters in aggregate consumption.

If it is truly jumps that drive pricing, then we would expect

that the negative returns on options would be larger for

options that are farther out of the money. To test the hy-

pothesis that the pricing is compensation for jump risk, we

extend the baseline results to examine returns on stran-

gles, which are like straddles, in holding both a put and a

call, but in which both options are out of the money at in-

ception. Relative to straddles, strangles only have positive

payoffs for relatively large movements in the underlying. 

Our third result is that the gamma/jump premiums for

strangles are about twice as large as those for straddles,

providing formal evidence for the idea that it is jumps,

rather than small (or diffusive) movements in underlying

prices, that investors are averse to. As with the results for

straddles, the result that deeper out-of-the-money options

have more negative returns is well known for the S&P 500.

Our results are novel for showing that the same result ap-

pears in a wide range of markets, including those linked to

the real economy. 

Because the variance risk premium is robustly negative

across many markets, jumps, which drive surprises in real-

ized volatility, tend to be robustly viewed as bad events by

investors, regardless of where they occur. According to as-

set prices, what policymakers should focus on, rather than

uncertainty about the future (the possibility that some-

thing extreme might happen), is the realization of extreme

(typically negative) events. For investors, the results imply

that the mean-variance efficient portfolio among the assets

we study is short gamma (jump risk) and either neutral to

or long vega (exposure to implied volatility), and we show
4 See Barro (2006) , Salgado et al. (2016) , Seo and Wacheter (2018) ; 

Seo and Wachter (2018) , Siriwardane (2015) , and Berger et al. (2020) . 

Dew-Becker et al. (2019) provide a structural model for the source of ag- 

gregate skewness. 
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that large Sharpe ratios are available when buying vega 

and selling gamma across many markets. In the paper, we 

also build a simple extension of the standard long-run risk 

model of Bansal and Yaron (2004) that shows how our re- 

sults can arise in equilibrium. 

1.4. Relation to past work 

The paper is related to two main strands of literature. 

The first studies the relation between uncertainty and the 

macroeconomy. Numerous channels have been proposed 

through which uncertainty about various aspects of the ag- 

gregate economy may have real effects, but the models do 

not generate a uniform prediction that uncertainty shocks 

are necessarily contractionary. 5 Our results are more con- 

sistent with the expansionary forces present in the mod- 

els. There are also models with joint or reverse causation, 

such as Pástor and Veronesi, (2009) and Bachmann and 

Moscarini, (2012) . 6 The related empirical literature tries to 

measure whether uncertainty does in fact have contrac- 

tionary effects, finding often conflicting results. 7 

This paper builds on that work from a finance perspec- 

tive by providing measures of risk premiums that indi- 

cate how investors perceive the effects of aggregate un- 

certainty shocks across many markets. The finance per- 

spective of this paper means that the methods and data 

are very different from papers that have instead used a 

macroeconomic approach to the question. For example, 

Berger et al. (2020) estimate a structural vector autoregres- 

sion, as is common in the macroeconomics literature, to 

try to understand the effect of uncertainty shocks on the 

economy. While trying to answer a similar question, this 

paper takes a financial economics approach, studying risk 

premiums, and requiring none of the VAR identifying as- 

sumptions. 

As discussed above, Constantinides et al. (2013) and 

Cremers et al. (2015) are important precedents in 

the finance literature for studying the pricing of 

shocks to uncertainty and volatility. We build on 

Constantinides et al. (2013) in that we also examine 

factor risk premiums estimated from option returns, with 

the innovation that we look across a broader range of 

markets. Our analysis uses methods similar to that paper 

and also to those of Cremers et al. (2015) , in that we 

study both a factor model and replicating portfolios. We 

differ from Cremers et al. (2015) in that we use option 

returns to measure risk premiums, rather than project- 

ing stock returns onto uncertainty and volatility factors. 

Because stock returns are driven by so many different 
7 For example, Schwert (1989) , Schwert (2011) , Berger et al. (2020) , 

Bretscher et al. (2019) , Jurado et al. (2015) , Jurado et al. (2015) , 

Baker et al. (2016) , Bachmann and Bayer (2013) , and Baker et al. (2016) ; 

Alexopoulos and Cohen (2009) . For papers on different types of un- 

certainty, see also Bretscher et al. (2018) , Elder and Serletis (2010) , 

Darby et al. (1999) , Huizinga (1993) , and Elder (2004) . 
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risk factors, options can be useful for helping to iso-

late underlying risks relatively precisely. That difference

can help explain differences between our results and

those obtained by Constantinides et al. (2013) relative to

Cremers et al. (2015) . 

The paper also draws on a literature in finance estimat-

ing the pricing of volatility ( ε 2 ) risk. The past literature al-

most exclusively studies the S&P 500, and in general stud-

ies just the variance risk premium, which is the pricing

of realized volatility (as measured by the average gap be-

tween option-implied and realized volatility). 8 In addition

to studying a much broader range of markets, our contri-

bution is to also isolate the premium on implied volatility.

The remainder of the paper is organized as follows.

Section 2 describes the data and its basic characteristics.

Our main results on the cost of hedging uncertainty and

volatility shocks are in Section 3 . We then provide a the-

oretical derivation of the risk exposures of the options

in Section 4 and use it to construct replicating portfo-

lios. Section 5 reports the cost of hedging macroeconomic

uncertainty and realized volatility, combining all 19 mar-

kets together. Section 6 presents robustness results and

Section 7 concludes. 

2. Measures of uncertainty and realized volatility 

This section describes our main data sources and then

examines various measures of uncertainty and realized

volatility. 

2.1. Data 

2.1.1. Options and futures 

We obtain data on prices of financial and commodity

futures and options from the end-of-day database from the

CME Group, which reports closing settlement prices, vol-

ume, and open interest over the period 1983–2015. Each

market includes both futures and options, with the options

written on the futures. The futures may be cash- or phys-

ically settled, while the options settle into futures. As an

example, a crude oil call option gives its holder the right

to buy a crude oil future at the strike price. The underly-

ing crude oil future is itself physically settled: if held to

maturity, the buyer must take delivery of oil. 9 

To be included in the analysis, contracts are required

to have least 15 years of data and maturities for options

extending to at least six months, which leaves 14 com-

modity and 5 financial underlyings. The final contracts in-

cluded in the data set have 18 to 31 years of data. A num-

ber of standard filters are applied to the data to reduce

noise and eliminate outliers. Those filters are described in

Appendix A . 
8 For example, see Ait-Sahalia et al. (2019) , Bollerslev and 

Todorov (2011) , Andersen et al. (2015, 2017) , Dew-Becker et al. (2017) , 

Constantinides et al. (2013) , Cremers et al. (2015) , and Farago and Tédon- 

gap (2018) for work on the S&P 500. A few papers have studied specific 

markets, like Bakshi et al. (2003) , Choi et al. (2017) , Prokopczuk et al. 

(2017) , and Trolle and Schwartz (2010) . 
9 The underlying futures in general expire in the same month as the 

option. Crude oil options, for example, currently expire three business 

days before the underlying future. 

26 
We calculate implied volatility for all of the options us- 

ing the Black and Scholes (1973) model and, technically, 

the Black (1976) model for the case of futures. 10 Unless 

otherwise specified, implied volatility is calculated at the 

five-month maturity. We take this value as the benchmark 

measure of uncertainty in each market. In general, longer 

maturities are naturally more tightly linked to long-lived 

economic decisions, like physical investments. We do not 

go past five months because there is less trade and liquid- 

ity at longer maturities, making prices less reliable. 

Implied volatilities extracted from options reflect mar- 

ket uncertainty about future returns, but they also con- 

tain a risk premium, which can potentially vary over time. 

However, even in the presence of that risk premium, im- 

plied volatilities appear to provide very good summaries 

of the available information in the data for forecasting fu- 

ture volatility, driving out other standard uncertainty mea- 

sures from forecasting regressions. Online Appendix Sec- 

tion OA.1 compares implied volatilities to regression-based 

forecasts of future volatilities and shows that they are all 

over 90% correlated (with an average correlation of 97%), 

indicating that option-implied volatility is a good, if not 

perfect, proxy for true (physical) uncertainty. For that rea- 

son, in what follows we refer to implied volatility and un- 

certainty interchangeably, with the understanding that de- 

viations due to time-varying risk premiums are quantita- 

tively small at the monthly frequencies we focus on. 11 

2.2. The time series of implied volatility 

Fig. 1 plots option implied volatility for three major 

futures: the S&P 500, crude oil, and US Treasury bonds. 

The implied volatilities clearly share common variation; 

for example, all rise around 1991, 2001, and 2008. On the 

other hand, they also have substantial independent varia- 

tion. Their overall correlations (also reported in the figure) 

are only in the range 0.5–0.6. 

Table 1 reports pairwise correlations of implied volatil- 

ity across the 19 underlyings. The largest correlations in 

implied volatility are among similar underlyings: crude 

and heating oil, the agricultural products, gold and silver, 

and the British Pound and Swiss Franc. Correlations out- 

side those groups are notably smaller, in many cases close 

to zero. The largest principal component (PC) of the cor- 

relation matrix explains 46% of the total variation. The re- 

maining PCs are much smaller, though: even the second 

largest only explains 16% of the total variation. Eight PCs 

are required to explain 90% of the total variation in the IVs, 

which is perhaps a reasonable estimate of the number of 

independent components in the data. 

The common variation in the implied volatilities is 

much larger than the common variation in the underly- 

ing futures returns. The largest PC for the futures returns 
10 The majority of the options that we study have American exercise, 

while the Black model technically refers to European options. We examine 

IVs calculated assuming both exercise styles (we calculate American IVs 

using a binomial tree) and obtain nearly identical results. Since there are 

no dividends on futures contracts, early exercise is only rarely optimal for 

the options studied here. 
11 See also Bekaert et al. (2013) for an analysis of the variation in risk 

premiums in implied volatilities. 
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S&P 500 IV

Fig. 1. Sample implied volatilities. Monthly implied volatilities calculated from three-month options using the Black-Scholes model. 

Table 1 

Pairwise correlations of implied volatility across markets. 

 

 

 

 

 

 

 

 

explains less than half as much variation, 19% versus 46%.

In other words, while the individual futures prices may be

driven by idiosyncratic shocks, or their correlations with

each other might change over time, masking common vari-

ation, investor uncertainty about futures returns has a sub-

stantial degree of commonality across markets that is sim-

ilar to findings in Herskovic et al. (2016) , showing that we

are not studying uncertainty that is purely idiosyncratic
27 
and isolated to individual futures markets. The table below 

formalizes that result, reporting the variation explained by 

the first PC for implied volatility, realized volatility (dis- 

cussed below), and the underlying futures returns, along 

with bootstrapped 95% confidence bands. 

Fraction of variation explained by first principal com- 

ponent 
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Futures 

IV RV return 

First PC (% explained) 45.9% 28.1% 19.1% 

95% Bootstrap CI 
37.3% 23.7% 16.7% 

49.5% 41.8% 21.2% 

2.3. Relation between implied volatility and macro 

uncertainty indexes 

Our ultimate goal is to understand the pricing of eco-

nomic uncertainty. We therefore want to check whether

the implied volatilities in the futures markets we study

are related to other prominent measures of uncertainty.

Fig. 2 quantifies how well the 19 IVs can replicate

two well-known macro uncertainty indexes: the JLN in-

dexes from Jurado et al. (2015) and the EPU index of

Baker et al. (2016) (see Section 5 for a more detailed de-

scription of the indexes). Fig. 2 plots the time series of the

JLN indexes and EPU index against the fitted values from

their projection onto the 19 implied volatilities. The right-

hand panels plot the pairwise correlations of the implied

volatilities in the individual markets with the fitted uncer-

tainty. For financials, the correlation with S&P 500 implied

volatility is 97%. The next highest correlation is only 68%,

for Treasury bonds. So Fig. 2 shows that fitted financial

uncertainty is very nearly equivalent to S&P 500 implied

volatility. 12 

The second row plots fitted uncertainty for real vari-

ables. In this case, gold, copper, crude oil, and heating

oil are the most important contributors. The third row

shows similar results for the price component of JLN un-

certainty. Uncertainty about the real economy and infla-

tion are therefore driven by similar factors, and those fac-

tors are notably distinct from financial uncertainty, which

shows why having a broad range of IVs and looking at mar-

kets beyond the S&P 500 are important. 

The bottom panels plot results for the EPU index. The

highest pairwise correlations are with financial IVs, Trea-

suries, gold, the S&P 500, and currencies. That implies

that the EPU index measures a similar type of uncertainty

as other financial uncertainty measures, perhaps because

news coverage often focuses on financial markets. 13 

3. The cost of hedging uncertainty and volatility 

In this section we present the main results of the pa-

per: we estimate the cost of hedging shocks to volatility

and uncertainty using option portfolios. 

We compute the cost of hedging a shock as the negative

of the average excess return (risk premium) on the portfo-

lio that hedges that shock. We report all risk premiums in

terms of Sharpe ratios, which reveal the compensation for
12 The strong fit with S&P 500 implied volatility is not simply due to the 

fact that S&P 500 returns are included in the JLN construction. The results 

are similar when all variables involving the S&P 500 index (returns, divi- 

dends, etc.) are dropped. 
13 To account for possible overfitting due to the fact that we have 19 

explanatory variables, we experimented with lasso and variable selection 

based on information criteria. The results were highly similar in all cases. 
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bearing a risk (or the cost of hedging it) per unit of risk, 

and are therefore more easily comparable across markets. 

The option returns are highly skewed, so an investor here 

would care about more than just the Sharpe ratio; we use 

it simply as a device for holding effective leverage constant 

across markets. For reference, the historical Sharpe ratio of 

US equities in our sample is 0.52. 

We estimate risk premiums for implied and realized 

volatility using a standard linear factor model, and we use 

straddle returns of different maturities as test assets. Typ- 

ical factor models use a small number of aggregate fac- 

tors. Here, though, we are interested in the price of risk 

for shocks to all 19 types of uncertainty. We therefore esti- 

mate market-specific factor models. This is similar to the 

common practice of pricing equities with equity-specific 

factors, bonds with bond factors, currencies with currency 

factors, etc. 14 

The cost of hedging a risk has a simple but important 

economic interpretation: it measures the extent to which 

the risk is “bad” with respect to state prices or marginal 

utility. Consider a factor X and an asset with returns R X 
that hedges it, in the sense that R X varies one-for-one (and 

is perfectly correlated) with innovations to X . Then if M

represents the stochastic discount factor, 

E 

[
R X,t+1 − R f 

std t ( R X,t+1 ) 

]
=−cov 

(
M t+1 −E t M t+1 , 

X t+1 − E t X t+1 

std t ( X t+1 ) 

)
R f ,

(1) 

where R f is the gross risk-free rate, which we treat as con- 

stant for the sake of exposition, E t is the expectation op- 

erator, and std t is the standard deviation conditional on 

date- t information. The equation says that the negative of 

the risk premium on a portfolio that hedges the risk X

measures the covariance of innovations in X t+1 with state 

prices. More generally, when the correlation between R X 
and innovations in X is less than 1, E 

[
R X − R f 

]
measures 

the covariance of state prices with the part of innovations 

to X that is spanned by R X . So if the premium E 
[
R X − R f 

]
is 

negative, times when R X (and hence X) rise are bad times, 

in which state prices are high. The factor model and subse- 

quent analysis will deliver estimated Sharpe ratios for the 

various risk factors we study. 

Finally, as we review in Online Appendix Section OA.2, 

the risk premiums estimated from linear factor models cor- 

respond to the average excess returns of portfolios that iso- 

late each risk (that is, each portfolio has beta of 1 with 

respect to one risk factor, and 0 with respect to all other 

factors). These portfolios are precisely those portfolios that 

allow an investor to change risk exposure to any factor and 

that factor only; we refer to them as factor-hedging port- 

folios. 
14 The analysis is similar to those of Jones (2006) and 

Constantinides et al. (2013) . 
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Fig. 2. Fit to uncertainty indexes. The left-hand panels plot the fitted values from the regressions of the EPU and JLN indexes on three-month implied 

volatility in the 19 markets. The right-hand panels plot pairwise correlations between the individual implied volatility series and the fitted values from the 

regressions. 
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be constant. 

17 While f 2 
i,t 

and �IV i,t are nontradable factors, f i,t itself is tradable, 

so we include it as a test asset, yielding the additional restriction 

E [ f i,t /IV i,t−1 ] = γ f 
i 

Std( f i,t /IV i,t−1 ) . See Cochrane (2005) . 
18 Past work on option returns and volatility risk premiums has 

examined returns at frequencies of anywhere from a day, as in 

Andries et al. (2015) , to holding to maturity, as in Bakshi and Kapa- 

dia (2003) . The precision of estimates of the riskiness of the straddles 

is, all else being equal, expected to be higher with shorter windows. 

On the other hand, shorter windows cause any measurement error in 

option prices (e.g., from differences between settlement prices and true 
3.1. Method 

3.1.1. Factor model specification 

For each market we estimate a time-series model of the

form 

r i,n,t = a i,n + β f 
i,n 

f i,t 
IV i,t−1 

+ β f 2 

i,n 

1 

2 

(
f i,t 

IV i,t−1 

)2 

+ β�IV 
i,n 

�IV i,t 

IV i,t−1 

+ ε i,n,t , (2)

where f i,t is the futures return for underlying i and �IV i,t 
is the change in the five-month at-the-money implied

volatility for underlying i . The term r i,n,t is a return on each

of the N test assets (straddles and strangles, described in

greater detail below). 

The underlying futures return f i,t controls for any ex-

posure of the test assets to the underlying, though in gen-

eral that loading will be small, given that we use as test

assets portfolios with payoffs that are symmetric in the

value of the underlying. Much more important is the fact

that straddles and strangles have nonlinear exposures to

the futures return. The expression 

(
f i,t /IV i,t−1 

)2 
captures

that nonlinearity; β f 2 

i,n 
will be interpreted as the exposure

of the options to realized volatility. 15 Finally, the third fac-

tor is the change in the at-the-money implied volatility for

the specific market at the five-month maturity, represent-

ing an uncertainty shock in that market. 16 

The three factors are scaled by lagged implied volatil-

ity for two reasons. First, this helps control heteroskedas-

ticity. Intuitively, the factors are measuring innovations in

standard deviation units, so that we are pricing based on

how much the underlying moves relative to what investors

expected. The second reason will be demonstrated in the

next section: it is what the Black–Scholes model implies

for the exposures of straddles and strangles. That is, the

option portfolios yield exposure to the scaled factors used

here, rather than, for example, the raw futures return (and

raw futures return squared). So while the analysis in this

section does not rely on Black-Scholes, this scaling will be

useful for interpreting the results. 

We estimate a standard linear specification for the risk

premiums, 

E [ r i,n,t ] = γ f 
i 
β f 

i,n 
Std 

(
f i,t 

IV i,t−1 

)
+ γ f 2 

i 
β f 2 

i,n 
Std 

( (
f i,t 

IV i,t−1 

)2 
) 

+ γ �IV 
i β�IV 

i,n Std 

(
�IV i,t 

IV i,t−1 

)
+ αi,n , (3)

where αi,n is a fitting error, using standard two-step cross-

sectional regressions. The γ coefficients represent the risk

premiums that are earned by investments that provide di-
15 The results are similar when the second factor is the absolute value 

of the futures return or when it is measured as the sum of squared daily 

returns over the return period. 
16 Since the IVs may be measured with error, we construct this factor by 

regressing available implied volatilities on maturity for each underlying 

and date and then taking the fitted value from that regression at the five- 

month maturity. 

30 
rect exposure to the factors. Due to the scaling by stan- 

dard deviations, γ denotes the Sharpe ratios of the hedg- 

ing portfolios for each factor constructed using the test as- 

sets. 17 

3.1.2. Test assets 

Our main results are for two-week returns on straddles 

with maturities between one and five months. 18 A straddle 

is a portfolio holding a put and a call with the same matu- 

rity and strike; we specifically study zero-delta straddles, 

with the strike set so that the Black–Scholes delta of the 

portfolio is zero. The final payoff of a zero-delta straddle 

depends on the absolute value of the return on the un- 

derlying, meaning that they have symmetrical exposures 

to positive and negative returns. For the remainder of the 

paper, we refer to zero-delta straddles simply as straddles 

(that is, we only work with zero-delta straddles). 

Straddles give investors exposure both to realized and 

implied volatility. They are exposed to realized volatility 

because the final payoff of the portfolio is a function of 

the absolute value of the underlying futures return. But 

when a straddle is sold before maturity (as in our case, 

since we use two-week holding period returns), the sale 

price will also depend on expected future volatility, mean- 

ing that straddles can give exposure to uncertainty shocks. 

Since the options in the straddle are at the money at in- 

ception, a straddle is the most liquid zero-delta portfolio 

we can construct. 

In principle, it is also possible to estimate the factor risk 

premiums using other assets, like stock or bond returns, as 

in Cremers et al. (2015) . We focus on option returns be- 

cause they depend directly on realized volatility and un- 

certainty – which is why they are used to construct im- 

plied volatility measures – whereas for other assets the 

connection is less clear (many other factors affect their re- 

turns) and there could be nontrivial problems with expo- 

sures shifting over time. We show below that under the 

simple Black–Scholes benchmark, the factor loadings will 
fair values or trade prices, or from simple data errors) to have larger 

effects.Some of the existing literature, beginning with Bakshi and Kapa- 

dia (2003) , examines delta-hedged returns. Even with delta hedging, the 

higher-order risk exposures of the straddles change substantially as the 

price of the underlying changes over time.Another alternative is to exam- 

ine returns on synthetic variance swaps. Synthetic variance swap prices 

are constructed using the full range of strikes, so they require much more 

data than straddles. The markets we study do not all have liquid op- 

tions at extreme strikes and multiple maturities, so we focus on straddles, 

which just require liquidity near the money. 
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3.2. Empirical results 

3.2.1. Hedging uncertainty shocks 

The dotted red series in Fig. 3 plots estimated risk pre-

miums and confidence bands for the realized and implied

volatility factors – γ f 2 

i 
and γ �IV 

i 
, respectively, using strad-

dles as test assets. Again, the risk premiums should be in-

terpreted as annualized Sharpe ratios, since they are scaled

to measure average annualized returns per unit of annu-

alized standard deviation. The top panel plots premiums

for implied volatility and the bottom panel realized volatil-

ity. The boxes are point estimates, while the bars repre-

sent 95% confidence bands based on a block bootstrap.

The bootstrap is constructed with 50-day blocks and 50 0 0

replications. It is used to account for the fact that the re-

turns use overlapping windows. Hansen-Hodrick type stan-

dard errors are not feasible here due to the fact that ob-

servations in the data are not equally spaced in time. The

block bootstrap additionally accounts for other sources of

serial correlation in the returns, such as time-varying risk

premiums. 

Across the top panel, implied volatility shocks carry

zero or even positive premiums. For financials, the aver-

age Sharpe ratios tend to be near zero or weakly nega-

tive. The S&P 500 has a positive premium, consistent with

results for variance swaps discussed extensively in Dew-

Becker et al. (2017) . That result is not completely robust

here, however, as we discuss further below, but there is

certainly no evidence of a significantly negative premium

for S&P 500 uncertainty. For the nonfinancials, on the

other hand, all 14 sample Sharpe ratios are actually posi-

tive, and 5 of those are individually statistically significant.

Overall, for only 1 out of 19 contracts, the British Pound,

do we find a significantly negative Sharpe ratio. 

To formally estimate the average risk premiums across

contracts, we use a random effects model, which yields

an estimate of the population mean risk premium while

simultaneously accounting for the fact that each of the

sample Sharpe ratios is estimated with error, and that

the errors are potentially correlated across contracts (see

Appendix B ). 

For both nonfinancials and all markets overall, the es-

timated population mean Sharpe ratio is statistically and

economically significantly positive, while for financials it is

close to zero. The group-level means have the advantage

of being much more precisely estimated than the Sharpe

ratios for the markets individually. They show that on av-

erage, instead of there being a cost to hedging uncertainty

shocks, the factor risk premium for uncertainty shocks is

actually positive. For nonfinancials, the average Sharpe ra-

tio is 0.43, and the lower end of the 95% confidence inter-

val is 0.13. For the overall mean, the corresponding num-

bers are 0.32 and 0.08, so the average Sharpe ratios are sig-

nificantly positive in both cases. The top panel of Table 3

reports the estimated average Sharpe ratios for financials

and nonfinancials, and, in the third column, their differ-

ence, and shows that the difference in risk premiums be-

tween the two groups is not statistically significant. 

The top panel of Fig. 3 contains our key results on

the risk premium for uncertainty. It shows that across the
31 
board, risk premiums for uncertainty are indistinguishable 

from zero or, if anything, somewhat positive. The results 

allow us to quantify the overall correlation between un- 

certainty and marginal utility. For financial underlyings, in- 

cluding the S&P 500, the zero or very weakly negative risk 

premium implies that the correlation is close to zero. For 

the nonfinancial underlyings, which are closely linked to 

the JLN real and price uncertainty series, the results imply 

that the correlation is positive. 

3.2.2. Hedging realized volatility shocks 

The bottom panel of Fig. 3 reports risk premiums for 

realized volatility across the 19 markets, representing our 

second main result. The numbers are drastically different 

from those for IV. Whereas implied volatility has earned a 

zero or even positive premium, the realized volatility pre- 

miums are almost all estimated to be negative. For the 

S&P 500, this result is well known and is referred to as 

the variance risk premium. The S&P 500 realized volatil- 

ity risk premium is most negative, at -1.26. That is, the 

premium for selling insurance against shocks to realized 

volatility is more than twice as large as the premium on 

the stock market over the same period. For the other finan- 

cial underlyings, the premium on realized volatility is not 

statistically significantly negative. For the nonfinancials, 11 

of 14 estimated premiums are negative (6 significantly). 

Looking at the category means, in this case all three es- 

timates (financials, nonfinancials, and all assets) are nega- 

tive. The values are on the edge of statistically significant 

for the nonfinancials and the overall mean, with confi- 

dence bands just barely encompassing zero. The point esti- 

mate for the overall mean Sharpe ratio is -0.26 and the up- 

per end of the 95% confidence interval is 0.04. Those values 

are almost the same as what we obtain for uncertainty, but 

with the opposite sign. As with uncertainty, Table 3 shows 

that the difference between financials and nonfinancials is 

not statistically significant. 

In sum, in stark contrast to the results for hedging un- 

certainty, the bottom panel of Fig. 3 shows that there has 

historically been, consistently across markets, an economi- 

cally significant cost to hedge realized volatility. Contracts 

that, rather than loading on changes in implied volatil- 

ity, load on actual realized squared returns, earn nega- 

tive Sharpe ratios with magnitudes up to twice as large as 

that for the overall stock market. So while uncertainty is 

viewed as neutral or even good on average, realized volatil- 

ity or jumps – the realization of large squared returns –

is viewed as mostly bad, for both financials and nonfinan- 

cials. 

3.2.3. Goodness of fit 

Fig. 4 reports a scatter plot of realized returns on the 

various straddle returns against the fitted returns from the 

model. The figure shows that there is a wide spread in 

realized returns that the model is able to capture. In ad- 

dition, there are no large outliers. Table OA.1 in the On- 

line Appendix reports the p-values of the χ2 test of the 

model based on the squared fitting errors, bootstrapped 

following Constantinides et al. (2013) . That test is very 

stringent, especially when the fitting errors are small on 
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Fig. 3. RV and IV portfolio Sharpe ratios and factor risk premia: straddles. Squares are point estimates and vertical lines represent 95% confidence intervals. 

The solid series plots the Sharpe ratios for the rv and i v portfolios. The dotted series plots the estimated risk premiums from the factor model. In both 

cases, all estimation uses straddles. The confidence bands for the rv and i v Sharpe ratios are calculated through a 50-day block bootstrap, while those for 

the factor model use GMM standard errors with the Hansen-Hodrick (1980) method used to calculate the long-run variance. The “Fin. mean,” “Non-fin. 

mean,” and “Overall mean” points represent random effects estimates of group-level and overall means. The “JLN” and “EPU” points are for the portfolios 

that hedge those indexes. 
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Table 2 

Pairwise correlations of realized volatility across markets. 

Table 3 

Risk premiums for financials and nonfinancials, and their difference. 

 

 

 

 

 

 

 

 

 

 

 

average, since they are scaled by their sample variance.

That said, the test rejects in only 3 of the 19 markets. The

p-value for the S&P 500 is 0.22, similar to the one ob-

tained by Constantinides et al. (2013) . The fact that the

model is rejected for only 1 of the 14 nonfinancials sug-

gests that the results for nonfinancials, where the differ-

ences in the pricing of implied and realized volatility are

most pronounced, should be most reliable. The test rejects

for two of the five financial underlyings, which implies that

they are more likely to have specification error. 

3.3. Interpretation of the results 

How can realized volatility have a negative price of risk,

while uncertainty has a positive risk price? Key to under-
33 
standing this distinction is noticing that realized volatility 

(which is computed by squaring shocks) is strongly domi- 

nated by large price movements like jumps, which our em- 

pirical results suggest tend to be bad for investors on av- 

erage. So it is easy to see how investors might dislike real- 

ized volatility, as it captures the occurrence of a large, bad 

shock. 

On the other hand, innovations in implied volatility are 

driven by changes in the perceived uncertainty about good 

and bad potential events: so a higher probability of a bad 

jump will increase uncertainty, but a higher probability of 

a good event (e.g., a new technology) will also increase un- 

certainty. Our results show that on net, investors seem to 

perceive increases in uncertainty as being associated with 

good states of the world. 
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Fig. 4. Cross-sectional fit of factor models. For each straddle of maturity one to five months, and for each of the 19 markets, the figure reports the predicted 

risk premium against the realized average excess return. Predicted risk premiums are obtained estimating a linear factor model separately in each market. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Section OA.8 in the Online Appendix formalizes this

idea, describing a simple extension of the standard long-

run risk model of Bansal and Yaron (2004) that is consis-

tent with our results on the pricing of both volatility and

uncertainty shocks. 

Finally, it is valuable to compare our analysis with

some closely related past work. As discussed above, both

Constantinides et al. (2013, CJS) and Cremers et al. (2015,

CHW) also examine the pricing of uncertainty and realized

volatility in the S&P 500 using factor models. While we

cannot compare our full range of results with theirs, we

can at least see how those for the S&P 500 compare. 

The analysis of CJS is closest to us, as they also use

option portfolios as test assets. In Table 8, they report a

premium of approximately zero for shocks to uncertainty

and a large negative premium for realized volatility for the

S&P 500. So consistent with our findings, they find much

stronger pricing of realized than implied volatility, though

their uncertainty premium is less positive. CHW, instead,

use the cross-section of equities as their test assets and

find a more strongly negative premium for uncertainty.

However, they also report returns on an uncertainty hedg-

ing portfolio, which aligns very closely with our analysis in

the next section (see their Table 1). In that case, their re-

sults are quantitatively highly similar to ours. We discuss

this observation further below. 

3.4. Is realized volatility about jumps? evidence from 

strangles 

Similar to others such as Cremers et al. (2015) , we have

argued thus far that the exposures to squared returns on

the underlying (or gamma) represent exposure to jump
34 
risk. While CHW focuses on straddles, we further test the 

hypothesis that the premiums are for jumps by examining 

returns on strangles. A strangle is, like a straddle, a portfo- 

lio long a put and a call, with the delta set to zero here 

by construction. However, in the case of a strangle, the 

two options are out of the money, with different strikes, 

rather than both having the same strike. So whereas the 

final payoff of a straddle depends on the absolute value of 

the change in the underlying, a strangle only pays off if 

the underlying moves sufficiently far from its initial value, 

with that required distance being a choice variable. 

We examine returns on strangles where the put and 

call strikes are one standard deviation unit (scaling by time 

to maturity) from the forward price when the portfolio is 

formed, so they only have positive payoffs at maturity if 

the underlying moves further than that. As with the strad- 

dles, we examine two-week returns. 

Fig. 5 replicates Fig. 3 for the case of strangles. For the 

uncertainty risk premiums, the results are qualitatively and 

quantitatively similar to those for straddles: for financials 

the premium is close to zero, and for nonfinancials it is 

0.42. 

It is for the RV/gamma risk premiums that we find a 

substantial difference, representing our third main result. 

Across the various markets, the premiums are generally 

twice as large for strangles as for straddles. Every single 

point estimate is now negative, and only one confidence 

band contains zero. For financial underlyings, the average 

premium is now statistically significant, at -1.54. For nonfi- 

nancials and all assets combined, the means are both -1.48 

and -1.5, respectively. 

These results provide clear evidence that it is really the 

tail of the distribution that drives the RV results. The find- 
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Fig. 5. RV and IV portfolio Sharpe ratios and factor risk premiums: strangles. See Fig. 3 . This figure differs only in replacing the straddles with 1-sigma 

strangles. 
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expected to appear as a deviation of the estimated factor loadings from 

the predictions of the approximations (4) –(6) . 
ing that deep out-of-the-money options have the largest

premiums is well known for the S&P 500. This paper is

novel for showing that the relation of the gamma premium

with moneyness in fact holds across all the markets that

we study, and is strikingly different from the patterns on

uncertainty. 

To sum up, Figs. 3 and 5 contain our three main re-

sults. Pervasively across markets, premiums related to vega

(uncertainty) are zero or positive, while premiums for

gamma (jump risk) are significantly negative. Furthermore,

the jump risk premiums are largest for out-of-the-money

options. Economically, the results show that it is periods

with extreme shocks – realized volatility or jumps – that

investors are averse to, rather than simple increases in

forward-looking uncertainty. 

4. Theoretical risk exposures of straddles and strangles 

We argued heuristically above that straddles and stran-

gles are natural test assets for a factor model involving re-

alized and implied volatility since they have zero delta and

payoffs that are convex in the underlying return. This sec-

tion formalizes that intuition by calculating the theoreti-

cal exposures of options of different maturities to those

shocks, following the analysis of Cremers et al. (2015) . Sim-

ilar to their analysis, we then show that we can construct

replicating portfolios that, under the theory, should pro-

vide direct exposure to shocks to either implied or re-

alized volatility. Formally, under the Black-Scholes model,

one portfolio has positive vega and zero gamma, and the

other has positive gamma and zero vega. These portfolios

give an alternative, and in some sense more direct, way of

measuring the risk premiums. 

4.1. Return exposures 

The exposures of the portfolios studied above to the

risk factors we use in our linear factor model can be ap-

proximated theoretically using the Black-Scholes model, as

in Coval and Shumway (2001), Bakshi and Kapadia (2003) ,

and Cremers et al. (2015) . Online Appendix OA.3 shows

that the partial derivatives of the zero-delta straddle and

strangle return with respect to the underlying futures re-

turn, f , its square, and the change in volatility, can be ap-

proximated as 

∂r n,t 

∂ f t 
≈ 0 , (4)

∂ 2 r n,t 

∂ ( f t /σt−1 ) 
2 

≈ n 

−1 , (5)

∂r n,t 

∂ ( �σt /σt−1 ) 
≈ 1 , (6)

where r n,t is the return on date t of a straddle or strangle

with maturity n , f t is the return on the underlying future,

σt is the implied volatility of the underlying, and � is the

first-difference operator. 19 
19 We ignore here the fact that options at different maturities have dif- 

ferent underlying futures contracts. If that elision is important, it can be 

36 
It is perhaps surprising at first that the exposures are 

the same for both straddles and strangles. Intuitively, the 

two types of portfolios have the same exposures up to the 

second order. Where they differ is in their higher-order ex- 

posures, which are naturally larger for the strangles. The 

first partial derivative says that the straddles and stran- 

gles have close to zero local exposure to the futures re- 

turn. The second line says that the exposure of the options 

to squared returns on the underlying (realized volatility) is 

approximately inversely proportional to time to maturity. 

The third line shows that they are also exposed to changes 

in expected future volatility, through 

�σt 
σt−1 

, and that expo- 

sure is approximately constant across maturities. 

To see how the risk exposures differ in their higher or- 

der terms, Fig. OA.4 in the Online Appendix plots the re- 

turn on a straddle and a one standard-deviation strangle 

as a function of the change in the price of the underly- 

ing. It is apparent that the two curves are not just tangent 

at zero, but that they have the same curvature, consistent 

with having the same second derivative, as in Eq. (5) . They 

only begin to differ noticeably as the returns get extreme. 

So straddles and strangles have equal local exposures to 

the underlying, but in the tails, e.g., in response to jumps, 

strangles become more sensitive. This shows why strangle 

returns help isolate the extra premium earned for exposure 

to tail risk. 

4.2. Replicating portfolios 

Cremers et al. (2015) show that the implied sensitivities 

in (4) –(6) give a method for constructing portfolios that 

the Black-Scholes model says should give exposures only 

to realized volatility, as expressed by ( f n,t /σt−1 ) 
2 
, or im- 

plied volatility, measured by �σt /σt−1 . The method is to 

construct, for each market, two portfolios, 

rv i,t = 

5 

24 

( r i, 1 ,t − r i, 5 ,t ) ≈ ( f t /σt−1 ) 
2 
, (7) 

i v i,t = 

5 

4 

r i, 5 ,t −
1 

4 

r i, 1 ,t ≈ �σt /σt−1 . (8) 

where the approximations follow from Eqs. (4) –(6) . 20 

Throughout this section, capitalized RV and IV refer to the 

levels of realized and implied volatility, while lower-case 

rv and i v refer to the associated portfolio returns. We use 

the one- and five-month options to construct the portfo- 

lios, since it is exactly five-month implied volatility that 

is priced in the main analysis. The i v portfolio is domi- 

nated by an investment in the five-month options, with 

just a small short position in the one-month options. In 

that sense, the i v portfolio is a rather direct claim on ex- 

actly the implied volatility priced in the factor model. 

The purpose of constructing these portfolios is to give a 

simple and direct method of measuring the premiums as- 

sociated with realized and implied volatility that does not 
20 Note that Eq. (5) gives the second derivative, which has weight 1/2 in 

the Taylor approximation. So the loading on the squared future return for 

a straddle of maturity n is (2 n ) −1 , which implies that the coefficient for 

Eq. (7) is 5/24. 
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require full estimation of the factor model. If the loadings

used to construct the portfolios are correct, this method

will also be more efficient. On the contrary, if the assump-

tions of the model are not correct, then the results will be

biased (whereas the factor model will still be correct, as it

estimates the risk exposures instead of using the ones im-

plied by the model). There is thus a bias/variance trade-off

between the factor model, which requires fewer assump-

tions but will have greater estimation error, and the repli-

cating portfolios, which require stronger assumptions but

will have less estimation error. 

The key concern, then, is how accurate the Black-

Scholes-implied loadings are. Fig. OA.2 and Table OA.2 in

the Online Appendix show that the theoretical predictions

for the loadings are fairly accurate (though not perfect)

empirically. Online Appendix OA.3 also examines the ac-

curacy of the Black-Scholes approximation for returns in a

simulated setting. 

Table OA.2 shows that the biggest deviations from the

model-implied loadings are for the S&P 500 i v portfolio.

In that case, there is a large positive loading on realized

volatility – a GARCH effect – and a large negative load-

ing on the underlying futures return – the leverage ef-

fect. Both should be expected to bias the return on the

i v portfolio down relative to the estimated implied volatil-

ity factor loading from above. The effects are three times

larger for the S&P 500 than for any other market. That

suggests that for measuring pricing of S&P 500 uncer-

tainty, in particular, it is best to use the factor model, as

in Constantinides et al. (2013) . For all other markets, in-

stead, the Black-Scholes assumptions appear relatively ac-

curate, so we would expect the results to line up well with

those of the factor model. 

Note that even though the rv and i v portfolios theoret-

ically load on separate risk factors, they need not be un-

correlated. It is well known from the GARCH literature, for

example Engle (1982) and Bollerslev (1986) , that in many

markets, innovations to realized volatility are correlated

with innovations to implied volatility. Table 4 reports the

correlations between the rv and i v returns in the 19 mar-

kets. GARCH effects appear most strongly for the finan-

cial underlyings and precious metals, for which the aver-

age correlation is 0.44. For the other nonfinancial underly-

ings, the effects are much smaller, and the correlation be-

tween the rv and i v returns is only 0.03 on average (it is

0.09 on average across all nonfinancials). So for the nonfi-

nancials, innovations to realized and implied volatility re-

turns are essentially independent on average. These weak

correlations are valuable for the identification, since they

show that surprises in realized and implied volatility are

far from the same and can be hedged separately using the

rv and i v portfolios. 

4.3. Risk premiums 

4.3.1. Straddles 

The solid blue series in the two panels of Fig. 3 report

annualized Sharpe ratios for the rv and i v portfolios con-

structed from straddles in the 19 markets. As with the fac-

tor model, we begin by focusing on the straddle returns

because they use more liquid near-the-money options. 
37 
The results in Fig. 3 for the rv and i v portfolios are 

highly similar to those for the factor model. The i v port- 

folios earn returns close to zero on average for the finan- 

cial underlyings and returns that are consistently positive 

for the nonfinancial underlyings. For the nonfinancials, the 

average Sharpe ratio for the i v portfolios is again statisti- 

cally significantly positive. As expected, since the i v port- 

folios are formed using stronger assumptions, the standard 

errors for the risk premiums are tighter than for the factor 

model. 

The bottom panel of Table 3 summarizes the estimates 

for the realized and implied volatility risk premiums for fi- 

nancials and nonfinancials computed using the rv and i v 
portfolios, and also reports tests for whether the two are 

different. In all cases, the premiums for the financials are 

insignificant while those for the nonfinancials are signifi- 

cant. However, note that there are fewer financial underly- 

ings, limiting our statistical power. The difference between 

financials and nonfinancials itself is not significant, so we 

cannot actually say that there is strong evidence for a dif- 

ference between the two in three out of four cases. The 

only case where the difference is statistically significant is 

for the Sharpe ratio on the i v portfolio. 

That difference appears to be driven largely by the fact 

that the return on the S&P 500 i v portfolio is very differ- 

ent from the estimated risk premium for implied volatility 

from the factor model. In fact, the confidence bands do not 

even overlap. This result is driven by the fact that there 

are much stronger GARCH effects in the S&P 500 than the 

other underlyings that we study, creating a bias, as dis- 

cussed above (see Table OA.2 showing that the S&P 500 i v 
portfolio actually loads strongly on realized volatility). We 

thus place relatively less trust in the results from the rv 
and i v portfolios (as opposed to the results from the fac- 

tor model) for the S&P 500 than the other underlyings, for 

which there is very strong agreement between the factor 

model and the i v portfolio returns. Even in the case of the 

S&P 500, though, the premium for uncertainty shocks is 

not statistically significantly negative. 

The Sharpe ratios for the rv portfolios are also highly 

similar to the estimated risk premiums on realized volatil- 

ity in the factor model (even for the S&P 500). The finan- 

cial underlyings other than the S&P 500 again have pre- 

miums generally close to zero, while the S&P 500 and the 

nonfinancials have consistently negative premiums. 

The returns on the rv and i v portfolios for the S&P 

500 can be compared to those reported in Table 1 of 

Cremers et al. (2015) . For their analog to our rv port- 

folio, they obtain a Sharpe ratio of -0.9, compared to - 

1.2 in our case, while for their analog to the i v port- 

folio, they report a Sharpe ratio of -0.5, compared to - 

0.2 here. In both cases, the confidence bands for our es- 

timates easily contain theirs. We thus obtain substantial 

agreement with the findings of CHW for returns on op- 

tion portfolios. Our results differ from theirs in two key 

ways. First, we focus on factor models using options as 

test assets, instead of equities. We choose to use options, 

similar to Constantinides et al. (2013) , because they have 

risk exposures very directly tied to uncertainty and volatil- 

ity, whereas equity returns have many other risk exposures 

that have been explored in the literature. Second, obvi- 
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Table 4 

Correlations between rv and i v portfolio returns in each market. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ously, we explore the pricing of options in a wide range

of markets, not just the S&P 500. 

4.3.2. Strangles 

The results for strangles are again consistent with those

for straddles, but more extreme. In Fig. 5 , as in Fig. 3 ,

the point estimates and confidence bands from the factor

model (red) and the rv and i v portfolios (blue) are simi-

lar, with the model-based rv and i v portfolios again having

narrower confidence intervals, showing that the results are

robust to the estimation method. 

We again find that the strangles have much more nega-

tive jump/gamma premiums than the straddles. Since we

showed above that the exposures of the strangles and

straddles are the same up to second order, this section

clearly indicates that it is the difference in higher order

exposures of the different strategies that drives the larger

premiums for strangles. 

4.4. Summary 

The results in this section are useful for three reasons.

First, they show that our results are not driven by some

hidden detail of the factor model estimation. The rv and

i v portfolios are simple to construct and yield highly

similar results to the factor model, both for straddles and

strangles. So the three key findings, zero or positive premi-

ums for uncertainty, substantially negative premiums for

realized volatility, and even larger premiums for realized

volatility for strangles, appear to be robust. 

Second, the replicating portfolios help clarify exactly

what the source of identification is in the factor model. The

options have exposures to implied and realized volatility

that differ across maturities, so including a panel of mul-

tiple maturities allows us to separately measure their pre-

miums. 
38 
Finally, by analyzing the risk exposures of the options, 

we can link the factor model estimates back to widely 

studied and applied features of options – their greeks. The 

estimate of the price of shocks to implied volatility from 

the factor model is essentially identical to the Sharpe ratio 

on a portfolio with positive vega and zero gamma, while 

the estimate of the price of shocks to realized volatility is 

almost the same as the Sharpe ratio on a portfolio with 

positive gamma and zero vega. 

4.5. Combined portfolios 

As we discussed in Section 2.3 , the uncertainty in our 

19 markets is related to various measures of aggregate un- 

certainty. It is then natural to ask what the cost of hedging 

is for aggregate uncertainty. A simple way to do that is to 

buy all the i v or rv portfolios simultaneously. We focus on 

just the straddles here since they are most liquid and thus 

most feasible for an investor to hold. Since Tables 1 and 

2 show that realized and implied volatility are imperfectly 

correlated across markets, even larger Sharpe ratios can 

be earned by holding portfolios that diversify across the 

various underlyings. Table 5 reports results of various im- 

plementations of such a strategy. Looking first at the top 

panel, the first row reports results for portfolios that put 

equal weight on every available underlying in each period, 

the second row uses only nonfinancial underlyings, and the 

third row only financial underlyings. The columns report 

Sharpe ratios for various combinations of the rv and i v 
portfolios. The first two columns report Sharpe ratios for 

strategies that hold only the rv or only the i v portfolios, 

the third column uses a strategy that is short rv and long 

i v portfolios in equal weights, while the final column is 

short rv and long i v , but with weights inversely propor- 

tional to their variances (i.e., a simple risk parity strategy). 
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Portfolios of rv and i v across markets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21 The construction involves two basic steps. First, realized squared fore- 

cast errors are constructed for 280 macroeconomic and financial time se- 

ries, of which 134 macro series are from McCracken and Ng (2016) , while 

the remaining financial indicators are from Ludvigson and Ng (2007) . Our 

analysis uses code from the replication files of JLN. The macro price se- 

ries are defined as those referring to price indexes, and the real series are 

the remainder of the macro time series. Denoting the error for series i 

as ε i,t , there is a variance process, σ 2 
i,t 

= E 
[
ε 2 

i,t 

]
. So ε 2 

i,t 
constitutes a noisy 

signal about σ 2 
i,t 

. JLN then estimate σ 2 
i,t 

from the history of ε 2 
i,t 

using a 

two-sided smoother and create an uncertainty index as the first principal 

component of the estimated σ 2 
i,t 

. For the component indexes, we take the 

first principal component of the σ 2 
i,t 

corresponding to the relevant group 

of indicators. 
22 This is done by taking the first principal component from the cross- 

section of the ε 2 in a given month, instead of the σ 2 . 
The Sharpe ratios reported in Table 5 are generally

larger than those in Fig. 3 . The portfolios that are short rv
and long i v are able to attain Sharpe ratios above one. The

largest Sharpe ratios come in the portfolios that combine

rv and i v , which follows from the fact that they are posi-

tively correlated, so going short rv and long i v leads to in-

ternal hedging. All of that said, these Sharpe ratios remain

generally plausible. Values near one are observed in other

contexts, for example, Broadie et al. (2009) for put option

returns, Asness et al. (2013) for global value and momen-

tum strategies, and Dew-Becker et al., (2017) for variance

swaps. 

The portfolios that take advantage of all underlyings si-

multaneously seem to perform best, presumably because

they are the most diversified. While holding exposure to

implied volatility among the financials earns effectively a

zero risk premium, it is still generally worthwhile to in-

clude financials for the sake of hedging. 

Finally, the bottom panel of Table 5 reports the skew-

ness of the various strategies from above. One might think

that the negative returns on the rv portfolio are driven by

its positive skewness, but the i v portfolio also is positively

skewed and has positive average returns. So the degree of

skewness does not seem to explain differences in average

returns in this setting. 

5. Hedging uncertainty indexes 

The results so far give the cost of directly hedging

shocks in commodity markets. This section examines how

options can be used to hedge shocks to macro uncertainty

indexes. Section 2.3 showed that the commodity IVs do a

good job of spanning the macro uncertainty indexes. We

now discuss those indexes in more detail and examine
39 
the cost of hedging both the implied and realized parts of 

macro volatility. 

The JLN index is developed in a pair of papers by 

Jurado et al. (2015) and Ludvigson et al. (2015) . We fol- 

low their construction methodology and further extend it 

to yield separate measures of uncertainty that pertain to 

financial markets, real activity, and goods prices, with the 

latter two also being combined into an overall macroeco- 

nomic uncertainty index. 21 The goal of the JLN framework 

is to estimate uncertainty on each date, σ 2 
t . The method 

can also be extended to create a realized volatility index. 22 

We refer to the JLN uncertainty indexes by J LN U and real- 

ized volatility indexes by J LN RV . 

The Economic Policy Uncertainty (EPU) index of 

Baker et al. (2016) is constructed based on media discus- 

sion of uncertainty, the number of federal tax provisions 

changing in the near future, and forecaster disagreement. 

Unlike JLN, there is no distinction in this case between 

volatility and uncertainty, so we treat EPU as measuring 

only uncertainty. 
i,t i,t 
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Fig. 2 shows that the 19 IVs span most of the varia-

tion in the JLN and EPU uncertainty indexes. We can then

measure risk premiums associated with those indexes by

constructing hedging portfolios using our straddles. For

each index, we obtain the weights for the hedging portfo-

lio from the coefficients of the projection we presented in

Section 2.3 . Specifically, for each uncertainty index j, we

estimate the regression 

J LN U 

j 
t = a + 

∑ 

i 

b j 
i 
IV i,t + ε j,t (9)

We then use the risk premiums estimated in the fac-

tor model to calculate a premium for hedging the J LN in-

dexes. In particular, we construct a hypothetical portfolio

that has exposure b 
j 
i 

to �I V i,t /I V i,t−1 . The mean return on

that portfolio can be calculated from Eq. (3) , while the

standard deviation is obtained from the covariance matrix

of �I V i,t /I V i,t−1 across i (again weighting by b 
j 
i 
). The same

method also yields a risk premium for the EPU and J LN RV 

indexes (see Online Appendix Fig. OA.1 for the analog of

Fig. 2 for realized volatilities). 

The right-hand section of Fig. 3 (red lines) reports the

Sharpe ratios for straddle portfolios hedging the EPU and

JLN indexes, computed using the estimates from the fac-

tor models. Since those hedging premiums are constructed

combining the individual factor premiums, it is not sur-

prising that they are similar. In all three cases, the risk

premium for JLN indexes (financial, macro, and price un-

certainty) is positive, in one case statistically significantly.

Furthermore, the confidence bands rule out economically

large negative premiums: the lowest confidence band only

runs to -0.32. For EPU we find a point estimate of approxi-

mately zero (-0.03), though a confidence band that runs to

-0.49. 

The right-hand section of the bottom panel of Fig. 3 re-

ports the returns from the JLN realized volatility hedging

portfolios (again, the red lines use the risk premiums es-

timates from the factor model). Again, consistent with the

fact that the RV risk premiums themselves are consistently

negative, hedging the JLN indexes for realized volatility

historically has a positive cost. For all three subindexes, the

risk premiums are very negative, with the Sharpe ratios for

financial, real, and price volatility at -1.15, -0.62, and -0.65,

respectively, all three of which are statistically significant.

So the conclusions from hedging the JLN and EPU indexes

are highly similar to those in the main analysis, providing

further evidence that in the macroeconomy, it is realized

volatility that is priced, rather than uncertainty about the

future. The blue lines in the figure, which use the esti-

mates from the rv and i v portfolio, show similar results,

with the uncertainty Sharpe ratios slightly lower but still

statistically indistinguishable from zero, and the realized

volatility premiums strongly negative. Fig. 5 shows that the

results for straddles are again similar, with hedging real-

ized volatility in this case again carrying a more negative

premium. 

6. Robustness 

This section examines some potential concerns about

the robustness of the results. 
40 
6.1. One-week holding period returns 

Our main analysis is based on two-week holding period 

returns for straddles, which strike a balance between hav- 

ing more precise estimates of risk premiums and reducing 

the impact of measurement error in prices. We have re- 

peated all of our analysis using one-week holding period 

returns, and find very similar results. Online Appendix Fig. 

OA.6 is the analog of Fig. 3 , but constructed using one- 

week returns. The results are qualitatively and quantita- 

tively similar to the baseline. 

6.2. Split sample and rolling window results 

To address the concern that the results could be driven 

by outliers (though note that there would need to be out- 

liers in all 19 markets), Figs. OA.7 and OA.8 replicate the 

main results in Fig. 3 , but splitting the sample in half (be- 

fore and after June 20 0 0). The confidence bands are natu- 

rally wider, and the point estimates vary more from mar- 

ket to market in the two figures. Nevertheless, the qualita- 

tive results are the same as in the full-sample case, show- 

ing that realized volatility earns a negative premium while 

the premium on implied volatility is positive. 

To further evaluate the possibility that the results are 

driven by a small number of observations, Fig. OA.9 plots 

Sharpe ratios for the rv and i v portfolios in five-year rolling 

windows for each of the 19 markets, as well as for the 

equal-weighted portfolios of all 19 markets. The sample 

Sharpe ratios are reasonably stable over time. In no case 

do the results appear to be driven by a single outlying pe- 

riod or episode. Note that these results are not informa- 

tive about variation in the conditional risk premium; with 

a five-year window, the standard error for the Sharpe ra- 

tios is 0.45, so even if the true conditional Sharpe ratios 

are constant, the five-year rolling estimates should display 

large amounts of variation over time. 

6.3. Alternative maturities 

Our main results use the five-month maturity for im- 

plied volatility, both in the factor model and as the sec- 

ond leg in the rv and i v portfolios. Fig. OA.10 in the Online 

Appendix replicates the analysis using two-month implied 

volatility instead in both cases. The results are qualitatively 

and quantitatively similar to the main specification. Note 

that the GARCH effects that bias the estimates for the i v 
portfolio risk premium (blue) in the top panel downward 

relative to the estimates from the factor model (red) are 

stronger when using two-month IV instead of five-month 

IV (see the loadings of the i v portfolio on realized volatil- 

ity in Table OA.4). 

To help understand why the maturity choice does not 

have strong effects, the top panel of Table OA.3 in the 

Online Appendix reports loadings of the rv portfolio on 

changes in implied volatility at maturities of one to five 

months. In all cases, the coefficients are close to zero –

no larger than 0.1 – indicating that the exposures to im- 

plied volatility at any maturity are economically small, es- 

pecially in comparison to the loading on realized volatility, 

which can be seen from Table OA.2 to be closer to one. 
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23 Longer histories of bid/ask spreads for options are available for pur- 

chase from the CME (at significant cost), which would enable these re- 

sults to be extended. 
The bottom panel shows the same loadings, but for the

RV-hedging portfolio built using the factor model. By con-

struction, this portfolio has loading one on RV and zero on

five-month IV, as the last column of the table highlights:

see Online Appendix Section OA.2 for more details. 

6.4. Weighted least squares 

Johnson (2019) argues that there can be efficiency gains

from weighting by implied volatility in estimating risk pre-

miums. We explore that in Fig. OA.11 in the Online Ap-

pendix, which reports the risk premiums (computed with

the factor model) with and without weighting by implied

volatility. Weighting drives most of the risk premiums to

be less negative or more positive, but the patterns all re-

main qualitatively and quantitatively similar. The premium

for implied volatility shocks becomes even more strikingly

positive. 

6.5. Pricing the independent parts of realized and implied 

volatility 

The main results above report returns associated with

assets that hedge innovations to realized and implied

volatility. Table 4 shows that those returns are positively

correlated: months with increases in realized volatility also

tend to have increases in implied volatility. A natural ques-

tion is what would happen if we were to construct a port-

folio that loaded on the independent part of those re-

turns, e.g., an increase in implied volatility holding real-

ized volatility fixed. Section OA.6 in the Online Appendix

reports an SDF-based analysis that prices the independent

components and shows that the results are similar to the

main specification (see Fig. OA.12). 

6.6. Oil and gas equity options 

Since the stock returns of firms in the energy sector are

naturally exposed to changes in energy prices, it is natural

to ask whether returns on their options behave similarly to

what we report for oil and gas futures options. We obtain

data from Optionmetrics on firms with an Optionmetrics

industry code between 120 and 125, corresponding to the

energy sector. We then construct rv and i v portfolios for

those firms using the same methods as for the main analy-

sis, again with maturities of one and five months. We con-

struct two-week returns and sum them across whatever

firms are available on each date, weighting by market capi-

talization. The Optionmetrics data covers the period 1996–

2018. 

Sharpe ratio 

rv -0.56 

95% CI [-1.02,-0.10] 

i v 0.05 

95% CI [-0.42,0.52] 

The Sharpe ratios for the rv and i v portfolios for oil and

gas companies are shown above. Similar to the main re-

sults, we obtain a significantly negative premium on real-

ized volatility and a marginally positive premium on im-

plied volatility. The premium for the i v portfolio for oil and
41 
gas companies is less positive than for crude oil futures op- 

tions, but more positive than for S&P 500 index options. In 

other words, the results imply that options on oil and gas 

companies behave as though they are a mixture of options 

on the S&P 500 and on crude oil, which is not an unreal- 

istic desciption of oil and gas companies. 

Because of the relatively short sample compared to the 

main results, this analysis has relatively low power. The 

point estimate for rv is outside the confidence band for 

i v and vice versa, but their confidence bands do overlap 

and the Sharpe ratios are not statistically significantly dif- 

ferent from each other. That also illustrates the benefit in 

the main analysis of using information from many different 

markets to help increase estimation power. Nevertheless, 

the results in this section are consistent with our main 

findings, if statistically weaker. Section OA.7 further ex- 

tends these results by examining options on energy sector 

ETFs and finds similar results. 

6.7. Liquidity 

If the options used here are highly illiquid, the analysis 

will be substantially complicated for three reasons. First, 

to the extent that illiquidity represents a real cost faced by 

investors, such as a bid/ask spread, then returns calculated 

from settlement prices do not represent returns earned by 

investors. Second, illiquidity itself could carry a risk pre- 

mium that the options might be exposed to. Third, bid/ask 

spreads represent an added layer of noise in prices. The 

identification of the premiums for realized volatility and 

uncertainty depends on differences in returns on options 

across maturities, so what is most important for our pur- 

poses is how liquidity varies across maturities. This sec- 

tion shows that the liquidity of the straddles studied here 

is generally highly similar to that of the widely studied 

S&P 500 contracts traded on the CBOE, and the liquidity 

does not appear to substantially deteriorate across maturi- 

ties. It is important to note that measuring trading costs 

is nontrivial, especially for complex orders, and bid/ask 

spreads are not necessarily the best measure of the true 

cost of liquidity. See Muravyev and Pearson (2020) for a 

detailed analysis. 

While a long history of bid/ask spreads is not available 

to us, we obtained posted bid/ask spreads for the options 

closest to the money on Friday, 8/4/2017 for our 19 con- 

tracts plus the CBOE S&P 500 options at maturities of one, 

four, and seven months. 23 Those spreads are plotted in 

Fig. OA.13. For the majority of the options, the spreads are 

less than 3%, consistent with the 4.1% bid/ask spread for 

one-month S&P 500 options at the CBOE. Across nearly all 

the contracts, the posted spreads again decline with matu- 

rity, and for 10 of the 19 contracts the one-month posted 

spreads are nearly indistinguishable from that for the 

S&P 500, which is typically viewed as a highly liquid mar- 

ket and where incorporating bid/ask spreads generally has 

minimal effects on return calculations ( Bondarenko, 2014 ). 
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Note that the decline with maturity is relative to the price

of the options themselves, not in absolute terms. 

Fig. OA.13 yields two important results. First, it shows

that the liquidity of the straddles is reasonably high, in

the sense that posted spreads are currently relatively nar-

row in absolute terms for most of the contracts and that

they compare favorably with spreads for the more widely

studied S&P 500 options traded at the CBOE. Second, liq-

uidity does not appear to deteriorate as the maturity of

the options grows, and in fact in many cases there are

improvements with increasing maturities, again consistent

with CBOE data. 

Section OA.3.5 in the Online Appendix reports statistics

for volume across maturities, showing that the markets are

generally fairly similar. Section OA.3.6 reports an additional

robustness test that measures returns using a method that

is robust to certain types of measurement errors in prices,

showing that the main results are essentially identical. 

Finally, it is useful to note that while the liquidity of

option markets changed significantly in the past 30 years,

the patterns in risk premiums for the rv and i v portfo-

lios appear stable over time (see, for example, the rolling

Sharpe ratios of Fig. OA.9), suggesting that liquidity is not

the main driver of our results. 

Even though the liquidity is similar across many of the

markets, one might still ask how trading costs affect the

returns we have been studying. Any trading cost will lower

the return of a portfolio, regardless of whether an investor

is long or short. By studying returns based on settlement

prices, we are essentially looking at the return averaged

across what the buyer and seller receive. For example, if

the return on a portfolio based on settlement prices is 10%

and there are total trading costs to each side of 1%, then

the buyer earns a return of 9% while the seller has a loss

of 11%. Looking at prices is therefore natural for illustrating

the return that the average investor sees. 

7. Conclusion 

This paper studies the pricing of uncertainty and real-

ized volatility across a broad array of options on financial

and commodity futures. Uncertainty is proxied by implied

volatility, which theoretically measures investors’ condi-

tional variances for future returns, and a number of uncer-

tainty indexes developed in the literature. Realized volatil-

ity, on the other hand, measures how large realized shocks

have been. In modeling terms, if ε t+1 ∼ N 

(
0 , σ 2 

t 

)
, uncer-

tainty is σ 2 
t , while volatility is the realization of ε 2 t . 

A large literature in macroeconomics and finance has

focused on the effects of uncertainty on the economy.

This paper explores empirically how investors perceive un-

certainty shocks. If uncertainty shocks have major con-

tractionary effects so that they are associated with high

marginal utility for the average investor, then assets that

hedge uncertainty should earn negative average returns.

On the other hand, the finance literature has recently ar-

gued that in many cases uncertainty can be good. For ex-

ample, during the late 1990s, it may have been the case

that investors were not sure about how good new tech-

nologies would turn out to be. 
42 
The contribution of this paper is to construct hedging 

portfolios for a range of types of macro uncertainty, includ- 

ing interest rates, energy prices, and uncertainty indexes. 

The cost of hedging uncertainty shocks reveals the relative 

importance of good and bad types of uncertainty. Further- 

more, using a wide range of options is important for cap- 

turing uncertainty about the real economy and inflation, as 

opposed to just about financial markets. The empirical re- 

sults imply that uncertainty shocks, no matter what type 

of uncertainty we look at, are not viewed as being nega- 

tive by investors, or at least not sufficiently negative that 

it is costly to hedge them. Financial uncertainty appears to 

be roughly equally split between the good and bad types, 

while nonfinancial uncertainty is relatively more strongly 

driven by good uncertainty – the cost of hedging nonfi- 

nancial uncertainty shocks is negative. 

What is highly costly to hedge is realized volatility. 

Portfolios that hedge extreme returns in futures markets 

and hence large innovations in macroeconomic time series 

earn strongly negative returns, with premiums that are in 

many cases one to two times as large as the premium on 

the aggregate stock market over the same period. So what 

is consistently high in bad times is not uncertainty, but re- 

alized volatility. Periods in which futures markets and the 

macroeconomy are highly volatile and display large move- 

ments appear to be periods of high marginal utility, in 

the sense that their associated state prices are high. This 

is consistent with (and complementary to) the findings in 

Berger et al. (2020) , who provide VAR evidence that shocks 

to volatility predict declines in real activity in the future, 

while shocks to uncertainty do not. 

Berger et al. (2020) show that the VAR evidence and 

pricing results for realized volatility are consistent with 

the view that it is downward jumps in the economy that 

investors are most averse to. They show that a simple 

model in which fundamental shocks are both stochas- 

tically volatile and negatively skewed can quantitatively 

match the pricing of uncertainty and realized volatility, 

along with the VAR evidence. Similarly, Seo and Wa- 

cheter (2018a) ; Seo and Wachter (2018b) show that neg- 

ative skewness can explain the pricing of credit default 

swaps and put options. This paper thus also contributes to 

the growing literature studying the effects of skewness. In 

a world where fundamental shocks are negatively skewed, 

the most extreme shocks – those that generate realized 

volatility – tend to be negative, which can explain why re- 

alized volatility would be so costly to hedge. 

Appendix A. Data filters and transformations 

The observed option prices very often appear to have 

nontrivial measurement errors. This section describes the 

various filters we use and then provides more information 

about the specifics of the data transformations we apply. 

Code is available on request. 

First, we note that the price formats for futures and 

strike prices for many of the commodities change over 

time. That is, they will move between, say, 1/8ths, 1/16ths, 

and pennies. We make the prices into a consistent decimal 

time series for each commodity by inspecting the prices 

directly and then coding by hand the change dates. 
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24 More formally, we would say that ̂ sr properly scaled by the square 

root of the sample size converges to a normal distribution. The expression 

(B.2) implicitly puts the sample size in 
̂ sr . The derivation of this result is 

a straightforward application of the continuous mapping theorem, nearly 

identical to the proof that a sample t-statistic is asymptotically normally 

distributed. 
We then remove all options with the following proper-

ties: 

1. Strikes greater than five times the futures price 

2. Options with open interest below the fifth percentile

across all contracts in the sample 

3. Price less then five ticks above zero 

4. Maturity less than nine days 

5. Maturity greater than eight months 

6. Options with prices below their intrinsic value (the

value if exercised immediately) 

Note that in our baseline results, we do not remove

options for which we have no volume information, or for

which volume is zero. However, we have reproduced our

main analysis ( Fig. 3 ) including that filter and find, if any-

thing, stronger results. We report them in Online Appendix

Fig. OA.5. 

We then calculate implied volatilities using the Black-

Scholes formula, treating the options as though they are

European. We also replicate the analysis using American

implied volatilities and find nearly identical results. The

reason for this is that in most cases we ultimately end up

converting the IVs back into prices, meaning that any er-

rors in the pricing formula are largely irrelevant: it is just

a temporary data transformation, rather than actually rep-

resenting a volatility calculation. 

The data are then further filtered based on the IVs: 

1. Eliminate all zero or negative IVs 

2. All options with IV more than 50% (in proportional

terms) different from the average for the same under-

lying, date, and maturity 

3. We then filter outliers along all three dimensions,

strike, date, and maturity, removing the following: 

(a) If the IV changes for a contract by 15% or more on a

given day then moves by 15% or more in the oppo-

site direction in a single day within the next week,

and if it moves by less than 3% on average over that

window, for options with maturity greater than 90

days. This eliminates temporary large changes in IVs

that are reversed, which tend to be observed early

in the life of the options. 

(b) If the IV doubles or falls by half in either the first or

last observation for a contract 

(c) If, looking across maturities at a given strike on a

given date, the IV changes by 20% or more and then

reverses by that amount at the next maturity (i.e.,

spikes at one maturity). This is restricted to maturi-

ties within 90 days of each other. 

(d) If the last, second to last, or third to last IV is 40%

different from the previous maturity 

(e) If, looking across strikes at a given maturity on a

given date, the IV changes by 20% and reverses at

the next strike (for strikes within 10% of each other)

(f) If the change in IV at the first or last strike is greater

than 20%, or the change at the second or second to

last option is greater than 30% 

At-the-money (ATM) IVs are constructed by averaging the

IVs of the options with the first strike below and above the

futures price. The ATM IV is not calculated for any obser-
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vation where we do not have at least one observation (a 

put or a call) on both sides of the futures price. 

To calculate ATM straddle returns for each maturity, we 

interpolate linearly between the IVs of the two closest out- 

of-the-money options on either side of the spot, and use 

this to compute the implied price of the ATM straddle at 

the beginning of the holding period; similarly, we inter- 

polate linearly the IVs of those options at the end of the 

holding period, and obtain the corresponding price of the 

straddle at the end of the holding period. These prices are 

then used to compute the holding period return. Finally, 

to calculate returns of straddles at standardized maturi- 

ties, we interpolate linearly the returns across maturities 

(which corresponds to a feasible portfolio). If options are 

not available on the maturities on both sides of the target, 

then we use a single straddle if it has a maturity within 35 

days of the target maturity. 

Appendix B. Random effects models 

Denote the vector of true Sharpe ratios for the straddles 

in market i as sr i . Our goal is to estimate the distribution 

of sr i across the various underlyings. A natural benchmark 

distribution for the means is the normal distribution, 

sr i ∼ N ( μsr , 
sr ) (B.1) 

This section estimates the parameters μsr and 
sr , where 

μsr represents the high-level mean of Sharpe ratios across 

all the markets, and 
sr describes how the market-specific 

means vary. The estimates of the market-specific Sharpe 

ratios differ noticeably across markets, but much of that 

variation is likely driven by sampling error. T heterm 
sr is 

an estimate of how much the true Sharpe ratios vary, as 

opposed to the sample estimates. 

Denote the sample estimate of the Sharpe ratio in each 

market as ̂ sr i , and the stacked vector of sample Sharpe ra- 

tios as ̂ sr ≡
[̂ sr ′ 1 , ̂  sr ′ 2 , . . . 

]′ 
. Similarly, denote the vector of 

true Sharpe ratios as sr ≡
[
sr ′ 1 , sr ′ 2 , . . . 

]′ 
. Under the centr al 

limit theorem, ̂ sr ⇒ N ( sr , 
̂ sr ) , (B.2) 

where ⇒ denotes convergence in distribution and the co- 

variance matrix 
̂ sr depends on the covariance between all 

the returns, across both maturities and underlyings, along 

with the lengths of the various samples. 24 Online Appendix 

OA.4 describes how we construct 
̂ sr . 

The combination of (B.1) and (B.2) represents a fully 

specified distribution for the data as a function of μsr and 


sr . It is then straightforward to construct point estimates 

and confidence intervals for μsr and 
sr with standard 

methods. 

To allow for the possibility that average returns dif- 

fer between the financial and nonfinancial underlyings, 

the mean in the likelihood can be replaced by μsr + μ I , 
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where μD is the difference in Sharpe ratios and I F is a 0/1

indicator for whether the associated underlying is finan-

cial. We calculate the sampling distribution for the esti-

mated parameters through Bayesian methods, treating the

parameters as though they are drawn from a uniform prior.

The point estimates are therefore identical to MLE, and the

confidence bands represent samples from the likelihood. 25 
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