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A.1 Data quality

In this paper, we introduce two new data sets on variance swaps. Given that the data

sets are new in the literature, we perform here a number of tests to ensure the quality of the

data.

Data set 2 (which contains monthly quotes from Markit, aggregated from many dealers)

is constructed in the same way and by the same company as the CDS data set from the

same firm; this CDS data is known to be a high-quality data set, and is the most widely

used data set in research on credit default swaps (Mayordomo, Pena, and Schwartz (2014)).

In addition, Markit provides data on the number of quotes obtained from individual dealers,

a measure of the depth of the market. The average number of quotes (11) is in the same

range (8-15) of the typical number of quotes for CDS spreads, indicating that approximately

as many large dealers trade trade in variance swaps as they trade in CDS.

Next, we note that unlike in the case of CDS, for the case of variance claims we actually

observe the prices in many related markets, which we use to validate our variance swap data.

Our data quality check follows four main steps.

1. We confirm that in both data sets prices display a large amount of month to month

variation, and the autocorrelations of price changes are close to zero for all maturities

(non-zero autocorrelations would indicate that prices are stale).

2. We check that the data in Data set 1 and Data set 2 correspond almost perfectly for

the dates and the maturities for which they overlap.
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3. We check that our quotes correspond to actual trades we can observe for a period of

time (using data from DTCC on actual transactions).

4. We check the correspondence between variance swap, VIX, and VIX futures data,

which overlap for a substantial amount of time and maturities.

A.1.1 Check 1: Price changes in the two data sets

A first data quality check is to ensure that the quotes and prices are updated in a timely

way and do not contain stale information.1 To begin with, we verify that prices always

change month to month, across all data sets, all securities, and all months (with one single

exception in one month and for one maturity only out of 16,928 observations, i.e., in 0.006%

of the data). This reflects the fact that our quotes are updated both by the dealers providing

quotes to Markit (Data set 2), and by the hedge fund that kept the price records forming

Data set 1.

A second check is whether prices changes are autocorrelated in any apparent way, in any

data set and for any maturity (we have 6 maturities available in the raw data for the first

data set, and 10 for the second one). Among the 16 cases, none of the autocorrelations are

greater than 0.14, nor statistically significant even at the 10% level. Delayed or incomplete

adjustment of reported prices may result in significant measured autocorrelation of price

changes, but we find no evidence of this in our data.

A.1.2 Check 2: Data set 1 vs. Data set 2

Next, we check the two data sets against each other. Data set 1 contains monthly data

since 1996, whereas Data set 2 contains monthly data since 2006. For the period 2006-2013,

the two data sets overlap.

The average correlation of prices in the two data sets is 0.999, with the minimum cor-

relation for any maturity occurring for the 30-day maturity, where it drops to 0.997. Price

changes are also extremely highly correlated, mostly above 0.99 (with the minimum being

0.98).

We also check whether either of the two data sets predicts price changes in the other, a

sign of differing quality among the data sets. No price change in one data set significantly

or economically predicts price changes in the other data set.

1For this analysis, we focus only on quotes we actually observe from the source, with no interpolation.
Interpolation is however needed for Markit data after 2008, where we observe fixed calendar date maturities.
For the Markit dataset, we therefore focus on the maturities around which we see most quotes, so that the
interpolation needed is minimal: 1,2,3, 6, 12, 24, 36, 60, 84, 120.
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We conclude that the two data sets essentially agree on all prices reported.

A.1.3 Check 3: Quotes vs. actual trades

As a third quality check, we compare the quotes from our main data set to the prices

of actual transactions reported by the Depository Trust & Clearing Corporation (DTCC),

which has collected data on all trades of variance swaps in the US since 2013.2

Appendix Figure A.1 shows the distribution of the percentage difference between our

quotes and the transaction prices for different maturity baskets. Quotes and transaction

prices are in most cases very close, with the median absolute percentage difference across all

maturities approximately 1 percent. We conclude that our quotes reflect the prices at which

transactions occur with a high degree of accuracy.

A.1.4 Check 4: Variance Swaps vs. VIX vs. VIX Futures

As discussed in the paper, in addition to the two data sets on variance swaps we also

observe a term structure of synthetic variance swap prices (VIX) up to 12 months maturity,

and of VIX futures (which are exchange-traded contracts) up to 6 months maturity. The

three data sets come from entirely independent sources: variance swaps are traded over

the counter, the VIX is constructed using options, and VIX futures are exchange traded.

These additional data sources are affected by different liquidity and trading setups relative

to variance swaps, and if those were particularly important in this market one would expect

to find large deviations between these markets and the variance swap market. Instead, we

show now that the three markets move essentially together at all maturities.

A.1.4.1 Variance Swaps vs. the VIX

The correlation of variance swap prices with the VIX at corresponding maturities is

above 0.99 at all maturities. The correlation of price changes is more noisy, but still 0.96 on

average across maturities and never below 0.94. None of the price changes in one data set

helps in predicting price changes in another data set, indicating that no data set is reacting

to information later than the other.

We have also compared our variance swap prices with the VIX computed by CBOE

(available from 2008 on, and for maturities 3 and 6 months). The CBOE series are denoted

VXV and VXMT. The correlation between the 3-month variance swap price and VXV is

2DTCC was the only swap data repository registered under the Dodd–Frank act to collect data on variance
swaps in 2013. The Dodd–Frank act requires that all swaps be reported to a registered data repository.
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.99, and the correlation of changes is .9. The correlation between the 6-month variance swap

price and VXMT is .99, and the correlation of changes is .92.

A.1.4.2 Variance Swaps vs. VIX futures

Since VIX futures are claims to the VIX in n periods, they are equivalent to forward

variance claims with maturity n+ 1 (apart of a small convexity adjustment due to the fact

that the payoff of VIX futures is expressed in volatility, not variance, units). The correlation

of prices is on average 0.993, and always at least 0.992. The correlation of price changes is

0.98 on average, and always at least 0.94. No significant predictive relation exists between

price changes from the two sources, except that variance swaps predict VIX futures price

changes with a t-stat of 2.08 in only one case (one significant case out of the many predictive

tests we ran is not an indication that indeed our variance swap prices data is better than

the VIX futures data, as it is likely only due to noise).

All of our tests of data quality suggest that the variance swap data is high quality, and

displays no indication of bad reporting, stale prices, or differential price behavior due to

different liquidity, compared to the other data sources.

A.2 Synthetic variance swap prices

We construct option-based synthetic variance claims for maturity n, V IX2
n,t using the

methods described by the CBOE (2009) in their construction of the VIX index, using data

from Optionmetrics covering the period 1996 to 2013.

In particular, we construct V IX2
n,t for maturity n on date t as

V IX2
n,t ≡

2

n

∑
i

∆Ki

K2
i

exp (−nRn,t)P (Ki) (A.1)

where i indexes options; Ki is the strike price of option i; ∆Ki = Ki+1−Ki−1

2
unless i is the

first or last option used, in which case ∆Ki is just the difference in strikes between Ki and

its neighbor; Rn,t is the n-day forward yield (from Fama and Bliss (1987)); and P (Ki) is

the midpoint of the bid-ask spread for the out-of-the-money option with strike Ki. The

summation uses all options available with a maturity of n days. We deviate slightly here

from the CBOE, which drops certain options with strikes very far from the current spot. For

each t and n, we require the presence of at least 4 out-of-the-money calls and puts. We create

V IX2
n,t for all monthly maturities by interpolating between available option maturities, using
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the same techniques as the CBOE.

Under the assumption that the price of the underlying follows a diffusion (i.e. does not

jump), it is the case that

V IX2
n,t = EQ

t

[ˆ t+n

t

σ2
jdj

]
(A.2)

≈ EQ
t

[
n∑
j=1

RVt+j

]
(A.3)

where σ2
t is the instantaneous volatility at time t.3 The second line simply notes that the

integrated volatility is approximately equal to the sum of squared daily returns (where the

quality of the approximation improves as the sampling interval becomes shorter). In other

words, when the underlying follows a diffusion, V IX2
n,t corresponds to the price of an idealized

variance swap where the squared returns are calculated at arbitrarily high frequency.

Given V IX2
n,t prices at the monthly intervals, we also construct forward variance claims,

V IXFn,t as

V IXFn,t = V IX2
n,t − V IX2

n−1,t (A.4)

The forward prices obtained from options are very close to those obtained from variance

swaps. Figure 6 in the text compares the two curves for the S&P 500. Figure A.5 compares

the curves for the STOXX 50, FTSE 100 and DAX, and shows that the curves are similar

for international markets as well (though in that case there is more noise).

A.3 Decomposing the sources of variation of variance

swap prices

In this section we investigate whether the variation in variance swap prices is primarily

driven by changes in expected future volatility or changes in risk premia.4

Using the definition of forward variance claims, the following identity holds, for each

maturity n:

F n
t − F 0

t = [EtRVt+n −RVt] +

[
−Et

n−1∑
j=0

rn−jt+1+j

]
(A.5)

where rnt is the one-period return of the n-period forward claim. An increase in the n-

3See Carr and Wu (2009).
4A similar exercise was conducted by Mixon (2007), using S&P 500 options to predict future implied

volatility.
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period forward variance price must predict either an increase in future realized variance or

lower future variance risk premia. Following Fama and Bliss (1987) and Campbell and Shiller

(1991), we can then decompose the total variance of F n
t −F 0

t into the component that predicts

future RV , and the component that captures movements in risk premia. Note that just as

in Fama and Bliss (1987) and Campbell and Shiller (1991), we perform this decomposition

in changes (predicting the change in volatility rather than the level of volatility), because

the previous empirical literature and our term-structure estimates of Section A.6 highlight

the presence of a very persistent factor in the volatility process.

The right side of Table A.2 shows this decomposition for different maturities between

1 month and 1 year. We see that most of the variation in variance swap prices can be

attributed to movements in the expectation of future realized variance, not risk premia. In

particular, at horizons of 3 to 12 months, essentially all the variation in prices is due to

variation in expected volatility rather than variation in risk premia.

At the same time, we know from Table2 and Figure 1 that prices of both short-term and

long-term claims vary substantially: this indicates that the expectation of future realized

variance changes dramatically over time. For example, the standard deviation of innovations

in the 12-month forward claim is 17 percent per year. Given the finding in this section that

the variance of F 12
t is driven entirely by changes in volatility expectations, we see that

investors’ expectations of future volatility in fact vary substantially over time.

A.4 More realistic trading strategies

In this section we report the Sharpe ratios on trading strategies designed to capture

the pricing of variance risk at different horizons while trying to incorporate more realistic

liquidity and trading costs. We consider a trading strategy that rolls over the 1-month

variance swap (thus getting exposure to RV), and a trading strategy exposed to news about

volatility 6 to 12 months in the future (i.e. a forward on the realized volatility 6 to 12 months

ahead). As discussed more below, this 6/12 strategy allows to easily capture the pricing of

future volatility while at the same time minimizing the actual amount of trading required

(since we consider a 6-month holding period return).

We design the trading strategies to have the following features. First, computing their

returns does not require interpolation, since they only trade variance swaps at maturities

for which we directly observe quotes in our data set. Second, we explicitly account for the

bid-ask spread in computing the returns to the strategies. Third, we express our trading

strategies directly in terms of variance swaps, not forwards, since what market participants
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can actually trade on the markets are variance swaps. Fourth, we consider 6-month holding

period returns for the 6/12 strategy, so that all trades involve variance swaps with maturities

of either 6 months or 12 months, which are commonly-traded maturities in the variance swap

market; in addition, to implement this trading strategy one needs to trade only twice a year,

mitigating liquidity concerns.

The first trading strategy buys every month a 1-month claim to volatility, collects the

payoff at the end of the month (RV), and keeps rolling this investment over. This trading

strategy is subject to transaction costs at the time of buying the 1-month variance swap,

but incurs no trading cost when collecting realized variance at the end of each month.

The 6/12 trading strategy constructs an artificial forward to the variance 6 to 12 months

ahead. To do so, it goes long a 12-month variance swap and short a 6-month variance swap.

It then holds this position for 6 months. Note that during these 6 months, the RV paid by

the two contracts completely offset each other. After 6 months, the 6-month variance swap

has expired, and the 12-month swap has become a 6-month variance swap, which is then sold

on the market. This strategy therefore incurs transaction costs two times: at inception (for

the long 12-month position and the short 6-month position) and at the end of the holding

period (when the 6-month variance swap is sold).

Table A.1 reports the Sharpe ratios for the two trading strategies. We report the results

for both a long and a short position, and also show in the last column the difference in

Sharpe ratios. The results show that after accounting for transaction costs, strategies directly

exposed to realized variance yield much higher risk premia than strategies exposed to news

about future variance (in this case, 6 to 12 months ahead). Accounting for the bid-ask

spread has minimal effects on the results, mainly because the bid-ask spread does not vary

by maturity within the first year of maturity.

A.5 A no-arbitrage model

In this section, we extend the pricing results from the main text by considering a more

formal estimation. We analyze a standard no-arbitrage term structure model for variance

swaps. The model delivers implications strongly supportive of our reduced-form results.

Because the no-arbitrage model uses the prices of the variance swaps, rather than just their

returns, and because it uses a full no-arbitrage structure, it is able to obtain much more

precise estimates of risk prices. We show that not only are the risk prices on the level and

slope factors statistically insignificant, but they are also economically small.

The no-arbitrage model has three additional advantages over the reduced-form analysis:
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it explicitly allows for time-variation in the volatility of shocks to the economy and risk prices,

the standard errors for the risk prices take into account uncertainty about the dynamics of

the economy (through the VAR), and it links us more directly to the previous literature.

Furthermore, because the inputs to the estimation of the no-arbitrage model are the observed

variance swap prices rather than monthly returns, the results in this section do not rely on

any interpolation and we can simultaneously use the full time series from 1996 to 2013 and

every maturity from one month to 14 years.

Further results on the details of this model are in section A.6.

A.5.1 Risk-neutral dynamics

We assume that the term structure of variance swaps is governed by a bivariate state

vector (s2
t , l

2
t )
′. Rather than state the factors as a level and slope, we now treat them as

a short- and a long-term component, which will aid in the estimation process. s2
t is the

one-month variance swap price: s2
t = EQ

t [RVt+1]. The other state variable, l2t , governs the

central tendency of s2
t .

We begin by specifying the conditional risk-neutral mean of the states,

EQ
t


 s2

t+1

l2t+1

RVt+1


 =

 ρQs 1− ρQs 0

0 ρQl 0

1 0 0


 s2

t

l2t

RVt

+

 0

vQl
0

 (A.6)

where vQl is a constant to be estimated which captures the unconditional mean of realized

variance. l2t can be viewed as the risk-neutral trend of s2
t . The first two rows of (A.6) are the

discrete-time counterpart to the standard continuous-time setup in the literature, e.g. Egloff,

Leippold, and Wu (2010) and Ait-Sahalia, Karaman, and Mancini (2014).5 We diverge from

Egloff, Leippold, and Wu (2010) and Ait-Sahalia, Karaman, and Mancini (2014) in explicitly

specifying a separate process for realized variance, noting that it is not spanned by the other

shocks. The specification of a separate shock to RVt+1 allows us to ask how shocks to both

realized variance and the term structure factors are priced.6

5For admissibility, we require that 0 < ρQs < 1, ρQl > 0, and vQl > 0. These restrictions ensure that
risk-neutral forecasts of s2t and l2t , hence variance swap prices at various maturities, are strictly positive.

6From a continuous-time perspective, it is not completely obvious how to think about a ”shock” to realized
variance that is completely transitory. There are two standard interpretations. One is that the innovation in
RVt+1 represents the occurrence of jumps in the S&P 500 price. Alternatively, there could be a component of
the volatility of the diffusive component of the index that has shocks that last less than one month. At some
point, the practical difference between a jump and an extremely short-lived change in diffusive volatility is
not obvious. The key feature of the specification is simply that there are shocks to the payout of variance
swaps that are orthogonal to both past and future information contained in the term structure.
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Given the assumption that s2
t = EQ

t [RVt+1], the price of an n-period variance swap V Snt

is

V Snt = EQ
t

[
n∑
i=1

RVt+i

]
= EQ

t

[
n∑
i=1

s2
t+i−1

]
(A.7)

which can be computed by applying (A.6) repeatedly, and which implies that V Snt is affine

in s2
t and l2t for any maturity.

A.5.2 Physical dynamics and risk prices

Define Xt ≡ (s2
t , l

2
t , RVt)

′. We assume that X follows a VAR(1) under the physical

measure:7  s2
t+1

l2t+1

RVt+1

 =

 0

vQl
0

+

 ρs 1− ρQs 0

0 ρl 0

ρs,RV 0 0


 s2

t

l2t

RVt

+ εt+1 (A.8)

εt+1 ∼ N


 0

0

0

 , Vt (Xt+1)

 (A.9)

In our main results, we follow Egloff, Leippold, and Wu (2010) and Ait-Sahalia, Karaman,

and Mancini (2014) and assume that the market prices of risk are proportional to the states,

so that the log SDF, mt+1, is

mt+1 − Et [mt+1] = Λ′tVt (Xt+1)−1/2 εt+1 (A.10)

where Λt =

 λsst

λllt

λRV st

 (A.11)

where the superscript 1/2 indicates a lower triangular Cholesky decomposition. The term

Vt (Xt+1)−1/2 standardizes and orthogonalizes the shocks εt+1. Λt thus represents the price

of exposure to a unit standard deviation shock to each component of Xt+1.

To maintain the affine structure of the model, we need the product Vt(Xt+1)1/2Λt to

be affine in Xt. The specification for Λt in (A.11) is therefore typically accompanied by a

7Admissibility requires that vQl and the feedback matrix in (A.8) be non-negative, which ensures that the
forecasts of Xt, and hence future volatility, be strictly positive.
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structure for the conditional variance similar to that of Cox, Ingersoll, and Ross (1985),

Vt(Xt+1) =

 σ2
ss

2
t 0 σs,RV s

2
t

0 σ2
l l

2
t 0

σs,RV s
2
t 0 σ2

RV s
2
t

 (A.12)

which guarantees that Vt(Xt+1)1/2Λt is affine in Xt.
8

A.5.3 Empirical results

The estimation uses standard likelihood-based methods. Section A.6 describes the details.

We use both Data set 1 and Data set 2, meaning that the number of variance swap prices

used in the estimation varies over time depending on availability.

A.5.3.1 Model fit

Table A.3 reports the means and standard deviations of the variance swap prices observed

and fitted by our model together with the corresponding root mean squared errors (RMSE).

The average RMSE across maturities up to 24 months is 0.73 annualized volatility points

(i.e. the units in Figure 1).9 For maturities longer than 24 months, since we do not have

time series of variance swap prices with fixed maturities for the entire sample, we cannot

report the sample and fitted moments for any fixed maturity. Instead, we stack all contracts

with more than 24 months to maturity into one single series and compute the RMSE from

the observed and fitted values of this series. The corresponding RMSE is reported in the last

row of Table A.3. At 0.87 percentage points, it compares favorably with the RMSE for the

shorter maturities. Table A.3 suggests that our models with two term structure factors plus

RV are capable of pricing the cross-section of variance swap prices for an extended range of

maturities. Even when maturities as long as 14 years are included in estimation, the data

does not seem to call for extra pricing factors.

8It is important to note that the specifications of Λt in (A.11) and Vt(Xt+1) in (A.12) introduce tight

restrictions on the difference Et(Xt+1) − EQ
t (Xt+1). In section A.6, we therefore consider two alternative

specifications for the variance process Vt (Xt+1) and the risk prices Λt that are more flexible in certain
dimensions. The results, both in terms of point estimates and standard errors, are essentially identical
across the various specifications that we consider, so we report results for this specification here since it is
most common in the literature.

9When we exclude the financial crisis, using a sample similar to that of Egloff, Leippold, and Wu (2010),
we obtain an RMSE of 0.33 percentage points, which is nearly identical to their reported value. The increase
in fitting error in the full sample is, not surprisingly, brought about by the large volatility spikes that occurred
during the crisis.
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A.5.3.2 Risk prices

The steady-state risk prices in the model are reported in Table A.8 along with their

standard errors. As in the rest of our analysis, we find clearly that it is the purely transitory

shock to realized variance that is priced (RV -risk). In the CIR specification, for example,

the Sharpe ratio associated with an investment exposed purely to the transitory RV shock—

analogous to the pure RV shock above—is -1.70.

In the VAR analysis in the previous section, the pure RV shock had no immediate

impact on the level and slope factors, but it could potentially indirectly affect future expected

variance through the VAR feedback. In the no-arbitrage model, that effect is shut off through

the specification of the dynamics. That is, the RV shock here is completely transitory—it

has no impact on expectations of volatility on any future date. The other two shocks are

forced to account for all variation in expectations. The fact that the results are consistent

between the no-arbitrage model and the reduced-form analysis in the previous section helps

underscore the robustness of our findings to different modeling assumptions.

In the standard CIR specification, the short- and long-term factors earn risk premia of

only -0.11 and -0.18, respectively, neither of which is significantly different from zero. The

lack of statistical significance is not due to particularly large standard errors; the standard

errors for the risk prices for the s2
t and l2t shocks are in fact substantially smaller than that

for the RV shock. Moreover, Sharpe ratios of -0.11 and -0.18 are also economically small.

For comparison, the Sharpe ratio of the aggregate stock market in the 1996–2013 period is

0.43. So the risk premia on the short- and long-term components of volatility are between

25 and 42 percent of the magnitude of the Sharpe ratio on the aggregate stock market. On

the other hand, the Sharpe ratio for the RV shock is nearly four times larger than that for

the aggregate stock market and 10 to 15 times larger than the risk prices on the other two

shocks. Our no-arbitrage model thus clearly confirms the results from the previous sections.

A.5.3.3 Time-series dynamics

The estimated parameters determining the dynamics of the state variables under the

physical measure are (eq. A.8):

 s2
t+1

l2t+1

RVt+1

 =

 0

0.99∗∗∗

0

+

 0.82∗∗∗ 0.16∗∗ 0

0 0.98∗∗∗ 0

0.75∗∗∗ 0 0


 s2

t

l2t

RVt

+ εt+1 (A.13)
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The key parameter to focus on is the persistence of l2t . For the standard CIR model, the

point estimate is 0.9814, with a standard error of 0.0013. At the point estimate, long-term

shocks to variance have a half-life of 37 months. That level of persistence is actually higher

than the persistence of consumption growth shocks in Bansal and Yaron’s (2004) long-run

risk model, and only slightly smaller than the persistence they calibrate for volatility, 0.987.

Our empirical model thus allows us to estimate risk prices on exactly the type of long-run

shocks that have been considered in calibrations. As we discuss further below, the fact that

we find that the long-term shock to volatility is unpriced is strongly at odds with standard

calibrations of Epstein–Zin preferences where agents are strongly averse to news about future

volatility.

A.6 The no-arbitrage model: estimation details and

further results

In this section we report more details of the no-arbitrage model estimation, and consider

alternative specifications.

A.6.1 Estimation Strategy

For estimation purposes, a standard and convenient practice of the term structure lit-

erature is to assume that some fixed-weights “portfolios” of VS prices are priced perfectly.

These portfolios in turn allow one to invert for the latent states which are needed in the

computation of the likelihood scores of the data.

A challenge in implementing this practice in our context is that for parts of our sample

the set of available maturities may change from one observation to the next. In the later

part of our sample, we use VS prices with maturities up to 14 years, whereas the longest

maturity for the earlier sample is only two years.

To tackle this issue, we maintain the assumption from the term structure literature

that the current term structure of the VS prices perfectly reveals the current values of

states. Nonetheless, we depart from the standard term structure practice by using some

time-varying-weights “portfolios” of VS prices in identifying the states at each point in time.

The portfolios weights are determined in a way to optimally accommodate different sets of

maturities at each point in the sample.

To begin, let Dt denote the vector of observed data obtained by stacking up the vector

of VS prices on top of the realized variance RVt. Because VS prices are affine in states, we
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can write:

Dt = A+BXt. (A.14)

All entries of the last column of B, except for the last row, are zeros because VS prices are

only dependent on s2
t and l2t . In addition, since the last entry of Dt corresponds to RVt, the

last row of A is 0 and the last row of B is (0,0,1). Keep in mind that the length of Dt can

vary from time to time due to different maturity sets for the observed VS data.

We assume that Dt is observed with iid errors:

Do
t = Dt + et (A.15)

where Do
t denotes the observed counterpart of Dt. Adopting a standard practice in the

term structure literature, we assume that the observational errors for the VS prices are

uncorrelated and have one common variance σ2
e . Because observed RVt is used in practice

to determine payoffs to VS contracts, it is natural to assume that RVt is observed without

errors. Combined, if a number of J VS prices are observed at time t, the covariance matrix

of et, Σe, takes the following form:

Σe =

(
IJ σ

2
e 0J×1

01×J 0

)
, (A.16)

where IJ denotes the identity matrix of size J .

We now explain how we can recursively identify the states. Assume that we already know

Xt. Now imagine projecting Xt+1 on Do
t+1 conditioning on all information up to time t. Our

assumption (borrowed from the term structure literature) that the current term structure

of the VS prices perfectly reveals the current values of the states implies that the fit of this

regression is perfect. In other the words, the predicted component of this regression, upon

observing Do
t+1,

Et(Xt+1) + covt(Xt+1, D
o
t+1)vart(D

o
t+1)−1(Do

t+1 − Et(Do
t+1)), (A.17)

must give us the values for the states at time t + 1: Xt+1. All the quantities needed to

implement (A.17) are known given Xt. Specifically, Et(Xt+1) = K0 +K1Xt and vart(D
o
t+1) =

Vt(Xt+1) + Σe where Vt(Xt+1) is computed according to each of our three specifications for

the covariance. Et(D
o
t+1) is given by A + BEt(Xt+1). And covt(Xt+1, D

o
t+1) is given by

Vt(Xt+1)B′. Clearly, the calculation in (A.17) can be carried out recursively to determine

the values of Xt for the entire sample.
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Our approach is very similar to a Kalman filtering procedure apart from the simplifying

assumption that Do
t+1 fully reveals Xt+1. That is, Vt(Xt+1|Do

t+1) ≡ 0. In a term structure

context, Joslin, Le, and Singleton (2013) show that this assumption allows for convenient

estimation, yet delivers typically highly accurate estimates.

We can view (A.17) as some “portfolios” of the observed data Do
t+1 with the weights

given by: covt(Xt+1, D
o
t+1)vart(D

o
t+1)−1. As a comparison, whereas the term structure liter-

ature typically choose, prior to estimation, a fixed weight matrix corresponding to the lower

principal components of the observed data, we do not have to specify ex ante any loading

matrix. Our approach determines a loading matrix that optimally extracts information from

the observed data and, furthermore, can accommodate data with varying lengths.

As a byproduct of the above calculations, we have available the conditional means and

variances of the observed data: Et(D
o
t+1) and Vt(D

o
t+1). These quantities allow us to compute

the log QML likelihood score of the observed data as (ignoring constants):

L =
∑
t

−1

2
||vart(Do

t+1)−1/2(Do
t+1 − Et(Do

t+1))||22 −
1

2
log|vart(Do

t+1)|. (A.18)

Estimates of parameters are obtained by maximizing L. Once the estimates are obtained,

we convert the above QML problem into a GMM setup and compute robust standard errors

using a Newey West matrix of covariance.

A.6.2 Alternative variance specifications

We consider now alternative specifications for Vt(Xt+1).

Constant variance structure

In the first alternative specification, we let Vt(Xt+1) be a constant matrix Σ0. Since both

Et(Xt+1) and EQ
t (Xt+1) are linear in Xt, Λt is also linear in Xt. We refer to this as the CV

(for constant variance) specification.

Flexible structure

It is important to note that the specifications of Λt in (A.11) and Vt(Xt+1) in (A.12)

introduce very tight restrictions on the difference: Et(Xt+1) − EQ
t (Xt+1). Simple algebra

shows that the first entry of the product Vt(Xt+1)1/2Λt is simply a scaled version of s2
t . This

means that the dependence of Et(Xt+1) and EQ
t (Xt+1) on l2t and RVt and a constant must be

exactly canceled out across measures. Similar arguments lead to the following restrictions
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on the condition mean equation:

Et

 s2
t+1

l2t+1

RVt+1

 =

 0

vQl
0


︸ ︷︷ ︸

K0

+

 ρs 1− ρQs 0

0 ρl 0

ρs,RV 0 0


︸ ︷︷ ︸

K1

 s2
t

l2t

RVt

 . (A.19)

So in the CIR specification, the conditional mean equation only requires three extra

degrees of freedom in: ρs, ρl, and ρs,RV . The remaining entries to K0 and K1 are tied to

their risk-neutral counter parts. By contrast, all entries of K0 and K1 are free parameters

in the CV specification. Whereas CV offers more flexibility in matching the time series

dynamics of Xt, the parsimony of CIR, if well specified, can potentially lead to stronger

identification. However, this parsimony of the CIR specification, if mis-specified, can be

restrictive. For example, in the CIR specification, RVt is not allowed to play any role in

forecasting X.

In the flexible specification, we would like to combine the advantages of the CV specifica-

tion in matching the time series dynamics of X and the advantages of the CIR specification

in modeling time-varying volatilities.

For time-varying volatility, we adopt the following parsimonious structure:

Vt(Xt+1) = Σ1 s
2
t , (A.20)

where Σ1 is a fully flexible positive definite matrix. This choice allows for non-zero covari-

ances among all elements of X.

The market prices of risks are given by:

Λt = Vt(Xt+1)−1/2(Et(Xt+1)− EQ
t (Xt+1)), (A.21)

where the superscript 1/2 indicates a lower triangular Cholesky decomposition. Impor-

tantly, we do not require the market prices of risks to be linear, or of any particular form.

This is in stark contrast to the CIR specification which requires the market prices of risks to

be scaled versions of states. As a result of this relaxation, no restrictions on the conditional

means dynamics are necessary. Aside from the non-negativity constraints, the parameters

K0, K1 that govern Et(Xt+1) = K0+K1Xt are completely free, just as in the CV specification.

In particular, RVt is allowed to forecast X and thus can be important in determining risk

premiums. We label this specification as the FLEX specification (for its flexible structure).
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A.6.3 Empirical results under alternative specifications

Table A.4 reports the risk neutral parameters of our no arbitrage models: ρQs , ρQl , and vQl .

As expected, these parameters are very strongly identified thanks to the rich cross-section

of VS prices used in the estimation. Recall that our risk-neutral construction is identical for

all three of our model specifications. As a result, estimates of risk neutral parameters are

nearly invariant across different model specifications.

The effect of including the crisis is that the estimates for ρQs and vQl are higher, whereas

the estimate of ρQs is the same. A higher vQl is necessary to fit a higher average VS curve. A

higher estimate for ρQs implies that risk-neutral investors perceive the short-run factor s2
t as

more (risk-neutrally) persistent. In other words, movements of the one-month VS price (s2
t )

will affect prices of VS contracts of much longer maturities.

We report the time series parameters—K0, K1, and other parameters that govern the

conditional variance Vt(Xt+1)—for the CV, CIR, and FLEX specifications in Tables A.5,

A.6, and A.7, respectively.

It is notable that the point estimates and standard errors are similar across the various

specifications for the variance process (and hence the physical dynamics), emphasizing the

results of our findings.

Finally, the table also shows that the results are similar regardless of whether the financial

crisis is included in the estimation sample. Since the financial crisis was a period when the

returns on variance swaps were extraordinarily high, excluding it from the data causes to

estimate risk prices that are even more negative than in the full sample.

A.7 Calibration and simulation of the models

This section gives the details of the three models analyzed in the main text.

A.7.1 Long-run risk (Drechsler and Yaron)

Our calibration is identical to that of Drechsler and Yaron (DY; 2011), so we refer the

reader to the paper for a full description of the model. We have confirmed that our simulation

matches the moments reported in DY (tables 6, 7, and 8, in particular).

A.16



In DY there is a vector of state variables, Xt, that follows a VAR(1),

Yt = µ+ FYt−1 +Gtzt+1 + Jt+1 (A.22)

zt ∼ N (0, I) (A.23)

GtG
′
t = h+ hσσ

2
t (A.24)

where σ2
t is one of the elements of Yt and Jt+1 is a vector with components Ji,t+1 =

∑Ni,t+1

j=1 ξj,i,

where Ni,t+1 is a Poisson-distributed random variable and ξj,i is the size of each jump. The

jump intensity follows the process λt = l0 + l1σ
2
t .

Using the standard linear approximations applied in models such as this one (e.g. Bansal

and Yaron (2004)), one may show that the log return on equity takes the form

re,t+1 = r̄e + ryYt + rz (Gtzt+1 + Jt+1) (A.25)

where the coefficients r̄e, ry, and rz are solved for as part of the equilibrium.

Following DY, we then calculate the realized variance in period t (i.e. RVt from above)

as

RVt = rzGt−1G
′
t−1r

′
z + rzJtJtr

′
z (A.26)

= rz
(
h+ hσσ

2
t−1

)
r′z + rzJtJtr

′
z (A.27)

The implicit assumption then is that the zt+1 shocks occur diffusively during a period, while

the jumps happen on a single day. It is straightforward to calculate the price of such a claim

using the formula for the pricing kernel provided in DY (eq. 6; or, alternatively, using the

risk-neutral dynamics in eq. 20).

A.7.2 Time-varying disasters with Epstein–Zin (Wachter)

The key equations driving the economy are

∆ct = µ∆c + σ∆cε∆c,t + J∆c,t (A.28)

Ft = (1− ρF )µF + ρFFt−1 + σF
√
Ft−1εF,t (A.29)

∆dt = λ∆ct (A.30)

where ε∆c,t and εF,t are standard normal innovations. This is a discrete-time version of

Wachter’s setup, and it converges to her model as the length of a time period approaches
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zero. The model is calibrated at the monthly frequency. Conditional on a disaster occurring,

J∆c,t ∼ N (−0.15, 0.12) . The number of disasters that occurs in each period is a Poisson

variable with intensity Ft. The other parameters are calibrated as:

Parameter Value

µ∆c 0.0252/12

σF 0.067/12

ρF exp(−0.08/12)

Parameter Value

σ∆c 0.02/sqrt(12)

λ 2.6

µF 0.0355/12

Using the Campbell–Shiller approximation to the return on equity, one may show that

the log price/dividend ratio follows

pdt = z0 + z1Ft (A.31)

In the absence of a disaster, we treat the shocks to consumption and the disaster probabil-

ity as though they come from a diffusion, so that the realized variance is θ2z2
0σ

2
FFt−1 + λσ2

∆c

(where θ ' 1 is the linearization parameter from the Campbell–Shiller approximation).

When a disaster occurs, we assume that the largest daily decline in the value of the stock

market is 10 percent. So, for example, a 30-percent decline would be spread over 3 days.

The results are largely unaffected by the particular value assumed. The realized variance

when a disaster occurs is then θ2z2
0σ

2
FFt−1 + λσ2

∆c − (0.1) J∆c,t (assuming J∆c,t ≤ 0).

The model is solved analytically using methods similar to those in DY. Specifically,

household utility, vt, is

vt = (1− β) ct +
β

1− α
logEt [exp ((1− α) vt+1)] (A.32)

α is set to 4.9 and β = exp (−0.012/12). The recursion can be solved because the cumulant-

generating function for a poisson mixture of normals (the distribution of J∆c) is known

analytically (again, see DY).

The pricing kernel is

Mt+1 = β exp (−∆ct+1)
exp ((1− α) vt+1)

Et [exp ((1− α) vt+1)]
(A.33)

Asset prices, including those for claims on realized variance in the future, then follow imme-

diately from the solution of the lifetime utility function and cumulant-generating function

for J∆c. The full derivation and replication code is available upon request.

As with the DY model, we checked that the moments generated by our solution to the

model match those reported by Wachter. We confirm that our results are highly similar,
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in particular for her tables 2 and 3, though not identical since we use a different disaster

distribution.

A.7.3 Disasters with habit formation (Du)

We calibrate the model exactly as in Du (2011). We also use the formulas he provides

for the processes driving equity returns and the pricing kernel. As with the other disaster

model, we assume that the maximum equity return on a single day is 10 percent. For

a grid of possible values of the only state variable, γt, we numerically integrate realized

volatility and γ itself under the physical and risk-neutral distributions. This allows us to

calculate numerical expected values of realized volatility under the physical and risk-neutral

distributions, yielding variance forward prices. The model is simulated at a daily frequency

for the numerical calculations.

A.7.4 Disasters with time-varying recovery (Gabaix)

∆ct = µ∆c + ε∆c,t + J∆c,t (A.34)

Lt = (1− ρL) L̄+ ρLLt−1 + εL,t (A.35)

∆dt = λε∆c,t − L× 1 {J∆c,t 6= 0} (A.36)

The model is calibrated at the monthly frequency. Conditional on a disaster occurring,

J∆c,t ∼ N (−0.3, 0.152) . The probability of a disaster in any period is 0.01/12. The other

parameters are calibrated as:

Parameter Value

µ∆c 0.1/12

stdev(ε∆c) 0.02/
√

12

ρL 0.871/12

L̄ 0.5

stdev(εL) 0.04

λ 5

Agents have power utility with a coefficient of relative risk aversion of 7 and a time

discount factor of 0.961/12.
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Fig. A.1: Quotes vs. transaction prices
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The figure shows the distribution of percentage difference between variance swap price quotes and actual
transaction prices, computed as (transaction price - quote)/quote. The quotes are our main sample, while
transaction prices are obtained from the DTCC and begin in 2013. Each panel shows the histogram for a
different bucket of maturity of the variance swap contracts.
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Fig. A.2: Distribution of maturity of CBOE options, weighted by open interest
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The figure shows at each point in time the average and 75th percentile of the maturity of options traded
on the CBOE, weighted by open interest.

Table A.1: Accounting for transaction costs

Long position 1mo 12/6mo Diff.

Midpoint -1.32 0.11 -1.44
Using bid-ask spread -1.64 -0.09 -1.56

Short position 1mo 12/6mo Diff.

Midpoint 1.32 -0.11 1.44
Using bid-ask spread 1.00 -0.31 1.32

The Table reports annualized Sharpe ratios of two different trading strategies described in Appendix A.4.
The trading strategy denoted “1mo” rolls over a long 1-month variance swap. The trading strategy denoted
“12/6mo” consists in going long a 12-month variance swap and short a 6-month variance swap, holding for
6 months, and liquidating the position. The return therefore corresponds to the 6-month holding period
return on a forward claim to realized variance 6 to 12 months ahead. The top panel reports the Sharpe
ratio on long positions, the bottom panel on short positions. In each panel, the “midpoint” Sharpe ratio
ignores transaction costs, whereas the “bid-ask” Sharpe ratio considers the bid-ask spread in computing
the transaction cost of the strategy. The last column of the table reports the difference in Sharpe ratios
between the two strategies.
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Fig. A.3: Annualized Sharpe ratios for unscaled returns on forward variance claims
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The figure shows the annualized Sharpe ratio for unscaled returns on forward variance claims.

Fig. A.4: Sharpe ratios for VIX forwards using daily data
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The figure shows the annualized Sharpe ratio for VIX claims, calculated using the VIX formula and CBOE
option data at monthly maturities. The figure computes monthly returns at the daily frequency. Standard
errors are Hansen-Hodrick standard errors with 21 lags (the number of trading days in each month) to
take into account the overlap.
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Fig. A.5: International forward variance claim prices from options and variance swaps
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In each panel (corresponding to STOXX 50, FTSE 100 and DAX), the solid line plots average prices of
forward variance claims calculated using the formula for the VIX index and data on international option
prices from Optionmetrics. The dotted line plots the average prices of the same claims computed from
international variance swaps. The sample covers the period 2013:4-2014:2.
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Fig. A.6: VIX futures vs. forward variance swap prices
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the top panel plots the time series of the 2-month forward variance swap and the 1-month VIX future
price from the CME, in annualized volatility terms. The bottom panel plots the time series of the 7-month
forward variance swap and the 6-month VIX future price from the CME, in annualized volatility terms.
The sample covers the period 2006:10-2012:9.
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Table A.2: Predictive regressions

Horizon Predictor: Slope and Curvature Predictor: Fnt − F 0
t

(months) Dep var: RVt+n −RVt Dep var: RVt+n −RVt Dep var: −
∑n−1

j=0 r
n−j
t+1+j

R2 R2 coeff. R2 coeff.

1 0.08 0.17 0.63∗∗∗ 0.07 0.37∗

(0.22) (0.22)

2 0.22 0.18 0.71∗∗∗ 0.04 0.29∗

(0.17) (0.17)

3 0.31 0.24 0.83∗∗∗ 0.01 0.17

(0.14) (0.14)

6 0.36 0.34 0.95∗∗∗ 0.001 0.05

(0.09) (0.09)

12 0.38 0.41 1.10∗∗∗ 0.001 -0.10

(0.09) (0.09)

Results of regressions forecasting changes in realized variance. The left side reports the R2 of a regression
of changes in realized volatility between month t and month t+n on the level and the slope at time t. The
right side reports the coefficients of univariate regressions of changes in realized volatility (left column)
and returns to volatility claims from t to t+n (right column) on the difference between the forward prices
of maturity n (Fn

t ) and realized volatility (F 0
t ) at time t. * indicates significance at the 10-percent level,

** the 5-percent level, and *** the 1-percent level.

Table A.3: Average prices and pricing errors for the no-arbitrage model

Maturity Sample Fitted RMSE

(months) Mean Std Mean Std
1 21.24 8.00 21.70 7.86 1.00
2 21.89 7.55 21.88 7.55 0.33
3 22.22 7.25 22.04 7.30 0.40
6 22.75 6.64 22.42 6.74 0.63
12 23.20 6.06 22.99 6.11 0.53
24 23.65 5.58 23.87 5.45 0.61
>24 0.87

Prices are reported in annualized volatility terms. The RMSE is calculated using the deviation of the
fitted price from the sample price in annualized voaltility terms.
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Table A.4: Risk neutral parameters

1996:2007 1996:2013

Specifications ρQs ρQl vQl ρQs ρQl vQl

CV
Est. 0.66∗∗∗ 0.99∗∗∗ 0.65∗∗∗ 0.83∗∗∗ 0.99∗∗∗ 1.01∗∗

Stderr. 0.06 0.00 0.14 0.07 0.01 0.48

CIR
Est. 0.68∗∗∗ 0.99∗∗∗ 0.65∗∗∗ 0.84∗∗∗ 0.99∗∗∗ 0.99∗∗

Stderr. 0.05 0.00 0.14 0.06 0.01 0.44

FLEX
Est. 0.66∗∗∗ 0.99∗∗∗ 0.64∗∗∗ 0.83∗∗∗ 0.99∗∗∗ 1.01∗∗

Stderr. 0.06 0.00 0.14 0.07 0.01 0.47

The table reports the risk-neutral estimated dynamics of the term structure model, for the three speci-
fications CV, CIR and FLEX, and separately for the full sample (1996-2013) and the pre-crisis sample
(1996-2007).

Table A.5: Time series parameter estimates for the CV specification

Sample K0 K1 Σ∗

1996:2007

Est.
6.49∗∗∗ 0.65∗∗∗ 0.14∗∗ 0.03 15.42∗∗∗ 0 0
3.36∗∗∗ 0.08 0.83∗∗∗ 0.02 3.87∗∗∗ 5.25∗∗∗ 0

1.98 0.56∗∗∗ 0 0.12 10.57∗∗∗ -2.62 14.08∗∗∗

Std. err.
2.42 0.08 0.07 0.12 3.23 - -
1.12 0.10 0.08 0.07 0.73 0.73 -
2.11 0.07 - 0.10 2.36 2.63 2.07

1996:2013

Est.
8.99∗∗∗ 0.56∗∗∗ 0.08 0.19∗∗ 20.59∗∗∗ 0 0
2.43∗∗∗ 0 0.91∗∗∗ 0.06∗∗∗ 3.26 7.04∗∗∗ 0
5.67∗ 0.20 0 0.57∗∗∗ 30.00∗∗ -2.14 25.49∗∗∗

Std. err.
2.48 0.13 0.05 0.09 5.07 - -
0.90 - 0.03 0.01 2.09 0.97 -
2.92 0.13 - 0.15 13.38 2.94 4.23

The table reports the time-series parameter estimates for the CV specification. Σ∗ is the lower triangular
Cholesky decomposition of Σ0. For admissibility, K0 and K1 are constrained to be non-negative. Those
entries for which the non-negativity constraint is binding are set to zero and thus standard errors are not
provided. The table reports the estimates separately for the full sample (1996-2013) and the pre-crisis
sample (1996-2007).
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Table A.6: Time series parameter estimates for the CIR specification

Sample K0 K1 Σ∗

1996:2007

Est.
0 0.66∗∗∗ 0.32∗∗∗ 0 5.16∗∗∗ 0 3.53∗∗∗

0.65∗∗∗ 0 0.99∗∗∗ 0 0 0.98∗∗∗ 0
0 0.69∗∗∗ 0 0 3.53∗∗∗ 0 6.74∗∗∗

Std. err.
- 0.07 0.05 - 1.82 1.18

0.14 - 0.00 - - 0.23 -
- 0.01 - - 1.18 - 1.69

1996:2013

Est.
0 0.82∗∗∗ 0.16∗∗ 0 7.17∗∗ 0 9.42∗

0.99∗∗ 0 0.98∗∗∗ 0 0 1.42∗∗ 0
0 0.75∗∗∗ 0 0 9.42∗ 0 23.56∗

Std. err.
- 0.04 0.06 - 2.84 - 5.42

0.44 - 0.00 - - 0.58 -
- 0.09 - - 5.42 - 12.88

The table reports the time-series parameter estimates for the CIR specification. The diagonal elements
of Σ∗ correspond to the variance parameters σ2

s , σ2
l , and σ2

RV . The (3,1) entry of Σ∗ correspond to the
covariance parameter σs,RV . The table reports the estimates separately for the full sample (1996-2013)
and the pre-crisis sample (1996-2007).
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Table A.7: Time series parameter estimates for the FLEX specification

Sample K0 K1 Σ∗

1996:2007

Est.
2.31 0.74∗∗∗ 0.19∗∗ 0.01 2.26∗∗∗ 0 0

2.18∗∗∗ 0.09∗ 0.87∗∗∗ 0 0.58∗∗∗ 0.78∗∗∗ 0
0.11 0.60∗∗∗ 0 0.13 1.56∗∗∗ -0.24 2.04∗∗∗

Std. err.
1.49 0.08 0.08 0.08 0.42 - -
0.81 0.05 0.06 - 0.08 0.08 -
0.75 0.08 - 0.09 0.29 0.31 0.27

1996:2013

Est.
4.54∗∗∗ 0.68∗∗∗ 0.08∗∗ 0.19∗∗ 2.59∗∗∗ 0 0
1.37∗∗ 0 0.93∗∗∗ 0.07∗∗∗ 0.44∗ 1.09∗∗∗ 0
0.67∗∗∗ 0.36∗∗∗ 0 0.51∗∗ 3.32∗∗∗ -0.34 3.20∗∗∗

Std. err.
1.30 0.08 0.04 0.08 0.48 - -
0.55 - 0.02 0.02 0.23 0.12 -
0.05 0.11 - 0.20 1.24 0.43 0.48

The table reports the time-series parameter estimates for the FLEX specification. Σ∗ is the lower triangular
Cholesky decomposition of Σ0. For admissibility, K0 and K1 are constrained to be non-negative. Those
entries for which the non-negativity constraint is binding are set to zero and thus standard errors are not
provided. The table reports the estimates separately for the full sample (1996-2013) and the pre-crisis
sample (1996-2007).

Table A.8: Annualized steady state risk prices, all specifications

1996:2007 1996:2013

Specifications Sources of risks Estimates Standard Error Estimates Standard Error

CV
s2
t -risk -0.23 0.22 -0.08 0.14
l2t -risk 0.05 0.18 -0.21 0.14
RV-risk −2.78∗∗∗ 0.65 −1.44∗∗∗ 0.43

CIR
s2
t -risk -0.18 0.36 -0.11 0.31
l2t -risk 0.04 0.14 -0.18 0.12
RV-risk −3.92∗∗∗ 0.91 −1.70∗∗∗ 0.48

FLEX
s2
t -risk -0.23 0.30 -0.14 0.16
l2t -risk 0.06 0.22 -0.17 0.19
RV-risk −3.17∗∗∗ 0.78 −1.69∗∗ 0.73

Estimates of steady-state risk prices from the no-arbitrage model. Risk prices are annualized by multiplying
by
√

12. *** denotes significance at the 1-percent level. Results are reported for the full sample (1996-
2013), and restricted to 1996-2007.
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