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A Derivation of result 1

For any g, we have

1 [™ ~
ik = 2—/ G, (w) (cos (wk) + isin (wk)) dw (1)
™ —Tr
Now since g, = 0 for k£ < 0, for any k£ > 0 we have

1 [ - cos (wk) + isin (wk)
ik = Gik+ ik =5 / G (W) dw (2)
TJ—n + cos (—wk) + isin (—wk)
_ 2 G, (w) 2 cos (wk) dw (3)

2 ),

Furthermore, note that the complex part of G (w) multiplied by any cos (wk) for integer k

integrates to zero, which is why we can just study G = re (é) We thus have
oo 1 7 00
Z ik = 5 B Gj(w) | z0+2 Z zp cos (wk) | dw (4)
k=0 k=1
The result is related to Parseval’s theorem, but it has the advantage of yielding a decom-
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position that is entirely real-valued, which is achieved by exploiting the fact that g;, = 0 for

k<0.

B Quality of the linear approximation for Epstein—Zin
preferences

This section examines the quality of the linear approximation used in analyzing Epstein—
Zin preferences. The linear approximation is compared to the solution from a high-order
projection of Bansal and Yaron’s (2004) long-run risk model which is useful for having

highly volatile and persistent state variables.

B.1 Model

The model from Bansal and Yaron (2004) is

Ac, = 41+ 04160t (5)
Ty = ¢xxt—1 + PeOt—1Ext (6)
o2 = v (02, —3%) + 52+ Outoy (7)

Time in this model is monthly. Investors are assumed to have Epstein—Zin preferences with
the time discount factor of /3, an elasticity of intertemporal substitution of p~! and risk

aversion of «.

B.2 Solution and simulation of the model

We solve the model using projection onto Chebyshev polynomials, which are solved through
collocation (see Judd (1999)7). Both lifetime utility and also all asset prices are solved for

as 9th-order polynomials in the two state variables, z; and ¢2. Expectations are calculated



using Gaussian quadrature with 15 points. All results involving simulations are calculated
based on 10,000 months of simulated data. We constrain o2 to be greater than 10~7 — setting

it to 1077 if a shock drives it below that level.

B.3 Returns on zero-coupon consumption claims

We begin by examining returns on zero-coupon consumption claims. Define

PC,, = E? {C”"} (8)

Cy

where () is the pricing measure. PC,,; is thus the price of a claim to consumption on date

t + n scaled by current consumption. The return is then

PCy_1141Cia
PC,.Cy 9)

Rn,t—i—l =

Given that we have the pricing kernel from the model, it is straightforward to solve for PC,, ;
recursively, starting from the boundary condition that PCy, = 1.

As discussed in the main text, the approximation for the pricing kernel is

— )l — 0
AR 1 log My = —aoEc 1 + u%@e%,tﬂ e k1
- x9 1-— 1% 1-— V1

90w5a2,t+1 (10)

where, as discussed in the derivation of the pricing kernel under stochastic volatility, k; is

the coefficient in the expression
Etflawﬂf_;'_l =7r+ PIt + k‘laf (1]_)

Our analysis does not depend on any particular assumption about the structure of the



expectation of the log pricing kernel. We therefore simply approximate
E,log My = m + myo? (12)

That expression is also what is obtained in Bansal and Yaron’s (2004) solution. We find
m and m; as the values that best approximate our numerical solution (by minimizing the
squared difference between m +m;o? and the value in the numerical solution summed across
the collocation points).

Finally, we also need a value for the coefficient k. As with F;log M,;,,, we obtain k; by
simply regressing the values of E;ry, ;11 — pz: from the numerical solution on a constant and
o2,

The pricing equation is then,

_ 2 (p—c)b p—a 0
M+ M107 — Py — QOEc i1 + =5 5 OtPelatr1 — T, F177550wE0? 141

pent = log By exp
+PCr—14+1 + Tt + OtEctt1
(13)

where pc,,; = log PC,, ;. We then guess that prices can be expressed as

PCnt = p+ Pz nt + paQ,nUtQ (14)

This equation can be solved using standard methods to obtain

1 -« 0 ?
Dn = logﬁ —Tf+ Pn1 +p02,n—1 (1 - Ul) o’ + 3 (_p k +p02,n—1) 0@5)

2\ 1—p "1— 0,0
Pzn = —pP + px,n—1¢x +1 (16)
1 1 —a)d 2
Porp = 11+ Porp1ti+ 5 (1 - @)’ + 3 (% +px,n—1) v (17)

with the boundary conditions py = p,0 = pe2o = 0.

We compare the risk premia implied by our approximation to those solved for numeri-



cally with the projection method by plotting Sharpe ratios across horizons calculated under
our linear approximation and the numerical approximation. Figure A2 plots steady-state
annualized Sharpe ratios (i.e. evaluated at o? = 6?) for zero-coupon consumption claims
with maturities from 1 to 240 months in the numerical solution to the model and also our
log-linear approximation. The two series differ by less than 0.014 across all maturities. The
root mean squared error is 0.0051. The linear approximation thus provides a highly accurate
approximation to the risk premium for consumption claims and describes very well how the

risk premia vary with maturity.

B.4 Hansen—Jagannathan distance

A standard measure of the distance between pricing kernels is the Hansen—Jagannathan (HJ;
1991) distance. For two pricing kernels, M1 and M/, the HJ distance is std (M1 — M],4).
It is straightforward to show that the HJ distance is equal to the maximal difference in Sharpe
ratios for an asset priced by the two kernels.

To examine how well the linearization approximates the numerically approximated pricing
kernel, we calculate the HJ distance for a range of calibrations of the long-run risk model
with different levels of persistence for expected consumption growth and volatility (¢, and
v1). We hold ¢, and o? fixed across the simulations, which means that the unconditional
standard deviation of x; rises as ¢, rises. So the simulations with higher ¢, not only test
robustness against higher persistence, they also test robustness against models where the
state variable x; moves farther away from its steady-state. Increasing dispersion in z; also
increases dispersion in the wealth /consumption ratio. So since our approximation is around
a constant wealth/consumption ratio, the simulations with more persistent x; provide a
tougher test of the approximation.

We set 0, in each simulation so that the unconditional standard deviation of o7 is un-
changed from Bansal and Yaron’s (2004) original calibration. We make that choice to ensure

that o? never falls below zero.



The table below reports the annualized HJ distance between the numerically approx-
imated pricing kernel and the one obtained from our linear approximation scaled by the
numerically derived HJ bound (the standard deviation of the pricing kernel divided by its

expectation). That is, denoting the projection and linearized pricing kernels as MP™ and

Std(Mproj _Mlinear>
std(MProd)

M'ear the relative HJ distance is

We report values of ¢, and v; in terms of the implied half-lives for z; and o?.

As we would expect, the magnitude of the errors increases with the persistence of the
state variables. The maximum relative HJ distance is 4 percent of the unconditional HJ
bound. That is, across all possible assets in the economy, the linear approximation gets risk
premia wrong by up to 4 percent. However, for the majority of calibrations, the size of the
errors is relatively small. At Bansal and Yaron’s (2004) original calibration, the relative HJ
distance is only 2.7 percent. That is, risk premia deviate from their true value, for the most
extreme possible asset, by only 2.7 parts in 100. The results in the table thus imply that
for a broad range of calibrations, the HJ distance between our linear approximation and a

numerical solution is reasonably small in relative terms.

z half-life o2 half-life Relative HJ distance

2.72 4.4 0.027
5 4.4 0.022
7.5 4.4 0.041
1.5 4.4 0.036
2.72 10 0.032
2.72 20 0.035
2.72 1.5 0.022



C Multiple priced variables and stochastic volatility

C.1 General result

The impulse response function in the multivariate case is denoted g = JI'*, where g, is an
m x n matrix whose {m,n} element determines the effect of a shock to the nth element of

g, on the mth element of E;X; ;. The innovation to the SDF is then

AE 4 1my = — (Z Zkgk> Et41 (18)

k=0

The price of risk for the jth element of ¢ is simply the jth element of Y7 ) zxgy.

As before, we take the discrete Fourier transform of {gy}, defining

G (w)

Z efiwkgk (19>

k=0

Following the same steps as in section 2 and defining G (w) = re <G’ (w)), we arrive at

o 1 T
> mgb; = o | Z(@)G(w)bjdw (20)
k=0 -

_ %/Z;zm (@) Gy () (21)

where

Z(w)=2z9+2 Z zy cos (wk) (22)

and where Z,, (w) denotes the mth element of Z (w) and G, ; (w) denotes the m, jth element
of G (w). We thus have m different weighting functions, one for each of the priced variables.
The m weighting functions each multiply n different impulse transfer functions, G, ; (w).
The price of risk for shock j depends on how it affects the various priced variables at all

horizons.



C.2 Epstein—Zin with stochastic volatility

Using Result 2, we now extend the results on Epstein—Zin preferences to also allow for
stochastic volatility, similarly to Campbell et al. (2015)?7 and Bansal and Yaron (2004)?.
We use the same log-normal and log-linear framework as above. The log stochastic discount

factor under Epstein—Zin preferences is,

1—

1—
logﬁ P

p—
My = ACtH + 1= prw,t+1 (23)

where 7,41 is the log return on a consumption claim on date ¢ + 1. Whereas we previously
assumed that consumption growth was log-normal and homoskedastic, we now allow for time-
varying volatility driven by a variable 0. We assume that o? follows a linear, homoskedastic,
and stationary process. We assume that log consumption growth is driven by a VMA process
as in assumption 1, but that now the shocks e; have variances that scale linearly with o?.

It is then straightforward to show that expected returns on a consumption claim will
follow

Erwir1 = ko + pE:Aciiq + k’10t2 (24)

where ky and k; are constants that depend on the underlying process driving consumption

growth. Using the Campbell-Shiller approximation, we can then write the innovation to the

SDF as
AR ami = —alc — (00— p) ARy > 6 Aciy (25)
7=1
p—Q p—
— 1_ pAEt_H@]ﬁO'?JFI 1_ P AIEft-‘,—l Z ¢’ 9k10t+3+1 (26>

7=1



The weighting functions for consumption growth and volatility are now

ZgZ—SV (W) = a+(a—0p) Z 6’2 cos (wy) (27)
j=1
ZE75V () = Ry Z 672 cos (wj) (28)
o 1— p =

C.3 Epstein—Zin with time-varying higher moments

This section derives the result from the main text on the general case for Epstein—Zin pref-
erences
We now guess that

Eirw i1 = ko + pEiAciyr + kg (29)

Recall that according to the Campbell-Shiller approximation,

AE f17wip1 = Z 0" AE; 1 Aceiji1 — Z 07 AR 1714541 (30)
j=0 J=1

= Z ejAEt+1ACt+j+1 - Z e‘jAEt+1 (pACt+j+1 + klﬁit+j) (31)
=0 j=1

= Z 0’ ng,jek,t—i—l - Z 6 AE; 11 <Z (Pgr.j + K1k j-1) 6k,t+1) (32)
j=0 k j=1

k

The pricing equation for the wealth portfolio is then

1—a 1—«a 1—«a
0 = logE;exp (— log 3 —p Acgyr + 7“w,t+1) (33)
L=p L=p L=p
11—« 1 -« 1 -«
= 7 log B —p EAciiq + Eiry 11 (34)
—p L—p L—p

1 11—« 11—«
+—logEiexp | —p AE; 1 Aciiq +
2 1—p 1

A]Et+17”w,t+1) (35>

But given the assumption about how z; affects the distribution of € 441, the final term above

is linear in 7, which confirms our guess for the form of the equation governing the expected



return on the wealth portfolio.

We then have for the innovation in the SDF

l—« —«
AEi 1 Aciyq + p—AEtHTw,tH (36)
1—p 1—p

— i i 5
= —a)  grofke + ? - > (Z (L= p) grj — k1k,-1) 5k,t+1>(37)
k 7=1

k

AE; ymir = —p

So then the price of risk for any shock depends now on both the effects of the shock on
consumption and also on the volatility process. If there were multiple volatility processes,
then we would have multiple extra priced variables.

The time-domain weights for the consumption part are

ae = Q (38)
Zine = 0 (a—p) forj>0 (39)
for x, the weights are
p—a
=k 07 40
Z], 1 1— P ( )

These are then rotated into the frequency domain using the same techniques as above.

D Predictability of volatility in consumption growth

In this section we examine whether the variables in our VAR — consumption growth and
the two factors — are able to predict the volatility of future consumption growth. While
there is certainly evidence that consumption growth is heteroskedastic (one way to find such
evidence is to estimate an ARCH model on consumption growth) the key question for us is
whether the state variables we examine are related to volatility.

We examine two tests of whether volatility in consumption growth is predicted by the

lagged state variables: the Breusch—Pagan (1979)7 test and the Szroeter (1978)7 test.
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The Breusch—Pagan test, when all of the lagged state variables (with lags from 1 to 3) are
allowed to potentially predict the variance of innovations, returns a p-value of 0.41. If only
the first lag of the state variables is included, the p-value is 0.71. In other words, there is
not significant evidence to reject the null that the volatility of consumption growth can be
predicted.

We also examined a Szroeter (1978) test, which tests whether any of the lagged state
variables individually predicts the variance of consumption growth. In that case, of the nine
p-values, the smallest is 0.15 (which does not correct for multiple testing).

The two tests thus suggest that the state variables in the VAR are unable to predict the
volatility of future consumption growth. While it may be the case that consumption growth
volatility is predictable, the fact that these variables do not predict it means that their risk
premia must depend on their effect on the conditional mean of consumption growth, rather
than the conditional variance (ignoring the possibility that they predict higher moments like
disaster risk). So even if stochastic volatility is priced, the pricing of the three state variables

we examine will still reveal the pricing of fluctuations in expected consumption growth.

E Motivation for the bandpass basis from robust esti-
mation

The bandpass specification can be obtained in equilibrium when investors use a robust
estimation method for consumption dynamics. The full dynamic model of the economy is
obviously difficult to estimate and summarize. There are numerous state variables, and the
feedback between the various states and consumption itself may be complicated. Rather than
try to actually estimate and process a full model of the economy when pricing assets, investors
may summarize the effects of a particular shock on consumption growth by approximating

its impulse transfer function with a step function that highlights the average power of the
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shock at meaningful ranges of frequencies. That way, rather than computing a full transfer
function, which has an infinite number of degrees of freedom, they retain only the finite
number of degrees of freedom required to define a step function.

Specifically, suppose that the true transfer functions are G;, but that investors approxi-

mate them and price assets using step functions defined as

27r/32

2ﬂ/32 I (k) dk for w € [0,27/32)

277/8

Step -
Gj (w) = 27 /8—27/32 27r/32 f7r/32

(k) dr for w € [2m/32,27/8) (41)

7r—271'/8 f27r/8 J KV) dr for w € [27T/87 ﬂ-]

Since investors do not perceive any variation in the transfer functions Gfte” within the
three frequency windows, variation in the weighting function, Z, in those windows is irrel-
evant — all that matters is its average value. In other words, if investors approximate the
transfer function as a step function, then their behavior will be the same as if their weighting
function Z were a step function.

More formally, suppose the true weighting function is some arbitrary Z, but investors
measure risk using transfer functions that are step function approximations to the true

transfer function. We then have:

/0 " Z(0) G () dw = /0 " 2P (w:q) G () dw (42)

Qﬁ/32 f2ﬂ/32 Z (k) dk for w € [0,27/32)

271'/8

BP . —
where Z (W7 q) - 27/8—27/32 271'/32 ffr/32

k) dr for w € [2m/32,27/8)  (43)

wTw/S f%/s Z (k) dk for w € [27/8, ]

So a model where investors have a weighting function ZP” (w;q) that is a step function is
observationally equivalent to an alternative where they approximate transfer functions G; as
step functions. If the transfer functions that investors estimate are step functions, then risk

prices may be calculated using a step function for Z, regardless of its true shape. Moreover,
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the steps in ZP% correspond exactly to average risk prices in the three frequency windows.

In the end, then, the bandpass specification yields estimates of average risk prices in
frequency windows and may be thought of as the result of investors estimating transfer
functions Gfte” . We show below that the step functions, Gftep , are far easier for investors
to estimate than unrestricted functions, so we view the bandpass specification in the spirit
of Campbell and Mankiw’s (1989)7 estimation of the permanent income hypothesis in the
presence of rule-of-thumb consumers. Similar to them, our findings suggest that a rule of

thumb — in our case, the step function approximation — performs well.!

F Details of the empirical analysis

F.1 Invariance of frequency-domain risk prices under rotations

The risk prices for the shocks can be written in the time domain as

p = i qz, b, ®* (44)
where z, = %/Oﬂ cos (wk) [Z1 (w), Zo (W), Z3 ()] dw (45)

z;. is the time-domain vector of basis functions. Note also that by ®* is the vector of IRFs
of consumption growth to the reduced-form shocks ;. Given the definition of z; and using
Result 1, the matrix W can be written as Y -, zyb; ®F.

Now suppose we considered a set of rotated shocks &, = O¢; for some rotation matrix ©.

'We also note that approximating consumption dynamics in the frequency domain (rather than in the
time domain) is the standard way to compress information in many fields of science. As a practical example,
standard music, image and video compression, and noise-reduction procedures — whose objective is precisely
to extract the most important components of each signal — use cosine transforms nearly identical to ours.
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The estimated reduced-form risk prices for &;, p, will then have the property

= pO=p (47)

since the pricing kernel must be unchanged whether we examine the reduced-form innovations
or a rotation of them.?

Furthermore, note that the IRFs for the rotated shocks are simply b;®*©~! (since
AEi 1Aciipy1 = bi®PFe; = b ®*O715,). The rotation matrix for & therefore becomes
W = Yoo z;b1®*O~1 = WO, So if we again take the reduced-form risk prices, p, and

multiply them by the rotation matrix Wfl, we obtain

pW ' = p(We ) (48)
~ powW (49)
= pW™ (50)

So then whether we take the reduced form risk prices p and rotate them with W1 or take

a set of rotated risk prices p and rotate them with WL, we obtain identical results.

F.2 Derivation of the asset pricing moment conditions

The derivation of the moments identifying the risk prices follows Campbell and Vuolteenaho

(2004). Given the assumption of lognormality of all shocks, we can write:

1
Eiriq — T{H + 50% = —covy(Mys1, Tits1) (51)

2That is, for the unrotated shocks, the asset pricing moments are E[exp (7;141)—exp (TZ_H)] = P&y 1T t41-

For the rotated shocks, they are Elexp (ri4+1) — exp (T{_H)] = P&, 1Ti,t+1- So the value of the objective

function is the same with the rotated shocks when p® = p.
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where 02 = Vary(ry11). We then note that

COUt(mt+17 7“z‘t+1) = COUt(AEthtH, Tit+1) = Et(AEt+1mt+lrit+1) = ]Et(—qW5t+17”it+1)
(52)
Which implies

1
Eirigq — T{H + §Ui2t = E((qWe, 1 7it41) (53)

Since Eyripyy — 1) 1 T 3025 & Eylexp (rieq1) — exp <Tf +1>], and taking unconditional ex-

pectations, we obtain
Elexp (rit+1) — exp <7”f+1>] ~ E [qWe 1 Tir1) (54)

F.3 Calculation of standard errors

The procedure in Hansen (2008) involves the following calculation. Define D to be the
Jacobian of the moment conditions with respect to the parameters [p},p,]" (where p; =
vec ((i’) and py = q) partitioned in the two blocks of moments (where Dy = 0 since the

VAR moments do not depend on q):

5o Dy; 0

D21 D22

Denote the weighting matrix for the VAR moments as Wy, and the weighting matrix for the

asset pricing moments Ws. Finally, define
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Then the covariance matrix of q is estimated as,

1 /
var(q —q) = T {(A22D22)_1A22 [—D21(A11D11)_1A117 ]}} S {(A22D22)_1A22 [—D21(A11D11)_1A117 ]]}

where the role played by the prespecified weighting matrices is clear from the terms A;; and
Agg; the uncertainty about the parameters estimated in the first block comes through Dy,

and Dy;. The matrix S is the covariance matrix of the asset pricing moments.

G Additional robustness tests

This section discusses a range of perturbations of the main model to examine the robustness

of the main results.

G.1 Bootstrapped t-statistics

We compute bootstrapped t-statistics following suggestions in Efron and Tibshirani (19947).
Specifically, in every bootstrap sample we calculate the t-statistic for each coefficient and
then use the simulated distribution of the t-statistics to construct p-values for the test of
whether the coefficients are different from zero.

Given a sample size of N, we take uniformly distributed draws from the set {1,2,..., N}
with replacement. The jth draw in bootstrap simulation ¢ is denoted b; The 7th simulated

dataset is then the set of VAR residuals and test asset returns for observations {b;} . To

N
j=1
construct the set of state variables, we draw an initial value of the state variables randomly
from the set of observations and then use the drawn innovations along with the point estimate
for the feedback matrix, ®, to construct the full sample.

The estimation then proceeds on the simulated dataset exactly as it does on the true

dataset. For each simulated sample we form t-statistics for the difference between the boot-

strapped estimate of the coefficient and the point estimate. Suppose the empirically observed
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t-statistic in the main estimate for some coefficient & is equal to £, > 0. Then the boot-
strapped p-value is twice the fraction of the simulated t-statistics at least as high as (for
a full description of the procedure, see Efron and Tibshirani, 19947?)

The above procedure does not account for uncertainty in the estimation of the principal
components for the FAVAR since Bai and Ng (2006) show that estimation error in the
principal components is asymptotically negligible when /T /N — 0 (see also the discussion
in Ludvigson and Ng (2007)7). But when considering the alternative specification in Table
A5 that uses a cross-section of only nine time series to estimate the factors, this sampling
uncertainty cannot be ignored.

Denote the variables used to calculate the principal components as z;,; for i € {1,2,...,9}.
We proceed to account for uncertainty in estimating the principal components by resampling
the T'x N panel of observed variables x;;, and then re-estimating the factors in each sample,
as in Ludvigson and Ng (2007). Denote the factors f;;, and the estimated coefficients on

them ISZ] We then define the PC residuals as

Cit = Tjy — Bl,tfl,t — [;2,tf2,t (55)

As in Ludvigson and Ng (2007), we first estimate an AR(1) process on each individual PC
residual é;;:

it = Pi€it—1 + Uiy (56)

After the AR(1) specification is obtained and p; is estimated for each i, 0 is resampled
(preserving the cross-sectional correlation across different i) in each bootstrap sample. We
then use the resampled AR(1) innovations to construct bootstrapped values of the individual
errors e;. Finally, those bootstrapped errors are added to Bl,t fie+ Bg’t fo,t to yield a boot-
strapped sample of x;;. Principal components are then constructed using the bootstrapped
sample of z;;. The remainder of the bootstrap procedure in this case (i.e. for consumption

and returns) is otherwise identical to above.
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G.2 Risk-sorted portfolios

The 25 Fama—French portfolios were originally constructed because their returns spanned a
number of observed anomalies in the cross-section of excess returns. We would not necessarily
expect them to have large spreads in their loadings on shocks to consumption growth at
different horizons. In this section we therefore construct portfolios that are specifically
designed to have a large spread in factor loadings.

In every quarter, we estimate factor loadings with respect to the low- and business-cycle
frequency shocks (we refrain from also sorting on the high-frequency shocks to keep the
portfolios relatively large and well diversified). The loadings are estimated on quarterly data
over the previous 10 years. Stocks are then split in to three equally sized groups according to
their loadings on the factors, and we construct nine portfolios by crossing the two groupings
of loadings.

The low- and business-cycle frequency shocks are constructed using the bandpass speci-

fication. Specifically, we have

AE 1my = —qWe, (57)

The rotated shocks are thus,

up = Weg (58)

And the low- and business-cycle frequency components are the first two elements of u.

G.3 Results

Table A5 reports a range of alternative estimates of the risk prices.
First, we estimate our baseline specification (column 1 of Table 3) using annual data
instead of quarterly data, motivated by recent evidence (e.g. Parker and Julliard 2005)

that the consumption CAPM works better when looking at more time-aggregated data.
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The results with annual data are consistent with the ones obtained using quarterly data:
low-frequency fluctuations are significantly priced.?

The second pair of columns uses two lags in the VAR, rather than the three suggested
by cross-validation. The estimates are very close to those obtained with three lags, but they
are no longer statistically significant.

The third pair of columns uses the optimal weighting matrix for the moments identifying
the risk prices, which is derived by Hansen (2008). The optimal weighting matrix substan-
tially shrinks the standard errors, but the point estimates are only minimally changed from
our main results.

Next, we calculate confidence intervals using the bootstrap procedure described above.
The low-frequency risk prices remain highly significant, while risk prices for other frequencies
are insignificant.

As described above, we also explore an alternative specification that extracts principal
components from nine macro-financial data series as instead of the 131 series of Jurado et
al. (2015): aggregate price/earnings and price/dividend ratios; the 10 year/3 month term
spread; the Aaa—Baa corporate yield spread (default spread); the small-stock value spread;
the unemployment rate minus its 8-year moving average; detrended short-term interest rate;
the three-month Treasury yield rate; and Lettau and Ludvigson’s (2001) cay. We com-
pute the standard errors via bootstrap, with and without incorporating uncertainty in the
estimation of the principal components.

Table A5 shows that even with the alternative method of constructing the factors for
the FAVAR, and even taking into account uncertainty in the estimation of the factors, we
continue to obtain highly significant coefficients on the low-frequency shocks to consumption.
The point estimates are somewhat larger than in our main analysis, but not qualitatively

different.

3We note that the shortest cycle we can identify with annual data is 2 years. Therefore, with annual data
we cannot identify the price of risk for our “higher-than-business-cycle” frequency window.
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As a last extension, we attempt to estimate a version of the model with four instead of
three frequency windows. In particular, we split the low-frequency window into one covering
cycles lasting between 8 and 100 years and another covering cycles lasting more than 100
years. In order to estimate four risk prices we need four shocks, so we add a third principal
component from the 131 data series to the FAVAR. Table A5 shows that in this case we
obtain no results that are even close to significant and the standard errors are extremely

large compared to the main results.
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Appendix Tables and Figures
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Figure Al: Estimated spectral weighting function, without VAR uncertainty. Es-
timated weighting function for consumption growth as the priced variable using the utility
specification (top row) and the bandpass specification (bottom row). Risk prices are esti-
mated using the 25 Fama—French portfolios. Light shaded areas denote 95-percent confidence
regions. Dark shaded areas are 95-percent confidence intervals ignoring the estimation un-
certainty of the VAR. The utility specification uses a discount factor of 0.975 at the annual

horizon. The x-axis gives the cycle length in years.
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Figure A2: Sharpe ratios in exactly solved and log-linearized versions of the long-
run risk model. The figure reports annualized Sharpe ratios for zero-coupon consumption
claims of different maturity in the long-run risk model (Case II of Bansal and Yaron (2004)).
The thin line uses 9th order projection methods to obtain the non-linear solution, while the
thick line uses the log-linear approximation of the model as in Bansal and Yaron (2004).
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Lag 1 Lag 2 Lag3

Cons. Price Cycle Cons. Price Cycle Cons. Price Cycle
Cons. 0.388 *** .0.0487 0.365 *** 0.0652 0.112 -0.122 0.201 ** 0.0581 -0.0389

4.97) (-0.45) (3.55) (0.80) (0.81) (-121) (2.55) (0.50) (-0.44)
Price 0.142 ** 0.517 *** 0.21 *** 0.0141 0.111 -0.0223 0.205 ***  .0.101 -0.0254

(2.29) (6.08) (2.58) (0.22) (1.02) (-0.28) (3.28) (-1.10) (-0.36)
Cycle 0.0740 -0.438 **¥*  (.265 *** 0.0814 -0.164 0.294 *** 0.0973 -0.0897 0.207 ***

(1.26) (-5.43) (3.43) (1.32) (-1.58) (3.88) (1.64) (-1.03) (3.09)

Table A1l: VAR estimates. VAR results for consumption growth and the two macroeco-
nomic factors, with three lags. The sample is 1962:1-2011:2, quarterly. Standard errors are
reported in brackets. * indicates significance at the 10-percent level, ** the 5-percent level,
and *** the 1-percent level.

Fama-French 25 portfolios
Low-frequency loadings:

Growth 2 3 4 Value Difference
Small 72.7 (18.7) 67.7 (15.2) 549 (13.5) 52.0 (12.9) 56.6 (14.6) -16.1 (9.8)
2 66.7 (16.4) 52.7 (13.6) 503 (12.1) 50.8 (11.8) 56.6 (13.2) -10.1 (10.0)
3 63.3 (14.8) 50.1 (12.2) 42.5 (11.0) 423 (11.0) 47.1 (119) -162 (9.9
4 55.0 (13.1) 47.0 (11.4) 42.4  (10.9) 40.1 (10.6) 478 (12.2) -712 0 (9.4)
Large 37.6  (10.5) 28.5  (9.6) 25.1  (8.9) 27.0 (9.3) 322 (10.4) -54 (8.4
Difference -35.1 (12.9) -39.2 (10.4) -29.8 (94 -25.0 (8.7) -24.4 (10.0)
Business-cycle frequency loadings:

Growth 2 3 4 Value Difference
Small 39.8  (9.8) 359 (8.0) 284 (71.2) 26.7 (6.9) 305 (7.7) 9.3 (5.2)
2 343 (8.7) 262 (7.2) 249 (6.5) 24.5 (6.3) 28.6 (7.0 -5.7  (5.3)
3 312 (7.9 245 (6.5 204 (5.9 20.7 (5.9) 21.5 (6.4) 9.7 (5.2)
4 269 (7.0) 22.7  (6.1) 213 (5.8) 18.6 (5.7) 239 (6.5) -3.0 (5.0
Large 189 (5.6) 134 (5.1) 129 (4.7 139 (4.9 16.8 (5.5) 2.1 (4.4)
Difference -20.9 (6.8) -22.5 (5.5) -155  (5.0) -12.8  (4.6) -13.8  (5.3)

Table A2: Factor loadings for test portfolios. Each cell of each table is a factor loading
for one of the portfolio returns with respect to either the low- or business-cycle frequency
shock, for the 25 Fama—French portfolios. The numbers in parentheses are standard errors
for the estimated factor loadings and their differences.
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(1) p-value (2) p-value

Utility Spec.

Epstein—Zin ~ -2209 0.55 -7044  0.84
Consumption  Constant -156 0.60

Habit 6338 0.40

Epstein—Zin ~ -2225 0.65 -18483  0.84
Volatility Constant =712 0.56 714 0.85

Habit 7564 0.60 20483  0.85
Bandpass Spec.

Z low -40702  0.80 -4830  0.21
Consumption Z BC 19017 0.76

Z high -4247 0.67

Z low -66535  0.83 -19223  0.14
Volatility Z BC 33287 0.82 6793  0.26

Z high -9286 0.82 -1095  0.61

Table A3: Model with stochastic volatility. The table estimates four models with
stochastic volatility. In the first column, we estimate the model using the utility specifica-
tion for the weighting function of consumption and volatility (top of the table), or using the
bandpass specification for the weighting function of consumption and volatility (bottom of
the table). In each of the two models estimated in the first column, the 6 parameters of
the model (3 for the consumption weighting function and 3 for the volatility weighting func-
tion) are estimated using a factor-aumented VAR that includes observable real consumption
growth, realized volatility of the S&P 500, and four principal components (macroeconomic
factors) from Ludvigson and Ng (2007) and Jurado, Ludvigson and Ng (2015). The second
column repeats the estimation but only includes the long-run component of the consump-
tion weighting function, while leaving 3 parameters for the stochastic volatility weighting
function. In this case, a 4-variable VAR is used, that uses real consumption growth, real-
ized volatility of the S&P 500, and the first 2 principal components of the macroeconomic
variables. * indicates significance at the 10-percent level, ** the 5-percent level, and *** the
1-percent level.
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Unrestricted p-value Restricted p-value

Utility Spec.
Epstein—Zin 671 0.08 * 333 0.15

Level Constant -161 0.55 -481 0.01 ***
Habit -261 0.87 455 0.59
Epstein—Zin -857  0.03 **

Interaction  Constant -468  0.15 0.997  0.00 ***
Habit 2612 0.11

Bandpass Spec.

Z low 5656 0.04 ** 5403 0.01 **
Level Z BC -2034  0.56 -2545 038
Z high 73 0.96 561 0.65
Z_low -5342 0.07 *
Interaction 7 BC 4911 0.15 -1.110  0.00 ***
Z high 2110 0.16

Table A4: Model with time-varying risk premia. The table estimates four models
with time-varying risk premia, conditional on the surplus consumption ratio. In the first
column, we estimate the model in an unrestricted way, using lagged surplus consumption
ratio as an instrument in the GMM estimation (standardized to have zero mean and unit
varinace). For each of the utility specification (top) and bandpass specification (bottom), we
report the coefficients on the three rotated shocks and those on the interaction between the
lagged instrument and the rotated shocks. Negative estimates of the interacted coefficients
indicate higher risk premia when the surplus consumption ratio is low, in the spirit of the
Campbell-Cochrane (1999) habit model. * indicates significance at the 10-percent level, **
the 5-percent level, and *** the 1-percent level.
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Annual Altern. Bootstrap

Data p-value Two lags  p-value weighting p-value Results p-value
Epstein—Zin 873 0.00 ** 816 0.39 578 0.00 *** 556 0.01 ***
Constant 167 0.01 -331 0.09 * -348 0.00 *** -299 0.22
Habit -1129 0.05 -529 0.85 154 0.81 62 1.00
Z low 839 0.02 ** 6998 0.38 5292 0.00 *** 4837 0.00 ***
Z BC -363 0.23 -2821 0.70 -1498 0.30 -1486 0.37
Z high 64 0.98 -551 0.39 -413 0.99
Altern. VAR Altern. VAR
No PC uncert. p-value PC uncert. p-value 4 Windows p-value
Epstein—Zin 1111 0.00 *** 1111 0.00 ***
Constant -443 0.12 -443 0.12 7>100yr 627805  0.45
Habit 1232 0.33 1232 0.33 Z low -66848  0.44
Z BC 14673 0.36
Z low 8638 0.00 *** 8638 0.00 ***  Z high -3834 0.35
Z BC -3160 0.00 *** -3160 0.00 ***
Z high 438 0.55 438 0.57

Table A5: Robustness. The table reports alternative specifications and robustness results
for the estimates of risk prices on different utility components (in the utility specification)
or frequency groups (bandpass specification). The first set of results estimates the results
as in Column 1 of Table 3, but using annual data. Since the minimum cycle discernible
from annual data is 2 years, we cannot estimate the price of high-frequency fluctuations in
the bandpass basis. The second set shows the results using two rather than three lags for
the VAR. The third set computes standard errors using an alternative weighting matrix for
the second stage of the sequential GMM procedure; in this case, the weighting matrix for
the estimation of the risk prices from the cross section of portfolio returns depends not only
on the moments of the asset pricing equations, but on the entire set of moment conditions,
including the VAR moment conditions (see Hansen (2008)). The fourth set of results reports
bootstrapped p-values, as described in the Appendix. The fifth set uses an alternative dataset
to compute the VAR factors: principal components of 9 variables (aggregate price/earnings
and price/dividend ratios; the 10 year/3 month term spread; the Aaa—Baa corporate yield
spread (default spread); the small-stock value spread; the unemployment rate minus its
8-year moving average; detrended short-term interest rate; the three-month Treasury yield
rate; and Lettau and Ludvigson’s (2001) cay). p-values are computed via bootstrap, ignoring
the sampling uncertainty in the construction of the principal components. The sixth set uses
the same variables as in the fifth set, but accounts for sampling uncertainty in the principal
component estimation. The seventh set estimates a bandpass specification replacing the low-
frequency window with two separate ones, one covering cycles 10 to 100 years, one covering
all cycles above 100 years. * indicates significance at the 10-percent level, ** the 5-percent
level, and *** the 1-percent level.
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