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a b s t r a c t 

Between 1996 and 2014, it was costless on average to hedge news about future variance at 

horizons ranging from 1 quarter to 14 years. Only unexpected, transitory realized variance 

was significantly priced. These results present a challenge to many structural models of the 

variance risk premium, such as the intertemporal CAPM and recent models with Epstein–

Zin preferences and long-run risks. The results are also difficult to reconcile with macro 

models in which volatility affects investment decisions. At the same time, the data allows 

us to distinguish between different disaster models; a model in which the stock market 

has a time-varying exposure to disasters and investors have power utility fits the major 

features of the variance term structure. 
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1. Introduction 

The recent explosion of research on the effects of

volatility in macroeconomics and finance shows that
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economists care about uncertainty shocks. It appears that

investors, on the other hand, do not. In the period since

1996, it has been costless on average to hedge news about

future volatility in aggregate stock returns; in other words

investors have not been required to pay for insurance

against volatility news. Many economic theories—both in

macroeconomics and in finance—have the opposite pre-

diction. The recent consumption-based asset pricing litera-

ture is heavily influenced by Epstein and Zin (1991) prefer-

ences, which in standard calibrations, with a preference for

early resolution of uncertainty, imply that investors have a

strong desire to hedge news about future uncertainty, and

hence should be willing to pay large premia for insurance

against volatility shocks. Furthermore, in recent macroeco-

nomic models, shocks to uncertainty about the future can

induce large fluctuations in the economy. 1 But if increases
1 See, e.g., Bloom (2009) , Bloom, Floetotto, Jaimovich, Saporta-Eksten, 

and Terry (2014) , Christiano, Motto, and Rostagno (2014) , Fernandez- 

illaverde, Guerron, Rubio-Ramirez, and Uribe (2011) , and Gourio 

(2012) Gourio (2013) . 

http://dx.doi.org/10.1016/j.jfineco.2016.04.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jfec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfineco.2016.04.003&domain=pdf
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3 Recently, Campbell, Giglio, Polk, and Turley (2013) and Bansal, Kiku, 

Shaliastovich, and Yaron (2013) estimate an ICAPM model with stochastic 

volatility and find that shocks to expected volatility (and especially long- 

run volatility) are priced in the cross-section of returns of equities and 

other asset classes. Although the focus on their paper is not the variance 

swap market, Campbell, Giglio, Polk, and Turley (2013) test their specifi- 

cation of the ICAPM model also on straddle returns and synthetic volatil- 

ity claims, and find that the model manages to explain only part of the 

returns on these securities. This suggests that the model is missing some 

high-frequency features of the volatility market. 
4 This is true in the most common calibrations with a preference for 

early resolution of uncertainty. When investors prefer a late resolution of 

uncertainty the risk prices are reversed. 
5 Also see Branger and Volkert (2010) and Zhou and Zhu (2012) for dis- 

cussions. Barras and Malkhozov (2014) study the determinants of changes 

in the variance risk premium over time. 
6 Similar problems with matching term structures of Sharpe ratios in 
in economic uncertainty can drive the economy into a re- 

cession, we would expect that investors would want to 

hedge those shocks. 2 The fact that shocks to expected 

volatility have not earned a risk premium thus presents a 

challenge to a wide range of recent research. 

As a concrete example, consider the legislative battles 

over the borrowing limit of the US in the summers of 

2010 and 2011. Those periods were associated with in- 

creases in both financial measures of uncertainty, e.g., the 

Chicago Board Options Exchange’s Volatility Index (VIX), 

and also the measure of policy uncertainty from Baker, 

Bloom, and Davis (2014) . Between July and October, 2011, 

the 1-month variance swap rate—a measure of investor ex- 

pectations for Standard & Poor’s (S&P) 500 volatility over 

the next month—rose every month, from 16.26 to 42.32% 

(annualized, computed at the beginning of the month). But 

those shocks also had small effects on realized volatility 

in financial markets; for example, realized volatility actu- 

ally decreased between August and September of 2011. The 

debt ceiling debate caused uncertainty about the future to 

be high during the whole period, but did not correspond 

to high contemporaneous volatility during the same pe- 

riod. It is precisely this imperfect correlation between re- 

alized volatility and expectations of future volatility that 

allows us to disentangle the pricing of their shocks. In 

this paper, we directly measure how much people pay to 

hedge shocks to expectations of future volatility. We find 

that news shocks have been unpriced: any investor could 

have bought insurance against volatility shocks for free, 

and therefore any investor could have freely hedged the in- 

creases in uncertainty during the debt ceiling debate. 

We measure the price of variance risk using novel data 

on a wide range of volatility-linked assets both in the 

US and around the world, focusing primarily on variance 

swaps with maturities between one month and ten years. 

The data cover the period 1996–2014. Variance swaps are 

assets that pay to their owner the sum of daily squared 

stock market returns from their inception to maturity. They 

thus give direct exposure to future stock market volatility 

and are the most natural and direct hedge for the risks as- 

sociated with increases in aggregate economic uncertainty. 

Importantly, though, we show that our results hold in a 

range of other markets, including index options, which are 

both more liquid and traded on exchanges. 

The analysis of the pricing of variance swaps yields 

two simple but important results. First, news about future 

volatility is unpriced in our sample—exposure to volatil- 

ity news did not earn a risk premium. Second, exposure 

to realized variance is strongly priced in our data, with 

an annualized Sharpe ratio of −1.3—four times larger than 

the Sharpe ratio on equities. We find that it is the down- 

side component of realized volatility that investors are 

specifically trying to hedge, consistent with the results of 

Bollerslev and Todorov (2011) and Segal, Shaliastovich, and 

Yaron (2015) . We conclude that over our sample, investors 

paid a large amount of money for protection from extreme 

negative shocks to the economy (which mechanically gen- 
2 See Berger, Dew-Becker, and Giglio (2016) for an analysis of the ef- 

fects of volatility shocks on the real economy, finding that news about 

future volatility is not contractionary. 
erate spikes in realized volatility), but they did not pay to 

hedge news that uncertainty or the probability of a disas- 

ter has changed. 

The results present a challenge to a wide range of mod- 

els. From a finance perspective, Merton ’s (1973) intertem- 

poral capital asset pricing model says that assets that have 

high returns in periods with good news about future in- 

vestment opportunities are viewed as hedges and thus 

earn low average returns. Since expected future volatility is 

a natural state variable for the investment opportunity set, 

the covariance of an asset’s returns with shocks to future 

volatility should affect its expected return, but it does not. 3 

Consumption-based models with Epstein and Zin pref- 

erences have similar predictions. Under Epstein–Zin prefer- 

ences, marginal utility depends on lifetime utility, so that 

assets that covary positively with innovations to lifetime 

utility earn high average returns. 4 If high expected volatil- 

ity is bad for lifetime utility (either because volatility af- 

fects the path of consumption or because volatility reduces 

utility simply due to risk aversion), then volatility news 

should be priced. 5 

As a specific parameterized example with Epstein–Zin 

preferences, we study variance swap prices in Drechsler 

and Yaron’s (2011) calibrated long-run risk model. While 

that model represents a major innovation in being able to 

both generate a large variance risk premium (the average 

gap between the 1-month variance swap rate and real- 

ized variance) and match results about the predictability of 

market returns, we find that its implications for the term 

structure of variance swap prices and returns are distinctly 

at odds with the data: it predicts that shocks to future ex- 

pected volatility should be strongly priced, counter to what 

we observe empirically. 

We obtain similar results in a version of Wachter’s 

(2013) model of time-varying disaster risk with Epstein–

Zin preferences. The combination of fluctuations in the 

probability of disaster and Epstein–Zin preferences re- 

sults in a counterfactually high price for insurance against 

shocks to expected future volatility relative to current 

volatility. Du ’s (2011) model of disaster risk and habit for- 

mation also fails to match the data. 6 
structural models have been studied in the context of claims to ag- 

gregate market dividends by van Binsbergen, Brandt, and Koijen (2012) . 

Our results thus support and complement theirs in a novel context. See 

also van Binsbergen and Koijen (2015) for a recent review of the broad 

range of evidence on downward sloping term structures. Our paper also 
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More positively, we show that a version of Gabaix ’s

(2012) model of rare disasters, which builds on the work

of Rietz (1988) , Barro (2006) , and many others, can match

the stylized fact that Sharpe ratios on variance claims are

large at the very short end of the term structure and fall to

zero rapidly with maturity. Intuitively, when investors have

power utility, they invest myopically in that they do not

price shocks that only affect expectations about the future.

Disaster risk and high risk aversion help the model gen-

erate the large risk premia that we observe on short-term

claims. That said, our calibration of Gabaix’s (2012) model

is not a complete quantitative description of financial mar-

kets, as it does not perfectly match all the patterns in the

data; we simply view it as giving a set of sufficient condi-

tions that allow a model to match the economically rele-

vant features of the variance swap term structure. 7 

An alternative possibility is that the variance market is

segmented from other markets, as in, e.g., Gabaix, Krishna-

murthy, and Vigneron (2007) . In that case, the pricing of

risks might not be integrated between the variance mar-

ket and other markets. We show, however, that our results

hold not only with variance swaps, but also in VIX futures

and in the options market, which is large, liquid, and inte-

grated with equity markets, making it less likely that our

results are idiosyncratic to one asset class. 

Our work is related to three main strands of the

literature. First, there is the recent work in macroeco-

nomics on the consequences of shocks to volatility, such as

Bloom (2009) , Bloom, Floetotto, Jaimovich, Saporta-Eksten,

and Terry (2014) , Christiano, Motto, and Rostagno (2014) ,

Fernandez-Villaverde, Guerron, Rubio-Ramirez, and Uribe

(2011) , and Gourio (2012 ; 2013 ). We argue that if shocks

to volatility are important to the macroeconomy, then in-

vestors should be willing to pay to hedge them. The lack of

a risk premium on volatility news thus argues that macro

models should focus on shocks to realized rather than ex-

pected volatility. 

Second, we build on the consumption-based asset pric-

ing literature that has recently focused on the pricing of

volatility, including Bansal and Yaron (2004), Drechsler and

Yaron (2011) , Wachter (2013) , and Bansal, Kiku, Shalias-

tovich, and Yaron (2013) . 8 

Finally, there is a large literature studying the pricing of

volatility in financial markets. 9 Most closely related to us
relates to a large literature that looks at derivative markets to learn about 

general equilibrium asset pricing models, for example Backus, Chernov, 

and Martin (2011) and Martin (2014 ; 2015 ). 
7 In a paper that is contemporaneous to this one, Eraker and Wu 

(2016) propose a simple consumption-based model with volatility shocks 

that matches some of the features of the volatility market. We leave a 

comparison of that model to our data to future work. 
8 Andries, Eisenbach, and Schmalz (2015) analyze a model 

consumption-based model that matches broad features of the vari- 

ance market, while van Binsbergen and Koijen (2015) discuss other 

recent work on related topics. 
9 A number of papers study the pricing of volatility in options mar- 

kets, e.g., Jackwerth and Rubinstein (1996) , Coval and Shumway (2001) , 

Bakshi and Kapadia (2003) , Broadie, Chernov, and Johannes (2009) , 

Christoffersen, Jacobs, Ornthanalai, and Wang (2008) , and Kelly, Pas- 

tor, and Veronesi (2014) . Lu and Zhu (2010) and Mencia and Sentana 

(2013) study VIX futures markets, while Bakshi, Panayotov, and Skoulakis 

(2011) show how to construct forward claims on variance with portfolios 

 

 

 

 

 

 

 

is a small number of recent papers with data on variance

swaps with maturities from two to 24 months, including

Egloff, Leippold, and Wu (2010) and Ait-Sahalia, Karaman,

and Mancini (2014) , who study no-arbitrage term structure

models. The pricing models we estimate are less techni-

cally sophisticated than that of Ait-Sahalia, Karaman, and

Mancini (2014) , but we complement and advance their

work in two ways. First, we examine a vast and novel

range of data sources. For S&P 500 variance swaps, our

panel includes data at both shorter and longer maturi-

ties than in previous studies—from one month to 14 years.

The one-month maturity is important for giving a claim to

shorter-term realized variance, which is what we find is

actually priced. Having data at very long horizons is im-

portant for testing models, like Epstein–Zin preferences,

in which expectations at very long horizons are the main

drivers of asset prices. In addition, we are the first to ex-

amine the term structure of variance swaps for major in-

ternational indexes, as well as for the term structure of the

VIX obtained from options on those indexes. We are thus

able to confirm that our results hold across a far wider

range of markets, maturities, and time periods than pre-

viously studied. 

Our second contribution to the previous term structure

literature is that rather than working exclusively within

the context of a particular no-arbitrage pricing model for

the term structure of variance claims, we derive from the

data more general and model-independent pricing facts.

Our results can be directly compared against the implica-

tions of different structural economic models, which would

be more difficult if they were only derived within a specific

no-arbitrage framework. 

The remainder of the paper is organized as follows.

Section 2 describes the novel data sets we obtain for

variance swap prices. Section 3 reports unconditional mo-

ments for variance swap prices and returns, which demon-

strate our results in their simplest form. Section 4 analyzes

the cross-sectional and time-series behavior of variance

swap prices and returns more formally in a standard asset

pricing framework. In Section 5 , we discuss what struc-

tural models can fit the data. We calibrate four leading

models from the literature, comparing them to our data,

showing that only one matches the key stylized facts.

Section 6 concludes. 

2. The data 

2.1. Variance swaps 

We focus primarily on variance swaps. Variance swaps

are contracts in which one party pays a fixed amount at

maturity, which we refer to as price of the variance swap,

in exchange for a payment equal to the sum of squared

daily log returns of the underlying asset occurring until

maturity. In this paper, the underlying is the S&P 500 in-

dex unless otherwise specified. The payment at expiration
of options. Johnson (2016) studies the predictability of returns on option 

portfolios. In the Treasury bond market, Cieslak and Povala (2014) find, 

similar to us, that short-run volatility is more strongly priced than long- 

run volatility. See also Amengual and Xiu (2014) for an important recent 

study of jumps in volatility. 
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Table 1 

Volume of variance swaps across maturities. 

Maturity (months) Volume (million vega) Volume (%) 

1 402 6 

2 403 6 

3 78 1 

4–6 1037 14 

7–12 1591 22 

13–24 2371 33 

25–60 1315 18 

60+ 48 1 

Total 7245 100 

Total volume of variance swap transactions occurred between March 2013 

and June 2014 and collected by the DTCC. 
of a variance swap initiated at time τ and with maturity 

m is 

Payoff
m 

τ = 

τ+ m ∑ 

j= τ+1 

r 2 j − V S m 

τ (1) 

where periods here denote days, r j is the log return on the 

underlying on date j , and V S m 

τ is the price on date τ of 

an m -day variance swap. We focus on variance swaps be- 

cause they give pure exposure to variance, their payoffs are 

transparent and easy to understand, they have a relatively 

long time-series, and they are relatively liquid. 

Our main analysis focuses on two proprietary data sets 

of quoted prices for S&P 500 variance swaps. Both data 

sets were obtained from industry sources. Data set 1 is 

obtained from a hedge fund. Data set 2 is obtained from 

Markit Totem, and reports means of quotes (11, on aver- 

age) obtained from dealers in the variance swap market. 

Data set 1 contains monthly variance swap prices for con- 

tracts expiring in one, two, three, six, 12, and 24 months, 

and includes data from December, 1995, to October, 2013. 

Data set 2 contains data on variance swaps with expi- 

rations that are fixed in calendar time, instead of fixed 

maturities. Common maturities are clustered around one, 

three, and six months, and one, two, three, five, ten, and 

14 years. Data set 2 contains prices of contracts with ma- 

turities up to five years starting in September, 2006, and 

up to 14 years starting in August, 2007, and runs up to 

February, 2014. We apply spline interpolation to each data 

set to obtain the prices of variance swaps with standard- 

ized maturities covering all months between one month 

and 12 months for Data set 1 and between one month and 

120 months for Data set 2 (though in estimating the no- 

arbitrage model in the Appendix we use the original price 

data without interpolation). 

Both variance swap data sets are novel to the literature. 

Variance swap data with maturities up to 24 months as 

in Data set 1 have been used before ( Ait-Sahalia, Karaman, 

and Mancini, 2014; Amengual and Xiu, 2014; Egloff, Leip- 

pold, and Wu, 2010; Filipovic, Gourier, and Mancini, 2013 ), 

but the shortest maturity previous studies observe is two 

months. The one-month variance swap is special in this 

market because it is the exclusive claim to next month’s 

realized variance, which is by far the most strongly priced 

risk in this market. 

This is also the first paper to observe and use vari- 

ance swap data with maturity longer than two years. Since 

Epstein–Zin preferences imply that it is the very low- 

frequency components of volatility that should be priced 

( Branger and Volkert, 2010; Dew-Becker and Giglio, 2013 ), 

having claims with very long maturities is important for 

effectively testing the central predictions of Epstein–Zin 

preferences. 

The variance swap market is sizeable: the notional 

value of outstanding variance swaps at the end of 2013 

was $4 billion of notional vega, which means that an in- 

crease in annualized realized volatility of 1% induces total 

payments of $4 billion. 10 This market is thus small relative 
10 See the Commodity Futures Trading Commission’s (CFTC) weekly 

swap report. The values reported by the CFTC are consistent with data 
to the aggregate stock market, but it is non-trivial econom- 

ically. 

We obtained information about average bid-ask spreads 

by maturity from a large market participant. Typical bid- 

ask spreads are reported to be 1–2% for maturities up to 

one year, 2–3% between one and two years, and 3–4% for 

maturities up to ten years. The bid-ask spreads are thus 

non-trivial, but also not so large as to prohibit trading. 

Moreover, they are small relative to the volatility of the 

prices of these contracts. At the short end, the spreads 

are comparable to those found for corporate bonds by Bao, 

Pan, and Wang (2011) . 

Table 1 shows the total volume in notional vega terms 

for all transactions between March 2013 and June 2014, 

obtained from the Depository Trust & Clearing Corpora- 

tion (DTCC; see Appendix Section A.1). In little more than a 

year, the variance swap market saw $7.2 billion of notional 

vega traded. Only 11% of the volume was traded in short 

maturity contracts (one to three months); the bulk of the 

transactions occurred for maturities between six months 

and five years, and the median maturity was 12 months. 

A recent paper by Mixon and Onur (2015) studies the 

liquidity of the variance swap market and the VIX fu- 

tures market using proprietary data from the Commodity 

Futures Trading Commission (CFTC). They document that 

trading in these (essentially interchangeable) products oc- 

curs mostly in the VIX futures markets for maturities be- 

low one year, and in the variance swap market for higher 

maturities. We show below that these two markets are 

tightly integrated—prices for maturities present in both 

markets are virtually identical; we will show below that 

our results will hold in each of these two markets taken 

separately. 

Since these data sets are new to the literature, we de- 

vote Appendix Section A.1 to a battery of tests to ensure 

the quality of the data. In particular, we verify that: nei- 

ther data set contains stale prices (at the monthly fre- 

quency, which is the one we observe); the two data sets 

contain essentially the same information when they over- 

lap (correlation above 0.997); quotes from the two data 

sets correspond closely to the prices for actual trades 

we observe since 2013; and prices in the variance swap 
obtained from the Depository Trust & Clearing Corporation that we dis- 

cuss below. 
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market are extremely highly correlated with other related

markets (synthetic variance swaps constructed from op-

tions as described below, and VIX futures). 

In addition to the prices of S&P 500 variance swaps,

we also obtained prices for variance swaps in 2013 and

2014 for the FTSE 100 (UK), Euro Stoxx 50 (Europe), and

DAX (Germany) indexes. This is the first paper to examine

volatility claims in international markets and we show that

our main results are consistent globally. 

2.2. Options 

It is well known that variance swaps can be synthesized

as a portfolio of all available out-of-the money options

( Carr and Wu, 2009; Jiang and Tian, 2005 ). The synthetic

variance swap portfolio is used to construct the CBOE’s VIX

index. Options thus give an alternative source of informa-

tion about the pricing of variance risk. 

The VIX is usually reported for a 30-day maturity, but

the formulas are valid at any horizon (see Appendix Sec-

tion A.2 for details on construction). The VIX is calcu-

lated based on an extraordinarily deep market. Options

are traded in numerous venues, have notional values out-

standing of trillions of dollars, and have been thoroughly

studied. 11 Since options are exchange-traded, they involve

minimal counterparty risk, so we can use them to check

whether our results for variance swaps are affected by

counterparty risk. 

We construct VIX-type portfolios for the S&P 500, FTSE

100, Euro Stoxx 50, DAX, and CAC 40 indexes using data

from Optionmetrics. We confirm our main results by show-

ing that term structures and returns obtained from invest-

ments in options are similar to those obtained from vari-

ance swaps. 

2.3. VIX futures 

Futures have been traded on the VIX since 2004. The

VIX futures market is significantly smaller than the vari-

ance swap market, with outstanding notional vega during

2015 averaging $332 million. 12 Bid-ask spreads are smaller

than what we observe in the variance swap market, at

roughly 0.1%, but as the market is smaller, we would ex-

pect price impact to be larger (and market participants

claim that it is). We collected data on VIX futures prices

from Bloomberg since their inception and show below that

they yield nearly identical results to variance swaps. 

More recently, a market has developed in exchange-

traded notes and funds available to retail investors that

are linked to VIX futures prices. As of 2014, these funds

had an aggregate notional exposure to the VIX of roughly
11 Even in 1990, Vijh (1990) noted that the CBOE was highly liquid 

and displayed little evidence of price impact for large trades. George and 

Longstaff (1993) study options on the S&P 100 in 1989, and document 

that at-the-money calls and puts had bid-ask spreads of 2–3% at all ma- 

turities they analyze. Volume and liquidity in the options market have 

grown over time, but these earlier studies are important because they 

document that even earlier than our main sample begins, options mar- 

kets were developed and liquid. 
12 According to the CBOE futures exchange market statistics. See: 

http://cfe.cboe.com/Data/HistoricalData.aspx. 

 

 

 

 

$5 billion, making them comparable in size to the variance

swap market. 

2.4. Liquidity across markets 

An obvious concern with any study of derivatives

prices, especially derivatives traded over the counter, is

that the prices are affected by liquidity. Liquidity effects

can cause the prices to be stale and can generate risk pre-

mia. As noted above, the variance swap market is large in

terms of notional values, but the bid/ask spreads are also

larger than in other markets. 

To check the accuracy of the variance swap prices, we

compare their behavior to that of VIX futures for the dates

and maturities where they overlap. We show in appendix

section A.1.4.2 that the VIX futures and variance swap

prices are extremely highly correlated: in levels, the cor-

relation is on average 0.993, while for monthly changes it

is 0.98. So even though variance swaps are less liquid than

other assets, their prices are nearly identical to those for

VIX futures. 

Mixon and Onur (2015) show that for maturities of

six months or less, there is far more volume in the VIX

futures market than in variance swaps. And Fig. A.2 in

the Appendix shows that the 75th percentile of maturity

for CBOE-traded S&P 500 options weighted by open in-

terest is six months. On the other hand, Mixon and Onur

(2015) find that the mean maturity (weighted by open in-

terest) for S&P 500 variance swaps is four years. So VIX

futures and options appear to be used to trade volatil-

ity at relatively short maturities, while variance swaps are

used at longer maturities. In the analysis below, we there-

fore emphasize that our primary results are clear even in

the options and futures markets, and even at maturities

shorter than six months. 

So it is ultimately important that we examine a wide

range of data sources, since they have trade concentrated

at different maturities. We will show below, though,

that our results and conclusions are the same across the

various variance claims. And as noted above, where the

different data sources overlap, the prices we measure are

nearly identical. 

Finally, we show in Appendix Section A.4 that our main

results on the difference between short-term and long-

term variance claim returns are robust to accounting for

the bid-ask spread and can be obtained in trading strate-

gies that minimize the amount of trading needed (in par-

ticular, using holding periods of six months). This robust-

ness test helps mitigate the concern that liquidity issues

across the term structures may be the driver of our empir-

ical results. 

3. The term structure of variance claims 

3.1. Variance swap prices 

The shortest maturity variance swap we consistently

observe has a maturity of one month, so we treat a

month as the fundamental period of observation. We de-

fine RV t to be realized variance—the sum of squared daily

http://cfe.cboe.com/Data/HistoricalData.aspx
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V

 

log returns—during month t . Subscripts from here forward 

index months rather than days. 

Given a risk-neutral (pricing) measure Q , the price of an 

n -month variance swap at the end of month t , V S n t , is 

 S n t = E Q t 

[ 

n ∑ 

j=1 

RV t+ j 

] 

, (2) 

where RV t+ m 

is the sum of daily squared returns in month 

t + m and E Q t denotes the mathematical expectation under 

the risk-neutral measure conditional on information avail- 

able at the end of month t . So V S n t is the expected sum of 

daily squared returns between months t + 1 and t + n. 

Since an n -month variance swap is a claim to the 

sum of realized variance over months t + 1 to t + n, it is 

straightforward to compute prices of forward claims on re- 

alized variance. We define an n -month variance forward as 

an asset with a payoff equal to realized variance in month 

t + n . The absence of arbitrage implies 

F n t ≡ E Q t [ RV t+ n ] (3) 

= V S n t − V S n −1 
t . (4) 

F n t represents the market’s risk-neutral expectation of real- 

ized variance n months in the future (at the end of month 

t ). We use the natural convention that 

F 0 t = RV t (5) 

so that F 0 t is the variance realized during the current 

month t . A one-month variance forward is exactly equiv- 

alent to a one-month variance swap, F 1 t = V S 1 t . 

Fig. 1 plots the time series of variance forward prices 

for maturities between one month and ten years. The fig- 

ure shows all series in annualized percentage volatility 

units, rather than variance units: 100 ×
√ 

12 × F n t instead 

of F n t . The top panel plots variance forward prices for ma- 

turities below one year and maturities longer than one 

year are in the bottom panel. 

The term structure of variance forward prices is usu- 

ally weakly upward sloping. In times of distress, though, 

such as during the financial crisis of 2008, the short end of 

the curve spikes, temporarily inverting the term structure. 

Volatility obviously was not going to continue at crisis lev- 

els, so markets priced variance swaps with the expectation 

that it would fall in the future. 

Fig. 2 reports the average term structure of variance 

forwards for two different subperiods—2008–2014, a rela- 

tively short sample for which we have data for longer ma- 

turities, is in the top panel, while the full sample, 1996–

2014, is in the bottom panel. The first point on the graph 

(maturity 0) corresponds to the average realized volatility, 

whereas all points from 1 on are forward claims of differ- 

ent maturity. 

Fig. 2 shows that the term structure of variance for- 

wards has been upward sloping on average, but also con- 

cave, flattening out very quickly as the maturity increases. 

For example, the top panel shows that the three-month 

forward was 30% more expensive than realized volatility 

on average, but from the three-month forward to the 120- 

month forward, the price rose only by another 20%. The 

bottom panel shows that the 12-month forward was only 
5% more expensive than the three-month forward over the 

longer sample. 

The average variance term structures in Fig. 2 provide 

the first indication that the compensation for bearing risk 

associated with news about future volatility has been small 

in this market. Since the return on holding a variance for- 

ward for a single month is 
F n −1 
t+1 

−F n t 

F n t 
, it is clearly closely re- 

lated to the slope of the forward variance term structure. 

So if the average term structure is upward sloping be- 

tween maturities n − 1 and n , forward claims of maturity 

n will tend to have negative average returns, implying that 

it is costly to buy insurance against increases in future 

expected volatility n − 1 months ahead. The fact that the 

curve is very steep at short horizons and flat at long hori- 

zons is a simple way to see that it is only the claims to

variance in the very near future that earn significant nega- 

tive returns. 

To see whether the shape of the curve is well mea- 

sured statistically, Fig. 3 plots the average slope (F n t −
F n −1 
t ) and curvature ((F n +1 − F n t ) − (F n t − F n −1 

t )) at each 

maturity along with confidence intervals calculated using 

the Newey and West (1987) method with six lags. The top 

panel of Fig. 3 shows that the slopes are well identified—

the slope falls from 3.7 annualized percentage points at 

the one-month maturity to an insignificant 0.3 percentage 

points at three months. The slope is also uniformly declin- 

ing with maturity. The bottom panel of Fig. 3 plots the av- 

erage curvature of the term structure. The term structure 

is concave on average at every maturity (statistically sig- 

nificantly at seven of 11 maturities). Fig. 3 thus confirms 

that the basic intuition from Fig. 2 , that the term structure 

was steep at short maturities and nearly flat on average at 

longer maturities, is well measured statistically. 

The top and bottom panel of Fig. 2 differ in both the 

time period and the maturities displayed. To check the ro- 

bustness of our conclusions about the average shape of the 

term structure of variance forwards over the period used 

to construct it, Fig. 4 examines the average term struc- 

ture in different subsamples, focusing on the maturities up 

to 12 months to make the comparison easier. The figure 

shows that after 2008 the curve became slightly steeper 

for maturities above one month. However, even after 2008 

the curve is still much flatter at maturities above three 

months than it is at the very short end, displaying the 

same pattern as in the full sample. The results are similar 

when we eliminate the financial crisis. Finally, we also use 

data from the CME to construct the VIX for maturities up 

to six months going back to 1983. Before 1996, the overall 

level of the curve was lower, but the shape of the curve 

was the same. 

Of course, the economic significance of the “flatness”

of the curve must be understood within the context of a 

model. In Section 5, we show formally that the curve of 

forward variance swaps is too flat in both subperiods rela- 

tive to the implications of workhorse asset pricing models. 

3.2. Returns on variance forwards 

The return on an n -month variance forward corre- 

sponds to a strategy that buys the n -month forward and 
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Fig. 1. Time series of forward variance claim prices. The figure shows the time series of forward variance claim prices of different maturities. For readability, 

each line plots the prices in annualized volatility terms, 100 ×
√ 

12 × F n t , for a different n . The top panel plots forward variance claim prices for maturities 

of one month, three months, and one year. The bottom panel plots forward variance claim prices for maturities of 1 year, 5 years and 10 years. Both panels 

also plot annualized realized volatility, 100 ×
√ 

12 × F 0 t . 

 

 

 

 

 

sells it one month later as an ( n − 1 ) -month forward, rein-

vesting then again in a new n -month forward. We define

the excess return of an n -period variance forward follow-

ing Gorton, Hayashi, and Rouwenhorst (2013) . 13 
13 Note that F n −1 
t+1 

− F n t is also an excess return on a portfolio since no 

money changes hands at the inception of a variance swap contract. Fol- 

lowing Gorton, Hayashi, and Rouwenhorst (2013) , we scale the return by 

the price of the variance claim bought. This is the natural scaling if the 

 

R 

n 
t+1 = 

F n −1 
t+1 

− F n t 

F n t 

. (6)

Given the definition that F 0 t = RV t , the return on a one-

month forward, R 1 
t+1 

is simply the percentage return on a
amount of risk scales proportionally with the price, as in Cox, Jonathan 

E. Ingersoll, and Ross (1985) . We have reproduced our analysis using the 

unscaled excess return F n −1 
t+1 

− F n t as well and confirmed that the results 

hold in that case; we report the Sharpe ratios in Appendix Fig. A.3. 
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Fig. 2. Average forward variance claim prices. The figure shows the average prices of forward variance claims of different maturity, across different periods. 

The top panel shows average prices between 2008 and 2013, when we observe maturities up to 10 years (Dataset 2). The bottom panel shows averages 

between 1996 and 2013, for claims of up to 1 year maturity (Dataset 1). In each panel, the “x” mark prices of maturities we directly observe in the data (for 

which no interpolation is necessary). All prices are reported in annualized volatility terms, 100 ×
√ 

12 × F n t . Maturity zero corresponds to average realized 

volatility, 100 ×
√ 

12 × F 0 t . 
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Fig. 3. Slope and curvature of the term structure of forward variance claims. The top panel plots the slope of the term structure of variance swaps ( Fig. 2 ) 

at each maturity. The bottom panel plots the curvature of the same curve at each maturity. Dotted lines are 95% confidence intervals constructed using 

Newey-West with 6 lags. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

one-month variance swap. We focus here on the returns

for maturities of one to 12 months, for which we have data

since 1995. All the results extend to higher maturities in

the shorter sample. 

Table 2 reports descriptive statistics for our panel of

monthly returns. Only the average returns for the one- and

two-month maturities are negative, while all the others are

weakly positive. Return volatilities are also much higher

at short maturities, though the long end still displays sig-

nificant variability—returns on the 12-month forward have
an annual standard deviation of 17%, which indicates that

expectations of 12-month volatility fluctuate significantly

over time. 

Finally, note that only very short-term returns have

high skewness and kurtosis. A buyer of short-term variance

swaps is therefore potentially exposed to counterparty risk

if realized variance spikes and the counterparty defaults.

This should induce her to pay less for the insurance, i.e.,

we should expect the average return to be less negative .

Therefore, the presence of counterparty risk on the short
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Fig. 4. Subsample analysis of forward variance claims. The figure compares the average prices of forward variance claims for maturities up to 1 year, for 

the two subsamples of the top and bottom panel of Fig. 2 , as well as for the period that excludes the financial crisis and for the period 1983–1996 (the 

latter uses options data from the CME to construct the term structure of the VIX as opposed to variance swaps). 

Table 2 

Characteristics of returns. 

Maturity (months) Mean Std. Min. 25th p. Median 75th p. Max. Skew Exc.Kurt. 

1 −25.7 67.9 −85.5 −58.4 −40.2 −16.0 686.4 6.2 56.5 

2 −5.8 47.7 −59.3 −32.9 −18.4 9.3 376.0 3.9 23.4 

3 0.7 33.9 −46.1 −21.4 −5.3 14.5 249.4 2.7 14.1 

4 0.6 27.4 −42.2 −17.3 −5.6 11.2 170.4 2.0 7.6 

5 0.1 22.5 −37.3 −14.0 −3.7 9.8 126.7 1.6 5.2 

6 0.5 19.6 −31.0 −12.2 −3.8 12.9 100.6 1.3 3.3 

7 0.6 18.6 −31.4 −12.4 −2.5 11.0 90.7 1.1 2.5 

8 0.7 17.4 −29.8 −11.4 −2.9 11.6 81.6 1.0 2.0 

9 0.9 16.2 −27.7 −10.2 −1.9 9.2 74.6 0.9 1.7 

10 1.1 15.6 −30.0 −9.6 −2.0 9.8 70.8 0.9 1.5 

11 1.4 16.0 −32.6 −9.9 −1.9 11.2 69.7 0.9 1.3 

12 1.8 17.4 −35.0 −10.3 −2.4 12.1 70.4 1.0 1.4 

The table reports descriptive statistics of the monthly returns for forward variance claims (in percentage points). For each maturity n , returns are computed 

each month as R n t+1 = 

F n −1 
t+1 

−F n t 

F n t 
. Given the definition that F 0 t = RV t , the return on a one-month claim, R 1 t+1 is the percentage return on a one-month variance 

swap. 

14 One may also worry that some of our results depend on the interpo- 

lation between observed maturities. To make sure this does not affect our 

results, we have constructed six-month holding period returns of a claim 

to variance six to 12 months forward (which we refer to as the 6/12 port- 

folio), which does not depend on interpolated data. Of course, the return 

of the one-month claim (Sharpe ratio of −1.3 as reported in the figure) 

also does not depend on interpolated data. See Appendix Section A.4 for 

the empirical results. Appendix Section A.4 also shows that our results 

hold when the bid-ask spread is explicitly taken into account in comput- 
end of the term structure would bias our estimate towards 

not finding large negative expected returns. On the other 

hand, returns at longer maturities have much lower skew- 

ness and kurtosis, which indicates that counterparty risk is 

substantially less relevant. Finally, we note that we obtain 

the same results below using options, which are exchange 

traded and have far less counterparty risk. 

Given the different volatilities of the returns at different 

ends of the term structure, it is more informative to exam- 

ine Sharpe ratios, which measure compensation earned per 

unit of risk. Fig. 5 shows the annual Sharpe ratios of the 

12 forwards. The Sharpe ratios are negative for the one- 

and two-month maturities (at around −1.3 and −0.4, re- 

spectively), but all other Sharpe ratios are insignificantly 

different from zero, and in fact slightly positive. More im- 

portantly, the lower bounds of the confidence intervals are 
economically small. We can statistically reject the hypoth- 

esis that the Sharpe ratios are meaningfully negative at all 

maturities above 3; for example, we can reject at the 95% 

level that the annual Sharpe ratio on a 12-month claim is 

below −0.11. 14 
ing the returns of these trading strategies. 
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Fig. 5. Annualized Sharpe ratios for forward variance claims. The figure shows the annualized Sharpe ratio for the forward variance claims. The returns are 

calculated assuming that the investment in an n-month variance claim is rolled over each month. Dotted lines represent 95% confidence intervals. All tests 

for the difference in Sharpe ratio between the one-month variance swap and any other maturity confirm that they are statistically different with a p-value 

of 0.03 (for the second month) and < 0.01 (for all other maturities). The sample used is 1996–2013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15 The declining term structure of Sharpe ratios on short positions in 

volatility is consistent with the finding of van Binsbergen, Brandt, and 

Koijen (2012) that Sharpe ratios on claims to dividends decline with ma- 

turity, and that of Duffee (2011) that Sharpe ratios on Treasury bonds de- 

cline with maturity. For a review, see van Binsbergen and Koijen (2015) . 
Despite the relatively short sample, there are also

strongly statistically significant differences between the

Sharpe ratios at the very short end of the curve and ev-

erywhere else. The annual Sharpe ratio of the one-month

variance claim is more negative by 0.9 than the two-month

claim (the p-value for the difference is 0.03), and at least

1.3 lower than the Sharpe ratio at all higher horizons (the

p-values of the differences are all less than 0.01). These are

enormous differences, considering for example that the an-

nual Sharpe ratio of the aggregate stock market has histor-

ically been approximately 0.3. 

Any claim to volatility at a horizon beyond one month

is purely exposed to news about future volatility: its return

corresponds exactly to the change in expectations about

volatility at its maturity. Specifically, in the absence of ar-

bitrage, F n t = E Q t RV t+ n , and so R n 
t+1 

follows 

R 

n 
t+1 = 

E Q 
t+1 

RV t+ n − E Q t RV t+ n 

E Q t RV t+ n 
(7)

and is determined by the change in expectations of volatil-

ity in month t + n (for all n > 1). Pure news about future

expected volatility will therefore affect its return, whereas

purely transitory shocks to volatility that disappear before

its maturity will not affect it at all. Our results therefore

show that news about future volatility commands a small

to zero risk premium in our data. 

The results at the short end of the curve indicate that

investors were willing to pay a large premium to hedge re-

alized volatility. What is new and surprising in this pic-

ture is the fact that investors were willing to pay much
less to hedge any innovations in expected volatility. The es-

timated Sharpe ratio is actually positive at every point on

the curve above maturity three months. Moreover, these

declining Sharpe ratios are consistent with the findings of

van Binsbergen and Koijen (2015) , who find that Sharpe

ratios in a range of markets decline with maturity. 15 Like

them, we show below that our results are difficult to rec-

oncile with standard theories, thus further extending the

puzzle originally set forth by van Binsbergen, Brandt, and

Koijen (2012) . 

Finally, looking down the columns of Table 1 , one can

also notice a clear correlation between skewness and av-

erage returns. Specifically, the correlation between returns

and skewness across the various maturities is −0.92, while

the correlation between Sharpe ratios and skewness is

−0.96. This suggests that one possible explanation of our

results is that investors have preferences over skewness, as

suggested by Kraus and Litzenberger (1976) , Harvey and

Siddique (20 0 0) , and, more recently, by Schneider, Wag-

ner, and Zechner (2015) . We investigate the connection be-

tween downside risk and variance swap prices in the con-

text of theoretical models below. 
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Fig. 6. Synthetic forward variance claims (VIX). The solid line in panel A plots average prices of forward variance claims calculated using the formula for 

the VIX index and data on option prices from the CBOE. The dotted line is the set of average prices of forward variance claims constructed from variance 

swap prices. Both curves are constructed at monthly maturities as in Fig. 2 . Panel C plots annualized Sharpe ratios for forward variance claims returns with 

prices calculated using the VIX formula and CBOE option data at monthly maturities. Dotted lines in panel C represent 95% confidence intervals. Panels B 

and D construct the VIX term structure at biweekly and weekly maturities, respectively. The sample covers the period 1997–2013. 
3.3. Evidence from other markets 

Fig. 6 shows the term structure of prices and Sharpe ra- 

tios of variance forwards obtained from the variance swap 

data compared to the synthetic claims for maturities up to 

1 year. While the curves obtained using options data seem 

noisier, the curves deliver the same message: the volatil- 

ity term structure is extremely steep at the very short end 

but quickly flattens out for maturities above two months, 

and Sharpe ratios rapidly approach zero as the maturity 

passes two months. 16 Appendix Fig. A.6 shows that we ob- 

tain similar results with VIX futures. 17 

We focus on monthly maturities because the past liter- 

ature has mostly studied those maturities and they appear 
16 Given the high liquidity of the options market, we might have ex- 

pected option-based portfolios to be less noisy. However, the synthetic 

variance portfolios load heavily on options very far out of the money 

where liquidity is relatively low. This demonstrates another advantage of 

studying variance swaps instead of options. Appendix Section A.1 shows 

that our synthetic variance swaps are highly correlated with those con- 

structed by the CBOE for the VXV and VXMT indexes. Appendix Fig. A.4 

repeats the exercise constructing monthly VIX forward returns from daily 

data (i.e., with overlapping monthly windows); the results are qualita- 

tively and quantitatively consistent with those in Fig. 6 . 
17 VIX futures are not exactly comparable to variance swaps because 

they are claims on the VIX , not on VIX 2 . A convexity effect makes the 

prices of claims on variance and volatility different, but the figure shows 

that it is quantitatively small. 
to have high liquidity. But options data have the advantage 

that it includes maturities shorter than one month, which 

allows us to measure the point at which the variance for- 

ward curve flattens out more precisely. The two right-hand 

panels of Fig. 6 plot average prices for variance forwards at 

maturities that are multiples of one and two weeks. These 

panels provide evidence that the steep slope of the for- 

ward curve inside one month is mostly due to the one- 

to two-week maturities. The curve flattens out noticeably 

even at two weeks forward. This result remains consistent 

with, and in fact strengthens, the intuition above, that it 

is primarily realized variance that is priced, while news 

about future variance, even at very short horizons, are not. 

Our results also extend to international markets. Fig. 7 

plots average term structures obtained from both variance 

swaps and synthetic option-based variance claims for the 

Euro Stoxx 50, FTSE 100, CAC 40 and DAX indexes. Both 

panels of the figure show that the international term struc- 

tures have an average shape that closely resembles the one 

observed for the US (the solid line in both panels), demon- 

strating that our results using US variance swaps extend to 
18 
the international markets. 

18 In the Appendix (Fig. A.5), we also confirm that for the indexes for 

which we have both variance swap prices and synthetic prices obtained 

from options, the two curves align well. 
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Fig. 7. Average forward variance claim prices for international markets. The figure plots the average prices of forward variance claims as in Fig. 2 for 

different international indices. The series for the S&P 500 (both in the top and bottom panel) is obtained from variance swaps (as in Fig. 2 ). The top panel 

shows international curves obtained using option prices, using the same methodology used to construct the VIX for the S&P 500 (as in Fig. 6 ). Options data 

is from OptionMetrics. The series cover FTSE 100, CAC 40, DAX, and STOXX 50, for the period 2006–2014. The bottom panel shows international curves 

obtained using variance swaps on the FTSE 100, DAX, and STOXX 50, for one year starting in April 2013. All series are rescaled relative to the price of the 

three-month forward variance price. 



238 I. Dew-Becker et al. / Journal of Financial Economics 123 (2017) 225–250 

0 2 4 6 8 10 12
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Maturity (months)

Principal Components of Variance Swaps: Loadings

 

 

PC1 − level
PC2 − slope

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
−8

−6

−4

−2

0

2

4

6
Principal Components of Variance Swaps: Time Series

 

 
PC1 − level
PC2 − slope

Fig. 8. Principal components of variance swap prices. The top panel plots the loadings of the variance swap prices on the level and slope factors (first two 

principal components). The bottom panel plots the time series of the level and slope factors. Both are normalized to have zero mean and unit standard 

deviation and are uncorrelated in the sample. The sample covers the period 1996–2013. 
4. Asset pricing 

4.1. Reduced-form estimates 

We now formally estimate the pricing of volatility 

risk. As usual in the term structure literature, we begin 

by extracting principal components (PCs) from the term 
structure of variance swaps. Throughout this section, we 

examine models specified both in terms of levels and logs 

of variance swap prices. The top panel of Fig. 8 plots the 

loadings of the variance swaps on the PCs in levels—the 

results in logs are highly similar. The first factor explains 

97.1% of the variation in the term structure and the second 

explains an additional 2.7%. The time series of the factors 
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Table 3 

Reduced-form pricing estimates. 

Panel A : level specification, 2-step GMM RV PC 1 PC 2 

Risk prices −1.32 ∗∗∗ 0.41 −0.42 

Standard error 0.27 0.26 0.36 

Difference from RV (p-value) < .001 < .001 

Cross-sectional R 2 .70 

Panel B : level specification, 1-step GMM RV PC 1 PC 2 

Risk prices −1.23 ∗∗ 0.34 −0.59 

Standard error 0.55 0.33 0.63 

Difference from RV (p-value) .003 .17 

Cross-sectional R 2 .99 

Panel C : log specification, 2-step GMM RV PC 1 PC 2 

Risk prices −0.84 ∗∗∗ 0.38 −0.07 

Standard error 0.15 0.24 0.19 

Difference from RV (p-value) < .001 < .001 

Cross-sectional R 2 .99 

Panel D : log specification, 1-step GMM RV PC 1 PC 2 

Risk prices −0.81 ∗∗∗ 0.42 −0.01 

Standard error 0.25 0.33 0.34 

Difference from RV (p-value) .007 .067 

Cross-sectional R 2 .99 

Results of GMM estimation of the risk prices for the shocks to RV and 

to the first two principal components of the term structure of variance 

swap prices, using Newey-West GMM standard errors with six monthly 

lags. The three priced innovations are the reduced-form innovations from 

a VAR with the RV and two PCs. The table also reports the p-values of a 

test for the differences between the risk prices for PC 1 and PC 2 and the 

risk price for RV. Panels A and C use two-step efficient GMM; panels B 

and D use one-step GMM with the identity matrix as weighting matrix. 

Panels A and B use level RV as a first factor, and level prices to construct 

PC 1 and PC 2. Panels C and D use log RV as a first factor, and log prices to 

construct PC 1 and PC 2. ∗∗∗ denotes significance at the 1-percent level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are shown in the bottom panel of Fig. 8 . The first factor

captures the level of the term structure, while the second

measures the slope. As we would expect, during times of

crisis, the slope turns negative. The level factor captures

the longer-term trend in volatility and clearly reverts to its

mean more slowly. 

We model innovations in the pricing kernel as a linear

function of the innovations in realized volatility and the

principal components (since we are examining excess re-

turns, the expectation of the SDF is irrelevant), 

�E t+1 M t+1 = −b RV 
�E t+1 RV t+1 

std ( �E t+1 RV t+1 ) 

− b PC1 
�E t+1 P C1 t+1 

std ( �E t+1 P C1 t+1 ) 
− b PC2 

�E t+1 P C2 t+1 

std ( �E t+1 P C2 t+1 ) 
, (8)

where, for any variable X , �E t+1 X t+1 ≡ X t+1 − E t X t+1 is the

change in expectations, and PC 1 and PC 2 are the first two

principal components (PCs) of the term structure, which

capture innovations in expectation of future volatility. The

innovations are all standardized to have unit variance to

aid the interpretation of the coefficients in terms of price

of risk per unit of volatility in each factor. In the specifi-

cation of the model in logs, RV t+1 above is replaced with

log RV t+1 , and the PCs are calculated from the log variance

swap prices. 

To extract shocks to RV t+1 and the two PCs, we es-

timate a first-order vector autoregression (VAR) with the

two principal components and realized variance (RV). The

risk prices, b RV , b PC 1 and b PC 2 , represent partial derivatives

of the pricing kernel with respect to each innovation in

the VAR. Note that, as is standard in asset pricing mod-

els, we allow for the pricing factors to be correlated with

each other. 

We estimate risk prices for the three shocks using

GMM. Panels A and B of Table 3 report the estimation re-

sults using one-step and two-step efficient GMM. The re-

sults are consistent across the two panels, and indicate

that in the cross section of variance swaps the only fac-

tor with a significant price of risk is the realized variance

shock. Shocks to expectations of future variance are not

priced in this cross-section; they are statistically insignifi-

cant and their magnitude is several times smaller than the

price of risk of realized variance shocks. 

The third row in each panel reports the p-value from a

test of whether either of the coefficients on the PCs is the

same as the coefficient on RV. That hypothesis is strongly

rejected in almost all of the cases (in panel B, b PC 2 is not

significantly different from b RV , but that is simply due to a

very large standard error on b PC 2 ). 
19 

Panels C and D report the results for the version of the

model specified in logs. The results are similar to those in

panels A and B: the shock to RV is the only one that is

significantly priced, while those to the two PCs are not.

The coefficients on RV remain economically and statisti-

cally significant, though they are slightly smaller. 
19 Despite the good fit of the model in terms of R 2 , the GMM and the 

Gibbons-Ross-Shanken test reject the null that all the average pricing er- 

rors are zero. This is because the pricing errors, while being small relative 

to the overall average returns of these contracts, are still statistically dif- 

ferent from zero. 

 

 

 

 

 

One possible explanation for why realized variance is

priced is that it provides a good hedge for aggregate mar-

ket shocks. To test that possibility, we add the market re-

turn as an additional factor in the estimation (we also add

the market return as a test asset to impose discipline on

its risk premium.) Table 4 shows that the return on the

market portfolio does not help price the variance claims—

the risk price on the market is insignificant across the four

specifications, while b RV remains highly significant. 

In addition to these reduced-form estimates, we have

explored different variations of an affine term structure

model with three factors—realized variance and two latent

factors that govern its dynamics. The results of the affine

model—reported in Appendix Section A.5— confirm those

of the reduced-form estimates in this section. 

4.1.1. Upside and downside volatility 

A natural question is whether investors desire to hedge

all volatility shocks, or whether they primarily desire to

hedge volatility during downturns. Segal, Shaliastovich, and

Yaron (2015) , for example, discuss such a model. Following

Andersen and Bondarenko (2007) , we decompose the real-

ized variance in a month, RV t , into an upper and a lower

semivariance: the integrated realized variances computed

only when prices are above or below a threshold. In partic-

ular, following Andersen and Bondarenko (2007) we con-

struct the upper and lower RV in each month as 
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Table 4 

Controlling for the market return. 

Panel A : level specification, 2-step GMM RV PC 1 PC 2 Rm 

Risk prices −1.35 ∗∗∗ 0.11 −0.40 ∗ −0.55 

Standard error 0.27 0.42 0.24 0.39 

Cross-sectional R 2 .88 

Panel B : level specification, 1-step GMM RV PC 1 PC 2 Rm 

Risk prices −1.25 ∗∗ −0.02 −0.44 −0.68 

Standard error 0.58 0.67 0.43 0.72 

Cross-sectional R 2 .99 

Panel C : log specification, 2-step GMM RV PC 1 PC 2 Rm 

Risk prices −0.75 ∗∗∗ −0.05 −0.01 −0.56 

Standard error 0.17 0.39 0.12 0.51 

Cross-sectional R 2 .97 

Panel D : log specification, 1-step GMM RV PC 1 PC 2 Rm 

Risk prices −0.89 ∗∗ −0.43 0.12 −1.25 

Standard error 0.43 0.64 0.17 0.89 

Cross-sectional R 2 .99 

Same as Table 3 , but adding the market portfolio as a test asset and as 

a pricing factor. ∗ Denotes significance at the 10-percent level, ∗∗ denotes 

significance at the 5-percent level, and ∗∗∗ denotes significance at the 1- 

percent level. 
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21 Andersen, Bollerslev, Diebold, and Labys (2003) , Ait-Sahalia and 

Mancini (2008) , Federico Bandi and Yang (2008) , and Brownlees, Engle, 
RV 

U 
t = 

∑ 

j∈ t 
(r j ) 

2 1 

{
P j > P 0 

}
(9) 

RV 

D 
t = 

∑ 

j∈ t 
(r j ) 

2 1 

{
P j ≤ P 0 

}
, (10) 

where j ∈ t indicates days j in month t , and 1{ ·} is the indi-

cator function. RV 

U is realized variance calculated only on 

days when the market is above its level at the beginning of 

the month, and RV 

D is realized variance on the remaining 

days. 

Andersen and Bondarenko (2007) discuss two useful 

properties of these realized semivariances: the two com- 

ponents sum to RV t , and their prices sum to the squared 

VIX, 

RV t = RV 

U 
t + RV 

D 
t (11) 

 IX 

2 
t = (V IX 

U 
t ) 

2 + (V IX 

D 
t ) 

2 , (12) 

where V IX U t and V IX D t are the prices of claims to RV U 
t+1 

and 

RV D t+1 , respectively. just as in the case of the VIX, we can 

compute the prices of the two claims for different maturi- 

ties and study the term structure. 

Fig. 9 plots the term structure of the variance forwards 

obtained from VIX, as well as those for VIX 

U and VIX 

D . As 

before, maturity zero corresponds to the average RV t , RV U t 

and RV D t , respectively. The slopes between the zero- and 

one-month maturities then represent precisely the returns 

on the 30-day VIX, VIX 

U , and VIX 

D . We can see that most 

of the negative average return that investors are willing to 

accept to hold the VIX comes from the extremely nega- 

tive monthly return of the VIX 

D (about −30% per month), 

while VIX 

U commands a return much closer to zero. 20 This 
20 Note that contrary to the case of the VIX, for VIX U and VIX D the slope 

between maturities above one month cannot be interpreted exactly in 

terms of returns since the barrier is moving over time. 
confirms the intuition that the reason investors hedge re- 

alized volatility is due to its downside component (which 

Bollerslev and Todorov, 2011 show is dominated by down- 

ward jumps), and is consistent with investors displaying 

aversion to skewness. 

4.2. The predictability of volatility 

Since the key result of the paper concerns the pricing of 

volatility shocks at different horizons, a natural question is 

how much news there actually is about future volatility. 

First, there is strong evidence in the literature that 

volatility is predictable three months ahead. See, for ex- 

ample, Andersen, Bollerslev, Diebold, and Labys (2003) . In- 

deed, the volatility literature has demonstrated predictabil- 

ity at horizons much longer than three months. 21 But 

the sample mean Sharpe ratios on variance forwards are 

insignificantly different from zero even for maturities as 

short as three months, and the point estimates for some 

are even positive. This suggests that even at shorter hori- 

zons where the evidence for volatility predictability is 

strongest, volatility news has not been priced. 

To quantify the magnitude of the predictability of 

volatility at different horizons Table 5 reports R 2 s from 

predictive regressions for realized volatility at different fre- 

quencies and horizons. Specifically, we run the regression 

RV t = b 0 + b RV RV t− j + b PE P E t− j + b DEF DEF t− j + ε t , (13)

where PE t is the aggregate market’s price/earnings ratio 

and DEF t is the default premium—the spread between the 

yields on Aaa and Baa bond yields reported by Moody’s. 

The first pair of columns focuses on forecasts of 

monthly realized variance, while the second pair repeats 

the exercise at the annual frequency. The R 2 s for monthly 

volatility range from 45% at the one-month horizon to 20% 

at the 12-month horizon. In predicting annual volatility, 

R 2 s range between 56 and 21% for horizons of one to ten 

years. 

It is important to note here that the monthly or annual 

specification of the regression (13) cannot distinguish be- 

tween whether diffusive or jump risk is predictable. What 

we show is simply that total realized volatility is pre- 

dictable. This is sufficient for our purposes for two reasons. 

First, RV t is what actually determines the payoffs of vari- 

ance swaps. Second, in the theoretical models based on 

Epstein–Zin preferences that we examine below, fluctua- 

tions in both jump risk and diffusive volatility should be 

priced. So it is important just to know whether any source 

of realized variance is predictable. 

In order to gauge the economic magnitude of the pre- 

dictability of realized variance, the third pair of columns in 

Table 5 reports the results of forecasts of dividend growth 

(i.e., replacing RV t with dividend growth in Eq. (13) ). R 2 s 
and Kelly (2011) show that volatility is predictable based on lagged re- 

turns of the underlying and past volatility. Campbell, Giglio, Polk, and 

Turley (2013) focus on longer horizons (up to ten years) and show that 

both the aggregate price-earnings ratio and the Baa-Aaa default spread 

are useful predictors of long-run volatility. 
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Fig. 9. Decomposing the upward and downward volatility components. The solid thick line plots average prices of forward variance claims calculated using 

the formula for the VIX index. The dashed line plots the forward prices of the downside component of the VIX, VIX D . The thin solid line plots the forward 

prices of the upside component of the VIX, VIX U . All series are constructed using option data from CBOE. The sample covers the period 1997–2013. 

Table 5 

Forecasting volatility at different horizons: R 2. 

Monthly RV t+ n Yearly RV t+ n Yearly �d t+ n 

Predictor: RV t RV t RV t RV t �d t �d t 
with PE t , DEF t � � �

Months Years Years 

1 0.39 0.45 1 0.41 0.56 1 0.00 0.09 

2 0.21 0.34 2 0.10 0.25 2 0.00 0.02 

3 0.18 0.32 3 0.05 0.09 3 0.06 0.07 

6 0.15 0.26 5 0.02 0.04 5 0.05 0.07 

12 0.10 0.18 10 0.00 0.21 10 0.02 0.03 

The first column of the table reports R 2 of predictive regressions of monthly volatility n months ahead at the monthly frequency. The second column 

reports R 2 of predictive regressions of yearly volatility n years ahead at the yearly frequency. The second column reports R 2 of predictive regressions of 

yearly log dividend growth n years ahead at the yearly frequency. The left side of each column reports univariate regressions using the lagged value of the 

target, while the right side of each column adds the market price-earnings ratio and the default spread as predictors. The sample is 1926–2014. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for dividend growth are never higher than 9%. So in the

context of financial markets, there is an economically large

amount of predictability of volatility. The Appendix (sec-

tion A.3) takes an extra step beyond Table 5 and provides

evidence, using Fama and Bliss (1987) and Campbell and

Shiller (1991) regressions, that nearly all the variation in

variance swap prices is actually due to variations in ex-

pected volatility, rather than risk premia. 

We conclude by noting that while there is ample evi-

dence of the predictability of volatility at the horizons rel-

evant for this analysis (from three months upwards), the

result that the risk premium for volatility news is close

to zero would have strong implications for macroeconomic

and financial models even if it was driven by low quantity

of expected volatility risk. If there is not much volatility

news, then asset pricing models in which news about fu-

ture volatility plays an important role (like the ICAPM or
several versions of the long-run-risks model) would lose

this source of priced risk; similarly the macro literature

showing that volatility news can drive the business cycle

would seem irrelevant if there is no volatility news. 

5. Economic interpretation 

This section examines simulations of four major struc-

tural asset pricing models to understand how our data on

the variance term structure can help test and distinguish

among models. Among the models we consider, only the

long-run risk model of Drechsler and Yaron (2011) was

originally calibrated to match the one-month variance risk

premium. We therefore calibrate that model as in the orig-

inal specification. The other models we study did not orig-

inally target any moments of the variance risk premia, and

tend to predict too low a level of the risk premium for
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22 Seo and Wachter (2015) consider an extension of the model here that 

allows multiple factors to drive the probability of a disaster. In unreported 

results, we find that the two-factor model predicts behavior for volatility 

claims that is highly similar to that for the single-factor specification. 
23 For example, a jump of 20% would occur over 2 consecutive days, 

with a 10% decline per day. Note that this choice has only a minimal ef- 

fect on the Sharpe ratios predicted by the model; for example, Sharpe 

ratios with a maximum daily loss of −20% are essentially the same (the 

p-values discussed below are unchanged, for example). The small shocks 

ε�c, t are treated as though they occur diffusively over the month, as in 

Drechsler and Yaron (2011) . 
24 The largest negative single-day return in the Center for Research in 

Security Prices value-weighted index is −17.4% on October 19, 1987. The 

second and third largest negative returns are −11.29% and −12.01% on 

October 28, 1929 and October 29, 1929, respectively. The largest negative 

daily returns in 2008 were all smaller than 10%. A single-day decline of 

35% would thus be nearly twice as large as any return experienced in the 

US. 
one-month variance swaps. In order to focus on the pre- 

dictions of the models for the slope of the term structure 

in these models (rather than just the level of risk premia), 

whenever possible we raise risk aversion to help the mod- 

els match the one-month variance risk premium, and then 

study the implications for the higher maturities. 

5.1. Structural models of the variance premium 

5.1.1. A long-run risk model 

Drechsler and Yaron (2011) , henceforth DY, extend 

Bansal and Yaron ’s (2004) long-run risk model to allow for 

jumps in both the consumption growth rate and volatility. 

DY show that the model can match the mean, volatility, 

skewness, and kurtosis of consumption growth and stock 

market returns, and generates a large one-month variance 

risk premium that forecasts market returns, as in the data. 

DY is thus a key quantitative benchmark in the literature. 

The structure of the endowment process is 

�c t = μ�c + x t−1 + ε c,t (14) 

x t = μx + ρx x t−1 + ε x,t + J x,t (15) 

σ̄ 2 
t = μσ̄ + ρσ̄ σ̄ 2 

t−1 + ε σ̄ ,t (16) 

σ 2 
t = μσ + ( 1 − ρσ ) ̄σ 2 

t−1 + ρσσ 2 
t−1 + ε σ,t + J σ,t , (17) 

where �c t is log consumption growth, the shocks ε are 

mean-zero and normally distributed, and the shocks J 

are Poisson-distributed jump shocks. σ 2 
t controls both the 

variance of the normally distributed shocks and also the 

intensity of the jump shocks. There are two persistent 

processes, x t and σ̄ 2 
t , which induce potentially long-lived 

shocks to consumption growth and volatility. We follow 

DY’s calibration for the endowment process exactly. 

Aggregate dividends are modeled as 

�d t = μd + φx t−1 + ε d,t (18) 

Dividends are exposed to the persistent but not the transi- 

tory part of consumption growth. Equity is a claim on the 

dividend stream, and we treat variance claims as paying 

the realized variance of the return on equities. 

DY combine that endowment process with Epstein–Zin 

preferences, and we follow their calibration. Because there 

are many parameters to calibrate, we refer the reader to 

DY for the full details. 

5.1.2. Time-varying disaster risk and Epstein–Zin preferences 

The second model we study is based on a discrete-time 

version of Wachter ’s (2013) model of time-varying disaster 

risk. In this case, consumption growth follows the process, 

�c t = μ�c + σ�c ε �c,t + J �c,t , (19) 

where ε�c,t is a mean-zero normally distributed shock and 

J t is a disaster shock. The probability of a disaster in any 

period is F t , which follows the process 

F t = ( 1 − ρF ) μF + ρF F t−1 + σF 

√ 

F t−1 ε F,t . (20) 

The CIR process ensures that the probability of a disaster is 

always positive in the continuous-time limit, though it can 
generate negative values in discrete time. 22 We calibrate 

the model similarly to Wachter (2013) and Barro (2006) , 

with the main exception being the increase in risk aversion 

motivated above. Details of the calibration are reported in 

the Appendix. The model is calibrated at the monthly fre- 

quency. In the calibration, the steady-state annual disas- 

ter probability is 1.7% as in Wachter (2013) . σ F is set to 

0.0056 ( εF is a standard normal), and ρF = 0 . 92 1 / 12 , which

helps generate realistically volatile stock returns and a per- 

sistence for the price/dividend ratio that matches the data. 

If there is no disaster in period t , J t = 0 . Conditional on

a disaster occurring, J t ∼ N(−0 . 15 , 0 . 1 2 ) . It is important to

note that this distribution is not identical to what is used 

in Wachter (2013) , which is an actual empirical distribu- 

tion of disaster sizes (we use the normal distribution for 

analytic tractability). 

Finally, dividends are a claim to aggregate consumption 

with a leverage ratio of 2.6. Note that the occurrence of a 

disaster shock implies that equity values decline instanta- 

neously. To calculate realized variance for periods in which 

a disaster occurs, we assume that the shock occurs over 

several days with maximum daily return of −10%. This al- 

lows for a slightly delayed diffusion of information and 

also potentially realistic factors such as exchange circuit- 

breakers. 23 Our results are qualitatively unchanged as long 

as the jump in stock prices in a disaster is as large as 35%

per day. 24 The Appendix provides more details on how the 

results depend on this choice. 

We follow Wachter (2013) in assuming the elasticity of 

intertemporal substitution is 1 and raise risk aversion to 

4.9 to give the model the best chance of generating Sharpe 

ratios and a slope for the term structure as large as we see 

in the data (it cannot be raised further because of equilib- 

rium existence constraints, as discussed in the Appendix). 

5.1.3. Disaster risk and habit formation 

Du (2011) and Christoffersen, Du, and Elkamhi 

(2015) study an extension of Campbell and Cochrane ’s 

(1999) model of habit formation, adding rare disasters 

(where Campbell and Cochrane assumed consumption 

growth was normally distributed). The model is specified 

in continuous time. The representative agent maximizes 

E 0 

[ ∫ ∞ 

0 

exp ( −ρt ) log ( C t − H t ) dt 

] 
, (21) 
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where ρ is the pure rate of time preference, C t is consump-

tion, and H t is the level of habit. The implied coefficient of

relative risk aversion at time t, γ t , is 

γt = 

C t 

C t − H t 
. (22)

So when consumption is higher above the habit, risk aver-

sion is lower. Following Campbell and Cochrane (1999) and

Menzly, Santos, and Veronesi (2004) , γ t is specified to fol-

low a continuous-time AR(1) process with time-varying

sensitivity to the consumption growth innovation, 

d γt = k ( ̄γ − γt ) d t − α( γt − β) ( dc t − E t [ dc t ] ) , (23)

which then implies a process for H t . dc t is consumption

growth, which is independent and identically distributed

over time with both a small diffusive component and a

large jump component, 

dc t ≡ d log C t = μd t + σd B t + bd N t , (24)

where B t is a standard Brownian motion and N t is a Pois-

son process with a constant jump intensity λ. b is the size

of the jump in consumption on the impact of a disaster

shock. 

Note that the volatility of γ t depends on γ t itself. Fol-

lowing negative shocks, when γ t is high, the future volatil-

ity of innovations to γ t (and hence also of stock returns)

is also high. This is thus a model with endogenously time-

varying volatility, which is why there is no need to include

time variation in disaster risk. Following a disaster, con-

sumption is low, γ t is high, and future volatility is high.

So not only is realized volatility high in disasters, but so is

expected future volatility. We would thus expect claims to

both realized and expected future volatility to earn large

negative returns since they both have high payoffs follow-

ing disasters. 

Given this setup, Du (2011) derives the price and return

of a consumption claim in closed form. We then calculate

prices of variance claims numerically. 

We calibrate the model exactly as in Du (2011) . The

steady-state level of risk aversion, γ̄ , is 34, and the size

of a disaster, −b is 17.2%. 25 As we will see later, the model

cannot match the Sharpe ratio on the one-month variance

swap. However, it turns out that raising risk aversion in

this model does not actually increase risk premia, since in

the model this also affects the dynamics of the habit pre-

cisely in a way that offsets the increase in risk aversion.

We therefore use the original specification of the model. 26 

5.1.4. Time-varying recovery rates 

The final model we study is based on Gabaix ’s

(2012) model of disasters with time-varying recovery rates.

Because the probability of a disaster is constant, power

utility and Epstein-Zin preferences are equivalent in terms
25 As in the time-varying disaster model, to calculate realized variance 

for periods in which a disaster occurs, we assume that the shock occurs 

over several days with maximum daily return of −10%. 
26 In particular, it is easy to see from Eq. (3) in Du (2011) that scaling up 

the entire risk aversion process requires scaling proportionally γ̄ as well 

as β . But this scaling has no effect on risk prices, as evident from Eq. (7) 

in Du (2011) . 

 

 

 

 

of their implications for risk premia. We model the con-

sumption process identically to Eq. (19) above, but with

the probability of a disaster, F t , fixed at 1% per year

(Gabaix’s calibration). Following Gabaix, dividend growth is

�d t = μ�d + λε �c,t − L t × 1 { J �c,t � = 0 } . (25)

λ here represents leverage. 1{ ·} is the indicator function.

Dividends are thus modeled as permanently declining by

an amount L t on the occurrence of a disaster. L t represents

the recovery rate of stocks in a disaster and is assumed to

follow the process 

L t = ( 1 − ρL ) ̄L + ρL L t−1 + ε L,t . (26)

We calibrate L̄ = 0 . 5 and ρL = 0 . 87 1 / 12 , and εL, t ∼ N (0,

0.04 2 ), which means that the standard deviation of L is

0.25. 27 We set the coefficient of relative risk aversion to

7 to match the Sharpe ratio on one-month variance swaps

(as we did for the other disaster models; as pointed out

before, for the long-run risk model, there was no need

to adjust the calibration since the paper already targeted

the behavior of the one-month variance swap). Other than

the change in risk aversion, our calibration of the model

is nearly identical to Gabaix ’s (2012) . He did not exam-

ine the ability of his model to match the term structure

of variance claims, so this paper provides a new test of the

theory. 

5.2. Results 

We now examine the implications of the four cali-

brated models for variance forwards. Fig. 10 plots popula-

tion moments from the models against the values observed

empirically. The top panel reports annualized Sharpe ra-

tios for forward variance claims with maturities from one

month to 12 months. Our calibration of the model with

time-varying recovery rates with power utility matches the

main stylized facts well: it generates a Sharpe ratio for the

one-month claim of −1.3, while all the forward claims earn

Sharpe ratios of zero, economically similarly to what we

observe in the data. 

On the other hand, the other three models significantly

underprice variance risk at the short end relative to the

longer end of the variance curve. In these models, the

Sharpe ratio on the one month forward is far smaller—at

approximately 0.3—than in the data (approximately −1.3).

By contrast, the models generate Sharpe ratios for claims

on variance more than three months ahead that are coun-

terfactually large, almost as large as the one-month for-

ward. In the data, instead, they are zero or even positive

at all horizons above three months. 

The underpricing of risks at the short end is caused by

the fact that these models do not generate pricing kernels

sufficiently volatile to give any asset a Sharpe ratio of 1.3.

However, simply increasing the volatility of the pricing ker-

nel by increasing risk aversion will not solve the problem,
27 As for the time-varying disaster model, to calculate realized variance 

for periods in which a disaster occurs, we assume that the shock occurs 

over several days with maximum daily return of −10%. 
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Fig. 10. Sharpe ratios and average term structure in different models. The top panel gives the population Sharpe ratios from the four models and the 

sample values from the data. The bottom panel plots population means of the prices of forward claims. All the curves are normalized to have the same 

value for the three-month forward claim. 
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as it will simply increase the Sharpe ratio at all maturi-

ties and exacerbate the mispricing at horizons longer than

three months. 

The economic intuition for the result with Epstein–Zin

preferences is straightforward. If investors are risk-averse,

then periods of high expected future consumption volatil-

ity are periods of low lifetime utility. And under Epstein–

Zin preferences, periods with low lifetime utility are pe-

riods with high marginal utility. Investors thus desire to

hedge news about future consumption volatility, and in

these models forward variance claims allow them to do

so. Moreover, in these models volatility in all future pe-

riods (discounted at a rate close to the rate of pure time

preference, and therefore close to zero in standard cali-

brations) affects lifetime utility, which is why investors in

these models pay nearly the same amount to hedge volatil-

ity at any horizon. 

The expected returns on the variance forwards are

closely related to the average slope of the variance term

structure. The bottom panel of Fig. 10 reports the aver-

age term structure in the data and in the models. The fig-

ure shows, as we would expect, that neither model with

Epstein–Zin preferences generates a curve that is as con-

cave as we observe in the data. Instead, the DY model

generates a curve that is too steep everywhere (includ-

ing on the very long end), while the time-varying disas-

ter model generates a curve that is too flat everywhere. 28

The model with habit formation is similar to Epstein–Zin

with time-varying disaster risk. On the other hand, the av-

erage term structure in the model with time-varying re-

covery rates qualitatively matches what we observe in the

data—it is steep initially and then perfectly flat after the

first month. Of course, as is clear from the figure, according

to the model the term structure should be always exactly

flat at maturities higher than one—the model is therefore

technically speaking unable to generate the small but pos-

itive slope observed in the data. Economically speaking,

however, the model matches well the flatness of the term

structure that we have documented empirically for the pe-

riod 1996–2014. 

The comparison between the calibrated models and the

data reported in Fig. 10 does not take into account the sta-

tistical uncertainty due to the fact that we only observe

variance swap prices in a specific sample. To directly test
28 We note that increasing the maximum daily return possible in the 

disaster model with Epstein-Zin preferences increases the short-term 

slope of the term structure. Unless the maximum daily return is −40%, 

though (more than twice as large as any return observed in the US since 

1926), the p-values do not change. The appendix reports results for differ- 

ent calibrations of the maximum daily returns. Changing the maximum 

daily return does not affect the term structure of Sharpe ratios, which 

also are not consistent with the data. One way to get the Sharpe ratios 

for the variance swaps to change is to assume that the data we observe 

is a period without disasters (the financial crisis notwithstanding). The 

Appendix also reports results for that case. Then it is possible to generate 

large negative Sharpe ratios for variance swaps, but they are too large by 

an order of magnitude – −18 or more. Furthermore, without disasters, re- 

alized volatility is not sufficiently volatile – the one-month variance swap 

return in the model has a standard deviation less than half as large as 

that of the six-month forward, whereas in the data the six-month forward 

return is only one-third as volatile as the one-month variance swap. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the models against the data, we simulate the calibrated

models and verify how likely we would be to see a pe-

riod in which the variance swap curve looks like it does

in our data (similar to the analysis in van Binsbergen and

Koijen (2015) ). In particular, we focus on the ability of the

models to match the high slope at the short end and the

flatness at the long end of the curve. 

Table 6 reports results from those simulations. We ex-

amine 215-month simulations to compare to our full sam-

ple since 1996, and 70-month simulations to compare to

the shorter sample in which we have ten-year swaps avail-

able. For each simulation, we calculate the averages of the

simulated values of (F 3 t − F 0 t ) , (F 12 
t − F 3 t ) , and, in the long

sample, (F 120 
t − F 3 t ) . Table 6 reports the fraction of simu-

lated samples in which the sample mean of (F 3 t − F 0 t ) is at

least as large as we see in the data, the sample mean of

(F 12 
t − F 3 t ) is smaller than in the data, or the sample mean

of (F 120 
t − F 3 t ) is smaller than in the data. These fractions

are one-sided p-values: they measure the probability that

the model would have generated slopes as extreme as we

observe in the data. Furthermore, the bottom rows report

the fraction of samples in which the models simultane-

ously generate slopes as high as we observe below three

months and as flat as we observe above three months.

They are thus p-values for tests of whether the models can

match the observed concavity of the term structure. 

The long-run risk model does a relatively good job of

generating a large slope at the short end—20% of the long

samples and 38% of the short samples are at least as steep

as in our data. However, the slopes after the three-month

maturity struggle to match the data—the sample mean of

(F 12 
t − F 3 t ) is as small as observed empirically in the long

sample less than 0.1% of the time. When we ask how many

samples generate both the steep slope below three months

and the flat slope after three months, the p-value is less

than 0.005. In other words, the long-run risk model gen-

erates a large short-maturity slope, but significantly fails

to match the flatness of the term structure after three

months. 

To explore this result in greater detail, the top panel of

Fig. 11 reports a four-year moving average estimate of the

slope of the forward curve between three months and one

year (solid line). The width of the window was chosen so

that the very last points cover exclusively the period after

the financial crisis. The solid line reports the average slope

with 95 confidence intervals, while the dashed line reports

the average slope according to the long-run risk model. 

The figure shows several interesting patterns. The 12-

versus three-month slope has been quite stable in the last

20 years; it has never—in any four-year period in the last

20 years—taken the value that should be the overall un-

conditional average according to the long-run risks model.

After the financial crisis the slope has in fact increased

above its historical mean, but even then, not high enough

to reach the average value implied by the model. 

The bottom panel of Fig. 11 plots the six- versus three-

month slope using S&P 500 options data from the CME.

This sample is slightly different from our other sources and

extends back to 1983. At these shorter maturities, we see

that over a 30-year period, the four-year moving average
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Table 6 

Model tests using the variance swap data. 

70-month simulations, up to 12mo maturity 

Long-run Disasters and Disasters and Time-varying 

risks Epstein-Zin habit formation recovery 

p-value p-value p-value p-value 

Simulated 3mo/RV slope ≥ empirical slope 0.20 < 0.01 < 0.01 0.69 

Simulated slope 12mo/3mo ≤ empirical slope < 0.01 0.49 0.16 1.00 

Simulated slope 120mo/3mo ≤ empirical slope – – –

Joint test: 3mo/RV ≥ data and 12mo/3mo ≤ data < 0.01 < 0.01 < 0.01 0.69 

Joint test: 3mo/RV ≥ data and 120mo/3mo ≤ data – – – –

215-month simulations, up to 120mo maturity 

Long-run Disasters and Disasters and Time-varying 

risks Epstein-Zin habit formation recovery 

p-value p-value p-value p-value 

Model 3mo/RV slope ≥ empirical slope 0.38 < 0.01 < 0.01 0.82 

Model slope 12mo/3mo ≤ empirical slope 0.05 0.90 0.38 1.00 

Model slope 120mo/3mo ≤ empirical slope 0.02 0.20 0.42 1.00 

Joint test: 3mo/RV ≥ data and 12mo/3mo ≤ data < 0.01 < 0.01 < 0.01 0.82 

Joint test: 3mo/RV ≥ data and 120mo/3mo ≤ data < 0.01 < 0.01 < 0.01 0.82 

We simulate 10,0 0 0 70- and 215-month samples from the four models (respectively, in the top and bottom panels). In each simulation, we calculate 3–0 

(RV), 12-3, and 120–3 month slopes of the variance forward term structure. The numbers in the first row of each panel are the fraction of samples in which 

the models generate a slope at the short end of the curve at least as large as observed empirically. The second and third rows are the fraction of samples 

in which the models generate slopes at the long end of the curve at least as flat as observed empirically. The bottom rows are the fraction of samples in 

which both conditions are satisfied. 

200102 200211 200408 200605 200802 200911 201108 201305

1

1.1

1.2

1.3
12 vs 3 months

4-year average slope

198902 199203 199504 199805 200106 200407 200708 201009 201310
0.95

1

1.05

1.1

1.15

1.2
6 vs 3 months

4-year average slope

Fig. 11. Four-year moving averages of the slope vs. long-run risk model. The top panel reports a four-year moving average of the slope of the variance 

forward term structure between three and 12 months of maturity (thick solid line). The thin solid lines report the full-sample average slope with 95% 

confidence bands. The dashed line reports the average slope implied by the Drechsler and Yaron (2011) model. The sample period covers 1996–2013. The 

bottom panel uses CME data on options up to six months maturity to construct a four-year moving average of the VIX forward term structure, between 

maturities three and six months. The sample period covers 1984–2013. 
never approaches the unconditional mean of the DY model 

except for a short period at the very end of the sample. 29 
29 The better performance of the long-run risks model at the very end of 

the sample is an interesting fact, visible also at higher maturities, which 
is difficult to interpret given the short period in which the slope has in- 

creased. It could be a temporary deviation from the much flatter historical 

slope we have observed since the 80s, or it could be a permanent change 

that will persist in the future. Whether in the future the data will behave 
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Table 7 

Higher moments of variance forward returns in data and models. 

Maturity Data Disasters with Disasters with Long-run risks Time-varying 

(months) Epstein-Zin habit and Epstein-Zin recovery 

Mean 1 −308.98 −110.85 −131.65 −176.00 −476.66 

3 8.58 −7.07 −20.28 −33.11 0.07 

6 5.58 −6.90 −17.79 −26.41 0.07 

12 21.29 −6.60 −16.74 −20.25 0.06 

SD 1 235.34 416.87 603.37 547.73 401.75 

3 117.51 36.90 93.82 148.35 5.99 

6 67.99 35.40 82.29 115.78 5.78 

12 60.33 32.92 77.49 79.55 5.38 

Skewness 1 6.17 49.17 20.23 26.24 32.54 

3 2.68 0.02 5.85 9.77 0.01 

6 1.27 0.02 5.22 9.48 0.01 

12 0.99 0.01 4.94 8.67 0.01 

Kurtosis 1 59.49 3580.10 461.96 1078.00 1091.20 

3 17.13 3.80 119.05 157.42 3.18 

6 6.33 3.68 103.72 154.07 3.17 

12 4.37 3.52 97.41 139.69 3.14 

The data moments are estimated on the full sample. The model-implied moments are the average values across simulations with the same length as our 

empirical sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The model with time-varying disaster risk and Epstein–

Zin preferences and Du’s model with disasters and habit

formation have the opposite problem from the long-

run risk model: they generate relatively flat term struc-

tures at maturities longer than three months, but they

both fail to match the steep slope observed below three

months. The p-values are similar to those for the long-

run risk model—the probability that the time-varying dis-

aster model generates the steep slope below three months

is less than 0.1%, while the probability that it generates

a slope as flat as we see between three and 12 months

is 49%. In none of our simulations do the disaster mod-

els with Epstein–Zin or habit formation preferences simul-

taneously match the slopes both below and above three

months. 

Finally, Table 6 shows that the model with time-varying

recovery can in fact match well both the slopes below and

above three months. It has a slope as steep as we observe

empirically between zero and three months in 69% of the

short samples and 82% of the long samples. It also has a

slope after three months as flat as we observe empirically

in 100% of the samples. It therefore matches the slopes

both below and above three months in 69% and 80% of the

short and long samples, respectively. 

To step beyond the means and standard deviations

summarized by Fig. 10 and Tables 6 and 7 reports also the

skewness and kurtosis of the returns of variance claims

at horizons of one, three, six, and 12 months. For the

one-month variance claim, all four models we examine

overstate the standard deviation, skewness, and kurtosis

of returns. The models with very large disasters—Wachter

(2013) and Gabaix (2012) —generate the greatest skew-

ness and kurtosis. Du (2011) and Drechsler and Yaron

(2011) have much lower levels of skewness, since they

have much smaller jumps in stock prices. To the extent

that the sample that we observe empirically does not fea-
closer to the model’s prediction is an interesting question that only time 

can answer, and we leave for future research. 

 

 

ture major wars or natural disasters, it is not surprising

that the models all predict higher skewness than what we

have observed: our sample simply does not contain a ma-

jor disaster (though it certainly has what might be called

a minor disaster in the financial crisis). 

At higher maturities, the models all replicate the empir-

ical observation that the volatility, skewness, and kurtosis

of returns fall rapidly after the first month. 

To summarize, based on the ability to generate a term

structure steep enough at the short end and flat enough

at higher maturities, we can reject the long-run risk,

time-varying disaster, and disasters plus habits models

with p-values of less than 1%, while the time-varying re-

covery model is not rejected. We thus take the results

in Fig. 10 and Table 6 as providing further support for

Gabaix’s model of time-varying recovery rates. 

The main features of the models that affect their ability

to match our data can be summarized as follows. In mod-

els with Epstein–Zin preferences where agents have prefer-

ences for early resolution of uncertainty, investors will pay

to hedge shocks to expected future consumption volatility,

especially at long horizons. If the equity market is modeled

as being related to a consumption claim, then long-term

forward variance claims should have large negative returns

because they hedge volatility news. But in the data, we

observe shocks to future expected volatility and find that

their price has been close to zero. 

While it is true that there exist parameterizations of

Epstein–Zin preferences for which agents are not averse

to bad news about future expected volatility, or even en-

joy news about high future volatility, these are degener-

ate or nonstandard cases. The very motivation behind us-

ing Epstein–Zin preferences in asset pricing models is to

model investors who are averse to bad news about the fu-

ture, i.e., agents that have an intertemporal hedging mo-

tive. It is that force, generated by standard calibration of

Epstein–Zin preferences, with preference for early resolu-

tion of uncertainty, that is at odds with the term structure

of variance swaps. 
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Table 8 

Realized volatility during disasters. 

Country Peak Vol. Mean Vol. Mean Vol. Sample Consumption Financial 

during disaster during disaster outside disaster start year disasters crises 

US 47.5 25.2 14.9 1926 1933 1929, 1984, 2007 

UK 24.6 16.4 15.1 1973 1974, 1984, 1991, 2007 

France 72.1 31.4 16.6 1973 2008 

Japan 40.9 21.4 15.1 1973 1992 

Australia 33.7 13.8 15.1 1973 1989 

Germany 83.1 28.1 14.3 1973 2008 

Italy 55.1 23.0 19.2 1973 1990, 2008 

Sweden 52.3 27.7 19.5 1982 1991, 2008 

Switzerland 67.1 27.4 12.1 1973 2008 

Belgium 66.1 32.0 12.4 1973 2008 

Finland 29.3 18.9 25.0 1988 1993 1991 

South Korea 80.0 43.6 24.6 1987 1998 1997 

Netherlands 77.7 33.2 14.7 1973 2008 

Spain 69.4 30.5 17.1 1987 2008 

Denmark 37.2 14.7 14.4 1973 1987 

Norway 44.2 20.2 20.7 1980 1988 

South Africa 36.9 17.8 18.5 1973 1977, 1989 

Characteristics of annualized monthly realized volatility during and outside disasters across countries. Returns data used to construct realized volatility for 

the US is from CRSP, for all other countries from Datastream. Consumption disaster dates are from Barro (2006) . Financial crisis dates are from Schularick 

and Taylor (2012) , Reinhart and Rogoff (2009) and Bordo, Eichengreen, Klingebiel, and Martinez-Peria (2001) . 
Models with power utility, or where the variation in 

expected stock market volatility is independent of con- 

sumption volatility, solve that problem since investors are 

myopic and shocks to future expected volatility are not 

priced. However, the models also need to explain the high 

risk price associated with the realized volatility shock. In 

a power utility framework, this can be achieved if states 

of the world with high volatility are associated with large 

drops in consumption, as in a disaster model. The presence 

of jumps in returns (due to the occurrence of a disaster) 

induces skewness in returns for the one-month variance 

swap and is the main reason that investors pay a high risk 

premium for short-term variance claims in this model. 

5.3. The historical behavior of volatility during disasters 

In order for variance swaps to be useful hedges in dis- 

asters, realized volatility must be high during large mar- 

ket declines. A number of large institutional asset man- 

agers sell products meant to protect against tail risk that 

use variance swaps, which suggests that they or their in- 

vestors believe that realized volatility will be high in future 

market declines. 30 

In the spirit of Barro (2006) , we now explore the behav- 

ior of realized volatility during consumption disasters and 

financial crises using a panel data of 17 countries, covering 

28 events (including, for the US, the Great Depression). We 

obtain two results. First, volatility is indeed significantly 

higher during disasters. Second, the increase in volatility 

is not uniform during the disaster period; rather, volatility 

spikes for one month only during the disaster and quickly 

reverts. It is those short-lived but extreme spikes in volatil- 

ity that make variance swaps a good product to hedge tail 

risk. 
30 In particular, see Man Group’s TailProtect product ( Inc., 2014 ), 

Deutsche Bank’s ELVIS product ( Deutsche Bank, 2010 ) and the JP Morgan 

Macro Hedge index. 
We collect daily market return data from Datastream 

for a total of 37 countries since 1973 (and from CRSP 

since 1926 for the US). We compute realized volatility in 

each month for each country. To identify disasters, we use 

both the years marked by Barro (2006) as consumption 

disasters and the years marked by Schularick and Taylor 

(2012) , Reinhart and Rogoff (2009) and Bordo, Eichen- 

green, Klingebiel, and Martinez-Peria (2001) as financial 

crises. 31 Given the short history of realized volatility avail- 

able, our final sample contains 17 countries for which we 

observe realized volatility and that experienced a disaster 

during the available sample. Table 8 shows for each coun- 

try the first year of our RV sample and the years we iden- 

tify as consumption or financial disasters. 

The first three columns of Table 8 compare the monthly 

annualized realized volatility during disaster and non- 

disaster years. Column 1 shows the maximum volatility 

observed in any month of the year identified as a disas- 

ter averaged across all disasters for each country. Column 2 

shows the average volatility during the disaster years, and 

Column 3 shows the average volatility in all other years. 

Comparing Columns 2 and 3, we can see that in almost 

all cases realized volatility is indeed higher during disas- 

ters. For example, in the US the average annualized real- 

ized volatility is 25% during disasters and 15% otherwise. 

Column 1 reports the average across crises of the high- 

est observed volatility. Within disaster years there is large 

variation in realized volatility: the maximum volatility is 

always much higher than the average volatility, even dur- 

ing a disaster. Disasters are associated with large spikes 

in realized volatility, rather than a generalized increase in 

volatility during the whole period. 

To confirm this result, in Fig. 12 we perform an event 

study around the peak of volatility during a disaster. For 
31 See Giglio, Maggiori, and Stroebel (2015) for a more detailed descrip- 

tion of the data sources. 
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Fig. 12. Average behavior of RV during consumption disasters and financial crises. We calculate realized variance in each month of a crisis and scale it by 

the maximum realized variance in each crisis. The figure plots the average of that scaled series for each country and crisis in terms of months relative to 

the one with the highest realized variance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

each country and for each disaster episode, we identify the

month of the volatility peak during that crisis (month 0)

and the six months preceding and following it. We then

scale the volatility behavior by the value reached at the

peak, so that the series for all events are normalized to

one at the time of the event. We then average the rescaled

series across our 28 events. 

The figure shows that indeed, the movements in volatil-

ity that we observe during disasters are short-lived spikes,

where volatility is high for essentially only a single month.

In the single months immediately before and after the one

with the highest volatility, volatility is 40% lower than its

peak, and it is lower by half or more both six months be-

fore and after the worst month. 

6. Conclusion 

This paper shows that it is only the transitory part of

realized variance that was priced in the period 1996–2014.

That fact is inconsistent with a broad range of structural

asset pricing models. It is qualitatively consistent with a

model in which investors desire to hedge rare disasters,

but not news about the future probability of disaster. Inter-

estingly, the data is not consistent with all disaster mod-

els. The key feature that we argue models need in order to

match our results is that variation in expected stock mar-

ket volatility is not priced by investors, whereas the tran-

sitory component of volatility is strongly priced. 

The idea that variance claims are used to hedge crashes

is consistent with the fact that many large asset managers,

such as Deutsche Bank, JP Morgan, and Man Group sell

products meant to hedge against crashes that use variance

swaps and VIX futures. These assets have the benefit of
giving tail protection, essentially in the form of a long put,

but also being delta neutral (in an option-pricing sense).

They thus require little dynamic hedging and yield power-

ful protection against large declines. 

More broadly, shocks to expected volatility, such as that

observed during the recent debt ceiling debate, are a ma-

jor driving force in many current macroeconomic mod-

els. If aggregate volatility shocks are a major driver of the

economy, we would expect investors to desire to hedge

them. We find, though, that the average investor in volatil-

ity markets has been indifferent to such shocks. The ev-

idence from financial markets is thus difficult to reconcile

with the view that volatility shocks are an important driver

of business cycles or welfare. 
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