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1. Introduction

The recent explosion of research on the effects of
volatility in macroeconomics and finance shows that
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economists care about uncertainty shocks. It appears that
investors, on the other hand, do not. In the period since
1996, it has been costless on average to hedge news about
future volatility in aggregate stock returns; in other words
investors have not been required to pay for insurance
against volatility news. Many economic theories—both in
macroeconomics and in finance—have the opposite pre-
diction. The recent consumption-based asset pricing litera-
ture is heavily influenced by Epstein and Zin (1991) prefer-
ences, which in standard calibrations, with a preference for
early resolution of uncertainty, imply that investors have a
strong desire to hedge news about future uncertainty, and
hence should be willing to pay large premia for insurance
against volatility shocks. Furthermore, in recent macroeco-
nomic models, shocks to uncertainty about the future can
induce large fluctuations in the economy.! But if increases

1 See, e.g., Bloom (2009), Bloom, Floetotto, Jaimovich, Saporta-Eksten,
and Terry (2014), Christiano, Motto, and Rostagno (2014), Fernandez-
Villaverde, Guerron, Rubio-Ramirez, and Uribe (2011), and Gourio
(2012) Gourio (2013).
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in economic uncertainty can drive the economy into a re-
cession, we would expect that investors would want to
hedge those shocks.? The fact that shocks to expected
volatility have not earned a risk premium thus presents a
challenge to a wide range of recent research.

As a concrete example, consider the legislative battles
over the borrowing limit of the US in the summers of
2010 and 2011. Those periods were associated with in-
creases in both financial measures of uncertainty, e.g., the
Chicago Board Options Exchange’s Volatility Index (VIX),
and also the measure of policy uncertainty from Baker,
Bloom, and Davis (2014). Between July and October, 2011,
the 1-month variance swap rate—a measure of investor ex-
pectations for Standard & Poor’s (S&P) 500 volatility over
the next month—rose every month, from 16.26 to 42.32%
(annualized, computed at the beginning of the month). But
those shocks also had small effects on realized volatility
in financial markets; for example, realized volatility actu-
ally decreased between August and September of 2011. The
debt ceiling debate caused uncertainty about the future to
be high during the whole period, but did not correspond
to high contemporaneous volatility during the same pe-
riod. It is precisely this imperfect correlation between re-
alized volatility and expectations of future volatility that
allows us to disentangle the pricing of their shocks. In
this paper, we directly measure how much people pay to
hedge shocks to expectations of future volatility. We find
that news shocks have been unpriced: any investor could
have bought insurance against volatility shocks for free,
and therefore any investor could have freely hedged the in-
creases in uncertainty during the debt ceiling debate.

We measure the price of variance risk using novel data
on a wide range of volatility-linked assets both in the
US and around the world, focusing primarily on variance
swaps with maturities between one month and ten years.
The data cover the period 1996-2014. Variance swaps are
assets that pay to their owner the sum of daily squared
stock market returns from their inception to maturity. They
thus give direct exposure to future stock market volatility
and are the most natural and direct hedge for the risks as-
sociated with increases in aggregate economic uncertainty.
Importantly, though, we show that our results hold in a
range of other markets, including index options, which are
both more liquid and traded on exchanges.

The analysis of the pricing of variance swaps yields
two simple but important results. First, news about future
volatility is unpriced in our sample—exposure to volatil-
ity news did not earn a risk premium. Second, exposure
to realized variance is strongly priced in our data, with
an annualized Sharpe ratio of —1.3—four times larger than
the Sharpe ratio on equities. We find that it is the down-
side component of realized volatility that investors are
specifically trying to hedge, consistent with the results of
Bollerslev and Todorov (2011) and Segal, Shaliastovich, and
Yaron (2015). We conclude that over our sample, investors
paid a large amount of money for protection from extreme
negative shocks to the economy (which mechanically gen-

2 See Berger, Dew-Becker, and Giglio (2016) for an analysis of the ef-
fects of volatility shocks on the real economy, finding that news about
future volatility is not contractionary.

erate spikes in realized volatility), but they did not pay to
hedge news that uncertainty or the probability of a disas-
ter has changed.

The results present a challenge to a wide range of mod-
els. From a finance perspective, Merton’s (1973) intertem-
poral capital asset pricing model says that assets that have
high returns in periods with good news about future in-
vestment opportunities are viewed as hedges and thus
earn low average returns. Since expected future volatility is
a natural state variable for the investment opportunity set,
the covariance of an asset’s returns with shocks to future
volatility should affect its expected return, but it does not.>

Consumption-based models with Epstein and Zin pref-
erences have similar predictions. Under Epstein-Zin prefer-
ences, marginal utility depends on lifetime utility, so that
assets that covary positively with innovations to lifetime
utility earn high average returns.* If high expected volatil-
ity is bad for lifetime utility (either because volatility af-
fects the path of consumption or because volatility reduces
utility simply due to risk aversion), then volatility news
should be priced.?

As a specific parameterized example with Epstein-Zin
preferences, we study variance swap prices in Drechsler
and Yaron’s (2011) calibrated long-run risk model. While
that model represents a major innovation in being able to
both generate a large variance risk premium (the average
gap between the 1-month variance swap rate and real-
ized variance) and match results about the predictability of
market returns, we find that its implications for the term
structure of variance swap prices and returns are distinctly
at odds with the data: it predicts that shocks to future ex-
pected volatility should be strongly priced, counter to what
we observe empirically.

We obtain similar results in a version of Wachter's
(2013) model of time-varying disaster risk with Epstein-
Zin preferences. The combination of fluctuations in the
probability of disaster and Epstein-Zin preferences re-
sults in a counterfactually high price for insurance against
shocks to expected future volatility relative to current
volatility. Du’s (2011) model of disaster risk and habit for-
mation also fails to match the data.’

3 Recently, Campbell, Giglio, Polk, and Turley (2013) and Bansal, Kiku,
Shaliastovich, and Yaron (2013) estimate an ICAPM model with stochastic
volatility and find that shocks to expected volatility (and especially long-
run volatility) are priced in the cross-section of returns of equities and
other asset classes. Although the focus on their paper is not the variance
swap market, Campbell, Giglio, Polk, and Turley (2013) test their specifi-
cation of the ICAPM model also on straddle returns and synthetic volatil-
ity claims, and find that the model manages to explain only part of the
returns on these securities. This suggests that the model is missing some
high-frequency features of the volatility market.

4 This is true in the most common calibrations with a preference for
early resolution of uncertainty. When investors prefer a late resolution of
uncertainty the risk prices are reversed.

5 Also see Branger and Volkert (2010) and Zhou and Zhu (2012) for dis-
cussions. Barras and Malkhozov (2014) study the determinants of changes
in the variance risk premium over time.

6 Similar problems with matching term structures of Sharpe ratios in
structural models have been studied in the context of claims to ag-
gregate market dividends by van Binsbergen, Brandt, and Koijen (2012).
Our results thus support and complement theirs in a novel context. See
also van Binsbergen and Koijen (2015) for a recent review of the broad
range of evidence on downward sloping term structures. Our paper also
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More positively, we show that a version of Gabaix’s
(2012) model of rare disasters, which builds on the work
of Rietz (1988), Barro (2006), and many others, can match
the stylized fact that Sharpe ratios on variance claims are
large at the very short end of the term structure and fall to
zero rapidly with maturity. Intuitively, when investors have
power utility, they invest myopically in that they do not
price shocks that only affect expectations about the future.
Disaster risk and high risk aversion help the model gen-
erate the large risk premia that we observe on short-term
claims. That said, our calibration of Gabaix’s (2012) model
is not a complete quantitative description of financial mar-
kets, as it does not perfectly match all the patterns in the
data; we simply view it as giving a set of sufficient condi-
tions that allow a model to match the economically rele-
vant features of the variance swap term structure.’”

An alternative possibility is that the variance market is
segmented from other markets, as in, e.g., Gabaix, Krishna-
murthy, and Vigneron (2007). In that case, the pricing of
risks might not be integrated between the variance mar-
ket and other markets. We show, however, that our results
hold not only with variance swaps, but also in VIX futures
and in the options market, which is large, liquid, and inte-
grated with equity markets, making it less likely that our
results are idiosyncratic to one asset class.

Our work is related to three main strands of the
literature. First, there is the recent work in macroeco-
nomics on the consequences of shocks to volatility, such as
Bloom (2009), Bloom, Floetotto, Jaimovich, Saporta-Eksten,
and Terry (2014), Christiano, Motto, and Rostagno (2014),
Fernandez-Villaverde, Guerron, Rubio-Ramirez, and Uribe
(2011), and Gourio (2012; 2013). We argue that if shocks
to volatility are important to the macroeconomy, then in-
vestors should be willing to pay to hedge them. The lack of
a risk premium on volatility news thus argues that macro
models should focus on shocks to realized rather than ex-
pected volatility.

Second, we build on the consumption-based asset pric-
ing literature that has recently focused on the pricing of
volatility, including Bansal and Yaron (2004), Drechsler and
Yaron (2011), Wachter (2013), and Bansal, Kiku, Shalias-
tovich, and Yaron (2013).8

Finally, there is a large literature studying the pricing of
volatility in financial markets.” Most closely related to us

relates to a large literature that looks at derivative markets to learn about
general equilibrium asset pricing models, for example Backus, Chernov,
and Martin (2011) and Martin (2014; 2015).

7 In a paper that is contemporaneous to this one, Eraker and Wu
(2016) propose a simple consumption-based model with volatility shocks
that matches some of the features of the volatility market. We leave a
comparison of that model to our data to future work.

8 Andries, Eisenbach, and Schmalz (2015) analyze a model
consumption-based model that matches broad features of the vari-
ance market, while van Binsbergen and Koijen (2015) discuss other
recent work on related topics.

9 A number of papers study the pricing of volatility in options mar-
kets, e.g., Jackwerth and Rubinstein (1996), Coval and Shumway (2001),
Bakshi and Kapadia (2003), Broadie, Chernov, and Johannes (2009),
Christoffersen, Jacobs, Ornthanalai, and Wang (2008), and Kelly, Pas-
tor, and Veronesi (2014). Lu and Zhu (2010) and Mencia and Sentana
(2013) study VIX futures markets, while Bakshi, Panayotov, and Skoulakis
(2011) show how to construct forward claims on variance with portfolios

is a small number of recent papers with data on variance
swaps with maturities from two to 24 months, including
Egloff, Leippold, and Wu (2010) and Ait-Sahalia, Karaman,
and Mancini (2014), who study no-arbitrage term structure
models. The pricing models we estimate are less techni-
cally sophisticated than that of Ait-Sahalia, Karaman, and
Mancini (2014), but we complement and advance their
work in two ways. First, we examine a vast and novel
range of data sources. For S&P 500 variance swaps, our
panel includes data at both shorter and longer maturi-
ties than in previous studies—from one month to 14 years.
The one-month maturity is important for giving a claim to
shorter-term realized variance, which is what we find is
actually priced. Having data at very long horizons is im-
portant for testing models, like Epstein-Zin preferences,
in which expectations at very long horizons are the main
drivers of asset prices. In addition, we are the first to ex-
amine the term structure of variance swaps for major in-
ternational indexes, as well as for the term structure of the
VIX obtained from options on those indexes. We are thus
able to confirm that our results hold across a far wider
range of markets, maturities, and time periods than pre-
viously studied.

Our second contribution to the previous term structure
literature is that rather than working exclusively within
the context of a particular no-arbitrage pricing model for
the term structure of variance claims, we derive from the
data more general and model-independent pricing facts.
Our results can be directly compared against the implica-
tions of different structural economic models, which would
be more difficult if they were only derived within a specific
no-arbitrage framework.

The remainder of the paper is organized as follows.
Section 2 describes the novel data sets we obtain for
variance swap prices. Section 3 reports unconditional mo-
ments for variance swap prices and returns, which demon-
strate our results in their simplest form. Section 4 analyzes
the cross-sectional and time-series behavior of variance
swap prices and returns more formally in a standard asset
pricing framework. In Section 5, we discuss what struc-
tural models can fit the data. We calibrate four leading
models from the literature, comparing them to our data,
showing that only one matches the key stylized facts.
Section 6 concludes.

2. The data
2.1. Variance swaps

We focus primarily on variance swaps. Variance swaps
are contracts in which one party pays a fixed amount at
maturity, which we refer to as price of the variance swap,
in exchange for a payment equal to the sum of squared
daily log returns of the underlying asset occurring until
maturity. In this paper, the underlying is the S&P 500 in-
dex unless otherwise specified. The payment at expiration

of options. Johnson (2016) studies the predictability of returns on option
portfolios. In the Treasury bond market, Cieslak and Povala (2014) find,
similar to us, that short-run volatility is more strongly priced than long-
run volatility. See also Amengual and Xiu (2014) for an important recent
study of jumps in volatility.
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of a variance swap initiated at time 7 and with maturity
mis

T+m
Payoffy" = Yy 17 —VSp (M

Jj=t+1

where periods here denote days, r; is the log return on the
underlying on date j, and VST is the price on date 7 of
an m-day variance swap. We focus on variance swaps be-
cause they give pure exposure to variance, their payoffs are
transparent and easy to understand, they have a relatively
long time-series, and they are relatively liquid.

Our main analysis focuses on two proprietary data sets
of quoted prices for S&P 500 variance swaps. Both data
sets were obtained from industry sources. Data set 1 is
obtained from a hedge fund. Data set 2 is obtained from
Markit Totem, and reports means of quotes (11, on aver-
age) obtained from dealers in the variance swap market.
Data set 1 contains monthly variance swap prices for con-
tracts expiring in one, two, three, six, 12, and 24 months,
and includes data from December, 1995, to October, 2013.
Data set 2 contains data on variance swaps with expi-
rations that are fixed in calendar time, instead of fixed
maturities. Common maturities are clustered around one,
three, and six months, and one, two, three, five, ten, and
14 years. Data set 2 contains prices of contracts with ma-
turities up to five years starting in September, 2006, and
up to 14 years starting in August, 2007, and runs up to
February, 2014. We apply spline interpolation to each data
set to obtain the prices of variance swaps with standard-
ized maturities covering all months between one month
and 12 months for Data set 1 and between one month and
120 months for Data set 2 (though in estimating the no-
arbitrage model in the Appendix we use the original price
data without interpolation).

Both variance swap data sets are novel to the literature.
Variance swap data with maturities up to 24 months as
in Data set 1 have been used before (Ait-Sahalia, Karaman,
and Mancini, 2014; Amengual and Xiu, 2014; Egloff, Leip-
pold, and Wu, 2010; Filipovic, Gourier, and Mancini, 2013),
but the shortest maturity previous studies observe is two
months. The one-month variance swap is special in this
market because it is the exclusive claim to next month’s
realized variance, which is by far the most strongly priced
risk in this market.

This is also the first paper to observe and use vari-
ance swap data with maturity longer than two years. Since
Epstein-Zin preferences imply that it is the very low-
frequency components of volatility that should be priced
(Branger and Volkert, 2010; Dew-Becker and Giglio, 2013),
having claims with very long maturities is important for
effectively testing the central predictions of Epstein-Zin
preferences.

The variance swap market is sizeable: the notional
value of outstanding variance swaps at the end of 2013
was $4 billion of notional vega, which means that an in-
crease in annualized realized volatility of 1% induces total
payments of $4 billion.'® This market is thus small relative

10 See the Commodity Futures Trading Commission’s (CFTC) weekly
swap report. The values reported by the CFTC are consistent with data

Table 1
Volume of variance swaps across maturities.
Maturity (months) Volume (million vega) Volume (%)
1 402 6
2 403 6
3 78 1
4-6 1037 14
7-12 1591 22
13-24 2371 33
25-60 1315 18
60+ 48 1
Total 7245 100

Total volume of variance swap transactions occurred between March 2013
and June 2014 and collected by the DTCC.

to the aggregate stock market, but it is non-trivial econom-
ically.

We obtained information about average bid-ask spreads
by maturity from a large market participant. Typical bid-
ask spreads are reported to be 1-2% for maturities up to
one year, 2-3% between one and two years, and 3-4% for
maturities up to ten years. The bid-ask spreads are thus
non-trivial, but also not so large as to prohibit trading.
Moreover, they are small relative to the volatility of the
prices of these contracts. At the short end, the spreads
are comparable to those found for corporate bonds by Bao,
Pan, and Wang (2011).

Table 1 shows the total volume in notional vega terms
for all transactions between March 2013 and June 2014,
obtained from the Depository Trust & Clearing Corpora-
tion (DTCC; see Appendix Section A.1). In little more than a
year, the variance swap market saw $7.2 billion of notional
vega traded. Only 11% of the volume was traded in short
maturity contracts (one to three months); the bulk of the
transactions occurred for maturities between six months
and five years, and the median maturity was 12 months.

A recent paper by Mixon and Onur (2015) studies the
liquidity of the variance swap market and the VIX fu-
tures market using proprietary data from the Commodity
Futures Trading Commission (CFTC). They document that
trading in these (essentially interchangeable) products oc-
curs mostly in the VIX futures markets for maturities be-
low one year, and in the variance swap market for higher
maturities. We show below that these two markets are
tightly integrated—prices for maturities present in both
markets are virtually identical; we will show below that
our results will hold in each of these two markets taken
separately.

Since these data sets are new to the literature, we de-
vote Appendix Section A.1 to a battery of tests to ensure
the quality of the data. In particular, we verify that: nei-
ther data set contains stale prices (at the monthly fre-
quency, which is the one we observe); the two data sets
contain essentially the same information when they over-
lap (correlation above 0.997); quotes from the two data
sets correspond closely to the prices for actual trades
we observe since 2013; and prices in the variance swap

obtained from the Depository Trust & Clearing Corporation that we dis-
cuss below.



1. Dew-Becker et al./Journal of Financial Economics 123 (2017) 225-250 229

market are extremely highly correlated with other related
markets (synthetic variance swaps constructed from op-
tions as described below, and VIX futures).

In addition to the prices of S&P 500 variance swaps,
we also obtained prices for variance swaps in 2013 and
2014 for the FTSE 100 (UK), Euro Stoxx 50 (Europe), and
DAX (Germany) indexes. This is the first paper to examine
volatility claims in international markets and we show that
our main results are consistent globally.

2.2. Options

It is well known that variance swaps can be synthesized
as a portfolio of all available out-of-the money options
(Carr and Wu, 2009; Jiang and Tian, 2005). The synthetic
variance swap portfolio is used to construct the CBOE’s VIX
index. Options thus give an alternative source of informa-
tion about the pricing of variance risk.

The VIX is usually reported for a 30-day maturity, but
the formulas are valid at any horizon (see Appendix Sec-
tion A.2 for details on construction). The VIX is calcu-
lated based on an extraordinarily deep market. Options
are traded in numerous venues, have notional values out-
standing of trillions of dollars, and have been thoroughly
studied.!’ Since options are exchange-traded, they involve
minimal counterparty risk, so we can use them to check
whether our results for variance swaps are affected by
counterparty risk.

We construct VIX-type portfolios for the S&P 500, FTSE
100, Euro Stoxx 50, DAX, and CAC 40 indexes using data
from Optionmetrics. We confirm our main results by show-
ing that term structures and returns obtained from invest-
ments in options are similar to those obtained from vari-
ance swaps.

2.3. VIX futures

Futures have been traded on the VIX since 2004. The
VIX futures market is significantly smaller than the vari-
ance swap market, with outstanding notional vega during
2015 averaging $332 million.'? Bid-ask spreads are smaller
than what we observe in the variance swap market, at
roughly 0.1%, but as the market is smaller, we would ex-
pect price impact to be larger (and market participants
claim that it is). We collected data on VIX futures prices
from Bloomberg since their inception and show below that
they yield nearly identical results to variance swaps.

More recently, a market has developed in exchange-
traded notes and funds available to retail investors that
are linked to VIX futures prices. As of 2014, these funds
had an aggregate notional exposure to the VIX of roughly

1 Even in 1990, Vijh (1990) noted that the CBOE was highly liquid
and displayed little evidence of price impact for large trades. George and
Longstaff (1993) study options on the S&P 100 in 1989, and document
that at-the-money calls and puts had bid-ask spreads of 2-3% at all ma-
turities they analyze. Volume and liquidity in the options market have
grown over time, but these earlier studies are important because they
document that even earlier than our main sample begins, options mar-
kets were developed and liquid.

12 According to the CBOE futures exchange market statistics. See:
http://cfe.cboe.com/Data/HistoricalData.aspx.

$5 billion, making them comparable in size to the variance
swap market.

2.4. Liquidity across markets

An obvious concern with any study of derivatives
prices, especially derivatives traded over the counter, is
that the prices are affected by liquidity. Liquidity effects
can cause the prices to be stale and can generate risk pre-
mia. As noted above, the variance swap market is large in
terms of notional values, but the bid/ask spreads are also
larger than in other markets.

To check the accuracy of the variance swap prices, we
compare their behavior to that of VIX futures for the dates
and maturities where they overlap. We show in appendix
section A.1.4.2 that the VIX futures and variance swap
prices are extremely highly correlated: in levels, the cor-
relation is on average 0.993, while for monthly changes it
is 0.98. So even though variance swaps are less liquid than
other assets, their prices are nearly identical to those for
VIX futures.

Mixon and Onur (2015) show that for maturities of
six months or less, there is far more volume in the VIX
futures market than in variance swaps. And Fig. A.2 in
the Appendix shows that the 75th percentile of maturity
for CBOE-traded S&P 500 options weighted by open in-
terest is six months. On the other hand, Mixon and Onur
(2015) find that the mean maturity (weighted by open in-
terest) for S&P 500 variance swaps is four years. So VIX
futures and options appear to be used to trade volatil-
ity at relatively short maturities, while variance swaps are
used at longer maturities. In the analysis below, we there-
fore emphasize that our primary results are clear even in
the options and futures markets, and even at maturities
shorter than six months.

So it is ultimately important that we examine a wide
range of data sources, since they have trade concentrated
at different maturities. We will show below, though,
that our results and conclusions are the same across the
various variance claims. And as noted above, where the
different data sources overlap, the prices we measure are
nearly identical.

Finally, we show in Appendix Section A.4 that our main
results on the difference between short-term and long-
term variance claim returns are robust to accounting for
the bid-ask spread and can be obtained in trading strate-
gies that minimize the amount of trading needed (in par-
ticular, using holding periods of six months). This robust-
ness test helps mitigate the concern that liquidity issues
across the term structures may be the driver of our empir-
ical results.

3. The term structure of variance claims
3.1. Variance swap prices

The shortest maturity variance swap we consistently
observe has a maturity of one month, so we treat a
month as the fundamental period of observation. We de-
fine RV; to be realized variance—the sum of squared daily
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log returns—during month t. Subscripts from here forward
index months rather than days.

Given a risk-neutral (pricing) measure Q, the price of an
n-month variance swap at the end of month ¢, VS, is

n
VSt =E2[ D RViuj |, (2)
j=1

where RV;,p is the sum of daily squared returns in month
t+m and EZ denotes the mathematical expectation under
the risk-neutral measure conditional on information avail-
able at the end of month t. So VS is the expected sum of
daily squared returns between months ¢t +1 and t + n.

Since an n-month variance swap is a claim to the
sum of realized variance over months t +1 to t +n, it is
straightforward to compute prices of forward claims on re-
alized variance. We define an n-month variance forward as
an asset with a payoff equal to realized variance in month
t +n. The absence of arbitrage implies

E" = E2[RVin] 3)

= Vs —vs1 (4)

E"" represents the market’s risk-neutral expectation of real-
ized variance n months in the future (at the end of month
t). We use the natural convention that

F° =RV (5)

so that FO is the variance realized during the current
month t. A one-month variance forward is exactly equiv-
alent to a one-month variance swap, F! = VS].

Fig. 1 plots the time series of variance forward prices
for maturities between one month and ten years. The fig-
ure shows all series in annualized percentage volatility
units, rather than variance units: 100 x ,/12 x E" instead
of F"". The top panel plots variance forward prices for ma-
turities below one year and maturities longer than one
year are in the bottom panel.

The term structure of variance forward prices is usu-
ally weakly upward sloping. In times of distress, though,
such as during the financial crisis of 2008, the short end of
the curve spikes, temporarily inverting the term structure.
Volatility obviously was not going to continue at crisis lev-
els, so markets priced variance swaps with the expectation
that it would fall in the future.

Fig. 2 reports the average term structure of variance
forwards for two different subperiods—2008-2014, a rela-
tively short sample for which we have data for longer ma-
turities, is in the top panel, while the full sample, 1996-
2014, is in the bottom panel. The first point on the graph
(maturity 0) corresponds to the average realized volatility,
whereas all points from 1 on are forward claims of differ-
ent maturity.

Fig. 2 shows that the term structure of variance for-
wards has been upward sloping on average, but also con-
cave, flattening out very quickly as the maturity increases.
For example, the top panel shows that the three-month
forward was 30% more expensive than realized volatility
on average, but from the three-month forward to the 120-
month forward, the price rose only by another 20%. The
bottom panel shows that the 12-month forward was only

5% more expensive than the three-month forward over the
longer sample.

The average variance term structures in Fig. 2 provide
the first indication that the compensation for bearing risk
associated with news about future volatility has been small
in this market. Since the retUI'I]‘l on holding a variance for-

o
ward for a single month is F“”F%F’n it is clearly closely re-
lated to the slope of the forwa;d variance term structure.

So if the average term structure is upward sloping be-
tween maturities n — 1 and n, forward claims of maturity
n will tend to have negative average returns, implying that
it is costly to buy insurance against increases in future
expected volatility n — 1 months ahead. The fact that the
curve is very steep at short horizons and flat at long hori-
zons is a simple way to see that it is only the claims to
variance in the very near future that earn significant nega-
tive returns.

To see whether the shape of the curve is well mea-
sured statistically, Fig. 3 plots the average slope (F"—
F™1) and curvature ((F™!—F") — (F"—E'1)) at each
maturity along with confidence intervals calculated using
the Newey and West (1987) method with six lags. The top
panel of Fig. 3 shows that the slopes are well identified—
the slope falls from 3.7 annualized percentage points at
the one-month maturity to an insignificant 0.3 percentage
points at three months. The slope is also uniformly declin-
ing with maturity. The bottom panel of Fig. 3 plots the av-
erage curvature of the term structure. The term structure
is concave on average at every maturity (statistically sig-
nificantly at seven of 11 maturities). Fig. 3 thus confirms
that the basic intuition from Fig. 2, that the term structure
was steep at short maturities and nearly flat on average at
longer maturities, is well measured statistically.

The top and bottom panel of Fig. 2 differ in both the
time period and the maturities displayed. To check the ro-
bustness of our conclusions about the average shape of the
term structure of variance forwards over the period used
to construct it, Fig. 4 examines the average term struc-
ture in different subsamples, focusing on the maturities up
to 12 months to make the comparison easier. The figure
shows that after 2008 the curve became slightly steeper
for maturities above one month. However, even after 2008
the curve is still much flatter at maturities above three
months than it is at the very short end, displaying the
same pattern as in the full sample. The results are similar
when we eliminate the financial crisis. Finally, we also use
data from the CME to construct the VIX for maturities up
to six months going back to 1983. Before 1996, the overall
level of the curve was lower, but the shape of the curve
was the same.

Of course, the economic significance of the “flatness”
of the curve must be understood within the context of a
model. In Section 5, we show formally that the curve of
forward variance swaps is too flat in both subperiods rela-
tive to the implications of workhorse asset pricing models.

3.2. Returns on variance forwards

The return on an n-month variance forward corre-
sponds to a strategy that buys the n-month forward and
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Fig. 1. Time series of forward variance claim prices. The figure shows the time series of forward variance claim prices of different maturities. For readability,
each line plots the prices in annualized volatility terms, 100 x /12 x ", for a different n. The top panel plots forward variance claim prices for maturities
of one month, three months, and one year. The bottom panel plots forward variance claim prices for maturities of 1 year, 5 years and 10 years. Both panels

also plot annualized realized volatility, 100 x /12 x FP.

sells it one month later as an (n — 1)-month forward, rein-
vesting then again in a new n-month forward. We define
the excess return of an n-period variance forward follow-
ing Gorton, Hayashi, and Rouwenhorst (2013).13

13 Note that F";' — F" is also an excess return on a portfolio since no
money changes hands at the inception of a variance swap contract. Fol-
lowing Gorton, Hayashi, and Rouwenhorst (2013), we scale the return by
the price of the variance claim bought. This is the natural scaling if the

Fn- 1 En
1 t
= HT (6)

Given the definition that Fto = RV;, the return on a one-
month forward, R} 41 is simply the percentage return on a

amount of risk scales proportionally with the price, as in Cox, Jonathan
E. Ingersoll, and Ross (1985). We have reproduced our analysis using the
unscaled excess return F';' —F" as well and confirmed that the results
hold in that case; we report the Sharpe ratios in Appendix Fig. A.3.
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Fig. 2. Average forward variance claim prices. The figure shows the average prices of forward variance claims of different maturity, across different periods.
The top panel shows average prices between 2008 and 2013, when we observe maturities up to 10 years (Dataset 2). The bottom panel shows averages
between 1996 and 2013, for claims of up to 1 year maturity (Dataset 1). In each panel, the “x” mark prices of maturities we directly observe in the data (for
which no interpolation is necessary). All prices are reported in annualized volatility terms, 100 x ,/12 x F". Maturity zero corresponds to average realized

volatility, 100 x /12 x FY.
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Fig. 3. Slope and curvature of the term structure of forward variance claims. The top panel plots the slope of the term structure of variance swaps (Fig. 2)
at each maturity. The bottom panel plots the curvature of the same curve at each maturity. Dotted lines are 95% confidence intervals constructed using

Newey-West with 6 lags.

one-month variance swap. We focus here on the returns
for maturities of one to 12 months, for which we have data
since 1995. All the results extend to higher maturities in
the shorter sample.

Table 2 reports descriptive statistics for our panel of
monthly returns. Only the average returns for the one- and
two-month maturities are negative, while all the others are
weakly positive. Return volatilities are also much higher
at short maturities, though the long end still displays sig-
nificant variability—returns on the 12-month forward have

an annual standard deviation of 17%, which indicates that
expectations of 12-month volatility fluctuate significantly
over time.

Finally, note that only very short-term returns have
high skewness and kurtosis. A buyer of short-term variance
swaps is therefore potentially exposed to counterparty risk
if realized variance spikes and the counterparty defaults.
This should induce her to pay less for the insurance, i.e.,
we should expect the average return to be less negative.
Therefore, the presence of counterparty risk on the short
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Fig. 4. Subsample analysis of forward variance claims. The figure compares the average prices of forward variance claims for maturities up to 1 year, for
the two subsamples of the top and bottom panel of Fig. 2, as well as for the period that excludes the financial crisis and for the period 1983-1996 (the
latter uses options data from the CME to construct the term structure of the VIX as opposed to variance swaps).

Table 2
Characteristics of returns.

Maturity (months) Mean Std. Min. 25th p Median 75th p. Max. Skew Exc.Kurt.
1 —25.7 67.9 —85.5 —58.4 —40.2 -16.0 686.4 6.2 56.5
2 -5.8 47.7 -59.3 -329 -184 9.3 376.0 39 234
3 0.7 339 —46.1 -214 -5.3 14.5 249.4 2.7 141
4 0.6 274 —42.2 -17.3 -5.6 11.2 170.4 2.0 7.6
5 0.1 225 -373 -14.0 -37 9.8 126.7 1.6 5.2
6 0.5 19.6 -31.0 -12.2 -3.8 12.9 100.6 13 33
7 0.6 18.6 -314 -12.4 -2.5 11.0 90.7 11 2.5
8 0.7 174 -29.8 -114 -29 11.6 816 1.0 2.0
9 0.9 16.2 -277 -10.2 -19 9.2 74.6 0.9 1.7
10 11 15.6 -30.0 -9.6 -2.0 9.8 70.8 0.9 15
1 14 16.0 -326 -9.9 -19 11.2 69.7 0.9 13
12 1.8 174 -35.0 -10.3 -24 121 704 1.0 14

The table reports descriptive statistics of the monthly returns for forward variance claims (in percentage points). For each maturity n, returns are computed

Fr-t_pn
each month as R?, | = “"t
;

t+1 T
swap.

end of the term structure would bias our estimate towards
not finding large negative expected returns. On the other
hand, returns at longer maturities have much lower skew-
ness and kurtosis, which indicates that counterparty risk is
substantially less relevant. Finally, we note that we obtain
the same results below using options, which are exchange
traded and have far less counterparty risk.

Given the different volatilities of the returns at different
ends of the term structure, it is more informative to exam-
ine Sharpe ratios, which measure compensation earned per
unit of risk. Fig. 5 shows the annual Sharpe ratios of the
12 forwards. The Sharpe ratios are negative for the one-
and two-month maturities (at around —1.3 and —0.4, re-
spectively), but all other Sharpe ratios are insignificantly
different from zero, and in fact slightly positive. More im-
portantly, the lower bounds of the confidence intervals are

. Given the definition that E® = RV;, the return on a one-month claim, R, is the percentage return on a one-month variance

economically small. We can statistically reject the hypoth-
esis that the Sharpe ratios are meaningfully negative at all
maturities above 3; for example, we can reject at the 95%
level that the annual Sharpe ratio on a 12-month claim is
below —0.11."4

4 One may also worry that some of our results depend on the interpo-
lation between observed maturities. To make sure this does not affect our
results, we have constructed six-month holding period returns of a claim
to variance six to 12 months forward (which we refer to as the 6/12 port-
folio), which does not depend on interpolated data. Of course, the return
of the one-month claim (Sharpe ratio of —1.3 as reported in the figure)
also does not depend on interpolated data. See Appendix Section A.4 for
the empirical results. Appendix Section A.4 also shows that our results
hold when the bid-ask spread is explicitly taken into account in comput-
ing the returns of these trading strategies.
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Fig. 5. Annualized Sharpe ratios for forward variance claims. The figure shows the annualized Sharpe ratio for the forward variance claims. The returns are
calculated assuming that the investment in an n-month variance claim is rolled over each month. Dotted lines represent 95% confidence intervals. All tests
for the difference in Sharpe ratio between the one-month variance swap and any other maturity confirm that they are statistically different with a p-value
of 0.03 (for the second month) and < 0.01 (for all other maturities). The sample used is 1996-2013.

Despite the relatively short sample, there are also
strongly statistically significant differences between the
Sharpe ratios at the very short end of the curve and ev-
erywhere else. The annual Sharpe ratio of the one-month
variance claim is more negative by 0.9 than the two-month
claim (the p-value for the difference is 0.03), and at least
1.3 lower than the Sharpe ratio at all higher horizons (the
p-values of the differences are all less than 0.01). These are
enormous differences, considering for example that the an-
nual Sharpe ratio of the aggregate stock market has histor-
ically been approximately 0.3.

Any claim to volatility at a horizon beyond one month
is purely exposed to news about future volatility: its return
corresponds exactly to the change in expectations about
volatility at its maturity. Specifically, in the absence of ar-
bitrage, F"" = EtQRVHn, and so R?H follows

EQ

n _ t+1
t+1 —

RVein — EZRV; 1
ERRVin

(7)

and is determined by the change in expectations of volatil-
ity in month t + n (for all n > 1). Pure news about future
expected volatility will therefore affect its return, whereas
purely transitory shocks to volatility that disappear before
its maturity will not affect it at all. Our results therefore
show that news about future volatility commands a small
to zero risk premium in our data.

The results at the short end of the curve indicate that
investors were willing to pay a large premium to hedge re-
alized volatility. What is new and surprising in this pic-
ture is the fact that investors were willing to pay much

less to hedge any innovations in expected volatility. The es-
timated Sharpe ratio is actually positive at every point on
the curve above maturity three months. Moreover, these
declining Sharpe ratios are consistent with the findings of
van Binsbergen and Koijen (2015), who find that Sharpe
ratios in a range of markets decline with maturity.”” Like
them, we show below that our results are difficult to rec-
oncile with standard theories, thus further extending the
puzzle originally set forth by van Binsbergen, Brandt, and
Koijen (2012).

Finally, looking down the columns of Table 1, one can
also notice a clear correlation between skewness and av-
erage returns. Specifically, the correlation between returns
and skewness across the various maturities is —0.92, while
the correlation between Sharpe ratios and skewness is
—0.96. This suggests that one possible explanation of our
results is that investors have preferences over skewness, as
suggested by Kraus and Litzenberger (1976), Harvey and
Siddique (2000), and, more recently, by Schneider, Wag-
ner, and Zechner (2015). We investigate the connection be-
tween downside risk and variance swap prices in the con-
text of theoretical models below.

5 The declining term structure of Sharpe ratios on short positions in
volatility is consistent with the finding of van Binsbergen, Brandt, and
Koijen (2012) that Sharpe ratios on claims to dividends decline with ma-
turity, and that of Duffee (2011) that Sharpe ratios on Treasury bonds de-
cline with maturity. For a review, see van Binsbergen and Koijen (2015).
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Fig. 6. Synthetic forward variance claims (VIX). The solid line in panel A plots average prices of forward variance claims calculated using the formula for
the VIX index and data on option prices from the CBOE. The dotted line is the set of average prices of forward variance claims constructed from variance
swap prices. Both curves are constructed at monthly maturities as in Fig. 2. Panel C plots annualized Sharpe ratios for forward variance claims returns with
prices calculated using the VIX formula and CBOE option data at monthly maturities. Dotted lines in panel C represent 95% confidence intervals. Panels B
and D construct the VIX term structure at biweekly and weekly maturities, respectively. The sample covers the period 1997-2013.

3.3. Evidence from other markets

Fig. 6 shows the term structure of prices and Sharpe ra-
tios of variance forwards obtained from the variance swap
data compared to the synthetic claims for maturities up to
1 year. While the curves obtained using options data seem
noisier, the curves deliver the same message: the volatil-
ity term structure is extremely steep at the very short end
but quickly flattens out for maturities above two months,
and Sharpe ratios rapidly approach zero as the maturity
passes two months.!® Appendix Fig. A.6 shows that we ob-
tain similar results with VIX futures.!”

We focus on monthly maturities because the past liter-
ature has mostly studied those maturities and they appear

16 Given the high liquidity of the options market, we might have ex-
pected option-based portfolios to be less noisy. However, the synthetic
variance portfolios load heavily on options very far out of the money
where liquidity is relatively low. This demonstrates another advantage of
studying variance swaps instead of options. Appendix Section A.1 shows
that our synthetic variance swaps are highly correlated with those con-
structed by the CBOE for the VXV and VXMT indexes. Appendix Fig. A.4
repeats the exercise constructing monthly VIX forward returns from daily
data (i.e., with overlapping monthly windows); the results are qualita-
tively and quantitatively consistent with those in Fig. 6.

7 VIX futures are not exactly comparable to variance swaps because
they are claims on the VIX, not on VIX2. A convexity effect makes the
prices of claims on variance and volatility different, but the figure shows
that it is quantitatively small.

to have high liquidity. But options data have the advantage
that it includes maturities shorter than one month, which
allows us to measure the point at which the variance for-
ward curve flattens out more precisely. The two right-hand
panels of Fig. 6 plot average prices for variance forwards at
maturities that are multiples of one and two weeks. These
panels provide evidence that the steep slope of the for-
ward curve inside one month is mostly due to the one-
to two-week maturities. The curve flattens out noticeably
even at two weeks forward. This result remains consistent
with, and in fact strengthens, the intuition above, that it
is primarily realized variance that is priced, while news
about future variance, even at very short horizons, are not.

Our results also extend to international markets. Fig. 7
plots average term structures obtained from both variance
swaps and synthetic option-based variance claims for the
Euro Stoxx 50, FTSE 100, CAC 40 and DAX indexes. Both
panels of the figure show that the international term struc-
tures have an average shape that closely resembles the one
observed for the US (the solid line in both panels), demon-
strating that our results using US variance swaps extend to
the international markets.'

8 In the Appendix (Fig. A.5), we also confirm that for the indexes for
which we have both variance swap prices and synthetic prices obtained
from options, the two curves align well.
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Fig. 7. Average forward variance claim prices for international markets. The figure plots the average prices of forward variance claims as in Fig. 2 for
different international indices. The series for the S&P 500 (both in the top and bottom panel) is obtained from variance swaps (as in Fig. 2). The top panel
shows international curves obtained using option prices, using the same methodology used to construct the VIX for the S&P 500 (as in Fig. 6). Options data
is from OptionMetrics. The series cover FTSE 100, CAC 40, DAX, and STOXX 50, for the period 2006-2014. The bottom panel shows international curves
obtained using variance swaps on the FTSE 100, DAX, and STOXX 50, for one year starting in April 2013. All series are rescaled relative to the price of the
three-month forward variance price.
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Fig. 8. Principal components of variance swap prices. The top panel plots the loadings of the variance swap prices on the level and slope factors (first two
principal components). The bottom panel plots the time series of the level and slope factors. Both are normalized to have zero mean and unit standard
deviation and are uncorrelated in the sample. The sample covers the period 1996-2013.

4. Asset pricing
4.1. Reduced-form estimates
We now formally estimate the pricing of volatility

risk. As usual in the term structure literature, we begin
by extracting principal components (PCs) from the term

structure of variance swaps. Throughout this section, we
examine models specified both in terms of levels and logs
of variance swap prices. The top panel of Fig. 8 plots the
loadings of the variance swaps on the PCs in levels—the
results in logs are highly similar. The first factor explains
97.1% of the variation in the term structure and the second
explains an additional 2.7%. The time series of the factors
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are shown in the bottom panel of Fig. 8. The first factor
captures the level of the term structure, while the second
measures the slope. As we would expect, during times of
crisis, the slope turns negative. The level factor captures
the longer-term trend in volatility and clearly reverts to its
mean more slowly.

We model innovations in the pricing kernel as a linear
function of the innovations in realized volatility and the
principal components (since we are examining excess re-
turns, the expectation of the SDF is irrelevant),

AE 1RV
std(AE1RVe41)
AEe 1PC1e 14 b AE; 1PC2¢ 14
Std(AE1PCl1) " 2std(AE1PC2i11)°

where, for any variable X, AE; 1X;,1 = X¢y1 — EtX¢41 is the
change in expectations, and PC1 and PC2 are the first two
principal components (PCs) of the term structure, which
capture innovations in expectation of future volatility. The
innovations are all standardized to have unit variance to
aid the interpretation of the coefficients in terms of price
of risk per unit of volatility in each factor. In the specifi-
cation of the model in logs, RV;,; above is replaced with
logRV;, 1, and the PCs are calculated from the log variance
swap prices.

To extract shocks to RV;,; and the two PCs, we es-
timate a first-order vector autoregression (VAR) with the
two principal components and realized variance (RV). The
risk prices, bgy, bpc; and bpc,, represent partial derivatives
of the pricing kernel with respect to each innovation in
the VAR. Note that, as is standard in asset pricing mod-
els, we allow for the pricing factors to be correlated with
each other.

We estimate risk prices for the three shocks using
GMM. Panels A and B of Table 3 report the estimation re-
sults using one-step and two-step efficient GMM. The re-
sults are consistent across the two panels, and indicate
that in the cross section of variance swaps the only fac-
tor with a significant price of risk is the realized variance
shock. Shocks to expectations of future variance are not
priced in this cross-section; they are statistically insignifi-
cant and their magnitude is several times smaller than the
price of risk of realized variance shocks.

The third row in each panel reports the p-value from a
test of whether either of the coefficients on the PCs is the
same as the coefficient on RV. That hypothesis is strongly
rejected in almost all of the cases (in panel B, bpc, is not
significantly different from bgy, but that is simply due to a
very large standard error on bpg).!"?

Panels C and D report the results for the version of the
model specified in logs. The results are similar to those in
panels A and B: the shock to RV is the only one that is
significantly priced, while those to the two PCs are not.
The coefficients on RV remain economically and statisti-
cally significant, though they are slightly smaller.

AEt (1M1 = —bgy

(8)

- bPCl

19 Despite the good fit of the model in terms of R%, the GMM and the
Gibbons-Ross-Shanken test reject the null that all the average pricing er-
rors are zero. This is because the pricing errors, while being small relative
to the overall average returns of these contracts, are still statistically dif-
ferent from zero.

Table 3
Reduced-form pricing estimates.
Panel A: level specification, 2-step GMM RV PC1 PC2
Risk prices —132= 041 -0.42
Standard error 0.27 0.26 0.36
Difference from RV (p-value) <.001 <.001
Cross-sectional R? .70
Panel B: level specification, 1-step GMM RV PC1 PC2
Risk prices —1.23** 034 -0.59
Standard error 0.55 0.33 0.63
Difference from RV (p-value) .003 17
Cross-sectional R? .99
Panel C: log specification, 2-step GMM RV PC1 PC 2
Risk prices —0.84***  0.38 —0.07
Standard error 0.15 0.24 0.19
Difference from RV (p-value) <.001 <.001
Cross-sectional R? .99
Panel D: log specification, 1-step GMM RV PC1 PC2
Risk prices -0.81*** 042 -0.01
Standard error 0.25 0.33 0.34
Difference from RV (p-value) .007 .067
Cross-sectional R? .99

Results of GMM estimation of the risk prices for the shocks to RV and
to the first two principal components of the term structure of variance
swap prices, using Newey-West GMM standard errors with six monthly
lags. The three priced innovations are the reduced-form innovations from
a VAR with the RV and two PCs. The table also reports the p-values of a
test for the differences between the risk prices for PC1 and PC2 and the
risk price for RV. Panels A and C use two-step efficient GMM; panels B
and D use one-step GMM with the identity matrix as weighting matrix.
Panels A and B use level RV as a first factor, and level prices to construct
PC1 and PC2. Panels C and D use log RV as a first factor, and log prices to
construct PC1 and PC2. *** denotes significance at the 1-percent level.

One possible explanation for why realized variance is
priced is that it provides a good hedge for aggregate mar-
ket shocks. To test that possibility, we add the market re-
turn as an additional factor in the estimation (we also add
the market return as a test asset to impose discipline on
its risk premium.) Table 4 shows that the return on the
market portfolio does not help price the variance claims—
the risk price on the market is insignificant across the four
specifications, while bgy, remains highly significant.

In addition to these reduced-form estimates, we have
explored different variations of an affine term structure
model with three factors—realized variance and two latent
factors that govern its dynamics. The results of the affine
model—reported in Appendix Section A.5— confirm those
of the reduced-form estimates in this section.

4.1.1. Upside and downside volatility

A natural question is whether investors desire to hedge
all volatility shocks, or whether they primarily desire to
hedge volatility during downturns. Segal, Shaliastovich, and
Yaron (2015), for example, discuss such a model. Following
Andersen and Bondarenko (2007), we decompose the real-
ized variance in a month, RV;, into an upper and a lower
semivariance: the integrated realized variances computed
only when prices are above or below a threshold. In partic-
ular, following Andersen and Bondarenko (2007) we con-
struct the upper and lower RV in each month as
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Table 4
Controlling for the market return.

Panel A: level specification, 2-step GMM RV~ PC1 PC2 Rm

Risk prices —1.35*** 0.11 —0.40* —0.55
Standard error 027 042 024 039
Cross-sectional R? .88

Panel B: level specification, 1-step GMM RV~ PC1 PC2 Rm

Risk prices —1.25** —-0.02 —0.44 —0.68
Standard error 0.58 067 043 0.72
Cross-sectional R? .99

Panel C: log specification, 2-step GMM RV~ PC1 PC2 Rm

Risk prices —0.75*** —0.05 —0.01 —-0.56
Standard error 017 039 012 0.51
Cross-sectional R? 97

Panel D: log specification, 1-step GMM RV~ PC1 PC2 Rm

Risk prices -0.89** —043 012 -1.25
Standard error 043 0.64 017 0.89
Cross-sectional R? .99

Same as Table 3, but adding the market portfolio as a test asset and as
a pricing factor. * Denotes significance at the 10-percent level, ** denotes
significance at the 5-percent level, and *** denotes significance at the 1-
percent level.

RVY =" (rp)*1{P; > R} (9)
jet

RVP =3 "(r)*1{P; < B}, (10)
jet

where j e t indicates days j in month t, and 1{-} is the indi-
cator function. RV is realized variance calculated only on
days when the market is above its level at the beginning of
the month, and RVP is realized variance on the remaining
days.

Andersen and Bondarenko (2007) discuss two useful
properties of these realized semivariances: the two com-
ponents sum to RV;, and their prices sum to the squared
VIX,

RV; = RVV + RVP (11)

VIX? = (VIXY)? + (VIXP)?, (12)

where VIX{ and VIXP are the prices of claims to RV, and
RVIE_’H, respectively. just as in the case of the VIX, we can
compute the prices of the two claims for different maturi-
ties and study the term structure.

Fig. 9 plots the term structure of the variance forwards
obtained from VIX, as well as those for VIXU and VIXP. As
before, maturity zero corresponds to the average RV;, RVY
and RVP, respectively. The slopes between the zero- and
one-month maturities then represent precisely the returns
on the 30-day VIX, VIXY , and VIXP. We can see that most
of the negative average return that investors are willing to
accept to hold the VIX comes from the extremely nega-
tive monthly return of the VIXP (about —30% per month),
while VIXY commands a return much closer to zero.?? This

20 Note that contrary to the case of the VIX, for VIXV and VIXP the slope
between maturities above one month cannot be interpreted exactly in
terms of returns since the barrier is moving over time.

confirms the intuition that the reason investors hedge re-
alized volatility is due to its downside component (which
Bollerslev and Todorov, 2011 show is dominated by down-
ward jumps), and is consistent with investors displaying
aversion to skewness.

4.2. The predictability of volatility

Since the key result of the paper concerns the pricing of
volatility shocks at different horizons, a natural question is
how much news there actually is about future volatility.

First, there is strong evidence in the literature that
volatility is predictable three months ahead. See, for ex-
ample, Andersen, Bollerslev, Diebold, and Labys (2003). In-
deed, the volatility literature has demonstrated predictabil-
ity at horizons much longer than three months.2! But
the sample mean Sharpe ratios on variance forwards are
insignificantly different from zero even for maturities as
short as three months, and the point estimates for some
are even positive. This suggests that even at shorter hori-
zons where the evidence for volatility predictability is
strongest, volatility news has not been priced.

To quantify the magnitude of the predictability of
volatility at different horizons Table 5 reports R?s from
predictive regressions for realized volatility at different fre-
quencies and horizons. Specifically, we run the regression

RV; = bo + bgyRV;_j 4 bpgPE;_j + bperDEF._j + &, (13)

where PE; is the aggregate market’s price/earnings ratio
and DEF; is the default premium—the spread between the
yields on Aaa and Baa bond yields reported by Moody's.

The first pair of columns focuses on forecasts of
monthly realized variance, while the second pair repeats
the exercise at the annual frequency. The R%s for monthly
volatility range from 45% at the one-month horizon to 20%
at the 12-month horizon. In predicting annual volatility,
R?s range between 56 and 21% for horizons of one to ten
years.

It is important to note here that the monthly or annual
specification of the regression (13) cannot distinguish be-
tween whether diffusive or jump risk is predictable. What
we show is simply that total realized volatility is pre-
dictable. This is sufficient for our purposes for two reasons.
First, RV; is what actually determines the payoffs of vari-
ance swaps. Second, in the theoretical models based on
Epstein-Zin preferences that we examine below, fluctua-
tions in both jump risk and diffusive volatility should be
priced. So it is important just to know whether any source
of realized variance is predictable.

In order to gauge the economic magnitude of the pre-
dictability of realized variance, the third pair of columns in
Table 5 reports the results of forecasts of dividend growth
(i.e., replacing RV; with dividend growth in Eq. (13)). R%s

21 Andersen, Bollerslev, Diebold, and Labys (2003), Ait-Sahalia and
Mancini (2008), Federico Bandi and Yang (2008), and Brownlees, Engle,
and Kelly (2011) show that volatility is predictable based on lagged re-
turns of the underlying and past volatility. Campbell, Giglio, Polk, and
Turley (2013) focus on longer horizons (up to ten years) and show that
both the aggregate price-earnings ratio and the Baa-Aaa default spread
are useful predictors of long-run volatility.
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Fig. 9. Decomposing the upward and downward volatility components. The solid thick line plots average prices of forward variance claims calculated using
the formula for the VIX index. The dashed line plots the forward prices of the downside component of the VIX, VIXP. The thin solid line plots the forward
prices of the upside component of the VIX, VIXU. All series are constructed using option data from CBOE. The sample covers the period 1997-2013.

Table 5
Forecasting volatility at different horizons: R2.

Monthly RV;., Yearly RV;,n Yearly Ad;.n

Predictor: RV, RV, RV, RV, Ad; Ad;
with PE;, DEF; N Vv v
Months Years Years
1 0.39 0.45 1 0.41 0.56 1 0.00 0.09
2 0.21 0.34 2 0.10 0.25 2 0.00 0.02
3 0.18 0.32 3 0.05 0.09 3 0.06 0.07
6 0.15 0.26 5 0.02 0.04 5 0.05 0.07
12 0.10 0.18 10 0.00 0.21 10 0.02 0.03

The first column of the table reports R? of predictive regressions of monthly volatility n months ahead at the monthly frequency. The second column
reports R? of predictive regressions of yearly volatility n years ahead at the yearly frequency. The second column reports R? of predictive regressions of
yearly log dividend growth n years ahead at the yearly frequency. The left side of each column reports univariate regressions using the lagged value of the
target, while the right side of each column adds the market price-earnings ratio and the default spread as predictors. The sample is 1926-2014.

for dividend growth are never higher than 9%. So in the
context of financial markets, there is an economically large
amount of predictability of volatility. The Appendix (sec-
tion A.3) takes an extra step beyond Table 5 and provides
evidence, using Fama and Bliss (1987) and Campbell and
Shiller (1991) regressions, that nearly all the variation in
variance swap prices is actually due to variations in ex-
pected volatility, rather than risk premia.

We conclude by noting that while there is ample evi-
dence of the predictability of volatility at the horizons rel-
evant for this analysis (from three months upwards), the
result that the risk premium for volatility news is close
to zero would have strong implications for macroeconomic
and financial models even if it was driven by low quantity
of expected volatility risk. If there is not much volatility
news, then asset pricing models in which news about fu-
ture volatility plays an important role (like the ICAPM or

several versions of the long-run-risks model) would lose
this source of priced risk; similarly the macro literature
showing that volatility news can drive the business cycle
would seem irrelevant if there is no volatility news.

5. Economic interpretation

This section examines simulations of four major struc-
tural asset pricing models to understand how our data on
the variance term structure can help test and distinguish
among models. Among the models we consider, only the
long-run risk model of Drechsler and Yaron (2011) was
originally calibrated to match the one-month variance risk
premium. We therefore calibrate that model as in the orig-
inal specification. The other models we study did not orig-
inally target any moments of the variance risk premia, and
tend to predict too low a level of the risk premium for
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one-month variance swaps. In order to focus on the pre-
dictions of the models for the slope of the term structure
in these models (rather than just the level of risk premia),
whenever possible we raise risk aversion to help the mod-
els match the one-month variance risk premium, and then
study the implications for the higher maturities.

5.1. Structural models of the variance premium

5.1.1. A long-run risk model

Drechsler and Yaron (2011), henceforth DY, extend
Bansal and Yaron’s (2004) long-run risk model to allow for
jumps in both the consumption growth rate and volatility.
DY show that the model can match the mean, volatility,
skewness, and kurtosis of consumption growth and stock
market returns, and generates a large one-month variance
risk premium that forecasts market returns, as in the data.
DY is thus a key quantitative benchmark in the literature.

The structure of the endowment process is

AC = Uac+ X1+ Ecr (14)
Xt = Mx+ OxXe_1 + Ext +xt (15)
67 = le + PsGf 1 + o (16)
02 = o+ (1= p5)02 1+ PoOl1 + ot +ots (17)

where Ac; is log consumption growth, the shocks ¢ are
mean-zero and normally distributed, and the shocks J
are Poisson-distributed jump shocks. otz controls both the
variance of the normally distributed shocks and also the
intensity of the jump shocks. There are two persistent
processes, x; and 62, which induce potentially long-lived
shocks to consumption growth and volatility. We follow
DY’s calibration for the endowment process exactly.
Aggregate dividends are modeled as

Ade = g+ Pxe_1 + €q; (18)

Dividends are exposed to the persistent but not the transi-
tory part of consumption growth. Equity is a claim on the
dividend stream, and we treat variance claims as paying
the realized variance of the return on equities.

DY combine that endowment process with Epstein-Zin
preferences, and we follow their calibration. Because there
are many parameters to calibrate, we refer the reader to
DY for the full details.

5.1.2. Time-varying disaster risk and Epstein-Zin preferences
The second model we study is based on a discrete-time

version of Wachter’s (2013) model of time-varying disaster

risk. In this case, consumption growth follows the process,

ACt = hac + OAcEAct +Jact (19)

where €., is a mean-zero normally distributed shock and
J¢ is a disaster shock. The probability of a disaster in any
period is F;, which follows the process

F = (1 - pr)ur + prh_1 + 0r/R_1€F:- (20)

The CIR process ensures that the probability of a disaster is
always positive in the continuous-time limit, though it can

generate negative values in discrete time.”> We calibrate
the model similarly to Wachter (2013) and Barro (2006),
with the main exception being the increase in risk aversion
motivated above. Details of the calibration are reported in
the Appendix. The model is calibrated at the monthly fre-
quency. In the calibration, the steady-state annual disas-
ter probability is 1.7% as in Wachter (2013). of is set to
0.0056 (&F is a standard normal), and pp = 0.921/12 which
helps generate realistically volatile stock returns and a per-
sistence for the price/dividend ratio that matches the data.
If there is no disaster in period t, J; = 0. Conditional on
a disaster occurring, J; ~ N(=0.15,0.12). It is important to
note that this distribution is not identical to what is used
in Wachter (2013), which is an actual empirical distribu-
tion of disaster sizes (we use the normal distribution for
analytic tractability).

Finally, dividends are a claim to aggregate consumption
with a leverage ratio of 2.6. Note that the occurrence of a
disaster shock implies that equity values decline instanta-
neously. To calculate realized variance for periods in which
a disaster occurs, we assume that the shock occurs over
several days with maximum daily return of —10%. This al-
lows for a slightly delayed diffusion of information and
also potentially realistic factors such as exchange circuit-
breakers.?> Our results are qualitatively unchanged as long
as the jump in stock prices in a disaster is as large as 35%
per day.?* The Appendix provides more details on how the
results depend on this choice.

We follow Wachter (2013) in assuming the elasticity of
intertemporal substitution is 1 and raise risk aversion to
4.9 to give the model the best chance of generating Sharpe
ratios and a slope for the term structure as large as we see
in the data (it cannot be raised further because of equilib-
rium existence constraints, as discussed in the Appendix).

5.1.3. Disaster risk and habit formation

Du (2011) and Christoffersen, Du, and Elkamhi
(2015) study an extension of Campbell and Cochrane’s
(1999) model of habit formation, adding rare disasters
(where Campbell and Cochrane assumed consumption
growth was normally distributed). The model is specified
in continuous time. The representative agent maximizes

EO[/OOC exp (—pt) log (G —Ht)dt], (21)

22 Sep and Wachter (2015) consider an extension of the model here that
allows multiple factors to drive the probability of a disaster. In unreported
results, we find that the two-factor model predicts behavior for volatility
claims that is highly similar to that for the single-factor specification.

23 For example, a jump of 20% would occur over 2 consecutive days,
with a 10% decline per day. Note that this choice has only a minimal ef-
fect on the Sharpe ratios predicted by the model; for example, Sharpe
ratios with a maximum daily loss of —20% are essentially the same (the
p-values discussed below are unchanged, for example). The small shocks
&ac ¢ are treated as though they occur diffusively over the month, as in
Drechsler and Yaron (2011).

24 The largest negative single-day return in the Center for Research in
Security Prices value-weighted index is —17.4% on October 19, 1987. The
second and third largest negative returns are —11.29% and —12.01% on
October 28, 1929 and October 29, 1929, respectively. The largest negative
daily returns in 2008 were all smaller than 10%. A single-day decline of
35% would thus be nearly twice as large as any return experienced in the
us.
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where p is the pure rate of time preference, C; is consump-
tion, and H; is the level of habit. The implied coefficient of
relative risk aversion at time ¢, yy, is

=G TH

So when consumption is higher above the habit, risk aver-
sion is lower. Following Campbell and Cochrane (1999) and
Menzly, Santos, and Veronesi (2004), y is specified to fol-
low a continuous-time AR(1) process with time-varying
sensitivity to the consumption growth innovation,

dyr = k(Y — yodt —a(y: — B)(dce — Ee[dct]), (23)

which then implies a process for H;. dc; is consumption
growth, which is independent and identically distributed
over time with both a small diffusive component and a
large jump component,

dc; = dlog G = udt 4 o dB; + bdN, (24)

(22)

where B; is a standard Brownian motion and N¢ is a Pois-
son process with a constant jump intensity A. b is the size
of the jump in consumption on the impact of a disaster
shock.

Note that the volatility of y; depends on y; itself. Fol-
lowing negative shocks, when y; is high, the future volatil-
ity of innovations to y; (and hence also of stock returns)
is also high. This is thus a model with endogenously time-
varying volatility, which is why there is no need to include
time variation in disaster risk. Following a disaster, con-
sumption is low, y; is high, and future volatility is high.
So not only is realized volatility high in disasters, but so is
expected future volatility. We would thus expect claims to
both realized and expected future volatility to earn large
negative returns since they both have high payoffs follow-
ing disasters.

Given this setup, Du (2011) derives the price and return
of a consumption claim in closed form. We then calculate
prices of variance claims numerically.

We calibrate the model exactly as in Du (2011). The
steady-state level of risk aversion, y, is 34, and the size
of a disaster, —b is 17.2%.2> As we will see later, the model
cannot match the Sharpe ratio on the one-month variance
swap. However, it turns out that raising risk aversion in
this model does not actually increase risk premia, since in
the model this also affects the dynamics of the habit pre-
cisely in a way that offsets the increase in risk aversion.
We therefore use the original specification of the model.26

5.1.4. Time-varying recovery rates

The final model we study is based on Gabaix’s
(2012) model of disasters with time-varying recovery rates.
Because the probability of a disaster is constant, power
utility and Epstein-Zin preferences are equivalent in terms

25 As in the time-varying disaster model, to calculate realized variance
for periods in which a disaster occurs, we assume that the shock occurs
over several days with maximum daily return of —10%.

26 In particular, it is easy to see from Eq. (3) in Du (2011) that scaling up
the entire risk aversion process requires scaling proportionally y as well
as B. But this scaling has no effect on risk prices, as evident from Eq. (7)
in Du (2011).

of their implications for risk premia. We model the con-
sumption process identically to Eq. (19) above, but with
the probability of a disaster, F;, fixed at 1% per year
(Gabaix’s calibration). Following Gabaix, dividend growth is

Ady = ppag + Aeace — Le x 1{Jace # 0} (25)

A here represents leverage. 1{-} is the indicator function.
Dividends are thus modeled as permanently declining by
an amount L; on the occurrence of a disaster. L; represents
the recovery rate of stocks in a disaster and is assumed to
follow the process

L= - p)Ll+ pileq + & (26)

We calibrate L=0.5 and p; = 0.87"/12, and &, ~ N(O,
0.042), which means that the standard deviation of L is
0.25.>7 We set the coefficient of relative risk aversion to
7 to match the Sharpe ratio on one-month variance swaps
(as we did for the other disaster models; as pointed out
before, for the long-run risk model, there was no need
to adjust the calibration since the paper already targeted
the behavior of the one-month variance swap). Other than
the change in risk aversion, our calibration of the model
is nearly identical to Gabaix’s (2012). He did not exam-
ine the ability of his model to match the term structure
of variance claims, so this paper provides a new test of the
theory.

5.2. Results

We now examine the implications of the four cali-
brated models for variance forwards. Fig. 10 plots popula-
tion moments from the models against the values observed
empirically. The top panel reports annualized Sharpe ra-
tios for forward variance claims with maturities from one
month to 12 months. Our calibration of the model with
time-varying recovery rates with power utility matches the
main stylized facts well: it generates a Sharpe ratio for the
one-month claim of —1.3, while all the forward claims earn
Sharpe ratios of zero, economically similarly to what we
observe in the data.

On the other hand, the other three models significantly
underprice variance risk at the short end relative to the
longer end of the variance curve. In these models, the
Sharpe ratio on the one month forward is far smaller—at
approximately 0.3—than in the data (approximately —1.3).
By contrast, the models generate Sharpe ratios for claims
on variance more than three months ahead that are coun-
terfactually large, almost as large as the one-month for-
ward. In the data, instead, they are zero or even positive
at all horizons above three months.

The underpricing of risks at the short end is caused by
the fact that these models do not generate pricing kernels
sufficiently volatile to give any asset a Sharpe ratio of 1.3.
However, simply increasing the volatility of the pricing ker-
nel by increasing risk aversion will not solve the problem,

27 As for the time-varying disaster model, to calculate realized variance
for periods in which a disaster occurs, we assume that the shock occurs
over several days with maximum daily return of —10%.
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sample values from the data. The bottom panel plots population means of the prices of forward claims. All the curves are normalized to have the same
value for the three-month forward claim.
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as it will simply increase the Sharpe ratio at all maturi-
ties and exacerbate the mispricing at horizons longer than
three months.

The economic intuition for the result with Epstein-Zin
preferences is straightforward. If investors are risk-averse,
then periods of high expected future consumption volatil-
ity are periods of low lifetime utility. And under Epstein-
Zin preferences, periods with low lifetime utility are pe-
riods with high marginal utility. Investors thus desire to
hedge news about future consumption volatility, and in
these models forward variance claims allow them to do
so. Moreover, in these models volatility in all future pe-
riods (discounted at a rate close to the rate of pure time
preference, and therefore close to zero in standard cali-
brations) affects lifetime utility, which is why investors in
these models pay nearly the same amount to hedge volatil-
ity at any horizon.

The expected returns on the variance forwards are
closely related to the average slope of the variance term
structure. The bottom panel of Fig. 10 reports the aver-
age term structure in the data and in the models. The fig-
ure shows, as we would expect, that neither model with
Epstein-Zin preferences generates a curve that is as con-
cave as we observe in the data. Instead, the DY model
generates a curve that is too steep everywhere (includ-
ing on the very long end), while the time-varying disas-
ter model generates a curve that is too flat everywhere.?®
The model with habit formation is similar to Epstein-Zin
with time-varying disaster risk. On the other hand, the av-
erage term structure in the model with time-varying re-
covery rates qualitatively matches what we observe in the
data—it is steep initially and then perfectly flat after the
first month. Of course, as is clear from the figure, according
to the model the term structure should be always exactly
flat at maturities higher than one—the model is therefore
technically speaking unable to generate the small but pos-
itive slope observed in the data. Economically speaking,
however, the model matches well the flatness of the term
structure that we have documented empirically for the pe-
riod 1996-2014.

The comparison between the calibrated models and the
data reported in Fig. 10 does not take into account the sta-
tistical uncertainty due to the fact that we only observe
variance swap prices in a specific sample. To directly test

28 We note that increasing the maximum daily return possible in the
disaster model with Epstein-Zin preferences increases the short-term
slope of the term structure. Unless the maximum daily return is —40%,
though (more than twice as large as any return observed in the US since
1926), the p-values do not change. The appendix reports results for differ-
ent calibrations of the maximum daily returns. Changing the maximum
daily return does not affect the term structure of Sharpe ratios, which
also are not consistent with the data. One way to get the Sharpe ratios
for the variance swaps to change is to assume that the data we observe
is a period without disasters (the financial crisis notwithstanding). The
Appendix also reports results for that case. Then it is possible to generate
large negative Sharpe ratios for variance swaps, but they are too large by
an order of magnitude - —18 or more. Furthermore, without disasters, re-
alized volatility is not sufficiently volatile - the one-month variance swap
return in the model has a standard deviation less than half as large as
that of the six-month forward, whereas in the data the six-month forward
return is only one-third as volatile as the one-month variance swap.

the models against the data, we simulate the calibrated
models and verify how likely we would be to see a pe-
riod in which the variance swap curve looks like it does
in our data (similar to the analysis in van Binsbergen and
Koijen (2015) ). In particular, we focus on the ability of the
models to match the high slope at the short end and the
flatness at the long end of the curve.

Table 6 reports results from those simulations. We ex-
amine 215-month simulations to compare to our full sam-
ple since 1996, and 70-month simulations to compare to
the shorter sample in which we have ten-year swaps avail-
able. For each simulation, we calculate the averages of the
simulated values of (F? — E?), (' —F?), and, in the long
sample, (F120 — F3). Table 6 reports the fraction of simu-
lated samples in which the sample mean of (F? — F?) is at
least as large as we see in the data, the sample mean of
(F'2 — E3) is smaller than in the data, or the sample mean
of (F129 —E3) is smaller than in the data. These fractions
are one-sided p-values: they measure the probability that
the model would have generated slopes as extreme as we
observe in the data. Furthermore, the bottom rows report
the fraction of samples in which the models simultane-
ously generate slopes as high as we observe below three
months and as flat as we observe above three months.
They are thus p-values for tests of whether the models can
match the observed concavity of the term structure.

The long-run risk model does a relatively good job of
generating a large slope at the short end—20% of the long
samples and 38% of the short samples are at least as steep
as in our data. However, the slopes after the three-month
maturity struggle to match the data—the sample mean of
(F'2 —F?) is as small as observed empirically in the long
sample less than 0.1% of the time. When we ask how many
samples generate both the steep slope below three months
and the flat slope after three months, the p-value is less
than 0.005. In other words, the long-run risk model gen-
erates a large short-maturity slope, but significantly fails
to match the flatness of the term structure after three
months.

To explore this result in greater detail, the top panel of
Fig. 11 reports a four-year moving average estimate of the
slope of the forward curve between three months and one
year (solid line). The width of the window was chosen so
that the very last points cover exclusively the period after
the financial crisis. The solid line reports the average slope
with 95 confidence intervals, while the dashed line reports
the average slope according to the long-run risk model.

The figure shows several interesting patterns. The 12-
versus three-month slope has been quite stable in the last
20 years; it has never—in any four-year period in the last
20 years—taken the value that should be the overall un-
conditional average according to the long-run risks model.
After the financial crisis the slope has in fact increased
above its historical mean, but even then, not high enough
to reach the average value implied by the model.

The bottom panel of Fig. 11 plots the six- versus three-
month slope using S&P 500 options data from the CME.
This sample is slightly different from our other sources and
extends back to 1983. At these shorter maturities, we see
that over a 30-year period, the four-year moving average
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Table 6
Model tests using the variance swap data.

70-month simulations, up to 12mo maturity

Long-run Disasters and Disasters and Time-varying
risks Epstein-Zin habit formation recovery
p-value p-value p-value p-value
Simulated 3mo/RV slope > empirical slope 0.20 <0.01 <0.01 0.69
Simulated slope 12mo/3mo < empirical slope <0.01 0.49 0.16 1.00
Simulated slope 120mo/3mo < empirical slope - - -
Joint test: 3mo/RV> data and 12mo/3mo< data <0.01 <0.01 <0.01 0.69

Joint test: 3mo/RV> data and 120mo/3mo< data - - - _

215-month simulations, up to 120mo maturity

Long-run Disasters and Disasters and Time-varying
risks Epstein-Zin habit formation recovery
p-value p-value p-value p-value
Model 3mo/RV slope > empirical slope 0.38 <0.01 <0.01 0.82
Model slope 12mo/3mo < empirical slope 0.05 0.90 0.38 1.00
Model slope 120mo/3mo < empirical slope 0.02 0.20 0.42 1.00
Joint test: 3mo/RV> data and 12mo/3mo< data <0.01 <0.01 <0.01 0.82
Joint test: 3mo/RV> data and 120mo/3mo< data <0.01 <0.01 <0.01 0.82

We simulate 10,000 70- and 215-month samples from the four models (respectively, in the top and bottom panels). In each simulation, we calculate 3-0
(RV), 12-3, and 120-3 month slopes of the variance forward term structure. The numbers in the first row of each panel are the fraction of samples in which
the models generate a slope at the short end of the curve at least as large as observed empirically. The second and third rows are the fraction of samples
in which the models generate slopes at the long end of the curve at least as flat as observed empirically. The bottom rows are the fraction of samples in
which both conditions are satisfied.

12 vs 3 months
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Fig. 11. Four-year moving averages of the slope vs. long-run risk model. The top panel reports a four-year moving average of the slope of the variance
forward term structure between three and 12 months of maturity (thick solid line). The thin solid lines report the full-sample average slope with 95%
confidence bands. The dashed line reports the average slope implied by the Drechsler and Yaron (2011) model. The sample period covers 1996-2013. The
bottom panel uses CME data on options up to six months maturity to construct a four-year moving average of the VIX forward term structure, between
maturities three and six months. The sample period covers 1984-2013.

never approaches the unconditional mean of the DY model
except for a short period at the very end of the sample.?’

is difficult to interpret given the short period in which the slope has in-

- creased. It could be a temporary deviation from the much flatter historical
29 The better performance of the long-run risks model at the very end of slope we have observed since the 80s, or it could be a permanent change
the sample is an interesting fact, visible also at higher maturities, which that will persist in the future. Whether in the future the data will behave
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Table 7
Higher moments of variance forward returns in data and models.

Maturity Data Disasters with Disasters with Long-run risks Time-varying
(months) Epstein-Zin habit and Epstein-Zin recovery
Mean 1 -308.98 —110.85 —131.65 —176.00 —476.66
3 8.58 -7.07 -20.28 -3311 0.07
6 5.58 —6.90 -17.79 —26.41 0.07
12 21.29 —6.60 -16.74 —20.25 0.06
SD 1 235.34 416.87 603.37 547.73 401.75
3 117.51 36.90 93.82 148.35 5.99
6 67.99 35.40 82.29 115.78 5.78
12 60.33 32.92 7749 79.55 5.38
Skewness 1 6.17 49.17 20.23 26.24 32.54
3 2.68 0.02 5.85 9.77 0.01
6 1.27 0.02 5.22 9.48 0.01
12 0.99 0.01 494 8.67 0.01
Kurtosis 1 59.49 3580.10 461.96 1078.00 1091.20
3 1713 3.80 119.05 157.42 3.18
6 6.33 3.68 103.72 154.07 317
12 437 3.52 97.41 139.69 314

The data moments are estimated on the full sample. The model-implied moments are the average values across simulations with the same length as our

empirical sample.

The model with time-varying disaster risk and Epstein-
Zin preferences and Du’s model with disasters and habit
formation have the opposite problem from the long-
run risk model: they generate relatively flat term struc-
tures at maturities longer than three months, but they
both fail to match the steep slope observed below three
months. The p-values are similar to those for the long-
run risk model—the probability that the time-varying dis-
aster model generates the steep slope below three months
is less than 0.1%, while the probability that it generates
a slope as flat as we see between three and 12 months
is 49%. In none of our simulations do the disaster mod-
els with Epstein-Zin or habit formation preferences simul-
taneously match the slopes both below and above three
months.

Finally, Table 6 shows that the model with time-varying
recovery can in fact match well both the slopes below and
above three months. It has a slope as steep as we observe
empirically between zero and three months in 69% of the
short samples and 82% of the long samples. It also has a
slope after three months as flat as we observe empirically
in 100% of the samples. It therefore matches the slopes
both below and above three months in 69% and 80% of the
short and long samples, respectively.

To step beyond the means and standard deviations
summarized by Fig. 10 and Tables 6 and7 reports also the
skewness and kurtosis of the returns of variance claims
at horizons of one, three, six, and 12 months. For the
one-month variance claim, all four models we examine
overstate the standard deviation, skewness, and kurtosis
of returns. The models with very large disasters—Wachter
(2013) and Gabaix (2012)—generate the greatest skew-
ness and kurtosis. Du (2011) and Drechsler and Yaron
(2011) have much lower levels of skewness, since they
have much smaller jumps in stock prices. To the extent
that the sample that we observe empirically does not fea-

closer to the model’s prediction is an interesting question that only time
can answer, and we leave for future research.

ture major wars or natural disasters, it is not surprising
that the models all predict higher skewness than what we
have observed: our sample simply does not contain a ma-
jor disaster (though it certainly has what might be called
a minor disaster in the financial crisis).

At higher maturities, the models all replicate the empir-
ical observation that the volatility, skewness, and kurtosis
of returns fall rapidly after the first month.

To summarize, based on the ability to generate a term
structure steep enough at the short end and flat enough
at higher maturities, we can reject the long-run risk,
time-varying disaster, and disasters plus habits models
with p-values of less than 1%, while the time-varying re-
covery model is not rejected. We thus take the results
in Fig. 10 and Table 6 as providing further support for
Gabaix’s model of time-varying recovery rates.

The main features of the models that affect their ability
to match our data can be summarized as follows. In mod-
els with Epstein-Zin preferences where agents have prefer-
ences for early resolution of uncertainty, investors will pay
to hedge shocks to expected future consumption volatility,
especially at long horizons. If the equity market is modeled
as being related to a consumption claim, then long-term
forward variance claims should have large negative returns
because they hedge volatility news. But in the data, we
observe shocks to future expected volatility and find that
their price has been close to zero.

While it is true that there exist parameterizations of
Epstein-Zin preferences for which agents are not averse
to bad news about future expected volatility, or even en-
joy news about high future volatility, these are degener-
ate or nonstandard cases. The very motivation behind us-
ing Epstein-Zin preferences in asset pricing models is to
model investors who are averse to bad news about the fu-
ture, i.e., agents that have an intertemporal hedging mo-
tive. It is that force, generated by standard calibration of
Epstein-Zin preferences, with preference for early resolu-
tion of uncertainty, that is at odds with the term structure
of variance swaps.
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Table 8
Realized volatility during disasters.
Country Peak Vol. Mean Vol. Mean Vol. Sample Consumption Financial
during disaster during disaster outside disaster start year disasters crises
us 475 25.2 14.9 1926 1933 1929, 1984, 2007
UK 246 16.4 15.1 1973 1974, 1984, 1991, 2007
France 721 314 16.6 1973 2008
Japan 40.9 214 15.1 1973 1992
Australia 33.7 13.8 15.1 1973 1989
Germany 83.1 28.1 14.3 1973 2008
Italy 55.1 23.0 19.2 1973 1990, 2008
Sweden 523 277 19.5 1982 1991, 2008
Switzerland 671 274 12.1 1973 2008
Belgium 66.1 32.0 124 1973 2008
Finland 29.3 18.9 25.0 1988 1993 1991
South Korea 80.0 43.6 246 1987 1998 1997
Netherlands 777 33.2 14.7 1973 2008
Spain 69.4 30.5 171 1987 2008
Denmark 372 14.7 14.4 1973 1987
Norway 442 20.2 20.7 1980 1988
South Africa 36.9 17.8 18.5 1973 1977, 1989

Characteristics of annualized monthly realized volatility during and outside disasters across countries. Returns data used to construct realized volatility for
the US is from CRSP, for all other countries from Datastream. Consumption disaster dates are from Barro (2006). Financial crisis dates are from Schularick
and Taylor (2012), Reinhart and Rogoff (2009) and Bordo, Eichengreen, Klingebiel, and Martinez-Peria (2001).

Models with power utility, or where the variation in
expected stock market volatility is independent of con-
sumption volatility, solve that problem since investors are
myopic and shocks to future expected volatility are not
priced. However, the models also need to explain the high
risk price associated with the realized volatility shock. In
a power utility framework, this can be achieved if states
of the world with high volatility are associated with large
drops in consumption, as in a disaster model. The presence
of jumps in returns (due to the occurrence of a disaster)
induces skewness in returns for the one-month variance
swap and is the main reason that investors pay a high risk
premium for short-term variance claims in this model.

5.3. The historical behavior of volatility during disasters

In order for variance swaps to be useful hedges in dis-
asters, realized volatility must be high during large mar-
ket declines. A number of large institutional asset man-
agers sell products meant to protect against tail risk that
use variance swaps, which suggests that they or their in-
vestors believe that realized volatility will be high in future
market declines.*?

In the spirit of Barro (2006), we now explore the behav-
ior of realized volatility during consumption disasters and
financial crises using a panel data of 17 countries, covering
28 events (including, for the US, the Great Depression). We
obtain two results. First, volatility is indeed significantly
higher during disasters. Second, the increase in volatility
is not uniform during the disaster period; rather, volatility
spikes for one month only during the disaster and quickly
reverts. It is those short-lived but extreme spikes in volatil-
ity that make variance swaps a good product to hedge tail
risk.

30 In particular, see Man Group’s TailProtect product (Inc., 2014),
Deutsche Bank’s ELVIS product (Deutsche Bank, 2010) and the JP Morgan
Macro Hedge index.

We collect daily market return data from Datastream
for a total of 37 countries since 1973 (and from CRSP
since 1926 for the US). We compute realized volatility in
each month for each country. To identify disasters, we use
both the years marked by Barro (2006) as consumption
disasters and the years marked by Schularick and Taylor
(2012) , Reinhart and Rogoff (2009) and Bordo, Eichen-
green, Klingebiel, and Martinez-Peria (2001) as financial
crises.>! Given the short history of realized volatility avail-
able, our final sample contains 17 countries for which we
observe realized volatility and that experienced a disaster
during the available sample. Table 8 shows for each coun-
try the first year of our RV sample and the years we iden-
tify as consumption or financial disasters.

The first three columns of Table 8 compare the monthly
annualized realized volatility during disaster and non-
disaster years. Column 1 shows the maximum volatility
observed in any month of the year identified as a disas-
ter averaged across all disasters for each country. Column 2
shows the average volatility during the disaster years, and
Column 3 shows the average volatility in all other years.

Comparing Columns 2 and 3, we can see that in almost
all cases realized volatility is indeed higher during disas-
ters. For example, in the US the average annualized real-
ized volatility is 25% during disasters and 15% otherwise.
Column 1 reports the average across crises of the high-
est observed volatility. Within disaster years there is large
variation in realized volatility: the maximum volatility is
always much higher than the average volatility, even dur-
ing a disaster. Disasters are associated with large spikes
in realized volatility, rather than a generalized increase in
volatility during the whole period.

To confirm this result, in Fig. 12 we perform an event
study around the peak of volatility during a disaster. For

31 See Giglio, Maggiori, and Stroebel (2015) for a more detailed descrip-
tion of the data sources.
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Fig. 12. Average behavior of RV during consumption disasters and financial crises. We calculate realized variance in each month of a crisis and scale it by
the maximum realized variance in each crisis. The figure plots the average of that scaled series for each country and crisis in terms of months relative to

the one with the highest realized variance.

each country and for each disaster episode, we identify the
month of the volatility peak during that crisis (month 0)
and the six months preceding and following it. We then
scale the volatility behavior by the value reached at the
peak, so that the series for all events are normalized to
one at the time of the event. We then average the rescaled
series across our 28 events.

The figure shows that indeed, the movements in volatil-
ity that we observe during disasters are short-lived spikes,
where volatility is high for essentially only a single month.
In the single months immediately before and after the one
with the highest volatility, volatility is 40% lower than its
peak, and it is lower by half or more both six months be-
fore and after the worst month.

6. Conclusion

This paper shows that it is only the transitory part of
realized variance that was priced in the period 1996-2014.
That fact is inconsistent with a broad range of structural
asset pricing models. It is qualitatively consistent with a
model in which investors desire to hedge rare disasters,
but not news about the future probability of disaster. Inter-
estingly, the data is not consistent with all disaster mod-
els. The key feature that we argue models need in order to
match our results is that variation in expected stock mar-
ket volatility is not priced by investors, whereas the tran-
sitory component of volatility is strongly priced.

The idea that variance claims are used to hedge crashes
is consistent with the fact that many large asset managers,
such as Deutsche Bank, JP Morgan, and Man Group sell
products meant to hedge against crashes that use variance
swaps and VIX futures. These assets have the benefit of

giving tail protection, essentially in the form of a long put,
but also being delta neutral (in an option-pricing sense).
They thus require little dynamic hedging and yield power-
ful protection against large declines.

More broadly, shocks to expected volatility, such as that
observed during the recent debt ceiling debate, are a ma-
jor driving force in many current macroeconomic mod-
els. If aggregate volatility shocks are a major driver of the
economy, we would expect investors to desire to hedge
them. We find, though, that the average investor in volatil-
ity markets has been indifferent to such shocks. The ev-
idence from financial markets is thus difficult to reconcile
with the view that volatility shocks are an important driver
of business cycles or welfare.
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