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as bad by investors, they should carry negative risk premiums. Empirically, however, un-
certainty risk premiums are positive in most markets. Instead, it is the realization of large
shocks to fundamentals that has historically carried a negative premium. In other words,

JEL classification: we find that the return premium for gamma is negative, while that for vega is positive.
G12 These results imply that it is jumps, for which exposure is measured by gamma, not
gg forward-looking uncertainty shocks, measured by vega, that drive investors’ marginal util-
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ity. In further support of the jump interpretation, the return patterns are more extreme for
deeper out-of-the-money options.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction
1.1. Background

It is well established that a wide range of measures of
economic volatility and uncertainty vary over time. Uncer-
tainty about all features of the aggregate economy, includ-
ing productivity, the level of the stock market, inflation, in-
terest rates, and energy prices, varies substantially, often
as the direct result of policy choices. It is therefore impor-
tant to understand how uncertainty affects the economy,
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both to reveal the basic drivers of economic fluctuations
and also to guide policymakers.

There are numerous theories, both in macro and fi-
nance, that explore the relation between uncertainty and
real activity. This literature highlights that causation runs
in both directions, so even the sign of the relation be-
tween the two is ambiguous in many cases.! The empir-
ical literature studying uncertainty in macroeconomics has
focused almost entirely on analyzing raw correlations or
using vector autoregressions (VAR) with varying identify-
ing assumptions, and thus far it has not resolved the ques-
tion of whether uncertainty is contractionary in either the

1 For example, see Schwert (1989), Caballero (1999), Bloom (2009),
Schwert (2011), Pastor and Veronesi (2009), Bachmann and
Moscarini (2012), and a summary discussion in Bloom et al. (2018) about
the potentially expansionary effects of uncertainty shocks. In fi-
nance, see the finance literature on good and bad uncertainty, e.g.,
Bekaert et al. (2015) and Segal et al. (2015).
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short- or long-run: that is, whether uncertainty is typically
good or bad.

Parallel to the macro literature, there is a long-running
literature in finance that studies how uncertainty and
volatility are priced in financial markets. That literature
distinguishes between the pricing of shocks to uncertainty
about the future - ie. shocks to conditional variances
or implied volatilities - and realized volatility, or the ac-
tual occurrence of jumps. Constantinides et al. (2013) and
Cremers et al. (2015), for example, study the pricing of
uncertainty and jump risk, looking at option portfolios
with different vega (implied volatility) and gamma (real-
ized volatility or jump) exposure.

1.2. Contribution and methods

This paper takes a finance approach to evaluating the
effects of uncertainty shocks, building on the work of
Constantinides et al. (2013), Cremers et al. (2015), and
Dew-Becker et al. (2019). Instead of studying a VAR with
all of the associated identification challenges, as in the
macro literature, we use one of the key insights of the
finance literature, that financial markets provide a direct
window on how investors perceive shocks.” The main con-
tribution of this paper relative to past work is to use op-
tions across a wide range of underlyings and maturities
to measure the risk premiums associated with shocks to
uncertainty and to realized volatility. Those premiums can
furthermore be used to construct implied premiums on
shocks to major macro uncertainty indexes and hence shed
light on the question of how uncertainty shocks affect the
real economy.

If investors are willing to accept negative average re-
turns on portfolios that hedge uncertainty shocks, as they
would on an insurance contract, that implies that they
view uncertainty as being bad in that it rises in high
marginal utility states. On the other hand, if the hedg-
ing portfolios have positive average returns, then investors
view uncertainty as typically rising in low marginal util-
ity (good) states. So rather than running sophisticated re-
gressions of output on uncertainty, we follow the finance
tradition of letting investors speak to the question.

While there is a large literature that estimates
the risk premiums for uncertainty about the S&P 500
based on the pricing of options,® recent evidence in
Ludvigson et al. (2015) and Baker et al. (2016) shows that
aggregate uncertainty has multiple dimensions beyond the
financial uncertainty captured by the S&P 500. This paper
contributes to the literature by estimating risk premiums
associated with uncertainty and realized volatility (jumps)
in 19 different markets covering a range of features of the
economy, including financial conditions, inflation, and the
prices of real assets. The broad range allows the analy-

2 To be clear, the analysis of risk premiums does not identify structural
shocks; it only reveals the correlation of innovations in marginal utility
with reduced-form innovations to uncertainty (since there is no structural
identification here, we will use the terms “shock” and “innovation” inter-
changeably).

3 See Egloff et al. (2010), Dew-Becker et al. (2017), Van Binsbergen and
Koijen (2017), Andries et al. (2015), and Ait-Sahalia et al. (2019).
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sis to uncover consistent patterns in investors’ attitudes to
different types of uncertainty. We also use all the options
together to construct hedging portfolios for aggregate un-
certainty measures developed in the literature, specifically,
the JLN indexes in Jurado et al. (2015) and the economic
policy uncertainty (EPU) index of Baker et al. (2016). Fitting
those indexes actually requires using more than just the
S&P 500: the results show that to span uncertainty about
the real economy, it is important to have implied volatili-
ties for real assets, like energies and metals, underscoring
the value of the breadth of our data set.

In each of the 19 markets, we construct straddles and
strangles at maturities of one to five months, and measure
two-week holding period returns. We show, both theoreti-
cally and empirically, that the different maturities have dif-
ferent loadings on the underlying risks, allowing estima-
tion of risk premiums using standard factor models. We
examine risk premiums for two types of shocks: to un-
certainty, and to realized volatility (jumps). An uncertainty
shock represents an increase in the dispersion of agents’
conditional distribution for future outcomes, and an op-
tion’s exposure to uncertainty shocks is measured (approx-
imately) by its vega. The second shock is to the realiza-
tion of large outcomes, i.e., exposure to realized volatility,
or gamma (formally, exposure to squared returns).

Vega and gamma - exposures to implied and real-
ized volatility - have a formal link to theoretical mod-
els. Whereas uncertainty in models is a forward-looking
conditional variance, realized volatility is a contempora-
neous sample variance. That is, for some shock &, with
var(&r41) = 0, uncertainty is o2, while volatility is &?.
Vega is literally the exposure of an option to o2, while
gamma is exposure to 8?. The distinction between 0[2 and
g? is crucial from a theoretical point of view: models in
which forward-looking uncertainty matters for the econ-
omy have predictions about o2 but not about &2.

To summarize, then, the basic method in the paper is to
measure risk premiums on implied and realized volatility
(jumps), or vega and gamma, using a typical factor pric-
ing model on a panel of option returns across maturities,
strikes, and numerous different underlyings. The estimated
premiums are then used to infer the relation of marginal
utility with uncertainty and realized volatility, both for
specific underlyings and also for prominent macro uncer-
tainty indexes.

1.3. Results

The main results focus on straddles, because the op-
tions in the portfolio are initially at the money and hence
most liquid. The empirical analysis yields three key find-
ings. First, across 19 option markets, the risk premium
for hedging uncertainty shocks, vega, is in the majority
of cases positive. For nonfinancial underlyings and the JLN
macro and inflation uncertainty indexes, the premiums are
statistically and economically significantly positive, with
Sharpe ratios near 0.5. The results imply that investors in
these markets view periods of high uncertainty about the
real economy as being good on average. For the financial
sector (including the S&P 500) and the JLN financial uncer-
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tainty and EPU index, the premium on uncertainty is not
clearly distinguishable from zero.

The second empirical result runs in the opposite direc-
tion: consistently across both the financial and real sectors
of the economy, portfolios that hedge realized volatility,
or jumps, earn statistically and economically significantly
negative returns. Investors on average therefore view peri-
ods in which shocks to fundamentals themselves are large
as being bad.

It is well known that both volatility and uncertainty are
countercyclical, but their overall correlation is not as high
as one might expect - only about 65% on average across
markets - and the average correlation between their inno-
vations is only 0.2. The results here show that innovations
in realized volatility identify the states of the world that
investors view as actually negative, whereas surprise in-
creases in implied volatility, which is high in other, mostly
unrelated, states of the world, are not on average perceived
as bad.

Our findings for realized volatility contribute to the
growing literature studying skewness risk in the economy:
if shocks to the economy (i.e., aggregate consumption) are
skewed to the left, then large shocks tend to be bad.*
An explanation for the pricing of realized volatility could
then simply be that hedging realized volatility helps hedge
downward jumps and disasters in aggregate consumption.
If it is truly jumps that drive pricing, then we would expect
that the negative returns on options would be larger for
options that are farther out of the money. To test the hy-
pothesis that the pricing is compensation for jump risk, we
extend the baseline results to examine returns on stran-
gles, which are like straddles, in holding both a put and a
call, but in which both options are out of the money at in-
ception. Relative to straddles, strangles only have positive
payoffs for relatively large movements in the underlying.

Our third result is that the gamma/jump premiums for
strangles are about twice as large as those for straddles,
providing formal evidence for the idea that it is jumps,
rather than small (or diffusive) movements in underlying
prices, that investors are averse to. As with the results for
straddles, the result that deeper out-of-the-money options
have more negative returns is well known for the S&P 500.
Our results are novel for showing that the same result ap-
pears in a wide range of markets, including those linked to
the real economy.

Because the variance risk premium is robustly negative
across many markets, jumps, which drive surprises in real-
ized volatility, tend to be robustly viewed as bad events by
investors, regardless of where they occur. According to as-
set prices, what policymakers should focus on, rather than
uncertainty about the future (the possibility that some-
thing extreme might happen), is the realization of extreme
(typically negative) events. For investors, the results imply
that the mean-variance efficient portfolio among the assets
we study is short gamma (jump risk) and either neutral to
or long vega (exposure to implied volatility), and we show

4 See Barro (2006), Salgado et al. (2016), Seo and Wacheter (2018);
Seo and Wachter (2018), Siriwardane (2015), and Berger et al. (2020).
Dew-Becker et al. (2019) provide a structural model for the source of ag-
gregate skewness.
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that large Sharpe ratios are available when buying vega
and selling gamma across many markets. In the paper, we
also build a simple extension of the standard long-run risk
model of Bansal and Yaron (2004) that shows how our re-
sults can arise in equilibrium.

1.4. Relation to past work

The paper is related to two main strands of literature.
The first studies the relation between uncertainty and the
macroeconomy. Numerous channels have been proposed
through which uncertainty about various aspects of the ag-
gregate economy may have real effects, but the models do
not generate a uniform prediction that uncertainty shocks
are necessarily contractionary.” Our results are more con-
sistent with the expansionary forces present in the mod-
els. There are also models with joint or reverse causation,
such as Pastor and Veronesi, (2009) and Bachmann and
Moscarini, (2012).5 The related empirical literature tries to
measure whether uncertainty does in fact have contrac-
tionary effects, finding often conflicting results.”

This paper builds on that work from a finance perspec-
tive by providing measures of risk premiums that indi-
cate how investors perceive the effects of aggregate un-
certainty shocks across many markets. The finance per-
spective of this paper means that the methods and data
are very different from papers that have instead used a
macroeconomic approach to the question. For example,
Berger et al. (2020) estimate a structural vector autoregres-
sion, as is common in the macroeconomics literature, to
try to understand the effect of uncertainty shocks on the
economy. While trying to answer a similar question, this
paper takes a financial economics approach, studying risk
premiums, and requiring none of the VAR identifying as-
sumptions.

As discussed above, Constantinides et al. (2013) and

Cremers et al. (2015) are important precedents in
the finance literature for studying the pricing of
shocks to wuncertainty and volatility., We build on

Constantinides et al. (2013) in that we also examine
factor risk premiums estimated from option returns, with
the innovation that we look across a broader range of
markets. Our analysis uses methods similar to that paper
and also to those of Cremers et al. (2015), in that we
study both a factor model and replicating portfolios. We
differ from Cremers et al. (2015) in that we use option
returns to measure risk premiums, rather than project-
ing stock returns onto uncertainty and volatility factors.
Because stock returns are driven by so many different

5 See Basu and Bundick (2017) Berger et al. (2020), Bloom (2009),
Bloom et al. (2018), Leduc and Liu (2016), Gourio (2013), Gilchrist and
Williams (2005), and Bloom et al. (2018).

6 See also Decker et al. (2016), Berger and Vavra (2013),
Ilut et al. (2015), Kozlowski et al. (2016), Cesa-Bianchi et al. (2018),
and Diercks et al. (2019).

7 For example, Schwert (1989), Schwert (2011), Berger et al. (2020),
Bretscher et al. (2019), Jurado et al. (2015), Jurado et al. (2015),
Baker et al. (2016), Bachmann and Bayer (2013), and Baker et al. (2016);
Alexopoulos and Cohen (2009). For papers on different types of un-
certainty, see also Bretscher et al. (2018), Elder and Serletis (2010),
Darby et al. (1999), Huizinga (1993), and Elder (2004).
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risk factors, options can be useful for helping to iso-
late underlying risks relatively precisely. That difference
can help explain differences between our results and
those obtained by Constantinides et al. (2013) relative to
Cremers et al. (2015).

The paper also draws on a literature in finance estimat-
ing the pricing of volatility (¢2) risk. The past literature al-
most exclusively studies the S&P 500, and in general stud-
ies just the variance risk premium, which is the pricing
of realized volatility (as measured by the average gap be-
tween option-implied and realized volatility).® In addition
to studying a much broader range of markets, our contri-
bution is to also isolate the premium on implied volatility.

The remainder of the paper is organized as follows.
Section 2 describes the data and its basic characteristics.
Our main results on the cost of hedging uncertainty and
volatility shocks are in Section 3. We then provide a the-
oretical derivation of the risk exposures of the options
in Section 4 and use it to construct replicating portfo-
lios. Section 5 reports the cost of hedging macroeconomic
uncertainty and realized volatility, combining all 19 mar-
kets together. Section 6 presents robustness results and
Section 7 concludes.

2. Measures of uncertainty and realized volatility

This section describes our main data sources and then
examines various measures of uncertainty and realized
volatility.

2.1. Data

2.1.1. Options and futures

We obtain data on prices of financial and commodity
futures and options from the end-of-day database from the
CME Group, which reports closing settlement prices, vol-
ume, and open interest over the period 1983-2015. Each
market includes both futures and options, with the options
written on the futures. The futures may be cash- or phys-
ically settled, while the options settle into futures. As an
example, a crude oil call option gives its holder the right
to buy a crude oil future at the strike price. The underly-
ing crude oil future is itself physically settled: if held to
maturity, the buyer must take delivery of oil.?

To be included in the analysis, contracts are required
to have least 15 years of data and maturities for options
extending to at least six months, which leaves 14 com-
modity and 5 financial underlyings. The final contracts in-
cluded in the data set have 18 to 31 years of data. A num-
ber of standard filters are applied to the data to reduce
noise and eliminate outliers. Those filters are described in
Appendix A.

8 For example, see Ait-Sahalia et al. (2019), Bollerslev and
Todorov (2011), Andersen et al. (2015, 2017), Dew-Becker et al. (2017),
Constantinides et al. (2013), Cremers et al. (2015), and Farago and Tédon-
gap (2018) for work on the S&P 500. A few papers have studied specific
markets, like Bakshi et al. (2003), Choi et al. (2017), Prokopczuk et al.
(2017), and Trolle and Schwartz (2010).

9 The underlying futures in general expire in the same month as the
option. Crude oil options, for example, currently expire three business
days before the underlying future.
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We calculate implied volatility for all of the options us-
ing the Black and Scholes (1973) model and, technically,
the Black (1976) model for the case of futures.'® Unless
otherwise specified, implied volatility is calculated at the
five-month maturity. We take this value as the benchmark
measure of uncertainty in each market. In general, longer
maturities are naturally more tightly linked to long-lived
economic decisions, like physical investments. We do not
go past five months because there is less trade and liquid-
ity at longer maturities, making prices less reliable.

Implied volatilities extracted from options reflect mar-
ket uncertainty about future returns, but they also con-
tain a risk premium, which can potentially vary over time.
However, even in the presence of that risk premium, im-
plied volatilities appear to provide very good summaries
of the available information in the data for forecasting fu-
ture volatility, driving out other standard uncertainty mea-
sures from forecasting regressions. Online Appendix Sec-
tion OA.1 compares implied volatilities to regression-based
forecasts of future volatilities and shows that they are all
over 90% correlated (with an average correlation of 97%),
indicating that option-implied volatility is a good, if not
perfect, proxy for true (physical) uncertainty. For that rea-
son, in what follows we refer to implied volatility and un-
certainty interchangeably, with the understanding that de-
viations due to time-varying risk premiums are quantita-
tively small at the monthly frequencies we focus on.!!

2.2. The time series of implied volatility

Fig. 1 plots option implied volatility for three major
futures: the S&P 500, crude oil, and US Treasury bonds.
The implied volatilities clearly share common variation;
for example, all rise around 1991, 2001, and 2008. On the
other hand, they also have substantial independent varia-
tion. Their overall correlations (also reported in the figure)
are only in the range 0.5-0.6.

Table 1 reports pairwise correlations of implied volatil-
ity across the 19 underlyings. The largest correlations in
implied volatility are among similar underlyings: crude
and heating oil, the agricultural products, gold and silver,
and the British Pound and Swiss Franc. Correlations out-
side those groups are notably smaller, in many cases close
to zero. The largest principal component (PC) of the cor-
relation matrix explains 46% of the total variation. The re-
maining PCs are much smaller, though: even the second
largest only explains 16% of the total variation. Eight PCs
are required to explain 90% of the total variation in the IVs,
which is perhaps a reasonable estimate of the number of
independent components in the data.

The common variation in the implied volatilities is
much larger than the common variation in the underly-
ing futures returns. The largest PC for the futures returns

10 The majority of the options that we study have American exercise,
while the Black model technically refers to European options. We examine
IVs calculated assuming both exercise styles (we calculate American IVs
using a binomial tree) and obtain nearly identical results. Since there are
no dividends on futures contracts, early exercise is only rarely optimal for
the options studied here.

11 See also Bekaert et al. (2013) for an analysis of the variation in risk
premiums in implied volatilities.
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Fig. 1. Sample implied volatilities. Monthly implied volatilities calculated from three-month options using the Black-Scholes model.

Table 1
Pairwise correlations of implied volatility across markets.

o E - . - 2

8 o & 3 z 5 & 2 £ 3 ® 8
i o5 3 f - 3 & ¢ £ § < 2 %2 %2 3 £ 2

S&P 500 0.56

SwissFranc =~ 0.53 0.29

Yen 0.40 0.56 0.48

British Pound 0.45 0.40 | 0.75 0.45

Gold 0.52 0.57 0.21 028 037

Silver 0.42 034 019 029 0.340.78

Copper 039 049 015 035 036 074 0.77

Crudeoil 0.42 0.63 025 039 027 054 031 048

Heatingoil  0.41 0.64 0.23 036 023 051 028 0.51 [J0/E5H

Naturalgas 0.11 0.44 -0.03 0.04 0.03 033 006 0.44 0.49 0.63

Corn 0.25 037 -0.11 0.14 0.11 050 056 0.58 022 0.8 0.11

Soybeans  0.22 0.35 -0.05 0.17 0.17 0.47 0.48 057 029 029 0.21 [J0:85

Soybean meal 0.28 0.33 -0.08 0.16 0.06 0.53 0.50 0.57 0.30 0.27 0.23  0.81 W04l

Soybeanoil 031 0.30 0.10 0.12 023 0.48 0.49 056 026 029 023 073 0.89 083

Wheat 0.38 042 001 019 0.10 0.62 062 060 034 031 017 084 077 075 064

Lean hog 0.29 042 -0.03 028 -0.10 027 0.16 0.35 0.40 047 040 029 037 039 038 0.36

Feedercattle | 0.45 0.35 0.11 0.16 0.07 0.40 051 050 031 034 013 048 047 050 048 052 0.43

Livecattle | 0,51 0.28 0.24 0.18 0.7 038 041 045 032 039 026 032 033 043 049 043 047 084

Note: Pairwise correlations of three-month option-implied volatility across markets. The darkness of the shading represents

the degree of correlation.

explains less than half as much variation, 19% versus 46%.
In other words, while the individual futures prices may be
driven by idiosyncratic shocks, or their correlations with
each other might change over time, masking common vari-
ation, investor uncertainty about futures returns has a sub-
stantial degree of commonality across markets that is sim-
ilar to findings in Herskovic et al. (2016), showing that we
are not studying uncertainty that is purely idiosyncratic

and isolated to individual futures markets. The table below
formalizes that result, reporting the variation explained by
the first PC for implied volatility, realized volatility (dis-
cussed below), and the underlying futures returns, along
with bootstrapped 95% confidence bands.

Fraction of variation explained by first principal com-
ponent

27
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Futures

v RV return

First PC (% explained) 45.9%  28.1%  19.1%
o 37.3%  23.7% 16.7%
95% Bootstrap CI 49.5% 41.8% 21.2%

2.3. Relation between implied volatility and macro
uncertainty indexes

Our ultimate goal is to understand the pricing of eco-
nomic uncertainty. We therefore want to check whether
the implied volatilities in the futures markets we study
are related to other prominent measures of uncertainty.
Fig. 2 quantifies how well the 19 IVs can replicate
two well-known macro uncertainty indexes: the JLN in-
dexes from Jurado et al. (2015) and the EPU index of
Baker et al. (2016) (see Section 5 for a more detailed de-
scription of the indexes). Fig. 2 plots the time series of the
JLN indexes and EPU index against the fitted values from
their projection onto the 19 implied volatilities. The right-
hand panels plot the pairwise correlations of the implied
volatilities in the individual markets with the fitted uncer-
tainty. For financials, the correlation with S&P 500 implied
volatility is 97%. The next highest correlation is only 68%,
for Treasury bonds. So Fig. 2 shows that fitted financial
uncertainty is very nearly equivalent to S&P 500 implied
volatility.'2

The second row plots fitted uncertainty for real vari-
ables. In this case, gold, copper, crude oil, and heating
oil are the most important contributors. The third row
shows similar results for the price component of JLN un-
certainty. Uncertainty about the real economy and infla-
tion are therefore driven by similar factors, and those fac-
tors are notably distinct from financial uncertainty, which
shows why having a broad range of IVs and looking at mar-
kets beyond the S&P 500 are important.

The bottom panels plot results for the EPU index. The
highest pairwise correlations are with financial IVs, Trea-
suries, gold, the S&P 500, and currencies. That implies
that the EPU index measures a similar type of uncertainty
as other financial uncertainty measures, perhaps because
news coverage often focuses on financial markets.!?

3. The cost of hedging uncertainty and volatility

In this section we present the main results of the pa-
per: we estimate the cost of hedging shocks to volatility
and uncertainty using option portfolios.

We compute the cost of hedging a shock as the negative
of the average excess return (risk premium) on the portfo-
lio that hedges that shock. We report all risk premiums in
terms of Sharpe ratios, which reveal the compensation for

12 The strong fit with S&P 500 implied volatility is not simply due to the
fact that S&P 500 returns are included in the JLN construction. The results
are similar when all variables involving the S&P 500 index (returns, divi-
dends, etc.) are dropped.

13 To account for possible overfitting due to the fact that we have 19
explanatory variables, we experimented with lasso and variable selection
based on information criteria. The results were highly similar in all cases.
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bearing a risk (or the cost of hedging it) per unit of risk,
and are therefore more easily comparable across markets.
The option returns are highly skewed, so an investor here
would care about more than just the Sharpe ratio; we use
it simply as a device for holding effective leverage constant
across markets. For reference, the historical Sharpe ratio of
US equities in our sample is 0.52.

We estimate risk premiums for implied and realized
volatility using a standard linear factor model, and we use
straddle returns of different maturities as test assets. Typ-
ical factor models use a small number of aggregate fac-
tors. Here, though, we are interested in the price of risk
for shocks to all 19 types of uncertainty. We therefore esti-
mate market-specific factor models. This is similar to the
common practice of pricing equities with equity-specific
factors, bonds with bond factors, currencies with currency
factors, etc.!

The cost of hedging a risk has a simple but important
economic interpretation: it measures the extent to which
the risk is “bad” with respect to state prices or marginal
utility. Consider a factor X and an asset with returns Ry
that hedges it, in the sense that Ry varies one-for-one (and
is perfectly correlated) with innovations to X. Then if M
represents the stochastic discount factor,

RX t+1 — Rf Xt+1 - ECXIH
E| — |=—cov| M¢;1—EM¢y 1, ———— | R+,
[stdt (Rece1) TR Tetd (X))
(1)

where Ry is the gross risk-free rate, which we treat as con-
stant for the sake of exposition, E; is the expectation op-
erator, and std; is the standard deviation conditional on
date-t information. The equation says that the negative of
the risk premium on a portfolio that hedges the risk X
measures the covariance of innovations in X; ; with state
prices. More generally, when the correlation between Ry
and innovations in X is less than 1, E[Ry — Ry] measures
the covariance of state prices with the part of innovations
to X that is spanned by Ry. So if the premium E[Rx — R] is
negative, times when Ry (and hence X) rise are bad times,
in which state prices are high. The factor model and subse-
quent analysis will deliver estimated Sharpe ratios for the
various risk factors we study.

Finally, as we review in Online Appendix Section OA.2,
the risk premiums estimated from linear factor models cor-
respond to the average excess returns of portfolios that iso-
late each risk (that is, each portfolio has beta of 1 with
respect to one risk factor, and 0 with respect to all other
factors). These portfolios are precisely those portfolios that
allow an investor to change risk exposure to any factor and
that factor only; we refer to them as factor-hedging port-
folios.

4 The analysis is similar to

Constantinides et al. (2013).

those of Jones (2006) and
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Fig. 2. Fit to uncertainty indexes. The left-hand panels plot the fitted values from the regressions of the EPU and JLN indexes on three-month implied
volatility in the 19 markets. The right-hand panels plot pairwise correlations between the individual implied volatility series and the fitted values from the

regressions.
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3.1. Method

3.1.1. Factor model specification
For each market we estimate a time-series model of the

form
f 1 fi
_ r_fue I Lt
Tine = Qin + .Bi_n IV,‘ltq + lBi,n P <IV,~lf1 >
AlV;,
ﬁNMT'] + Eines (2)

where f;, is the futures return for underlying i and AlV;,
is the change in the five-month at-the-money implied
volatility for underlying i. The term r; , ; is a return on each
of the N test assets (straddles and strangles, described in
greater detail below).

The underlying futures return f;; controls for any ex-
posure of the test assets to the underlying, though in gen-
eral that loading will be small, given that we use as test
assets portfolios with payoffs that are symmetric in the
value of the underlying. Much more important is the fact
that straddles and strangles have nonlinear exposures to

. 2
the futures return. The expression (f,-,t/IV,-,tq) captures

. . 2 .
that nonlinearity; ﬁl.fn will be interpreted as the exposure

of the options to realized volatility."> Finally, the third fac-
tor is the change in the at-the-money implied volatility for
the specific market at the five-month maturity, represent-
ing an uncertainty shock in that market.!6

The three factors are scaled by lagged implied volatil-
ity for two reasons. First, this helps control heteroskedas-
ticity. Intuitively, the factors are measuring innovations in
standard deviation units, so that we are pricing based on
how much the underlying moves relative to what investors
expected. The second reason will be demonstrated in the
next section: it is what the Black-Scholes model implies
for the exposures of straddles and strangles. That is, the
option portfolios yield exposure to the scaled factors used
here, rather than, for example, the raw futures return (and
raw futures return squared). So while the analysis in this
section does not rely on Black-Scholes, this scaling will be
useful for interpreting the results.

We estimate a standard linear specification for the risk
premiums,

2
Eltine] = V;fﬂ{nStd(Wﬁ[_]) * yifz'B{;Std (IV{t;)

ALV,
+ ViANﬂi%'VStd<[vm) + Uin, (3)

it—1

where «; ,, is a fitting error, using standard two-step cross-
sectional regressions. The y coefficients represent the risk
premiums that are earned by investments that provide di-

15 The results are similar when the second factor is the absolute value
of the futures return or when it is measured as the sum of squared daily
returns over the return period.

16 Since the IVs may be measured with error, we construct this factor by
regressing available implied volatilities on maturity for each underlying
and date and then taking the fitted value from that regression at the five-
month maturity.
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rect exposure to the factors. Due to the scaling by stan-
dard deviations, y denotes the Sharpe ratios of the hedg-
ing portfolios for each factor constructed using the test as-
sets.!”

3.1.2. Test assets

Our main results are for two-week returns on straddles
with maturities between one and five months.'® A straddle
is a portfolio holding a put and a call with the same matu-
rity and strike; we specifically study zero-delta straddles,
with the strike set so that the Black-Scholes delta of the
portfolio is zero. The final payoff of a zero-delta straddle
depends on the absolute value of the return on the un-
derlying, meaning that they have symmetrical exposures
to positive and negative returns. For the remainder of the
paper, we refer to zero-delta straddles simply as straddles
(that is, we only work with zero-delta straddles).

Straddles give investors exposure both to realized and
implied volatility. They are exposed to realized volatility
because the final payoff of the portfolio is a function of
the absolute value of the underlying futures return. But
when a straddle is sold before maturity (as in our case,
since we use two-week holding period returns), the sale
price will also depend on expected future volatility, mean-
ing that straddles can give exposure to uncertainty shocks.
Since the options in the straddle are at the money at in-
ception, a straddle is the most liquid zero-delta portfolio
we can construct.

In principle, it is also possible to estimate the factor risk
premiums using other assets, like stock or bond returns, as
in Cremers et al. (2015). We focus on option returns be-
cause they depend directly on realized volatility and un-
certainty - which is why they are used to construct im-
plied volatility measures - whereas for other assets the
connection is less clear (many other factors affect their re-
turns) and there could be nontrivial problems with expo-
sures shifting over time. We show below that under the
simple Black-Scholes benchmark, the factor loadings will
be constant.

7 While f% and AlV;; are nontradable factors, f;, itself is tradable,
so we include it as a test asset, yielding the additional restriction
E[fie/Vie 1] = yl.fStd(ﬁAt/IV,-,[,l). See Cochrane (2005).

8 past work on option returns and volatility risk premiums has
examined returns at frequencies of anywhere from a day, as in
Andries et al. (2015), to holding to maturity, as in Bakshi and Kapa-
dia (2003). The precision of estimates of the riskiness of the straddles
is, all else being equal, expected to be higher with shorter windows.
On the other hand, shorter windows cause any measurement error in
option prices (e.g., from differences between settlement prices and true
fair values or trade prices, or from simple data errors) to have larger
effects.Some of the existing literature, beginning with Bakshi and Kapa-
dia (2003), examines delta-hedged returns. Even with delta hedging, the
higher-order risk exposures of the straddles change substantially as the
price of the underlying changes over time.Another alternative is to exam-
ine returns on synthetic variance swaps. Synthetic variance swap prices
are constructed using the full range of strikes, so they require much more
data than straddles. The markets we study do not all have liquid op-
tions at extreme strikes and multiple maturities, so we focus on straddles,
which just require liquidity near the money.
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3.2. Empirical results

3.2.1. Hedging uncertainty shocks

The dotted red series in Fig. 3 plots estimated risk pre-
miums and confidence bands for the realized and implied
volatility factors - yif * and ¥, respectively, using strad-
dles as test assets. Again, the risk premiums should be in-
terpreted as annualized Sharpe ratios, since they are scaled
to measure average annualized returns per unit of annu-
alized standard deviation. The top panel plots premiums
for implied volatility and the bottom panel realized volatil-
ity. The boxes are point estimates, while the bars repre-
sent 95% confidence bands based on a block bootstrap.
The bootstrap is constructed with 50-day blocks and 5000
replications. It is used to account for the fact that the re-
turns use overlapping windows. Hansen-Hodrick type stan-
dard errors are not feasible here due to the fact that ob-
servations in the data are not equally spaced in time. The
block bootstrap additionally accounts for other sources of
serial correlation in the returns, such as time-varying risk
premiums.

Across the top panel, implied volatility shocks carry
zero or even positive premiums. For financials, the aver-
age Sharpe ratios tend to be near zero or weakly nega-
tive. The S&P 500 has a positive premium, consistent with
results for variance swaps discussed extensively in Dew-
Becker et al. (2017). That result is not completely robust
here, however, as we discuss further below, but there is
certainly no evidence of a significantly negative premium
for S&P 500 uncertainty. For the nonfinancials, on the
other hand, all 14 sample Sharpe ratios are actually posi-
tive, and 5 of those are individually statistically significant.
Overall, for only 1 out of 19 contracts, the British Pound,
do we find a significantly negative Sharpe ratio.

To formally estimate the average risk premiums across
contracts, we use a random effects model, which yields
an estimate of the population mean risk premium while
simultaneously accounting for the fact that each of the
sample Sharpe ratios is estimated with error, and that
the errors are potentially correlated across contracts (see
Appendix B).

For both nonfinancials and all markets overall, the es-
timated population mean Sharpe ratio is statistically and
economically significantly positive, while for financials it is
close to zero. The group-level means have the advantage
of being much more precisely estimated than the Sharpe
ratios for the markets individually. They show that on av-
erage, instead of there being a cost to hedging uncertainty
shocks, the factor risk premium for uncertainty shocks is
actually positive. For nonfinancials, the average Sharpe ra-
tio is 0.43, and the lower end of the 95% confidence inter-
val is 0.13. For the overall mean, the corresponding num-
bers are 0.32 and 0.08, so the average Sharpe ratios are sig-
nificantly positive in both cases. The top panel of Table 3
reports the estimated average Sharpe ratios for financials
and nonfinancials, and, in the third column, their differ-
ence, and shows that the difference in risk premiums be-
tween the two groups is not statistically significant.

The top panel of Fig. 3 contains our key results on
the risk premium for uncertainty. It shows that across the
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board, risk premiums for uncertainty are indistinguishable
from zero or, if anything, somewhat positive. The results
allow us to quantify the overall correlation between un-
certainty and marginal utility. For financial underlyings, in-
cluding the S&P 500, the zero or very weakly negative risk
premium implies that the correlation is close to zero. For
the nonfinancial underlyings, which are closely linked to
the JLN real and price uncertainty series, the results imply
that the correlation is positive.

3.2.2. Hedging realized volatility shocks

The bottom panel of Fig. 3 reports risk premiums for
realized volatility across the 19 markets, representing our
second main result. The numbers are drastically different
from those for IV. Whereas implied volatility has earned a
zero or even positive premium, the realized volatility pre-
miums are almost all estimated to be negative. For the
S&P 500, this result is well known and is referred to as
the variance risk premium. The S&P 500 realized volatil-
ity risk premium is most negative, at -1.26. That is, the
premium for selling insurance against shocks to realized
volatility is more than twice as large as the premium on
the stock market over the same period. For the other finan-
cial underlyings, the premium on realized volatility is not
statistically significantly negative. For the nonfinancials, 11
of 14 estimated premiums are negative (6 significantly).

Looking at the category means, in this case all three es-
timates (financials, nonfinancials, and all assets) are nega-
tive. The values are on the edge of statistically significant
for the nonfinancials and the overall mean, with confi-
dence bands just barely encompassing zero. The point esti-
mate for the overall mean Sharpe ratio is -0.26 and the up-
per end of the 95% confidence interval is 0.04. Those values
are almost the same as what we obtain for uncertainty, but
with the opposite sign. As with uncertainty, Table 3 shows
that the difference between financials and nonfinancials is
not statistically significant.

In sum, in stark contrast to the results for hedging un-
certainty, the bottom panel of Fig. 3 shows that there has
historically been, consistently across markets, an economi-
cally significant cost to hedge realized volatility. Contracts
that, rather than loading on changes in implied volatil-
ity, load on actual realized squared returns, earn nega-
tive Sharpe ratios with magnitudes up to twice as large as
that for the overall stock market. So while uncertainty is
viewed as neutral or even good on average, realized volatil-
ity or jumps - the realization of large squared returns -
is viewed as mostly bad, for both financials and nonfinan-
cials.

3.2.3. Goodness of fit

Fig. 4 reports a scatter plot of realized returns on the
various straddle returns against the fitted returns from the
model. The figure shows that there is a wide spread in
realized returns that the model is able to capture. In ad-
dition, there are no large outliers. Table OA.1 in the On-
line Appendix reports the p-values of the x2 test of the
model based on the squared fitting errors, bootstrapped
following Constantinides et al. (2013). That test is very
stringent, especially when the fitting errors are small on
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Fig. 3. RV and IV portfolio Sharpe ratios and factor risk premia: straddles. Squares are point estimates and vertical lines represent 95% confidence intervals.
The solid series plots the Sharpe ratios for the rv and iv portfolios. The dotted series plots the estimated risk premiums from the factor model. In both
cases, all estimation uses straddles. The confidence bands for the rv and iv Sharpe ratios are calculated through a 50-day block bootstrap, while those for
the factor model use GMM standard errors with the Hansen-Hodrick (1980) method used to calculate the long-run variance. The “Fin. mean,” “Non-fin.
mean,” and “Overall mean” points represent random effects estimates of group-level and overall means. The “JLN” and “EPU” points are for the portfolios
that hedge those indexes.
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Table 2
Pairwise correlations of realized volatility across markets.
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S&P 500 0.63

SwissFranc  0.17 0.12

Yen 031 032 0.15

British Pound 0.43 0.36 0.24 0.31

Gold 0.44 047 0.15 024 031

Silver 0.42 043 0.15 0.22 0.27 065

Copper 0.52 0.51 0.11 0.24 043 050 0.53

Crudeoil 0.24 024 013 020 020 032 0.14 024

Heatingoil  0.20 0.22 0.04 0.14 0.5 030 0.11 0.15 [J0/87

Naturalgas 0.03 0.08 0.04 -0.04 0.00 0.05 -0.06 0.00 0.08 0.18

Corn 033 035 0.04 009 027 037 040 0.50 0.12 0.03 -0.04

Soybeans | 0.33 0.30 0.03 0.16 0.30 0.33 0.35 040 0.11 0.05 -0.07 [[0.74

Soybeanmeal 0.33 0.25 0.03 0.9 0.19 031 0.32 0.30 0.08 0.02 -0.06 | 0.68 Ho!54N

Soybeanoil | 0.48 0.43 0.11 021 042 040 041 051 017 0.12 -0.04 0.67 088 1072

Wheat 0.30 024 0.02 008 011 031 034 033 0.11 0.04 -0.08 063 051 047 047

Lean hog 0.2 012 008 020 -0.03 000 000 005 010 0.09 011 007 011 012 0.11 0.12

Feedercattle 0.22 0.20 0.03 0.04 0.07 0.10 0.16 030 0.10 0.07 0.12 035 032 032 027 022 0.26

Livecattle | 0.41 0.24 013 0.1 011 017 024 028 0.7 0.07 009 022 022 027 030 023 0.28 063

Note: Pairwise correlations of monthly realized volatility across markets. The darkness of the shading represents the degree

of correlation.

Table 3
Risk premiums for financials and nonfinancials, and their difference.

Financials Nonfinancials Difference

Factor model RV -0.18 -0.29 0.11
[-0.63] [1.62] [0.34]

\Y] 0.10 0.43 -0.32

[0.47] [2.82] [-1.28]

Replicating port. rv -0.25 -0.30 0.05
[-1.13] [-2.14] [0.18]

iv -0.02 0.34 -0.36

[-0.14] [2.95] [-2.02]

Note: The table reports the average risk premiums for RV and IV risks, across financials (first column), across nonfinancials
(second column) and for the difference between the two groups (third column), with corresponding t-statistics in square
brackets. The top panel estimates the risk premiums using the linear factor model; the bottom panel estimates the risk
premiums as the average excess returns of the rv and iv portfolios.

average, since they are scaled by their sample variance.
That said, the test rejects in only 3 of the 19 markets. The
p-value for the S&P 500 is 0.22, similar to the one ob-
tained by Constantinides et al. (2013). The fact that the
model is rejected for only 1 of the 14 nonfinancials sug-
gests that the results for nonfinancials, where the differ-
ences in the pricing of implied and realized volatility are
most pronounced, should be most reliable. The test rejects
for two of the five financial underlyings, which implies that
they are more likely to have specification error.

3.3. Interpretation of the results

How can realized volatility have a negative price of risk,
while uncertainty has a positive risk price? Key to under-
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standing this distinction is noticing that realized volatility
(which is computed by squaring shocks) is strongly domi-
nated by large price movements like jumps, which our em-
pirical results suggest tend to be bad for investors on av-
erage. So it is easy to see how investors might dislike real-
ized volatility, as it captures the occurrence of a large, bad
shock.

On the other hand, innovations in implied volatility are
driven by changes in the perceived uncertainty about good
and bad potential events: so a higher probability of a bad
jump will increase uncertainty, but a higher probability of
a good event (e.g., a new technology) will also increase un-
certainty. Our results show that on net, investors seem to
perceive increases in uncertainty as being associated with
good states of the world.
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Fig. 4. Cross-sectional fit of factor models. For each straddle of maturity one to five months, and for each of the 19 markets, the figure reports the predicted
risk premium against the realized average excess return. Predicted risk premiums are obtained estimating a linear factor model separately in each market.

Section OA.8 in the Online Appendix formalizes this
idea, describing a simple extension of the standard long-
run risk model of Bansal and Yaron (2004) that is consis-
tent with our results on the pricing of both volatility and
uncertainty shocks.

Finally, it is valuable to compare our analysis with
some closely related past work. As discussed above, both
Constantinides et al. (2013, CJS) and Cremers et al. (2015,
CHW) also examine the pricing of uncertainty and realized
volatility in the S&P 500 using factor models. While we
cannot compare our full range of results with theirs, we
can at least see how those for the S&P 500 compare.

The analysis of CJS is closest to us, as they also use
option portfolios as test assets. In Table 8, they report a
premium of approximately zero for shocks to uncertainty
and a large negative premium for realized volatility for the
S&P 500. So consistent with our findings, they find much
stronger pricing of realized than implied volatility, though
their uncertainty premium is less positive. CHW, instead,
use the cross-section of equities as their test assets and
find a more strongly negative premium for uncertainty.
However, they also report returns on an uncertainty hedg-
ing portfolio, which aligns very closely with our analysis in
the next section (see their Table 1). In that case, their re-
sults are quantitatively highly similar to ours. We discuss
this observation further below.

3.4. Is realized volatility about jumps? evidence from
strangles

Similar to others such as Cremers et al. (2015), we have
argued thus far that the exposures to squared returns on
the underlying (or gamma) represent exposure to jump
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risk. While CHW focuses on straddles, we further test the
hypothesis that the premiums are for jumps by examining
returns on strangles. A strangle is, like a straddle, a portfo-
lio long a put and a call, with the delta set to zero here
by construction. However, in the case of a strangle, the
two options are out of the money, with different strikes,
rather than both having the same strike. So whereas the
final payoff of a straddle depends on the absolute value of
the change in the underlying, a strangle only pays off if
the underlying moves sufficiently far from its initial value,
with that required distance being a choice variable.

We examine returns on strangles where the put and
call strikes are one standard deviation unit (scaling by time
to maturity) from the forward price when the portfolio is
formed, so they only have positive payoffs at maturity if
the underlying moves further than that. As with the strad-
dles, we examine two-week returns.

Fig. 5 replicates Fig. 3 for the case of strangles. For the
uncertainty risk premiums, the results are qualitatively and
quantitatively similar to those for straddles: for financials
the premium is close to zero, and for nonfinancials it is
0.42.

It is for the RV/gamma risk premiums that we find a
substantial difference, representing our third main result.
Across the various markets, the premiums are generally
twice as large for strangles as for straddles. Every single
point estimate is now negative, and only one confidence
band contains zero. For financial underlyings, the average
premium is now statistically significant, at -1.54. For nonfi-
nancials and all assets combined, the means are both -1.48
and -1.5, respectively.

These results provide clear evidence that it is really the
tail of the distribution that drives the RV results. The find-
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ing that deep out-of-the-money options have the largest
premiums is well known for the S&P 500. This paper is
novel for showing that the relation of the gamma premium
with moneyness in fact holds across all the markets that
we study, and is strikingly different from the patterns on
uncertainty.

To sum up, Figs. 3 and 5 contain our three main re-
sults. Pervasively across markets, premiums related to vega
(uncertainty) are zero or positive, while premiums for
gamma (jump risk) are significantly negative. Furthermore,
the jump risk premiums are largest for out-of-the-money
options. Economically, the results show that it is periods
with extreme shocks - realized volatility or jumps - that
investors are averse to, rather than simple increases in
forward-looking uncertainty.

4. Theoretical risk exposures of straddles and strangles

We argued heuristically above that straddles and stran-
gles are natural test assets for a factor model involving re-
alized and implied volatility since they have zero delta and
payoffs that are convex in the underlying return. This sec-
tion formalizes that intuition by calculating the theoreti-
cal exposures of options of different maturities to those
shocks, following the analysis of Cremers et al. (2015). Sim-
ilar to their analysis, we then show that we can construct
replicating portfolios that, under the theory, should pro-
vide direct exposure to shocks to either implied or re-
alized volatility. Formally, under the Black-Scholes model,
one portfolio has positive vega and zero gamma, and the
other has positive gamma and zero vega. These portfolios
give an alternative, and in some sense more direct, way of
measuring the risk premiums.

4.1. Return exposures

The exposures of the portfolios studied above to the
risk factors we use in our linear factor model can be ap-
proximated theoretically using the Black-Scholes model, as
in Coval and Shumway (2001), Bakshi and Kapadia (2003),
and Cremers et al. (2015). Online Appendix OA.3 shows
that the partial derivatives of the zero-delta straddle and
strangle return with respect to the underlying futures re-
turn, f, its square, and the change in volatility, can be ap-
proximated as

Ot

3 ~ 0, (4)
821’”‘[ 1
LA LB (5)
3(fe/oe-1)?
Ot (6)

d(Aot/0¢_1) 1
where ¢ is the return on date t of a straddle or strangle
with maturity n, f; is the return on the underlying future,
o; is the implied volatility of the underlying, and A is the
first-difference operator.'?

19 We ignore here the fact that options at different maturities have dif-
ferent underlying futures contracts. If that elision is important, it can be

36

Journal of Financial Economics 142 (2021) 23-45

It is perhaps surprising at first that the exposures are
the same for both straddles and strangles. Intuitively, the
two types of portfolios have the same exposures up to the
second order. Where they differ is in their higher-order ex-
posures, which are naturally larger for the strangles. The
first partial derivative says that the straddles and stran-
gles have close to zero local exposure to the futures re-
turn. The second line says that the exposure of the options
to squared returns on the underlying (realized volatility) is
approximately inversely proportional to time to maturity.
The third line shows that they are also exposed to changes
in expected future volatility, through %’ and that expo-

sure is approximately constant across maturities.

To see how the risk exposures differ in their higher or-
der terms, Fig. OA.4 in the Online Appendix plots the re-
turn on a straddle and a one standard-deviation strangle
as a function of the change in the price of the underly-
ing. It is apparent that the two curves are not just tangent
at zero, but that they have the same curvature, consistent
with having the same second derivative, as in Eq. (5). They
only begin to differ noticeably as the returns get extreme.
So straddles and strangles have equal local exposures to
the underlying, but in the tails, e.g., in response to jumps,
strangles become more sensitive. This shows why strangle
returns help isolate the extra premium earned for exposure
to tail risk.

4.2. Replicating portfolios

Cremers et al. (2015) show that the implied sensitivities
in (4)-(6) give a method for constructing portfolios that
the Black-Scholes model says should give exposures only
to realized volatility, as expressed by (fn,t/at,l)z, or im-
plied volatility, measured by Ao;/o;_1. The method is to
construct, for each market, two portfolios,

5
Vi = ﬂ(ri,l,t —Tise) N (ft/o—t—l)zy (7)
. 5 1
Wie = gTise = zli1e ™ Aot /or_q. (8)

where the approximations follow from Egs. (4)-(6).20
Throughout this section, capitalized RV and IV refer to the
levels of realized and implied volatility, while lower-case
rv and iv refer to the associated portfolio returns. We use
the one- and five-month options to construct the portfo-
lios, since it is exactly five-month implied volatility that
is priced in the main analysis. The iv portfolio is domi-
nated by an investment in the five-month options, with
just a small short position in the one-month options. In
that sense, the iv portfolio is a rather direct claim on ex-
actly the implied volatility priced in the factor model.

The purpose of constructing these portfolios is to give a
simple and direct method of measuring the premiums as-
sociated with realized and implied volatility that does not

expected to appear as a deviation of the estimated factor loadings from
the predictions of the approximations (4)-(6).

20 Note that Eq. (5) gives the second derivative, which has weight 1/2 in
the Taylor approximation. So the loading on the squared future return for
a straddle of maturity n is (2n)~!, which implies that the coefficient for
Eq. (7) is 5/24.
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require full estimation of the factor model. If the loadings
used to construct the portfolios are correct, this method
will also be more efficient. On the contrary, if the assump-
tions of the model are not correct, then the results will be
biased (whereas the factor model will still be correct, as it
estimates the risk exposures instead of using the ones im-
plied by the model). There is thus a bias/variance trade-off
between the factor model, which requires fewer assump-
tions but will have greater estimation error, and the repli-
cating portfolios, which require stronger assumptions but
will have less estimation error.

The key concern, then, is how accurate the Black-
Scholes-implied loadings are. Fig. OA.2 and Table OA.2 in
the Online Appendix show that the theoretical predictions
for the loadings are fairly accurate (though not perfect)
empirically. Online Appendix OA.3 also examines the ac-
curacy of the Black-Scholes approximation for returns in a
simulated setting.

Table OA.2 shows that the biggest deviations from the
model-implied loadings are for the S&P 500 iv portfolio.
In that case, there is a large positive loading on realized
volatility — a GARCH effect - and a large negative load-
ing on the underlying futures return - the leverage ef-
fect. Both should be expected to bias the return on the
iv portfolio down relative to the estimated implied volatil-
ity factor loading from above. The effects are three times
larger for the S&P 500 than for any other market. That
suggests that for measuring pricing of S&P 500 uncer-
tainty, in particular, it is best to use the factor model, as
in Constantinides et al. (2013). For all other markets, in-
stead, the Black-Scholes assumptions appear relatively ac-
curate, so we would expect the results to line up well with
those of the factor model.

Note that even though the rv and iv portfolios theoret-
ically load on separate risk factors, they need not be un-
correlated. It is well known from the GARCH literature, for
example Engle (1982) and Bollerslev (1986), that in many
markets, innovations to realized volatility are correlated
with innovations to implied volatility. Table 4 reports the
correlations between the rv and iv returns in the 19 mar-
kets. GARCH effects appear most strongly for the finan-
cial underlyings and precious metals, for which the aver-
age correlation is 0.44. For the other nonfinancial underly-
ings, the effects are much smaller, and the correlation be-
tween the rv and iv returns is only 0.03 on average (it is
0.09 on average across all nonfinancials). So for the nonfi-
nancials, innovations to realized and implied volatility re-
turns are essentially independent on average. These weak
correlations are valuable for the identification, since they
show that surprises in realized and implied volatility are
far from the same and can be hedged separately using the
rv and iv portfolios.

4.3. Risk premiums

4.3.1. Straddles

The solid blue series in the two panels of Fig. 3 report
annualized Sharpe ratios for the rv and iv portfolios con-
structed from straddles in the 19 markets. As with the fac-
tor model, we begin by focusing on the straddle returns
because they use more liquid near-the-money options.
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The results in Fig. 3 for the rv and iv portfolios are
highly similar to those for the factor model. The iv port-
folios earn returns close to zero on average for the finan-
cial underlyings and returns that are consistently positive
for the nonfinancial underlyings. For the nonfinancials, the
average Sharpe ratio for the iv portfolios is again statisti-
cally significantly positive. As expected, since the iv port-
folios are formed using stronger assumptions, the standard
errors for the risk premiums are tighter than for the factor
model.

The bottom panel of Table 3 summarizes the estimates
for the realized and implied volatility risk premiums for fi-
nancials and nonfinancials computed using the rv and iv
portfolios, and also reports tests for whether the two are
different. In all cases, the premiums for the financials are
insignificant while those for the nonfinancials are signifi-
cant. However, note that there are fewer financial underly-
ings, limiting our statistical power. The difference between
financials and nonfinancials itself is not significant, so we
cannot actually say that there is strong evidence for a dif-
ference between the two in three out of four cases. The
only case where the difference is statistically significant is
for the Sharpe ratio on the iv portfolio.

That difference appears to be driven largely by the fact
that the return on the S&P 500 iv portfolio is very differ-
ent from the estimated risk premium for implied volatility
from the factor model. In fact, the confidence bands do not
even overlap. This result is driven by the fact that there
are much stronger GARCH effects in the S&P 500 than the
other underlyings that we study, creating a bias, as dis-
cussed above (see Table OA.2 showing that the S&P 500 iv
portfolio actually loads strongly on realized volatility). We
thus place relatively less trust in the results from the rv
and iv portfolios (as opposed to the results from the fac-
tor model) for the S&P 500 than the other underlyings, for
which there is very strong agreement between the factor
model and the iv portfolio returns. Even in the case of the
S&P 500, though, the premium for uncertainty shocks is
not statistically significantly negative.

The Sharpe ratios for the rv portfolios are also highly
similar to the estimated risk premiums on realized volatil-
ity in the factor model (even for the S&P 500). The finan-
cial underlyings other than the S&P 500 again have pre-
miums generally close to zero, while the S&P 500 and the
nonfinancials have consistently negative premiums.

The returns on the rv and iv portfolios for the S&P
500 can be compared to those reported in Table 1 of
Cremers et al. (2015). For their analog to our rv port-
folio, they obtain a Sharpe ratio of -0.9, compared to -
1.2 in our case, while for their analog to the iv port-
folio, they report a Sharpe ratio of -0.5, compared to -
0.2 here. In both cases, the confidence bands for our es-
timates easily contain theirs. We thus obtain substantial
agreement with the findings of CHW for returns on op-
tion portfolios. Our results differ from theirs in two key
ways. First, we focus on factor models using options as
test assets, instead of equities. We choose to use options,
similar to Constantinides et al. (2013), because they have
risk exposures very directly tied to uncertainty and volatil-
ity, whereas equity returns have many other risk exposures
that have been explored in the literature. Second, obvi-
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Table 4
Correlations between rv and iv portfolio returns in each market.
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Std(rv)
S&P 500 0.03
T-bonds 0.03
CHF 0.04
JPY 0.04
GBP 0.04
Gold 0.04
Silver 0.04
Copper 0.03
Crude Oil 0.04
Heating oil 0.04
Natural gas 0.04
Corn 0.04
Soybeans 0.04
Soybean meal 0.04
Soybean oil 0.04
Wheat 0.04
Lean hog 0.05
Feeder cattle 0.05
Live cattle 0.04

Std(iv) Corr(rv,iv)
0.08 0.48
0.08 0.01
0.08 0.63
0.08 0.61
0.07 0.41
0.12 0.48
0.08 0.45
0.10 0.03
0.09 0.05
0.08 0.01
0.08 -0.17
0.08 0.06
0.09 0.17
0.11 0.20
0.09 0.21
0.08 0.08
0.10 -0.24
0.10 0.03
0.08 -0.12

Note: The table reports, for each underlying, the standard deviation of the two-week returns to the rv and v portfolios,

and their correlation.

ously, we explore the pricing of options in a wide range
of markets, not just the S&P 500.

4.3.2. Strangles

The results for strangles are again consistent with those
for straddles, but more extreme. In Fig. 5, as in Fig. 3,
the point estimates and confidence bands from the factor
model (red) and the rv and iv portfolios (blue) are simi-
lar, with the model-based rv and iv portfolios again having
narrower confidence intervals, showing that the results are
robust to the estimation method.

We again find that the strangles have much more nega-
tive jump/gamma premiums than the straddles. Since we
showed above that the exposures of the strangles and
straddles are the same up to second order, this section
clearly indicates that it is the difference in higher order
exposures of the different strategies that drives the larger
premiums for strangles.

4.4. Summary

The results in this section are useful for three reasons.
First, they show that our results are not driven by some
hidden detail of the factor model estimation. The rv and
iv portfolios are simple to construct and yield highly
similar results to the factor model, both for straddles and
strangles. So the three key findings, zero or positive premi-
ums for uncertainty, substantially negative premiums for
realized volatility, and even larger premiums for realized
volatility for strangles, appear to be robust.

Second, the replicating portfolios help clarify exactly
what the source of identification is in the factor model. The
options have exposures to implied and realized volatility
that differ across maturities, so including a panel of mul-
tiple maturities allows us to separately measure their pre-
miums.
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Finally, by analyzing the risk exposures of the options,
we can link the factor model estimates back to widely
studied and applied features of options - their greeks. The
estimate of the price of shocks to implied volatility from
the factor model is essentially identical to the Sharpe ratio
on a portfolio with positive vega and zero gamma, while
the estimate of the price of shocks to realized volatility is
almost the same as the Sharpe ratio on a portfolio with
positive gamma and zero vega.

4.5. Combined portfolios

As we discussed in Section 2.3, the uncertainty in our
19 markets is related to various measures of aggregate un-
certainty. It is then natural to ask what the cost of hedging
is for aggregate uncertainty. A simple way to do that is to
buy all the iv or rv portfolios simultaneously. We focus on
just the straddles here since they are most liquid and thus
most feasible for an investor to hold. Since Tables 1 and
2 show that realized and implied volatility are imperfectly
correlated across markets, even larger Sharpe ratios can
be earned by holding portfolios that diversify across the
various underlyings. Table 5 reports results of various im-
plementations of such a strategy. Looking first at the top
panel, the first row reports results for portfolios that put
equal weight on every available underlying in each period,
the second row uses only nonfinancial underlyings, and the
third row only financial underlyings. The columns report
Sharpe ratios for various combinations of the rv and iv
portfolios. The first two columns report Sharpe ratios for
strategies that hold only the rv or only the iv portfolios,
the third column uses a strategy that is short rv and long
iv portfolios in equal weights, while the final column is
short rv and long iv, but with weights inversely propor-
tional to their variances (i.e., a simple risk parity strategy).
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Table 5
Portfolios of rv and iv across markets.
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Panel A: Sharpe ratios rv+v

rv iv Equal weight Risk-parity
All underlyings -0.74 *** 0.49 ** 1.05 *** 0.90 ***
Nonfinancials -0.63 *** 0.62 *** 0.91 *** 0.90 ***
Financials -0.37 ** -0.04 0.42 *** 0.13
Panel B: Skewness rv+v

rv iv Equal weight Risk-parity
All underlyings 1.23 *** 1.82 *** -0.79 *** 1.05 ***
Nonfinancials 2.11 *** 1.55 *** -2.00 *** 0.75 ***
Financials 2.01 *** 2.91 *** -1.40 *** 2.19 ***

Note: Sharpe ratios and skewness of portfolios combining rv and v portfolios across markets. For each panel, the first row
reports a portfolio constructed using straddles from all available markets on each date, the second row using only nonfinancial
underlyings, the third row only financial underlyings. Each column corresponds to a different portfolio. The first column is
an equal-weighted RV portfolio, the second is an equal-weighted IV portfolio, the third is an equal-weighted long-short IV
minus RV portfolio, and the last is the same long/short portfolio but weighted by the inverse of the variance (risk-parity).
*** indicates significance at the 1% level, ** the 5% level, and * the 10% level.

The Sharpe ratios reported in Table 5 are generally
larger than those in Fig. 3. The portfolios that are short rv
and long iv are able to attain Sharpe ratios above one. The
largest Sharpe ratios come in the portfolios that combine
rv and iv, which follows from the fact that they are posi-
tively correlated, so going short rv and long iv leads to in-
ternal hedging. All of that said, these Sharpe ratios remain
generally plausible. Values near one are observed in other
contexts, for example, Broadie et al. (2009) for put option
returns, Asness et al. (2013) for global value and momen-
tum strategies, and Dew-Becker et al., (2017) for variance
swaps.

The portfolios that take advantage of all underlyings si-
multaneously seem to perform best, presumably because
they are the most diversified. While holding exposure to
implied volatility among the financials earns effectively a
zero risk premium, it is still generally worthwhile to in-
clude financials for the sake of hedging.

Finally, the bottom panel of Table 5 reports the skew-
ness of the various strategies from above. One might think
that the negative returns on the rv portfolio are driven by
its positive skewness, but the iv portfolio also is positively
skewed and has positive average returns. So the degree of
skewness does not seem to explain differences in average
returns in this setting.

5. Hedging uncertainty indexes

The results so far give the cost of directly hedging
shocks in commodity markets. This section examines how
options can be used to hedge shocks to macro uncertainty
indexes. Section 2.3 showed that the commodity IVs do a
good job of spanning the macro uncertainty indexes. We
now discuss those indexes in more detail and examine
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the cost of hedging both the implied and realized parts of
macro volatility.

The JLN index is developed in a pair of papers by
Jurado et al. (2015) and Ludvigson et al. (2015). We fol-
low their construction methodology and further extend it
to yield separate measures of uncertainty that pertain to
financial markets, real activity, and goods prices, with the
latter two also being combined into an overall macroeco-
nomic uncertainty index.?! The goal of the JLN framework
is to estimate uncertainty on each date, o?. The method
can also be extended to create a realized volatility index.??
We refer to the JLN uncertainty indexes by JLNU and real-
ized volatility indexes by JLNRV.

The Economic Policy Uncertainty (EPU) index of
Baker et al. (2016) is constructed based on media discus-
sion of uncertainty, the number of federal tax provisions
changing in the near future, and forecaster disagreement.
Unlike JLN, there is no distinction in this case between
volatility and uncertainty, so we treat EPU as measuring
only uncertainty.

21 The construction involves two basic steps. First, realized squared fore-
cast errors are constructed for 280 macroeconomic and financial time se-
ries, of which 134 macro series are from McCracken and Ng (2016), while
the remaining financial indicators are from Ludvigson and Ng (2007). Our
analysis uses code from the replication files of JLN. The macro price se-
ries are defined as those referring to price indexes, and the real series are
the remainder of the macro time series. Denoting the error for series i
as &, there is a variance process, o = E[sl?_r]. So &2, constitutes a noisy
signal about o%. JLN then estimate o from the history of s using a
two-sided smoother and create an uncertainty index as the first principal
component of the estimated aft. For the component indexes, we take the
first principal component of the of[ corresponding to the relevant group
of indicators.

22 This is done by taking the first principal component from the cross-
section of the £, in a given month, instead of the o?.
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Fig. 2 shows that the 19 IVs span most of the varia-
tion in the JLN and EPU uncertainty indexes. We can then
measure risk premiums associated with those indexes by
constructing hedging portfolios using our straddles. For
each index, we obtain the weights for the hedging portfo-
lio from the coefficients of the projection we presented in
Section 2.3. Specifically, for each uncertainty index j, we
estimate the regression

JINU/ =a+ Y bllVi, + ¢,

1

(9)

We then use the risk premiums estimated in the fac-
tor model to calculate a premium for hedging the JLN in-
dexes. In particular, we construct a hypothetical portfolio
that has exposure b{ to AlV;./IV;; ;. The mean return on
that portfolio can be calculated from Eq. (3), while the
standard deviation is obtained from the covariance matrix
of AlV;;/IV;; 1 across i (again weighting by b{ ). The same
method also yields a risk premium for the EPU and JLNRV
indexes (see Online Appendix Fig. OA.1 for the analog of
Fig. 2 for realized volatilities).

The right-hand section of Fig. 3 (red lines) reports the
Sharpe ratios for straddle portfolios hedging the EPU and
JLN indexes, computed using the estimates from the fac-
tor models. Since those hedging premiums are constructed
combining the individual factor premiums, it is not sur-
prising that they are similar. In all three cases, the risk
premium for JLN indexes (financial, macro, and price un-
certainty) is positive, in one case statistically significantly.
Furthermore, the confidence bands rule out economically
large negative premiums: the lowest confidence band only
runs to -0.32. For EPU we find a point estimate of approxi-
mately zero (-0.03), though a confidence band that runs to
-0.49.

The right-hand section of the bottom panel of Fig. 3 re-
ports the returns from the JLN realized volatility hedging
portfolios (again, the red lines use the risk premiums es-
timates from the factor model). Again, consistent with the
fact that the RV risk premiums themselves are consistently
negative, hedging the JLN indexes for realized volatility
historically has a positive cost. For all three subindexes, the
risk premiums are very negative, with the Sharpe ratios for
financial, real, and price volatility at -1.15, -0.62, and -0.65,
respectively, all three of which are statistically significant.
So the conclusions from hedging the JLN and EPU indexes
are highly similar to those in the main analysis, providing
further evidence that in the macroeconomy, it is realized
volatility that is priced, rather than uncertainty about the
future. The blue lines in the figure, which use the esti-
mates from the rv and iv portfolio, show similar results,
with the uncertainty Sharpe ratios slightly lower but still
statistically indistinguishable from zero, and the realized
volatility premiums strongly negative. Fig. 5 shows that the
results for straddles are again similar, with hedging real-
ized volatility in this case again carrying a more negative
premium.

6. Robustness

This section examines some potential concerns about
the robustness of the results.
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6.1. One-week holding period returns

Our main analysis is based on two-week holding period
returns for straddles, which strike a balance between hav-
ing more precise estimates of risk premiums and reducing
the impact of measurement error in prices. We have re-
peated all of our analysis using one-week holding period
returns, and find very similar results. Online Appendix Fig.
OA.6 is the analog of Fig. 3, but constructed using one-
week returns. The results are qualitatively and quantita-
tively similar to the baseline.

6.2. Split sample and rolling window results

To address the concern that the results could be driven
by outliers (though note that there would need to be out-
liers in all 19 markets), Figs. OA.7 and OA.8 replicate the
main results in Fig. 3, but splitting the sample in half (be-
fore and after June 2000). The confidence bands are natu-
rally wider, and the point estimates vary more from mar-
ket to market in the two figures. Nevertheless, the qualita-
tive results are the same as in the full-sample case, show-
ing that realized volatility earns a negative premium while
the premium on implied volatility is positive.

To further evaluate the possibility that the results are
driven by a small number of observations, Fig. OA.9 plots
Sharpe ratios for the rv and iv portfolios in five-year rolling
windows for each of the 19 markets, as well as for the
equal-weighted portfolios of all 19 markets. The sample
Sharpe ratios are reasonably stable over time. In no case
do the results appear to be driven by a single outlying pe-
riod or episode. Note that these results are not informa-
tive about variation in the conditional risk premium; with
a five-year window, the standard error for the Sharpe ra-
tios is 0.45, so even if the true conditional Sharpe ratios
are constant, the five-year rolling estimates should display
large amounts of variation over time.

6.3. Alternative maturities

Our main results use the five-month maturity for im-
plied volatility, both in the factor model and as the sec-
ond leg in the rv and iv portfolios. Fig. OA.10 in the Online
Appendix replicates the analysis using two-month implied
volatility instead in both cases. The results are qualitatively
and quantitatively similar to the main specification. Note
that the GARCH effects that bias the estimates for the iv
portfolio risk premium (blue) in the top panel downward
relative to the estimates from the factor model (red) are
stronger when using two-month IV instead of five-month
IV (see the loadings of the iv portfolio on realized volatil-
ity in Table OA.4).

To help understand why the maturity choice does not
have strong effects, the top panel of Table OA.3 in the
Online Appendix reports loadings of the rv portfolio on
changes in implied volatility at maturities of one to five
months. In all cases, the coefficients are close to zero -
no larger than 0.1 - indicating that the exposures to im-
plied volatility at any maturity are economically small, es-
pecially in comparison to the loading on realized volatility,
which can be seen from Table OA.2 to be closer to one.
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The bottom panel shows the same loadings, but for the
RV-hedging portfolio built using the factor model. By con-
struction, this portfolio has loading one on RV and zero on
five-month IV, as the last column of the table highlights:
see Online Appendix Section OA.2 for more details.

6.4. Weighted least squares

Johnson (2019) argues that there can be efficiency gains
from weighting by implied volatility in estimating risk pre-
miums. We explore that in Fig. OA.11 in the Online Ap-
pendix, which reports the risk premiums (computed with
the factor model) with and without weighting by implied
volatility. Weighting drives most of the risk premiums to
be less negative or more positive, but the patterns all re-
main qualitatively and quantitatively similar. The premium
for implied volatility shocks becomes even more strikingly
positive.

6.5. Pricing the independent parts of realized and implied
volatility

The main results above report returns associated with
assets that hedge innovations to realized and implied
volatility. Table 4 shows that those returns are positively
correlated: months with increases in realized volatility also
tend to have increases in implied volatility. A natural ques-
tion is what would happen if we were to construct a port-
folio that loaded on the independent part of those re-
turns, e.g., an increase in implied volatility holding real-
ized volatility fixed. Section OA.6 in the Online Appendix
reports an SDF-based analysis that prices the independent
components and shows that the results are similar to the
main specification (see Fig. 0A.12).

6.6. Oil and gas equity options

Since the stock returns of firms in the energy sector are
naturally exposed to changes in energy prices, it is natural
to ask whether returns on their options behave similarly to
what we report for oil and gas futures options. We obtain
data from Optionmetrics on firms with an Optionmetrics
industry code between 120 and 125, corresponding to the
energy sector. We then construct rv and iv portfolios for
those firms using the same methods as for the main analy-
sis, again with maturities of one and five months. We con-
struct two-week returns and sum them across whatever
firms are available on each date, weighting by market capi-
talization. The Optionmetrics data covers the period 1996-
2018.

Sharpe ratio

v -0.56

95% CI [-1.02,-0.10]
iv 0.05

95% Cl [-0.42,0.52]

The Sharpe ratios for the rv and iv portfolios for oil and
gas companies are shown above. Similar to the main re-
sults, we obtain a significantly negative premium on real-
ized volatility and a marginally positive premium on im-
plied volatility. The premium for the iv portfolio for oil and
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gas companies is less positive than for crude oil futures op-
tions, but more positive than for S&P 500 index options. In
other words, the results imply that options on oil and gas
companies behave as though they are a mixture of options
on the S&P 500 and on crude oil, which is not an unreal-
istic desciption of oil and gas companies.

Because of the relatively short sample compared to the
main results, this analysis has relatively low power. The
point estimate for rv is outside the confidence band for
iv and vice versa, but their confidence bands do overlap
and the Sharpe ratios are not statistically significantly dif-
ferent from each other. That also illustrates the benefit in
the main analysis of using information from many different
markets to help increase estimation power. Nevertheless,
the results in this section are consistent with our main
findings, if statistically weaker. Section OA.7 further ex-
tends these results by examining options on energy sector
ETFs and finds similar results.

6.7. Liquidity

If the options used here are highly illiquid, the analysis
will be substantially complicated for three reasons. First,
to the extent that illiquidity represents a real cost faced by
investors, such as a bid/ask spread, then returns calculated
from settlement prices do not represent returns earned by
investors. Second, illiquidity itself could carry a risk pre-
mium that the options might be exposed to. Third, bid/ask
spreads represent an added layer of noise in prices. The
identification of the premiums for realized volatility and
uncertainty depends on differences in returns on options
across maturities, so what is most important for our pur-
poses is how liquidity varies across maturities. This sec-
tion shows that the liquidity of the straddles studied here
is generally highly similar to that of the widely studied
S&P 500 contracts traded on the CBOE, and the liquidity
does not appear to substantially deteriorate across maturi-
ties. It is important to note that measuring trading costs
is nontrivial, especially for complex orders, and bid/ask
spreads are not necessarily the best measure of the true
cost of liquidity. See Muravyev and Pearson (2020) for a
detailed analysis.

While a long history of bid/ask spreads is not available
to us, we obtained posted bid/ask spreads for the options
closest to the money on Friday, 8/4/2017 for our 19 con-
tracts plus the CBOE S&P 500 options at maturities of one,
four, and seven months.”> Those spreads are plotted in
Fig. OA.13. For the majority of the options, the spreads are
less than 3%, consistent with the 4.1% bid/ask spread for
one-month S&P 500 options at the CBOE. Across nearly all
the contracts, the posted spreads again decline with matu-
rity, and for 10 of the 19 contracts the one-month posted
spreads are nearly indistinguishable from that for the
S&P 500, which is typically viewed as a highly liquid mar-
ket and where incorporating bid/ask spreads generally has
minimal effects on return calculations (Bondarenko, 2014).

23 Longer histories of bid/ask spreads for options are available for pur-
chase from the CME (at significant cost), which would enable these re-
sults to be extended.
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Note that the decline with maturity is relative to the price
of the options themselves, not in absolute terms.

Fig. OA.13 yields two important results. First, it shows
that the liquidity of the straddles is reasonably high, in
the sense that posted spreads are currently relatively nar-
row in absolute terms for most of the contracts and that
they compare favorably with spreads for the more widely
studied S&P 500 options traded at the CBOE. Second, liq-
uidity does not appear to deteriorate as the maturity of
the options grows, and in fact in many cases there are
improvements with increasing maturities, again consistent
with CBOE data.

Section OA.3.5 in the Online Appendix reports statistics
for volume across maturities, showing that the markets are
generally fairly similar. Section OA.3.6 reports an additional
robustness test that measures returns using a method that
is robust to certain types of measurement errors in prices,
showing that the main results are essentially identical.

Finally, it is useful to note that while the liquidity of
option markets changed significantly in the past 30 years,
the patterns in risk premiums for the rv and iv portfo-
lios appear stable over time (see, for example, the rolling
Sharpe ratios of Fig. OA.9), suggesting that liquidity is not
the main driver of our results.

Even though the liquidity is similar across many of the
markets, one might still ask how trading costs affect the
returns we have been studying. Any trading cost will lower
the return of a portfolio, regardless of whether an investor
is long or short. By studying returns based on settlement
prices, we are essentially looking at the return averaged
across what the buyer and seller receive. For example, if
the return on a portfolio based on settlement prices is 10%
and there are total trading costs to each side of 1%, then
the buyer earns a return of 9% while the seller has a loss
of 11%. Looking at prices is therefore natural for illustrating
the return that the average investor sees.

7. Conclusion

This paper studies the pricing of uncertainty and real-
ized volatility across a broad array of options on financial
and commodity futures. Uncertainty is proxied by implied
volatility, which theoretically measures investors’ condi-
tional variances for future returns, and a number of uncer-
tainty indexes developed in the literature. Realized volatil-
ity, on the other hand, measures how large realized shocks
have been. In modeling terms, if &1 ~N(0,0?), uncer-
tainty is o2, while volatility is the realization of &?.

A large literature in macroeconomics and finance has
focused on the effects of uncertainty on the economy.
This paper explores empirically how investors perceive un-
certainty shocks. If uncertainty shocks have major con-
tractionary effects so that they are associated with high
marginal utility for the average investor, then assets that
hedge uncertainty should earn negative average returns.
On the other hand, the finance literature has recently ar-
gued that in many cases uncertainty can be good. For ex-
ample, during the late 1990s, it may have been the case
that investors were not sure about how good new tech-
nologies would turn out to be.
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The contribution of this paper is to construct hedging
portfolios for a range of types of macro uncertainty, includ-
ing interest rates, energy prices, and uncertainty indexes.
The cost of hedging uncertainty shocks reveals the relative
importance of good and bad types of uncertainty. Further-
more, using a wide range of options is important for cap-
turing uncertainty about the real economy and inflation, as
opposed to just about financial markets. The empirical re-
sults imply that uncertainty shocks, no matter what type
of uncertainty we look at, are not viewed as being nega-
tive by investors, or at least not sufficiently negative that
it is costly to hedge them. Financial uncertainty appears to
be roughly equally split between the good and bad types,
while nonfinancial uncertainty is relatively more strongly
driven by good uncertainty - the cost of hedging nonfi-
nancial uncertainty shocks is negative.

What is highly costly to hedge is realized volatility.
Portfolios that hedge extreme returns in futures markets
and hence large innovations in macroeconomic time series
earn strongly negative returns, with premiums that are in
many cases one to two times as large as the premium on
the aggregate stock market over the same period. So what
is consistently high in bad times is not uncertainty, but re-
alized volatility. Periods in which futures markets and the
macroeconomy are highly volatile and display large move-
ments appear to be periods of high marginal utility, in
the sense that their associated state prices are high. This
is consistent with (and complementary to) the findings in
Berger et al. (2020), who provide VAR evidence that shocks
to volatility predict declines in real activity in the future,
while shocks to uncertainty do not.

Berger et al. (2020) show that the VAR evidence and
pricing results for realized volatility are consistent with
the view that it is downward jumps in the economy that
investors are most averse to. They show that a simple
model in which fundamental shocks are both stochas-
tically volatile and negatively skewed can quantitatively
match the pricing of uncertainty and realized volatility,
along with the VAR evidence. Similarly, Seo and Wa-
cheter (2018a); Seo and Wachter (2018b) show that neg-
ative skewness can explain the pricing of credit default
swaps and put options. This paper thus also contributes to
the growing literature studying the effects of skewness. In
a world where fundamental shocks are negatively skewed,
the most extreme shocks - those that generate realized
volatility - tend to be negative, which can explain why re-
alized volatility would be so costly to hedge.

Appendix A. Data filters and transformations

The observed option prices very often appear to have
nontrivial measurement errors. This section describes the
various filters we use and then provides more information
about the specifics of the data transformations we apply.
Code is available on request.

First, we note that the price formats for futures and
strike prices for many of the commodities change over
time. That is, they will move between, say, 1/8ths, 1/16ths,
and pennies. We make the prices into a consistent decimal
time series for each commodity by inspecting the prices
directly and then coding by hand the change dates.
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We then remove all options with the following proper-
ties:

1. Strikes greater than five times the futures price

. Options with open interest below the fifth percentile
across all contracts in the sample

. Price less then five ticks above zero

. Maturity less than nine days

. Maturity greater than eight months

. Options with prices below their intrinsic value (the
value if exercised immediately)

N

(<2 1) I SN OV

Note that in our baseline results, we do not remove
options for which we have no volume information, or for
which volume is zero. However, we have reproduced our
main analysis (Fig. 3) including that filter and find, if any-
thing, stronger results. We report them in Online Appendix
Fig. OA.5.

We then calculate implied volatilities using the Black-
Scholes formula, treating the options as though they are
European. We also replicate the analysis using American
implied volatilities and find nearly identical results. The
reason for this is that in most cases we ultimately end up
converting the IVs back into prices, meaning that any er-
rors in the pricing formula are largely irrelevant: it is just
a temporary data transformation, rather than actually rep-
resenting a volatility calculation.

The data are then further filtered based on the IVs:

1. Eliminate all zero or negative IVs

2. All options with IV more than 50% (in proportional
terms) different from the average for the same under-
lying, date, and maturity

3. We then filter outliers along all three dimensions,
strike, date, and maturity, removing the following:

(a) If the IV changes for a contract by 15% or more on a
given day then moves by 15% or more in the oppo-
site direction in a single day within the next week,
and if it moves by less than 3% on average over that
window, for options with maturity greater than 90
days. This eliminates temporary large changes in IVs
that are reversed, which tend to be observed early
in the life of the options.

If the IV doubles or falls by half in either the first or

last observation for a contract

If, looking across maturities at a given strike on a

given date, the IV changes by 20% or more and then

reverses by that amount at the next maturity (i.e.,

spikes at one maturity). This is restricted to maturi-

ties within 90 days of each other.

(d) If the last, second to last, or third to last IV is 40%
different from the previous maturity

(e) If, looking across strikes at a given maturity on a
given date, the IV changes by 20% and reverses at
the next strike (for strikes within 10% of each other)

(f) If the change in IV at the first or last strike is greater
than 20%, or the change at the second or second to
last option is greater than 30%

—_ —
(g) o
— Nl

At-the-money (ATM) IVs are constructed by averaging the
IVs of the options with the first strike below and above the
futures price. The ATM IV is not calculated for any obser-
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vation where we do not have at least one observation (a
put or a call) on both sides of the futures price.

To calculate ATM straddle returns for each maturity, we
interpolate linearly between the IVs of the two closest out-
of-the-money options on either side of the spot, and use
this to compute the implied price of the ATM straddle at
the beginning of the holding period; similarly, we inter-
polate linearly the IVs of those options at the end of the
holding period, and obtain the corresponding price of the
straddle at the end of the holding period. These prices are
then used to compute the holding period return. Finally,
to calculate returns of straddles at standardized maturi-
ties, we interpolate linearly the returns across maturities
(which corresponds to a feasible portfolio). If options are
not available on the maturities on both sides of the target,
then we use a single straddle if it has a maturity within 35
days of the target maturity.

Appendix B. Random effects models

Denote the vector of true Sharpe ratios for the straddles
in market i as sr;. Our goal is to estimate the distribution
of sr; across the various underlyings. A natural benchmark
distribution for the means is the normal distribution,

st; ~ N(sr, Zsr) (B.1)

This section estimates the parameters s and X, where
s represents the high-level mean of Sharpe ratios across
all the markets, and X, describes how the market-specific
means vary. The estimates of the market-specific Sharpe
ratios differ noticeably across markets, but much of that
variation is likely driven by sampling error. ThetermXs; is
an estimate of how much the true Sharpe ratios vary, as
opposed to the sample estimates.

Denote the sample estimate of the Sharpe ratio in each
market as S7;, and the stacked vector of sample Sharpe ra-

tios as St = [sAr’lsAr’z]/ Similarly, denote the vector of

true Sharpe ratios as sr = [srg,sré, . .]/. Under the central
limit theorem,

ST = N(sr, X&), (B.2)

where = denotes convergence in distribution and the co-
variance matrix Xg depends on the covariance between all
the returns, across both maturities and underlyings, along
with the lengths of the various samples.?* Online Appendix
OA.4 describes how we construct Xg.

The combination of (B.1) and (B.2) represents a fully
specified distribution for the data as a function of us and
Y. It is then straightforward to construct point estimates
and confidence intervals for us and Xg with standard
methods.

To allow for the possibility that average returns dif-
fer between the financial and nonfinancial underlyings,
the mean in the likelihood can be replaced by s + pplf,

24 More formally, we would say that st properly scaled by the square
root of the sample size converges to a normal distribution. The expression
(B.2) implicitly puts the sample size in Xg. The derivation of this result is
a straightforward application of the continuous mapping theorem, nearly
identical to the proof that a sample t-statistic is asymptotically normally
distributed.
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where up is the difference in Sharpe ratios and Ir is a 0/1
indicator for whether the associated underlying is finan-
cial. We calculate the sampling distribution for the esti-
mated parameters through Bayesian methods, treating the
parameters as though they are drawn from a uniform prior.
The point estimates are therefore identical to MLE, and the
confidence bands represent samples from the likelihood.>
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