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A Derivation of result 1

For any gj,k, we have

gj,k =
1

2π

ˆ π

−π
G̃j (ω) (cos (ωk) + i sin (ωk)) dω (1)

Now since gj,k = 0 for k < 0, for any k > 0 we have

gj,k = gj,k + gj,−k =
1

2π

ˆ π

−π
G̃j (ω)

 cos (ωk) + i sin (ωk)

+ cos (−ωk) + i sin (−ωk)

 dω (2)

=
1

2π

ˆ π

−π
G̃j (ω) 2 cos (ωk) dω (3)

Furthermore, note that the complex part of G̃ (ω) multiplied by any cos (ωk) for integer k

integrates to zero, which is why we can just study G ≡ re
(
G̃
)

. We thus have

∞∑
k=0

zkgj,k =
1

2π

ˆ π

−π
Gj (ω)

(
z0 + 2

∞∑
k=1

zk cos (ωk)

)
dω (4)

The result is related to Parseval’s theorem, but it has the advantage of yielding a decom-
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position that is entirely real-valued, which is achieved by exploiting the fact that gj,k = 0 for

k < 0.

B Quality of the linear approximation for Epstein–Zin

preferences

This section examines the quality of the linear approximation used in analyzing Epstein–

Zin preferences. The linear approximation is compared to the solution from a high-order

projection of Bansal and Yaron’s (2004) long-run risk model which is useful for having

highly volatile and persistent state variables.

B.1 Model

The model from Bansal and Yaron (2004) is

∆ct = xt−1 + σt−1εc,t (5)

xt = φxxt−1 + ϕeσt−1εx,t (6)

σ2
t = v1

(
σ2
t−1 − σ̄2

)
+ σ̄2 + σwεσ,t (7)

Time in this model is monthly. Investors are assumed to have Epstein–Zin preferences with

the time discount factor of β, an elasticity of intertemporal substitution of ρ−1 and risk

aversion of α.

B.2 Solution and simulation of the model

We solve the model using projection onto Chebyshev polynomials, which are solved through

collocation (see Judd (1999)?). Both lifetime utility and also all asset prices are solved for

as 9th-order polynomials in the two state variables, xt and σ2
t . Expectations are calculated
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using Gaussian quadrature with 15 points. All results involving simulations are calculated

based on 10,000 months of simulated data. We constrain σ2
t to be greater than 10−7 – setting

it to 10−7 if a shock drives it below that level.

B.3 Returns on zero-coupon consumption claims

We begin by examining returns on zero-coupon consumption claims. Define

PCn,t = EQ
t

[
Ct+n
Ct

]
(8)

where Q is the pricing measure. PCn,t is thus the price of a claim to consumption on date

t+ n scaled by current consumption. The return is then

Rn,t+1 =
PCn−1,t+1Ct+1

PCn,tCt
(9)

Given that we have the pricing kernel from the model, it is straightforward to solve for PCn,t

recursively, starting from the boundary condition that PC0,t = 1.

As discussed in the main text, the approximation for the pricing kernel is

∆Et+1 logMt+1 = −ασtεc,t+1 +
(ρ− α) θ

1− φxθ
σtϕeεx,t+1 −

ρ− α
1− ρ

k1
θ

1− v1θ
σwεσ2,t+1 (10)

where, as discussed in the derivation of the pricing kernel under stochastic volatility, k1 is

the coefficient in the expression

Etrw,t+1 = r̄ + ρxt + k1σ
2
t (11)

Our analysis does not depend on any particular assumption about the structure of the
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expectation of the log pricing kernel. We therefore simply approximate

Et logMt+1 = m̄+m1σ
2
t (12)

That expression is also what is obtained in Bansal and Yaron’s (2004) solution. We find

m̄ and m1 as the values that best approximate our numerical solution (by minimizing the

squared difference between m̄+m1σ
2
t and the value in the numerical solution summed across

the collocation points).

Finally, we also need a value for the coefficient k1. As with Et logMt+1, we obtain k1 by

simply regressing the values of Etrw,t+1− ρxt from the numerical solution on a constant and

σ2
t .

The pricing equation is then,

pcn,t = logEt exp

 m̄+m1σ
2
t − ρxt − ασtεc,t+1 + (ρ−α)θ

1−φxθ σtϕeεx,t+1 − ρ−α
1−ρk1

θ
1−v1θσwεσ2,t+1

+pcn−1,t+1 + xt + σtεc,t+1


(13)

where pcn,t = logPCn,t. We then guess that prices can be expressed as

pcn,t = p̄+ px,nxt + pσ2,nσ
2
t (14)

This equation can be solved using standard methods to obtain

p̄n = log β − r̄f + p̄n−1 + pσ2,n−1 (1− v1) σ̄2 +
1

2

(
−ρ− α

1− ρ
k1

θ

1− v1θ
+ pσ2,n−1

)2

σ2
w(15)

px,n = −ρ+ px,n−1φx + 1 (16)

pσ2,n = −r1 + pσ2,n−1v1 +
1

2
(1− α)2 +

1

2

(
(ρ− α) θ

1− φxθ
+ px,n−1

)2

ϕ2
e (17)

with the boundary conditions p̄0 = px,0 = pσ2,0 = 0.

We compare the risk premia implied by our approximation to those solved for numeri-
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cally with the projection method by plotting Sharpe ratios across horizons calculated under

our linear approximation and the numerical approximation. Figure A2 plots steady-state

annualized Sharpe ratios (i.e. evaluated at σ2
t = σ̄2) for zero-coupon consumption claims

with maturities from 1 to 240 months in the numerical solution to the model and also our

log-linear approximation. The two series differ by less than 0.014 across all maturities. The

root mean squared error is 0.0051. The linear approximation thus provides a highly accurate

approximation to the risk premium for consumption claims and describes very well how the

risk premia vary with maturity.

B.4 Hansen–Jagannathan distance

A standard measure of the distance between pricing kernels is the Hansen–Jagannathan (HJ;

1991) distance. For two pricing kernels, Mt+1 andM ′
t+1, the HJ distance is std

(
Mt+1 −M ′

t+1

)
.

It is straightforward to show that the HJ distance is equal to the maximal difference in Sharpe

ratios for an asset priced by the two kernels.

To examine how well the linearization approximates the numerically approximated pricing

kernel, we calculate the HJ distance for a range of calibrations of the long-run risk model

with different levels of persistence for expected consumption growth and volatility (φx and

v1). We hold ϕe and σ̄2 fixed across the simulations, which means that the unconditional

standard deviation of xt rises as φx rises. So the simulations with higher φx not only test

robustness against higher persistence, they also test robustness against models where the

state variable xt moves farther away from its steady-state. Increasing dispersion in xt also

increases dispersion in the wealth/consumption ratio. So since our approximation is around

a constant wealth/consumption ratio, the simulations with more persistent xt provide a

tougher test of the approximation.

We set σw in each simulation so that the unconditional standard deviation of σ2
t is un-

changed from Bansal and Yaron’s (2004) original calibration. We make that choice to ensure

that σ2
t never falls below zero.
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The table below reports the annualized HJ distance between the numerically approx-

imated pricing kernel and the one obtained from our linear approximation scaled by the

numerically derived HJ bound (the standard deviation of the pricing kernel divided by its

expectation). That is, denoting the projection and linearized pricing kernels as Mproj and

M linear, the relative HJ distance is
std(Mproj−M linear)

std(Mproj)
.

We report values of φx and v1 in terms of the implied half-lives for xt and σ2
t .

As we would expect, the magnitude of the errors increases with the persistence of the

state variables. The maximum relative HJ distance is 4 percent of the unconditional HJ

bound. That is, across all possible assets in the economy, the linear approximation gets risk

premia wrong by up to 4 percent. However, for the majority of calibrations, the size of the

errors is relatively small. At Bansal and Yaron’s (2004) original calibration, the relative HJ

distance is only 2.7 percent. That is, risk premia deviate from their true value, for the most

extreme possible asset, by only 2.7 parts in 100. The results in the table thus imply that

for a broad range of calibrations, the HJ distance between our linear approximation and a

numerical solution is reasonably small in relative terms.

x half-life σ2 half-life Relative HJ distance

2.72 4.4 0.027

5 4.4 0.022

7.5 4.4 0.041

1.5 4.4 0.036

2.72 10 0.032

2.72 20 0.035

2.72 1.5 0.022
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C Multiple priced variables and stochastic volatility

C.1 General result

The impulse response function in the multivariate case is denoted gk = JΓk, where gk is an

m × n matrix whose {m,n} element determines the effect of a shock to the nth element of

εt on the mth element of Etx̄t+k. The innovation to the SDF is then

∆Et+1mt+1 = −

(
∞∑
k=0

zkgk

)
εt+1 (18)

The price of risk for the jth element of ε is simply the jth element of
∑∞

k=0 zkgk.

As before, we take the discrete Fourier transform of {gk}, defining

G̃ (ω) ≡
∞∑
k=0

e−iωkgk (19)

Following the same steps as in section 2 and defining G (ω) ≡ re
(
G̃ (ω)

)
, we arrive at

∞∑
k=0

zkgkbj =
1

2π

ˆ π

−π
Z (ω) G (ω) bjdω (20)

=
1

2π

ˆ π

−π

∑
m

Zm (ω) Gm,j (ω) dω (21)

where

Z (ω) ≡ z0 + 2
∞∑
k=1

zk cos (ωk) (22)

and where Zm (ω) denotes the mth element of Z (ω) and Gm,j (ω) denotes the m, jth element

of G (ω). We thus have m different weighting functions, one for each of the priced variables.

The m weighting functions each multiply n different impulse transfer functions, Gm,j (ω).

The price of risk for shock j depends on how it affects the various priced variables at all

horizons.
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C.2 Epstein–Zin with stochastic volatility

Using Result 2, we now extend the results on Epstein–Zin preferences to also allow for

stochastic volatility, similarly to Campbell et al. (2015)? and Bansal and Yaron (2004)?.

We use the same log-normal and log-linear framework as above. The log stochastic discount

factor under Epstein–Zin preferences is,

mt+1 =
1− α
1− ρ

log β − ρ1− α
1− ρ

∆ct+1 +
ρ− α
1− ρ

rw,t+1 (23)

where rw,t+1 is the log return on a consumption claim on date t+ 1. Whereas we previously

assumed that consumption growth was log-normal and homoskedastic, we now allow for time-

varying volatility driven by a variable σ2
t . We assume that σ2

t follows a linear, homoskedastic,

and stationary process. We assume that log consumption growth is driven by a VMA process

as in assumption 1, but that now the shocks εt have variances that scale linearly with σ2
t .

It is then straightforward to show that expected returns on a consumption claim will

follow

Etrw,t+1 = k0 + ρEt∆ct+1 + k1σ
2
t (24)

where k0 and k1 are constants that depend on the underlying process driving consumption

growth. Using the Campbell–Shiller approximation, we can then write the innovation to the

SDF as

∆Et+1mt+1 = −α∆ct+1 − (α− ρ) ∆Et+1

∞∑
j=1

θj∆ct+1+j (25)

−ρ− α
1− ρ

∆Et+1θk1σ
2
t+1 −

ρ− α
1− ρ

∆Et+1

∞∑
j=1

θjθk1σ
2
t+j+1 (26)
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The weighting functions for consumption growth and volatility are now

ZEZ−SV
C (ω) = α + (α− ρ)

∞∑
j=1

θj2 cos (ωj) (27)

ZEZ−SV
σ2 (ω) = θk1

ρ− α
1− ρ

(
1 +

∞∑
j=1

θj2 cos (ωj)

)
(28)

C.3 Epstein–Zin with time-varying higher moments

This section derives the result from the main text on the general case for Epstein–Zin pref-

erences

We now guess that

Etrw,t+1 = k0 + ρEt∆ct+1 + k1x̃t (29)

Recall that according to the Campbell–Shiller approximation,

∆Et+1rw,t+1 =
∞∑
j=0

θj∆Et+1∆ct+j+1 −
∞∑
j=1

θj∆Et+1rw,t+j+1 (30)

=
∞∑
j=0

θj∆Et+1∆ct+j+1 −
∞∑
j=1

θj∆Et+1 (ρ∆ct+j+1 + k1x̃t+j) (31)

=
∞∑
j=0

θj
∑
k

gk,jεk,t+1 −
∞∑
j=1

θj∆Et+1

(∑
k

(ρgk,j + k1g̃k,j−1) εk,t+1

)
(32)

The pricing equation for the wealth portfolio is then

0 = logEt exp

(
1− α
1− ρ

log β − ρ1− α
1− ρ

∆ct+1 +
1− α
1− ρ

rw,t+1

)
(33)

=
1− α
1− ρ

log β − ρ1− α
1− ρ

Et∆ct+1 +
1− α
1− ρ

Etrw,t+1 (34)

+
1

2
logEt exp

(
−ρ1− α

1− ρ
∆Et+1∆ct+1 +

1− α
1− ρ

∆Et+1rw,t+1

)
(35)

But given the assumption about how x̃t affects the distribution of εk,t+1, the final term above

is linear in x̃t, which confirms our guess for the form of the equation governing the expected
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return on the wealth portfolio.

We then have for the innovation in the SDF

∆Et+1mt+1 = −ρ1− α
1− ρ

∆Et+1∆ct+1 +
ρ− α
1− ρ

∆Et+1rw,t+1 (36)

= −α
∑
k

gk,0εk,t+1 +
ρ− α
1− ρ

∞∑
j=1

θj

(∑
k

((1− ρ) gk,j − k1g̃k,j−1) εk,t+1

)
(37)

So then the price of risk for any shock depends now on both the effects of the shock on

consumption and also on the volatility process. If there were multiple volatility processes,

then we would have multiple extra priced variables.

The time-domain weights for the consumption part are

z0,∆c = α (38)

zj,∆c = θj (α− ρ) for j > 0 (39)

for x̃, the weights are

zj,x̃ = k1
ρ− α
1− ρ

θj (40)

These are then rotated into the frequency domain using the same techniques as above.

D Predictability of volatility in consumption growth

In this section we examine whether the variables in our VAR – consumption growth and

the two factors – are able to predict the volatility of future consumption growth. While

there is certainly evidence that consumption growth is heteroskedastic (one way to find such

evidence is to estimate an ARCH model on consumption growth) the key question for us is

whether the state variables we examine are related to volatility.

We examine two tests of whether volatility in consumption growth is predicted by the

lagged state variables: the Breusch–Pagan (1979)? test and the Szroeter (1978)? test.
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The Breusch–Pagan test, when all of the lagged state variables (with lags from 1 to 3) are

allowed to potentially predict the variance of innovations, returns a p-value of 0.41. If only

the first lag of the state variables is included, the p-value is 0.71. In other words, there is

not significant evidence to reject the null that the volatility of consumption growth can be

predicted.

We also examined a Szroeter (1978) test, which tests whether any of the lagged state

variables individually predicts the variance of consumption growth. In that case, of the nine

p-values, the smallest is 0.15 (which does not correct for multiple testing).

The two tests thus suggest that the state variables in the VAR are unable to predict the

volatility of future consumption growth. While it may be the case that consumption growth

volatility is predictable, the fact that these variables do not predict it means that their risk

premia must depend on their effect on the conditional mean of consumption growth, rather

than the conditional variance (ignoring the possibility that they predict higher moments like

disaster risk). So even if stochastic volatility is priced, the pricing of the three state variables

we examine will still reveal the pricing of fluctuations in expected consumption growth.

E Motivation for the bandpass basis from robust esti-

mation

The bandpass specification can be obtained in equilibrium when investors use a robust

estimation method for consumption dynamics. The full dynamic model of the economy is

obviously difficult to estimate and summarize. There are numerous state variables, and the

feedback between the various states and consumption itself may be complicated. Rather than

try to actually estimate and process a full model of the economy when pricing assets, investors

may summarize the effects of a particular shock on consumption growth by approximating

its impulse transfer function with a step function that highlights the average power of the
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shock at meaningful ranges of frequencies. That way, rather than computing a full transfer

function, which has an infinite number of degrees of freedom, they retain only the finite

number of degrees of freedom required to define a step function.

Specifically, suppose that the true transfer functions are Gj, but that investors approxi-

mate them and price assets using step functions defined as

GStep
j (ω) =


1

2π/32

´ 2π/32

0
Gj (κ) dκ for ω ∈ [0, 2π/32)

1
2π/8−2π/32

´ 2π/8

2π/32
Gj (κ) dκ for ω ∈ [2π/32, 2π/8)

1
π−2π/8

´ π
2π/8

Gj (κ) dκ for ω ∈ [2π/8, π]

(41)

Since investors do not perceive any variation in the transfer functions GStep
j within the

three frequency windows, variation in the weighting function, Z, in those windows is irrel-

evant – all that matters is its average value. In other words, if investors approximate the

transfer function as a step function, then their behavior will be the same as if their weighting

function Z were a step function.

More formally, suppose the true weighting function is some arbitrary Z̃, but investors

measure risk using transfer functions that are step function approximations to the true

transfer function. We then have:

ˆ π

0

Z̃ (ω)GStep
j (ω) dω =

ˆ π

0

ZBP (ω; q)Gj (ω) dω (42)

where ZBP (ω; q) =


1

2π/32

´ 2π/32

0
Z̃ (κ) dκ for ω ∈ [0, 2π/32)

1
2π/8−2π/32

´ 2π/8

2π/32
Z̃ (κ) dκ for ω ∈ [2π/32, 2π/8)

1
π−2π/8

´ π
2π/8

Z̃ (κ) dκ for ω ∈ [2π/8, π]

(43)

So a model where investors have a weighting function ZBP (ω; q) that is a step function is

observationally equivalent to an alternative where they approximate transfer functions Gj as

step functions. If the transfer functions that investors estimate are step functions, then risk

prices may be calculated using a step function for Z, regardless of its true shape. Moreover,
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the steps in ZBP correspond exactly to average risk prices in the three frequency windows.

In the end, then, the bandpass specification yields estimates of average risk prices in

frequency windows and may be thought of as the result of investors estimating transfer

functions GStep
j . We show below that the step functions, GStep

j , are far easier for investors

to estimate than unrestricted functions, so we view the bandpass specification in the spirit

of Campbell and Mankiw’s (1989)? estimation of the permanent income hypothesis in the

presence of rule-of-thumb consumers. Similar to them, our findings suggest that a rule of

thumb – in our case, the step function approximation – performs well.1

F Details of the empirical analysis

F.1 Invariance of frequency-domain risk prices under rotations

The risk prices for the shocks can be written in the time domain as

p =
∞∑
k=0

qzkb1Φ
k (44)

where zk ≡
1

π

ˆ π

0

cos (ωk) [Z1 (ω) , Z2 (ω) , Z3 (ω)]′ dω (45)

zk is the time-domain vector of basis functions. Note also that b1Φ
k is the vector of IRFs

of consumption growth to the reduced-form shocks εt. Given the definition of zk and using

Result 1, the matrix W can be written as
∑∞

k=0 zkb1Φ
k.

Now suppose we considered a set of rotated shocks ε̃t = Θεt for some rotation matrix Θ.

1We also note that approximating consumption dynamics in the frequency domain (rather than in the
time domain) is the standard way to compress information in many fields of science. As a practical example,
standard music, image and video compression, and noise-reduction procedures – whose objective is precisely
to extract the most important components of each signal – use cosine transforms nearly identical to ours.
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The estimated reduced-form risk prices for ε̃t, p̃, will then have the property

p̃ε̃t = pεt (46)

⇒ p̃Θ = p (47)

since the pricing kernel must be unchanged whether we examine the reduced-form innovations

or a rotation of them.2

Furthermore, note that the IRFs for the rotated shocks are simply b1Φ
kΘ−1 (since

∆Et+1∆ct+k+1 = b1Φ
kεt = b1Φ

kΘ−1ε̃t). The rotation matrix for ε̃t therefore becomes

W̃ =
∑∞

k=0 zkb1Φ
kΘ−1 = WΘ−1. So if we again take the reduced-form risk prices, p̃, and

multiply them by the rotation matrix W̃−1, we obtain

p̃W̃
−1

= p̃
(
WΘ−1

)−1
(48)

= p̃ΘW−1 (49)

= pW−1 (50)

So then whether we take the reduced form risk prices p and rotate them with W−1 or take

a set of rotated risk prices p̃ and rotate them with W̃−1, we obtain identical results.

F.2 Derivation of the asset pricing moment conditions

The derivation of the moments identifying the risk prices follows Campbell and Vuolteenaho

(2004). Given the assumption of lognormality of all shocks, we can write:

Etrit+1 − rft+1 +
1

2
σ2
it = −covt(mt+1, rit+1) (51)

2That is, for the unrotated shocks, the asset pricing moments are E[exp (rit+1)−exp
(
rft+1

)
] = pεt+1ri,t+1.

For the rotated shocks, they are E[exp (rit+1) − exp
(
rft+1

)
] = p̃ε̃t+1ri,t+1. So the value of the objective

function is the same with the rotated shocks when p̃Θ = p.
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where σ2
it = V art(rit+1). We then note that

covt(mt+1, rit+1) = covt(∆Et+1mt+1, rit+1) = Et(∆Et+1mt+1rit+1) = Et(−qWεt+1rit+1)

(52)

Which implies

Etrit+1 − rft+1 +
1

2
σ2
it = Et(qWεt+1rit+1) (53)

Since Etrit+1 − rft+1 + 1
2
σ2
it ≈ Et[exp (rit+1) − exp

(
rft+1

)
], and taking unconditional ex-

pectations, we obtain

E[exp (rit+1)− exp
(
rft+1

)
] ≈ E

[
qWεt+1rit+1

]
(54)

F.3 Calculation of standard errors

The procedure in Hansen (2008) involves the following calculation. Define D to be the

Jacobian of the moment conditions with respect to the parameters [p′1, p
′
2]′ (where p1 =

vec
(
Φ̂
)

and p2 = q̂) partitioned in the two blocks of moments (where D12 = 0 since the

VAR moments do not depend on q̂):

D =

 D11 0

D21 D22


Denote the weighting matrix for the VAR moments as W1, and the weighting matrix for the

asset pricing moments W2. Finally, define

A11 = D′11W1

A22 = D′11W2
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Then the covariance matrix of q̂ is estimated as,

var(q̂− q) =
1

T

{
(A22D22)−1A22

[
−D21(A11D11)−1A11, I

]}′
S
{

(A22D22)−1A22

[
−D21(A11D11)−1A11, I

]}
where the role played by the prespecified weighting matrices is clear from the terms A11 and

A22; the uncertainty about the parameters estimated in the first block comes through D11

and D21. The matrix S is the covariance matrix of the asset pricing moments.

G Additional robustness tests

This section discusses a range of perturbations of the main model to examine the robustness

of the main results.

G.1 Bootstrapped t-statistics

We compute bootstrapped t-statistics following suggestions in Efron and Tibshirani (1994?).

Specifically, in every bootstrap sample we calculate the t-statistic for each coefficient and

then use the simulated distribution of the t-statistics to construct p-values for the test of

whether the coefficients are different from zero.

Given a sample size of N , we take uniformly distributed draws from the set {1, 2, ..., N}

with replacement. The jth draw in bootstrap simulation i is denoted bij. The ith simulated

dataset is then the set of VAR residuals and test asset returns for observations
{
bij
}N
j=1

. To

construct the set of state variables, we draw an initial value of the state variables randomly

from the set of observations and then use the drawn innovations along with the point estimate

for the feedback matrix, Φ̂, to construct the full sample.

The estimation then proceeds on the simulated dataset exactly as it does on the true

dataset. For each simulated sample we form t-statistics for the difference between the boot-

strapped estimate of the coefficient and the point estimate. Suppose the empirically observed
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t-statistic in the main estimate for some coefficient k is equal to t̂k > 0. Then the boot-

strapped p-value is twice the fraction of the simulated t-statistics at least as high as t̂k (for

a full description of the procedure, see Efron and Tibshirani, 1994?)

The above procedure does not account for uncertainty in the estimation of the principal

components for the FAVAR since Bai and Ng (2006) show that estimation error in the

principal components is asymptotically negligible when
√
T/N → 0 (see also the discussion

in Ludvigson and Ng (2007)?). But when considering the alternative specification in Table

A5 that uses a cross-section of only nine time series to estimate the factors, this sampling

uncertainty cannot be ignored.

Denote the variables used to calculate the principal components as xi,t for i ∈ {1, 2, ..., 9}.

We proceed to account for uncertainty in estimating the principal components by resampling

the T ×N panel of observed variables xi,t, and then re-estimating the factors in each sample,

as in Ludvigson and Ng (2007). Denote the factors fj,t, and the estimated coefficients on

them b̂i,j. We then define the PC residuals as

êi,t ≡ xi,t − b̂1,tf1,t − b̂2,tf2,t (55)

As in Ludvigson and Ng (2007), we first estimate an AR(1) process on each individual PC

residual êi,t:

êi,t = ρiêi,t−1 + vi,t (56)

After the AR(1) specification is obtained and ρ̂i is estimated for each i, v̂it is resampled

(preserving the cross-sectional correlation across different i) in each bootstrap sample. We

then use the resampled AR(1) innovations to construct bootstrapped values of the individual

errors eit. Finally, those bootstrapped errors are added to b̂1,tf1,t + b̂2,tf2,t to yield a boot-

strapped sample of xit. Principal components are then constructed using the bootstrapped

sample of xit. The remainder of the bootstrap procedure in this case (i.e. for consumption

and returns) is otherwise identical to above.
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G.2 Risk-sorted portfolios

The 25 Fama–French portfolios were originally constructed because their returns spanned a

number of observed anomalies in the cross-section of excess returns. We would not necessarily

expect them to have large spreads in their loadings on shocks to consumption growth at

different horizons. In this section we therefore construct portfolios that are specifically

designed to have a large spread in factor loadings.

In every quarter, we estimate factor loadings with respect to the low- and business-cycle

frequency shocks (we refrain from also sorting on the high-frequency shocks to keep the

portfolios relatively large and well diversified). The loadings are estimated on quarterly data

over the previous 10 years. Stocks are then split in to three equally sized groups according to

their loadings on the factors, and we construct nine portfolios by crossing the two groupings

of loadings.

The low- and business-cycle frequency shocks are constructed using the bandpass speci-

fication. Specifically, we have

∆Et+1mt+1 = −qWεt+1 (57)

The rotated shocks are thus,

ut+1 = Wεt+1 (58)

And the low- and business-cycle frequency components are the first two elements of u.

G.3 Results

Table A5 reports a range of alternative estimates of the risk prices.

First, we estimate our baseline specification (column 1 of Table 3) using annual data

instead of quarterly data, motivated by recent evidence (e.g. Parker and Julliard 2005)

that the consumption CAPM works better when looking at more time-aggregated data.
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The results with annual data are consistent with the ones obtained using quarterly data:

low-frequency fluctuations are significantly priced.3

The second pair of columns uses two lags in the VAR, rather than the three suggested

by cross-validation. The estimates are very close to those obtained with three lags, but they

are no longer statistically significant.

The third pair of columns uses the optimal weighting matrix for the moments identifying

the risk prices, which is derived by Hansen (2008). The optimal weighting matrix substan-

tially shrinks the standard errors, but the point estimates are only minimally changed from

our main results.

Next, we calculate confidence intervals using the bootstrap procedure described above.

The low-frequency risk prices remain highly significant, while risk prices for other frequencies

are insignificant.

As described above, we also explore an alternative specification that extracts principal

components from nine macro-financial data series as instead of the 131 series of Jurado et

al. (2015): aggregate price/earnings and price/dividend ratios; the 10 year/3 month term

spread; the Aaa–Baa corporate yield spread (default spread); the small-stock value spread;

the unemployment rate minus its 8-year moving average; detrended short-term interest rate;

the three-month Treasury yield rate; and Lettau and Ludvigson’s (2001) cay. We com-

pute the standard errors via bootstrap, with and without incorporating uncertainty in the

estimation of the principal components.

Table A5 shows that even with the alternative method of constructing the factors for

the FAVAR, and even taking into account uncertainty in the estimation of the factors, we

continue to obtain highly significant coefficients on the low-frequency shocks to consumption.

The point estimates are somewhat larger than in our main analysis, but not qualitatively

different.

3We note that the shortest cycle we can identify with annual data is 2 years. Therefore, with annual data
we cannot identify the price of risk for our “higher-than-business-cycle” frequency window.
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As a last extension, we attempt to estimate a version of the model with four instead of

three frequency windows. In particular, we split the low-frequency window into one covering

cycles lasting between 8 and 100 years and another covering cycles lasting more than 100

years. In order to estimate four risk prices we need four shocks, so we add a third principal

component from the 131 data series to the FAVAR. Table A5 shows that in this case we

obtain no results that are even close to significant and the standard errors are extremely

large compared to the main results.
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Appendix Tables and Figures
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Figure A1: Estimated spectral weighting function, without VAR uncertainty. Es-
timated weighting function for consumption growth as the priced variable using the utility
specification (top row) and the bandpass specification (bottom row). Risk prices are esti-
mated using the 25 Fama–French portfolios. Light shaded areas denote 95-percent confidence
regions. Dark shaded areas are 95-percent confidence intervals ignoring the estimation un-
certainty of the VAR. The utility specification uses a discount factor of 0.975 at the annual
horizon. The x-axis gives the cycle length in years.
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Figure A2: Sharpe ratios in exactly solved and log-linearized versions of the long-
run risk model. The figure reports annualized Sharpe ratios for zero-coupon consumption
claims of different maturity in the long-run risk model (Case II of Bansal and Yaron (2004)).
The thin line uses 9th order projection methods to obtain the non-linear solution, while the
thick line uses the log-linear approximation of the model as in Bansal and Yaron (2004).
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Cons. Price Cycle Cons. Price Cycle Cons. Price Cycle
Cons. 0.388 *** -0.0487 0.365 *** 0.0652 0.112 -0.122 0.201 ** 0.0581 -0.0389

(4.97) (-0.45) (3.55) (0.80) (0.81) (-1.21) (2.55) (0.50) (-0.44)

Price 0.142 ** 0.517 *** 0.21 *** 0.0141 0.111 -0.0223 0.205 *** -0.101 -0.0254
(2.29) (6.08) (2.58) (0.22) (1.02) (-0.28) (3.28) (-1.10) (-0.36)

Cycle 0.0740 -0.438 *** 0.265 *** 0.0814 -0.164 0.294 *** 0.0973 -0.0897 0.207 ***
(1.26) (-5.43) (3.43) (1.32) (-1.58) (3.88) (1.64) (-1.03) (3.09)

Lag 1 Lag 2 Lag 3

Table A1: VAR estimates. VAR results for consumption growth and the two macroeco-
nomic factors, with three lags. The sample is 1962:1–2011:2, quarterly. Standard errors are
reported in brackets. * indicates significance at the 10-percent level, ** the 5-percent level,
and *** the 1-percent level.

Fama-French 25 portfolios
Low-frequency loadings:

Small 72.7 (18.7) 67.7 (15.2) 54.9 (13.5) 52.0 (12.9) 56.6 (14.6) -16.1 (9.8)
2 66.7 (16.4) 52.7 (13.6) 50.3 (12.1) 50.8 (11.8) 56.6 (13.2) -10.1 (10.0)
3 63.3 (14.8) 50.1 (12.2) 42.5 (11.0) 42.3 (11.0) 47.1 (11.9) -16.2 (9.9)
4 55.0 (13.1) 47.0 (11.4) 42.4 (10.9) 40.1 (10.6) 47.8 (12.2) -7.2 (9.4)
Large 37.6 (10.5) 28.5 (9.6) 25.1 (8.9) 27.0 (9.3) 32.2 (10.4) -5.4 (8.4)
Difference -35.1 (12.9) -39.2 (10.4) -29.8 (9.4) -25.0 (8.7) -24.4 (10.0)

Business-cycle frequency loadings:

Small 39.8 (9.8) 35.9 (8.0) 28.4 (7.2) 26.7 (6.9) 30.5 (7.7) -9.3 (5.2)
2 34.3 (8.7) 26.2 (7.2) 24.9 (6.5) 24.5 (6.3) 28.6 (7.0) -5.7 (5.3)
3 31.2 (7.9) 24.5 (6.5) 20.4 (5.9) 20.7 (5.9) 21.5 (6.4) -9.7 (5.2)
4 26.9 (7.0) 22.7 (6.1) 21.3 (5.8) 18.6 (5.7) 23.9 (6.5) -3.0 (5.0)
Large 18.9 (5.6) 13.4 (5.1) 12.9 (4.7) 13.9 (4.9) 16.8 (5.5) -2.1 (4.4)
Difference -20.9 (6.8) -22.5 (5.5) -15.5 (5.0) -12.8 (4.6) -13.8 (5.3)

Difference

Growth 2 3 4 Value Difference

Growth 2 3 4 Value

Table A2: Factor loadings for test portfolios. Each cell of each table is a factor loading
for one of the portfolio returns with respect to either the low- or business-cycle frequency
shock, for the 25 Fama–French portfolios. The numbers in parentheses are standard errors
for the estimated factor loadings and their differences.
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(1) p-value (2) p-value
Utility Spec.

Epstein–Zin -2209 0.55 -7044 0.84
Constant -156 0.60
Habit 6338 0.40
Epstein–Zin -2225 0.65 -18483 0.84
Constant -712 0.56 714 0.85
Habit 7564 0.60 20483 0.85

Bandpass Spec.
Z_low -40702 0.80 -4830 0.21
Z_BC 19017 0.76
Z_high -4247 0.67
Z_low -66535 0.83 -19223 0.14
Z_BC 33287 0.82 6793 0.26
Z_high -9286 0.82 -1095 0.61

Consumption

Volatility

Consumption

Volatility

Table A3: Model with stochastic volatility. The table estimates four models with
stochastic volatility. In the first column, we estimate the model using the utility specifica-
tion for the weighting function of consumption and volatility (top of the table), or using the
bandpass specification for the weighting function of consumption and volatility (bottom of
the table). In each of the two models estimated in the first column, the 6 parameters of
the model (3 for the consumption weighting function and 3 for the volatility weighting func-
tion) are estimated using a factor-aumented VAR that includes observable real consumption
growth, realized volatility of the S&P 500, and four principal components (macroeconomic
factors) from Ludvigson and Ng (2007) and Jurado, Ludvigson and Ng (2015). The second
column repeats the estimation but only includes the long-run component of the consump-
tion weighting function, while leaving 3 parameters for the stochastic volatility weighting
function. In this case, a 4-variable VAR is used, that uses real consumption growth, real-
ized volatility of the S&P 500, and the first 2 principal components of the macroeconomic
variables. * indicates significance at the 10-percent level, ** the 5-percent level, and *** the
1-percent level.
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Unrestricted p-value Restricted p-value
Utility Spec.

Epstein–Zin 671 0.08 * 333 0.15
Constant -161 0.55 -481 0.01 ***
Habit -261 0.87 455 0.59

Epstein–Zin -857 0.03 **
Constant -468 0.15 0.997 0.00 ***
Habit 2612 0.11

Bandpass Spec.
Z_low 5656 0.04 ** 5403 0.01 **
Z_BC -2034 0.56 -2545 0.38
Z_high -73 0.96 561 0.65

Z_low -5342 0.07 *
Z_BC 4911 0.15 -1.110 0.00 ***
Z_high -2110 0.16

Level

Interaction

Level

Interaction

Table A4: Model with time-varying risk premia. The table estimates four models
with time-varying risk premia, conditional on the surplus consumption ratio. In the first
column, we estimate the model in an unrestricted way, using lagged surplus consumption
ratio as an instrument in the GMM estimation (standardized to have zero mean and unit
varinace). For each of the utility specification (top) and bandpass specification (bottom), we
report the coefficients on the three rotated shocks and those on the interaction between the
lagged instrument and the rotated shocks. Negative estimates of the interacted coefficients
indicate higher risk premia when the surplus consumption ratio is low, in the spirit of the
Campbell-Cochrane (1999) habit model. * indicates significance at the 10-percent level, **
the 5-percent level, and *** the 1-percent level.
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Annual Altern. Bootstrap
Data p-value Two lags p-value weighting p-value Results p-value

Epstein–Zin 873 0.00 ** 816 0.39 578 0.00 *** 556 0.01 ***
Constant 167 0.01 -331 0.09 * -348 0.00 *** -299 0.22
Habit -1129 0.05 -529 0.85 154 0.81 62 1.00

Z_low 839 0.02 ** 6998 0.38 5292 0.00 *** 4837 0.00 ***
Z_BC -363 0.23 -2821 0.70 -1498 0.30 -1486 0.37
Z_high 64 0.98 -551 0.39 -413 0.99

Altern. VAR Altern. VAR
No PC uncert. p-value PC uncert. p-value 4 Windows p-value

Epstein–Zin 1111 0.00 *** 1111 0.00 ***
Constant -443 0.12 -443 0.12 Z>100yr 627805 0.45
Habit 1232 0.33 1232 0.33 Z_low -66848 0.44

Z_BC 14673 0.36
Z_low 8638 0.00 *** 8638 0.00 *** Z_high -3834 0.35
Z_BC -3160 0.00 *** -3160 0.00 ***
Z_high 438 0.55 438 0.57

Table A5: Robustness. The table reports alternative specifications and robustness results
for the estimates of risk prices on different utility components (in the utility specification)
or frequency groups (bandpass specification). The first set of results estimates the results
as in Column 1 of Table 3, but using annual data. Since the minimum cycle discernible
from annual data is 2 years, we cannot estimate the price of high-frequency fluctuations in
the bandpass basis. The second set shows the results using two rather than three lags for
the VAR. The third set computes standard errors using an alternative weighting matrix for
the second stage of the sequential GMM procedure; in this case, the weighting matrix for
the estimation of the risk prices from the cross section of portfolio returns depends not only
on the moments of the asset pricing equations, but on the entire set of moment conditions,
including the VAR moment conditions (see Hansen (2008)). The fourth set of results reports
bootstrapped p-values, as described in the Appendix. The fifth set uses an alternative dataset
to compute the VAR factors: principal components of 9 variables (aggregate price/earnings
and price/dividend ratios; the 10 year/3 month term spread; the Aaa–Baa corporate yield
spread (default spread); the small-stock value spread; the unemployment rate minus its
8-year moving average; detrended short-term interest rate; the three-month Treasury yield
rate; and Lettau and Ludvigson’s (2001) cay). p-values are computed via bootstrap, ignoring
the sampling uncertainty in the construction of the principal components. The sixth set uses
the same variables as in the fifth set, but accounts for sampling uncertainty in the principal
component estimation. The seventh set estimates a bandpass specification replacing the low-
frequency window with two separate ones, one covering cycles 10 to 100 years, one covering
all cycles above 100 years. * indicates significance at the 10-percent level, ** the 5-percent
level, and *** the 1-percent level.
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