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We quantify investors’ preferences over the dynamics of shocks by deriving frequency-
specific risk prices that capture the price of risk of consumption fluctuations at each
frequency. The frequency-specific risk prices are derived analytically for leading models.
The decomposition helps measure the importance of economic fluctuations at different
frequencies. We precisely quantify the meaning of “long-run” in the context of Epstein-Zin
preferences – centuries – and measure the exact relevance of business-cycle fluctuations.
Finally, we estimate frequency-specific risk prices and show that cycles longer than the
business cycle – long-run risks – are significantly priced in the equity market. (JEL G12,
C14, C58)
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This paper develops a novel frequency domain decomposition of innovations
to the pricing kernel. The decomposition quantifies exactly how economic
fluctuations at different frequencies are priced and reveals previously
overlooked constraints imposed by widely used preference specifications. The
frequency domain tools also lead to a novel estimation method that provides
new evidence about the pricing of economic risks that is both stronger and more
statistically powerful than previous methods. Low-frequency fluctuations in the
economy are significantly priced across a wide range of specifications, while
business-cycle and higher-frequency fluctuations are not. This highlights the
importance of long-run risks in determining risk premiums.

Our frequency domain decomposition applies to affine asset pricing models,
including the CAPM, the consumption CAPM, the standard log-linearized
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version of Epstein and Zin (1991) preferences, and the ICAPM (Merton, 1973;
Campbell, 1993). The dynamic effects of shocks have become central in the
recent asset pricing literature, and we argue that the frequency domain is the
natural setting in which to analyze dynamics.

The dynamic response of the economy to a shock is usually summarized in
the time domain by an impulse response function (IRF). Long-run shocks to
consumption growth that have large risk prices under Epstein-Zin preferences
– for example, those studied in Bansal and Yaron (2004) – have IRFs that decay
slowly. We map the IRF of a shock into the frequency domain. A shock that
has strong long-run effects has high power at low frequencies, whereas shocks
that dissipate rapidly have relatively more power at high frequencies. We refer
to the frequency domain version of the IRF as the impulse transfer function.

Our theoretical result is that the price of risk for a shock depends on the
integral of the impulse transfer function over the set of all frequencies, ω,
weighted by a function Z(ω). Z(ω) measures the frequency-specific price of
risk and is determined almost entirely by investor preferences, rather than by
the dynamics of consumption (in certain benchmark cases the separation is
complete, but in others it holds up to an approximation). We derive Z(ω) in
closed form for various theoretical models and estimate it empirically in equity
markets.

The spectral representation we describe is useful for two main reasons. First,
it yields quantitative insights about the importance of the dynamics of shocks
for asset prices in different models. We show that standard calibrations of
Epstein-Zin preferences imply that more than half of the mass of the spectral
weighting function lies on cycles lasting a century or longer. While it is certainly
understood that Epstein-Zin preferences place weight on low-frequency shocks,
this is the first paper to precisely quantify the meaning of “long-run” show how
large the weight on those frequencies is. Similarly, we show that models with
internal habit formation place the majority of their mass on high frequencies.1

The analysis also reveals that standard preference specifications are very
tightly constrained in certain regards, leading to sharp and testable predictions.
Epstein-Zin preferences isolate their weight almost exclusively on very low
frequencies, internal habit formation isolates its weight on high frequencies,
and both have monotone weighting functions. So if we can even just measure the
average slope of the spectral weighting function, we can empirically distinguish
between the two models. Moreover, due to the monotonicity of the weighting
functions, neither model allows investors to express a particular aversion to
fluctuations at midrange frequencies, for example, business cycles, a constraint
that has not been highlighted previously.

The second contribution of the paper is to provide estimates of the spectral
weighting function in U.S. equity markets. We begin by showing that when

1 See also Epstein, Farhi, and Strzalecki (2014), who quantitatively analyze the preference for the timing of the
resolution of uncertainty under Epstein-Zin preferences.
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we apply the standard Euler equation estimation methodology of Hansen and
Singleton (1982) using the specific functional forms implied by utility-based
models, no coefficients are consistently significant across various groups of
test assets (and the implied risk-aversion parameters at the point estimates
are implausibly high, though the confidence bands also cover more plausible
values). That result would usually be taken to imply that consumption is
unpriced and that the models are not a good description of risk premiums in
the equity market. We argue, though, that such a conclusion is premature and
depends on the extremely tight constraints imposed by the models. When we
generalize the models to allow investors to price fluctuations in broader ranges
of frequencies, we find that low-frequency shocks to consumption growth are
in fact consistently priced in equity markets. The key is simply that we must
allow for the possibility that the concept of “long-run” that is priced is a shock
that lasts longer than the business cycle, rather than a shock that lasts hundreds
of years as implied by Epstein-Zin preferences.

In addition to allowing us to estimate more general specifications for the
pricing kernel, the frequency domain analysis also suggests a novel way to
test asset pricing models. Standard tests, for example, the Gibbons, Ross, and
Shanken (1989), and GMM overidentifying tests, are often difficult to interpret,
because their rejections are in some sense statistical and do not have a clear
economic interpretation. The tests tell us that some portfolios are unpriced, but
they do not tell us anything about the economic source of the failure.

We suggest instead that models can be tested against parametric alternatives
(as suggested by Andrews and Ploberger, 1996). As an example, consider
the problem of testing whether habit formation gives a good description of
investor preferences. Habit formation implies that the covariance of an asset’s
return with high-frequency shocks to consumption growth should determine
its average return. We test the model by asking whether long-run risks are also
priced. When we find that those long-run shocks are significantly priced, not
only do we reject habit formation but we give economic meaning to its failure
– it is inconsistent with the fact that investors are averse to long-run risks.
Similarly, we do not simply fail to reject that the price of risk for high-frequency
fluctuations is zero; we will rather show that low-frequency fluctuations are
priced.

To summarize, then, the analysis of asset pricing models in the frequency
domain gives two novel results: it quantifies precisely how models place
weight on different frequencies (and clarifies the meaning of “long-run risk” for
standard Epstein-Zin investors), and it delivers novel and consistent evidence
showing that investors are averse to low-frequency economic fluctuations.

There is very little extant analysis of preference-based asset pricing in the
frequency domain.2 Otrok, Ravikumar, and Whiteman (2002) andYu (2012) are

2 Frequency-domain tools have been applied in finance for other purposes, for example, for estimation or valuation
of derivatives, as in Carr and Madan (1999), Duffie, Pan, and Singleton (2000), and Singleton (2001).
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two recent examples. While those papers also present spectral decompositions
of prices and consumption fluctuations, the object of the decomposition is
different from ours. Instead of studying how shocks at different frequencies are
priced by an investor, they ask how the price of a consumption claim depends
on the spectral density of consumption and its relation with returns. Since the
price of the asset reflects a combination of preferences and dynamics, it is
impossible to evaluate the relative importance of the two beyond very specific
cases.3,4

Our paper is closely related to a vast empirical literature studying the
importance of dynamics for asset pricing in the time domain.Anumber of papers
study the relationship between asset returns and consumption growth at long
horizons as methods of testing the implications of Epstein-Zin or power utility.5

We complement that work by estimating how fluctuations in consumption
growth at different frequencies are priced and in a way that imposes weaker
restrictions.

Finally, our work is related to other important decompositions of the
stochastic discount factor (SDF), most notably Alvarez and Jermann (2005),
Hansen and Scheinkman (2009), and Borovicka et al. (2011). Those
decompositions study the dynamic effects of shocks for the evolution of the
stochastic discount factor over time and are closely related to work on the
term structure of risk premiums.6 Rather than studying how a single shock
today affects the SDF in the future, we study how the innovation to the SDF
today depends on news about consumption in the future. In other words, those
papers analyze the impulse response function of the SDF, while we study
the impulse response function of consumption and how it affects the one-
period innovation in the SDF. The two approaches are complementary. Our
decomposition explains risk premiums (since the risk premium of any asset
depends only on the one-period innovation in the SDF), rather than the term
structure of prices of claim to future consumption.

We use the following conventions in our notation:

ct : lower-case italic represents a scalar variable or function

3 Calvet and Fisher (2007), Ortu, Tamoni, and Tebaldi (2013), and Bandi and Tamoni (2014) study a different
decomposition of the consumption and returns processes into components operating at different time scales,
exploring their covariance and relation with expected returns at different time scales, in reduced form, and within
the framework of Epstein-Zin utility. The focus of these papers is to disentangle the different components of the
consumption and returns processes, while we provide a decomposition of both the consumption processes and,
most importantly, the agent’s risk preferences, for any utility function.

4 See also Alvarez and Jermann (2004), who measure the cost of business-cycle fluctuations by computing the
price of a claim to the business-cycle component of consumption.

5 For example, Parker and Julliard (2005), Malloy, Moskowitz, and Vissing-Jorgenson (2009), Bansal, Dittmar,
and Lundblad (2005), Yu (2012), Daniel and Marshall (1997), van Binsbergen, Brandt, and Koijen (2012), and
Hansen, Heaton, and Li (2008).

6 See, for example, Hansen, Heaton, and Li (2008) and Lettau and Wachter (2007). Backus, Chernov, and Zin
(2014) study how the dispersion of the pricing kernel varies by horizon.
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Z: upper-case italic represents a scalar-valued function in the frequency
domain

xt : lowercase bold represents a vector
�: upper-case bold represents a matrix or matrix-valued function
We also follow standard conventions for denoting widely used operators,

such as expectations, lags, and first differences.

1. Frequency-Specific Risk Prices

We derive our spectral decomposition of the pricing kernel under two main
assumptions. First, the log pricing kernel, mt , depends on the current and future
values of a scalar priced variable, xt (often consumption growth or market
returns). Second, the dynamics of the economy are described by a vector moving
average process xt which includes xt as an element.

Assumption 1: Structure of the SDF.

Denote the log pricing kernel (or stochastic discount factor, SDF) mt+1.7 We
assume that mt depends on current and future values of xt :

mt+1 =f (It )−�Et+1

∞∑
k=0

zkxt+1+k, (1)

where f (It ) is some unspecified function of the time-t information set It , Et

is the expectation operator conditional on information available on date t , and
�Et+1 ≡Et+1 −Et denotes the innovation in expectations. This specification is
sufficiently flexible to match standard empirical applications of power utility,
habit formation, Epstein-Zin preferences, the CAPM, and the ICAPM (in some
cases under log-linearization). Intuitively, Equation (1) simply says that the
innovation to the SDF depends on news about the priced variable in the future,
with weights zk at each future horizon k. It implies that risk prices are constant,
but we discuss how to relax that assumption below.

Assumption 2: Dynamics of the economy.

xt is driven by an n-dimensional vector moving average process

xt =b1xt , (2)

xt =�(L)εt , (3)

7 In our derivation we assume that the log SDF, mt+1, is linear in the news about future values of the priced variable
xt , because the most widely used models specify an affine form for the log SDF. The same decomposition holds
if we assume that the level of the SDF, exp(mt+1), is linear in the news terms. We also do not take a position on
whether mt is the pricing kernel for all markets or whether there is some sort of market segmentation. We do not
assume at this point that there is a representative investor.
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where xt has dimension n×1, L is the lag operator, �(L) is an n×n matrix lag
polynomial,

�(L)=
∞∑
k=0

�kL
k, (4)

and εt is an n×1 vector of (potentially correlated) martingale difference
sequences. Note that we make no assumptions about the conditional distribution
of the innovations εt , except that it has a mean of zero. εt therefore could
include disasters, it could be heteroscedastic, and it could have fat tails.
Furthermore, note that the elements of εt need not be orthogonal or in any sense
represent identified “structural” shocks as in the structural vector autoregression
literature. For example, they could all have nonzero correlations. Finally, we
do not at this point make any specific assumptions about the function �(L).
Different asset pricing models will place different constraints on admissible
forms of �(L). We instead make the high-level assumption that the variance
of mt+1 is finite, which will imply constraints on �(L) depending on {zk}.

Throughout the paper bj denotes a conformable (here, 1×n) vector equal to
one in element j and zero elsewhere. We assume without loss of generality that
xt is the first element of xt . Furthermore, we require �(L) to have properties
sufficient to ensure that xt is covariance stationary.

Combining assumptions 1 and 2, we can write the innovations to the pricing
kernel as a function of the impulse-response functions (IRFs) of xt to each of
the shocks. In particular, for the j th element of εt , εj,t , the IRF of xt is the set
of gj,k for all horizons k defined as

gj,k ≡
{

b1�kb′
j for k≥0,

0 otherwise.
(5)

We can then rewrite the innovation to the log SDF as

�Et+1mt+1 =−
∑

j

( ∞∑
k=0

zkgj,k

)
εj,t+1, (6)

and we refer to
∑∞

k=0zkgj,k as the price of risk for shock j . In this representation,
the effect of a shock εj,t+1 on the pricing kernel is decomposed by horizon: for
every horizon k, the effect of the shock depends on the response of x at that
horizon (captured by gj,k) and on the horizon-specific price of risk zk .

Our main result is a spectral decomposition in which the price of risk of
a shock j depends on the response of x to that shock at each frequency ω

(Gj (ω)) and on a frequency-specific price of risk, Z(ω) (see the Appendix for
the derivation).

Result 1. Under Assumptions 1 and 2, the innovations to the log SDF are

�Et+1mt+1 =−
∑

j

(
1

2π

∫ π

−π

Z(ω)Gj (ω)dω

)
εj,t+1, (7)
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Asset Pricing in the Frequency Domain

where Z(ω) is a weighting function depending only on the risk prices {zk}, and
Gj (ω) measures the dynamic effects of εj,t on x in the frequency domain:

Z(ω)≡z0 +2
∞∑
k=1

zk cos(ωk), (8)

Gj (ω)≡
∞∑
k=0

cos(ωk).gj,k (9)

The price of risk for a shock εj is then

∞∑
k=0

zkgj,k =
1

2π

∫ π

−π

Z(ω)Gj (ω)dω. (10)

Equation (10) allows us to represent the information contained in the
infinitely long IRF

{
gj,k

}
and the infinite set of weights {zk} in a compact

and interpretable pair of functions on a bounded interval. The function Gj (ω)
decomposes the effects of a shock by frequency. If εj,t has very long-lasting
effects on x, it induces low-frequency cycles in consumption, and most of the
mass of Gj (ω) will lie at low frequencies. If εj,t induces mainly transitory
dynamics in x, then Gj (ω) will isolate high frequencies. We refer to Gj as the
impulse transfer function (ITF) of shock j since it is the real part of the transfer
function associated with the filter

∑∞
k=0gj,kL

k .8

The price of risk for shock εj thus depends on an integral over the function
Gj (ω), with weights Z(ω). Since Gj (ω) tells us the effect of εj on x at frequency
ω, we interpret Z(ω) as the price of risk for any shock to the variable x at
frequency ω. Z(ω) is also akin to a density over which G is integrated (though
this density may be negative). We will thus often discuss shifts in the mass of
Z as changes that increase Z for certain ranges of frequencies and reduce it
elsewhere.

The weighting function Z(ω) does not tell us anything about the dynamics of
the pricing kernel, mt+1. Rather, Z(ω) tells us how the dynamic features of any
given shock εj,t+1 map into the innovation in the pricing kernel, �Et+1mt+1,
which is what is relevant for calculating risk premiums and expected returns.
So whereas, for example, Borovicka et al. (2011) study generalizations of the
IRF of the SDF itself, we study how the IRF of consumption growth affects the
SDF purely on date t +1.

It is possibly surprising that the distribution of εt is irrelevant for our analysis.
The irrelevance is due to the fact that we separate the price of risk from the

8 There is an alternative way to see how Gj (ω) maps into the IRF, which is clearest in continuous time. Denote
the IRF at horizon k as gj (k). The ITF is then Gj (ω)=

∫ ∞
0 gj (k)cos(ωk)dk. The inverse transformation is

gj (k)=π−1∫ π−π Gj (ω)cos(ωk)dω. Gj can be viewed as a decomposition of the IRF into cosines, and Gj (ω) is
the contribution to the IRF from the cosine with frequency ω.
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quantity of risk. The volatility of the pricing kernel, and hence the size of risk
premiums in the economy, depends on both the price of risk of each shock j ,∑∞

k=0zkgj,k , and the quantity of risk, determined by the distribution of εj,t .
Since we decompose only the price of risk, our result holds independently of
any assumptions about the distribution of the shocks. We thus have a three-way
separation between frequency-specific risk prices, Z(ω), frequency-specific
power, Gj (ω), and the quantity of risk, determined by the distribution of εj .9

Finally, note that, unlike analyses of the term structure of risk premiums,
including Borovicka et al. (2011), Equation (10) gives a complete separation
between the dynamics of the economy and risk prices. In particular, the
frequency-specific risk prices Z(ω) purely depend on preferences, so our results
about Z in different models are general characterizations of preferences, rather
than statements that depend on specific calibrations of a consumption process.

1.1 Examples of impulse transfer functions Gj (ω)
Figure 1 plots the impulse response and impulse transfer functions for four
different hypothetical shocks. For the sake of concreteness, think of the priced
variable xt as log consumption growth, �ct . While we are ultimately interested
in the effects of the shocks on log consumption growth, �ct , since that is what
enters the log SDF, for ease of interpretation, we plot the IRF in terms of the
level of consumption, ct .

The first shock is a simple one-time increase in consumption. This shock
has a flat impulse transfer function, indicating it has power at all frequencies.
The second shock is a long-run-risk type shock, inducing persistently positive
growth, with the level of consumption ultimately reaching the same level as
that induced by the first shock. In this case, there is much less power at high
frequencies, but the power at frequency zero is identical, since G(0) depends
only on the long-run effect of the shock on the level of consumption, Gj (0)=∑∞

k=0gj,k .
The next two shocks have purely transitory effects. The third shock raises

consumption for just a single period, and we now see zero power at frequency
zero and positive power at high frequencies. The fourth shock is more
interesting. Consumption rises initially, turns negative in the second period,
and returns to its initial level in the third period. The transfer function is again
equal to zero at ω=0, but it now actually has negative power at low and middle
frequencies. This is a result of the fact that the impulse response of consumption
is actually negative in some periods. The sign of G reflects the direction in which
the shock drives consumption. If we had reversed the signs of the impulse
responses for the first three shocks, their transfer functions would all have been
negative.

9 Note also that we are not unique in using frequency domain analysis in the presence of potential heteroscedasticity.
For example, the Newey andWest (1987) estimator of the spectral density at frequency zero is specifically intended
to be used in the presence of heteroscedasticity. Standard frequency domain results in the econometrics literature
rely on second-order stationarity rather than on homoskedasticity or serial independence.
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2. Weighting Functions in Consumption-Based Models

This section applies the spectral decomposition to power utility, internal and
external habit formation, and Epstein-Zin preferences.10 Similar results can be
obtained for other models, such as affine term structure models and Campbell’s
(1993) specification, where the market return is the priced variable.

2.1 Power utility
Under power utility, the log pricing kernel is

mt+1 = logβ−α�ct+1, (11)

where ct is log consumption, α is the coefficient of relative-risk aversion, and
−logβ is the rate of pure time preference. The associated weighting function
(Equation (8)) is

Zpower (ω)=α, (12)

Zpower is flat and exactly equal to the coefficient of relative-risk aversion.
Zpower is constant because the only determinant of the innovation to the SDF
is the innovation to consumption on date t +1. A shock to consumption growth
has the same effect on the pricing kernel regardless of how long the innovation
is expected to last, so future dynamics do not matter.

2.2 Habit formation
Adding an internal habit to the preferences, in a simplified version of
Constantinides (1990), yields the lifetime utility function

∞∑
j=0

βj

(
exp

(
ct+j

)−bexp
(
ct+j−1

))1−α

1−α
, (13)

where b is a parameter determining the importance of the habit. The pricing
kernel is

exp(mt+1)=β
(exp(ct+1)−bexp(ct ))

−α −Et+1b(exp(ct+2)−bexp(ct+1))−α

(exp(ct )−bexp(ct−1))−α −Et b(exp(ct+1)−bexp(ct ))
−α

,

(14)
Linearizing in terms of �ct+1 and �ct+2 around a zero-growth steady-state
yields

�Et+1mt+1 ≈−α
(
b(1−b)−2 +1

)
�Et+1�ct+1 +αb(1−b)−2�Et+1�ct+2,

(15)
With internal habits the pricing kernel depends on both the innovation to current
consumption growth and also the change in expected consumption growth

10 While these models of preferences are often applied under the assumption of the existence of a representative
agent, that assumption is not strictly necessary for our results. The pricing kernel generated by an agent’s Euler
equation will hold for any market in which she participates.
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between dates t +1 and t +2. The spectral weighting function is then

Zinternal (ω)=α
(
1+b(1−b)−2)−αb(1−b)−22cos(ω). (16)

Zinternal (ω) is equal to a constant plus a negative multiple of cos(ω). As we
would expect, Zinternal (ω)=Zpower (ω) when b=0. The left panel of Figure 2
plots Zinternal for various values of b (here, and in all cases below, we only
plot Z between 0 and π since Z is even and periodic). The x-axis lists the
wavelength of the cycles.11

An increase in b has two effects on Zinternal: its total mass (its integral) rises,
and the mass shifts to higher frequencies. The shift in mass is consistent with the
usual intuition about internal habit formation that households prefer to smooth
consumption growth and avoid high-frequency fluctuations to a greater extent
than they would under power utility.

It is also useful to consider the case in which b<0, which corresponds
to durable consumption – people get utility both from current and also past
consumption expenditures. In that case, the effects all reverse – Zinternal is equal
to a positive multiple of cos(ω), plus a constant. So with durable consumption,
investors place relatively more weight on low-frequency fluctuations than on
high-frequency fluctuations.

One lesson from the equation for Zinternal is that as long as b is the only
parameter we can vary, there is little flexibility in controlling preferences over
different frequencies. Zinternal is monotone, regardless of the value of b, so habit
formation does not ever allow business-cycle frequencies to carry more weight
than any other frequency; that is, habit formation cannot induce an investor
to be particularly averse to business-cycle frequency fluctuations compared to
those at other frequencies.12

In contrast to internal habit formation, under external habit formation (e.g.,
Campbell and Cochrane, 1999) the SDF is

exp(mt+1)=β
(exp(ct+1)−bexp(c̄t ))

−α

(exp(ct )−bexp(c̄t−1))−α
, (17)

where c̄ denotes some external measure of log consumption (e.g., aggregate
consumption or that of an agent’s neighbors). In this case, the innovation to the
SDF depends only on the innovation to ct+1 – news about the future is irrelevant.
The weighting function with an external habit is therefore completely flat. But
since the local sensitivity of the pricing kernel to a shock depends on the distance
between consumption and the habit, the level of the weighting function shifts
over time. When consumption is close to the habit and risk aversion is high, the

11 Given a frequency of ω, the corresponding cycle has length 2π/ω periods (the smallest cycle we can discern
from discretely sampled data lasts two periods).

12 The log-linearization of the SDF eliminates time variation in the price of risk. A simple extension of the analysis
is to model the SDF as being conditionally log-linear in consumption growth, with the slope coefficients, and
thus the shape of the weighting function, varying over time. We tackle this case in Section 5.
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Asset Pricing in the Frequency Domain

level of the weighting function is also high, while when consumption is farther
above the habit, risk aversion and the level of the weighting function are low.13

2.3 Epstein-Zin preferences
An alternative way of incorporating nonseparabilities in utility over time is
Epstein and Zin’s (1991) generalized recursive preferences. In general, under
recursive preferences, anything that affects an agent’s welfare affects the pricing
kernel. So not only will shocks to current and future consumption growth be
priced, but innovations to higher moments will also be priced.

Lifetime utility follows the recursion

vt =
{

(1−β)exp(ct )
1−ρ +β

(
Et

[
v1−α

t+1

])1−ρ
} 1

1−ρ
, (18)

where ρ is the inverse elasticity of intertemporal substitution (EIS), and α is
the coefficient of relative-risk aversion. Campbell (1993) and Restoy and Weil
(1998) show that if the expected excess return on aggregate wealth is constant
(i.e., if the quantity of risk in the economy is constant), the stochastic discount
factor for these preferences can be log-linearized as

�Et+1mt+1 ≈−
⎛
⎝α�Et+1�ct+1 +(α−ρ)�Et+1

∞∑
j=1

θj�ct+1+j

⎞
⎠. (19)

θ is a parameter (generally close to one) that comes from the log-linearization
of the return on the agent’s wealth portfolio (Campbell and Shiller, 1988).14,15

The weighting function associated with Equation (19) is

ZEZ (ω)≡α+(α−ρ)
∞∑
j=1

θj 2cos(ωj ). (20)

13 Otrok, Ravikumar, and Whiteman (2002) show that the external habit has a strong effect on what weight utility
places on consumption cycles of different frequencies, but what we show here is that the SDF is entirely driven
by one-period innovations, so all cycles receive the same weight in pricing assets.

14 θ =
(
1+DP

)−1, where DP is the dividend-price ratio for the wealth portfolio around which we approximate.
θ generalizes the rate of pure time preference and depends somewhat on discounting due to uncertainty about
future consumption. The separation between preferences and dynamics is thus not totally complete in this case.
Hansen, Heaton, and Li (2008), however, derive an alternative approximation in which θ =β, and in which case
the separation is again complete. Their result suggests (as do numerical results) that θ is only minimally affected
by consumption dynamics.

15 In the case in which ρ =1, Equation (19) is exact and θ =β. The approximation used to derive (19) is a linearization
of the definition of the return on a consumption claim around a constant consumption/wealth ratio. Since the
consumption-wealth ratio is constant when ρ =1, Equation (19) holds exactly in that case. We do not assume
here that consumption growth is distributed lognormally. The assumption that the expected return on wealth is
constant in deriving (19) is what allows us to write the pricing kernel only in terms of expected future consumption
growth. The Online Appendix examines the accuracy of the approximation used here in simulations of Bansal
and Yaron’s (2004) long-run risk model with various calibrations.
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Under power utility, α =ρ and ZEZ (ω)=α is flat, so all frequencies receive
equal weight, as discussed above. On the other hand, if α �=ρ, then weights can
vary across frequencies.16

The right-hand panel of Figure 2 plots ZEZ for a variety of parameterizations.
The parameterizations are meant to correspond to annual data, so we take
θ =0.975 as our benchmark, which corresponds to a 2.5 annual dividend yield.
For α =5 and ρ =0.5 (an EIS of 2), we see a large peak near frequency zero,
with little weight elsewhere. In fact, half the mass of ZEZ in this case lies on
cycles with a length of 210 years or more, and 75% lies on cycles with a length
of 70 years or more.

In this parameterization, it is effectively only the very longest cycles in
consumption (up to permanent shocks) that carry any substantial weight in the
pricing kernel. Purely temporary shocks to the level of consumption (which is
what are induced by shocks to monetary policy in standard models, for example)
are essentially unpriced.

The line that is highly negative near ω=0 is for α =0.5 and ρ =5, where
households prefer a late resolution of uncertainty. In that case, the mass of ZEZ

is still isolated near zero, but because households now prefer a late resolution
of uncertainty, ZEZ is negative at that point (since marginal utility is increasing
in good news about long-run consumption growth). The integral of ZEZ is still
equal to α, though, so it turns positive at higher frequencies.17

ZEZ is much richer than what we obtain in the case of power utility and it
has a number of important properties. First, as with power utility, its average
value is exactly equal to the coefficient of relative-risk aversion:

1

π

∫ π

0
ZEZ (ω)dω=α. (21)

So the total mass of ZEZ depends only on risk aversion. The effect of Epstein-
Zin preferences is therefore not to raise overall risk aversion compared to power
utility but to shift that mass to low frequencies, changing the features of the
consumption process to which an investor is averse.

In the limit as θ →1, that is, where the effective rate of time preference
approaches zero, ZEZ (ω) approaches

ZEZ (ω)→ (α−ρ)δp (ω)+ρ (22)

16 As with external habit formation, it is natural here to also imagine variation in the weighting function Z over
time. For example, movements in the coefficient of relative-risk aversion, αt , as in Melino and Yang (2003) or
Dew-Becker (2013) would induce a time-varying weighting function, Zt (ω)=αt +(αt −ρ)

∑∞
j=1θj 2cos(ωj ). In

periods during which αt is higher, the weighting function would then have more mass, and the mass would be
shifted relatively more toward low frequencies.

17 Note, though, that the case in which ρ >α is not taken as a benchmark and is not widely viewed as empirically
relevant (see, e.g., Bansal and Yaron, 2004).
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for ω in the interval (−π,π ), where δp (ω) is a periodic extension to the
Dirac delta function with 1

2π

∫ π

−π
δp (ω)=1 .18 So ZEZ can be thought of

as approximately a unit point mass weighted by (α−ρ), plus a constant ρ

(Figure 2 shows that this is a reasonable approximation). In the limit, only
two features of the consumption process matter: the permanent innovations
at ω=0 (limj→∞�Et+1ct+j ), which are weighted by α−ρ, and all transitory
innovations, which have no effect on limj→∞�Et+1ct+j , and are weighted by
ρ. The fraction of the total mass on frequency zero is α−ρ

α
. The larger is α

relative to ρ, the larger is the fraction of the mass of the weighting function that
lies at frequency zero. For example, in our benchmark calibration with α =5
and ρ =1/2, α−ρ

α
=0.9, so 90% of the mass of the weighting function is local

to frequency zero.
So in terms of consumption, Epstein-Zin preferences differ from power

utility because they add a point mass at zero with weight (α−ρ). They are
otherwise nearly identical for cycles of all frequencies away from zero. The
large amount of weight placed on very low frequencies obviously also makes
the estimation problem underlying Epstein-Zin preferences, both for investors
and economists, potentially much more difficult than that for power utility.

2.4 Weights on frequency ranges and the cost of business cycles
The spectral weighting functions allow us to directly quantify what fraction
of risk prices are driven by any set of frequencies, such as business cycle
frequencies or lower frequencies.As an example, while it is known from simple
calibrations that under Epstein-Zin preferences fluctuations at business cycle
frequencies are relatively unimportant for asset prices (Bansal, Kiku, andYaron,
2010), we are able to precisely quantify that statement in a more general way,
for any possible consumption process.

Given any pricing kernel that satisfies Assumption 1, we can easily compute
the total weight that investors give to cycles of a certain length by integrating
the associated weighting function Z(ω). Specifically, the fraction of the mass
in the range of frequencies between ω1 and ω2 is∫ ω2

ω1
Z(ω)dω∫ π

0 Z(ω)dω
. (23)

Table 1 reports the fraction of the mass of the weighting function ZEZ for
Epstein-Zin preferences and Zinternal for internal habits in various frequency
ranges, under various calibrations of the models.19 The left-hand columns list

18 Technically, we should use the limit of the Dirichlet kernel, which is a periodic extension of the delta function.
On the interval (−π,π ), though, they deliver the same result.

19 For Epstein-Zin, the weight in any frequency range can be computed in closed form as

(πα)−1
(
QEZ (ω2)−QEZ (ω1)

)
, where QEZ (ω)≡ρω−2(α−ρ)tan−1

[
(θ+1)tan( ω

2 )
θ−1

]
. All the results are

obtained from quarterly calibrations; the cycle length and parameters are reported in years for convenience.
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Table 1
Calibration of the weight of Epstein-Zin and internal habit preferences in different frequency ranges

Epstein-Zin Extremely low fr. Low frequencies Business cycle High frequencies

α ρ =1/EIS θ >210 years (%) 8 to 210 years (%) 1.5 to 8 years (%) <1.5 years (%) Median cycle

5 0.5 0.975 49.8 39.0 4.2 7.0 208.4 years
20 0.5 0.975 53.9 41.7 2.3 2.0 238.2 years
2.5 0.5 0.975 44.3 35.3 6.8 13.6 166.2 years

5 1 0.975 44.3 35.3 6.8 13.6 166.2 years
20 1 0.975 52.5 40.8 3.0 3.7 228.4 years
2.5 1 0.975 33.3 28.0 11.9 26.9 68.5 years

5 0.5 0.96 36.3 51.4 5.2 7.2 129.3 years
5 0.5 0.99 71.5 18.4 3.3 6.8 523.5 years

5 5 0.975 0.2 6.0 27.1 66.7 1.0 years
20 5 0.975 41.5 33.5 8.0 16.9 143.9 years
2.5 5 0.975 −54.8 −30.6 52.5 133.0 0.7 years

Internal habit Extremely low fr. Low frequencies Business cycle High frequencies

b >210 years (%) 8 to 210 years (%) 1.5 to 8 years (%) <1.5 years (%) Median cycle

0.25 0.1 2.3 13.9 83.6 0.5 years
0.5 −0.1 −1.9 −1.4 103.4 0.6 years
0.75 −0.2 −5.0 −12.3 117.6 0.6 years

The table reports the fraction of the total weight (in percentage points) that different calibrations of Epstein-Zin
preferences (top) and internal habits (bottom) assign to various frequency ranges. The table also reports the cycle
length such that half of the pricing weight Z falls on either side of it (the median cycle).

parameters for the calibrations. The remaining columns then report results in
different frequency ranges. The last column of the table reports the median
cycle length for each calibration – the cycle such that exactly half the mass is
on either side.

The top panel reports four sets of calibrations of Epstein-Zin preferences. The
first three sets consider various combinations of values for α,ρ and θ that all
satisfy α>ρ, which implies a preference for an early resolution of uncertainty
that is assumed in the majority of the literature (most notably Bansal and Yaron,
2004). The last set of rows has α<ρ to help understand the case in which
investors prefer a late resolution of uncertainty.

Three notable results emerge from Table 1. First, the median cycle is greater
than 100 years long in all calibrations for which α>ρ (the only exception being
the low-risk-aversion case of α =2.5 and ρ =1, where the median cycle is still
68 years). These results show that when we say that investors with Epstein-Zin
preferences are averse to long-run risk, “long-run” should be thought as cycles
in consumption lasting centuries.

Second, the table shows that Epstein-Zin preferences give an extremely
small role to business-cycle fluctuations. Across all calibrations with α>ρ

we examine, business-cycle frequencies carry at most 12% of the weight of the
pricing kernel. Table 1 thus provides a clear and robust result: under Epstein-Zin
preferences, business cycles are quantitatively irrelevant, while cycles lasting
centuries are priced most strongly.

Third, results change dramatically when α≤ρ. When α =ρ, Epstein-Zin
collapses to standard power utility, whose median cycle length is 1 year (for
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quarterly data), and that places 94% of the weight on fluctuations of eight years
or shorter. When α is strictly less than ρ, the pricing kernel places negative
weight on low frequencies because low-frequency increases in consumption
raise marginal utility, so there is relatively more weight on higher frequencies
(which is also clear in Figure 2).

The bottom panel of Table 1 reports the calibration results for internal habits.
The only parameter that affects the relative weight across frequency ranges is
the habit parameter b. Across all calibrations, internal habit investors place
essentially all weight on very high frequencies with cycles shorter than 1.5
years.

The quantitative results we obtain here are independent of the particular
consumption process chosen: they are obtained solely from the utility function.
So we are able to extend standard results from macroeconomics about the cost
of business cycle frequencies in a more general way.

Table 1 is one of the central results of the paper because it quantifies how
various specifications of utility functions place weight on cycles of different
frequencies. While some of the results were perhaps understood qualitatively
as part of a folk wisdom, this paper precisely pins down to what frequency
fluctuations investors are averse. In the previous literature, for example,
Bansal, Kiku, and Yaron (2010) also show that a business-cycle-type shock
to the economy carries a small risk price, but the analysis here quantifies the
importance of business-cycle frequencies and obtains the result in a much more
general setting, not requiring a specific calibration of consumption dynamics.

2.5 Implications of the theoretical result
Our theoretical results on the weight that Epstein-Zin preferences place on
cycles of hundreds of years suggest two limitations of models based on this
utility specification. First, they endow investors with seemingly implausible
amounts of information (an argument related to that in Chen, Dou, and
Kogan, 2013). Second, even if investors do have such information, for an
econometrician to test Epstein-Zin preferences may require either very strong
assumptions about the consumption process or centuries of data. Both of those
arguments can be made formally, based on the asymptotic distribution of the
sample spectrum of consumption growth. In particular, we show that obtaining
direct information on the behavior of consumption growth at the frequencies
that carry the majority of the weight under Epstein-Zin preferences requires
210 or more years of data.

As an example, suppose consumption growth is driven by a linear univariate
Gaussian process (but note that everything here easily extends to a multivariate
setting). It is well known that the frequency domain features of a particular
process can be estimated by taking the discrete Fourier transform of an observed
sample, which is known as the periodogram. In a sample of length T , the
periodogram is defined at a set of equally spaced frequencies, ωk =2πk/T for
k∈{1,2,...,T }. The periodogram ordinates are asymptotically independent and
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provide information about the dynamics of consumption growth at frequency
ωk .20

In a given sample, the lowest frequency that we have information about is
2π/T and the associated wavelength is exactly T periods. That is, in a sample
of length T , the longest fluctuation that we directly observe lasts T periods.
For a postwar quarterly sample, T ≈70 years. At our benchmark calibration in
that case, more than 75% of the mass of the Epstein-Zin weighting function
lies below ω1 =2π/70. That is, 75of the weight that determines risk premiums
in the model lies on frequencies about which we have no direct information. To
have even a single observation at the median frequency would require having
a sample 210 years long.

So in a nonparametric sense we have almost no direct evidence about
the frequencies that we must estimate in order to know what Epstein-Zin
preferences imply for risk premiums. Based purely on the periodogram, models
involving Epstein-Zin preferences are essentially untestable – the frequencies
that determine risk premiums under the model are not directly observable, so it
is impossible to test the prediction that power at low frequencies determines the
risk premium without adding external information to the estimation method.21

But the difficulty in estimation is obviously not just a problem for
econometricians; it also affects investors. It seems rather implausible to assume
that investors are sure of the dynamics of consumption growth at frequencies
that cannot be observed without centuries of data. A number of recent papers
build on precisely that point, including Chen, Dou, and Kogan (2013), Bidder
and Dew-Becker (2015), and Collin-Dufresne, Johannes, and Lochstoer (2015).

So the fact that most of the mass of the weighting function under Epstein-Zin
preferences is located on cycles of 210 years or more is problematic for two
reasons – it makes the central asset pricing predictions of the model extremely
difficult to test, and it relies on investors having firm beliefs about features of
the consumption process that they have never directly observed.

2.6 Model contamination
One of the advantages of looking at the frequency domain decomposition is
that it gives a compact and quantitative representation of the entire dynamic
process driving the economy. To give a closer comparison to the time-domain
methods used in the previous literature to study the role of dynamics in models
(e.g., Bansal, Kiku, and Yaron, 2010, 2012; Beeler and Campbell, 2012), we
now consider a small perturbation of Bansal and Yaron’s (2004) long-run risk

20 Specifically, the periodogram is equal to the true spectrum, multiplied by an Exp(1) random variable. This
type of analysis is the basis of both the Whittle (1962) likelihood and nonparametric time-series estimation (see
Brillinger, 1981; Priestley, 1981).

21 One option, for example, is to impose parametric restrictions on the consumption process, allowing one to
then estimate low-frequency dynamics based on higher-frequency data. But, at that point, one faces the joint
hypothesis problem that the test of the model is only valid if the restrictions on consumption growth are true.
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model. We show that typical time-domain analysis of the dynamics is not robust
to small changes in model specification; frequency domain analysis is. The
results in this section thus give a concrete example of the advantage of the
frequency domain analysis that we have thus far provided, beyond the novel
quantitative metrics presented above.

In the benchmark long-run risk model, consumption growth follows

�ct =xt−1 +ε�c,t , (24)

xt =ρxt−1 +εx,t =
∞∑
j=0

ρjεx,t−j . (25)

As a closely related alternative, we examine the contaminated model

�ccon
t =xcon

t−1 +ε�c,t , (26)

xcon
t =

⎛
⎝1.8

∞∑
j=0

ρj −0.24
∞∑
j=0

θj

⎞
⎠εx,t−j . (27)

Instead of following an AR(1) like xt , xcon
t is the difference between two AR(1)

processes (with perfectly correlated innovations). While the difference between
�ct and �ccon

t is visible in these equations, we will see that autocorrelations and
IRFs, which are typically examined in the literature (especially for production-
based models in which the full dynamic process for consumption growth is not
known analytically, e.g., Kaltenbrunner and Lochstoer, 2010), suggest that in
fact their dynamics are nearly identical.

Using a quarterly calibration following Bansal and Yaron (2004), we set
ρ =0.938, std (ε�c,t )=0.0135, and std (εx,t )=0.000584. θ is set to take the
same value as in the calibration of Epstein-Zin preferences above, 0.9751/4.22

The models thus only differ in the dynamics of the persistent component of
consumption growth.

The top-left panel of Figure 3 plots the first twenty quarterly autocorrelations
of consumption growth in the original and contaminated long-run risk model.
The choice to examine correlations out to five years follows the empirical
evaluations of the long-run risk model in Bansal, Kiku, and Yaron (2012) and
Beeler and Campbell (2012). The autocorrelations of �ccon are in fact higher
than in the original long-run risk model, suggesting that the contaminated model
should be more risky. The unconditional standard deviation of consumption
growth is also slightly higher, at 1.37% instead of 1.36%.

The top-right panel of Figure 3 shows that the first ten years of the impulse-
response function of consumption to εx,t is higher at every horizon in the

22 The power 1/4 is to account for the change from an annual to a quarterly calibration. The choice to align the
persistence of the perturbation with the effective discount factor is not a coincidence. See Bidder and Dew-Becker
(2015) for an explanation of why this is the most powerful perturbation.
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contaminated model. At ten years, the IRF for the contaminated model is 23%
higher than that for the original. So by standard measures, the autocorrelation
and the IRF, the contaminated model seems far more risky than the original
calibration.

But appearances deceive us: rather than being more risky than the original,
εx is in fact far less risky in the contaminated model – its risk price is smaller
by exactly half. Looking at the impulse transfer functions would have made
this immediately clear. The bottom panels of figure 3 plot the impulse transfer
functions G for εx in the two models along with the weighting function Z under
the benchmark Epstein-Zin calibration from above (the right-hand panel zooms
in on cycles longer than five years). While the ITF is higher in the contaminated
model at most frequencies, it rapidly falls at the lowest frequencies, exactly
where the frequency-specific risk prices are highest. When we look at the ITFs,
the much smaller risk price for the contaminated shock is not at all surprising.

The results in this section help emphasize our motivation for studying the
frequency domain. Standard time domain tools, IRFs and autocorrelations, in
this case clearly do not adequately measure risk, while the impulse transfer
function, particularly near frequency zero, does.

3. Multiple Priced Variables

Our frequency decomposition also holds when there is more than one variable
that drives utility. A benchmark example is in Bansal and Yaron’s (2004)
long-run risk model where volatility varies over time and is a priced factor.
But there are also many studies in which other higher-order moments of the
consumption process vary (for example, Drechsler and Yaron, 2011; Gourio,
2012; Wachter, 2013; and Constantinides and Ghosh, 2013). We show that our
analysis easily extends to such cases, with the only difference being that there
will be a frequency domain weighting function for each priced variable.

3.1 General pricing result
Assumption 1a: Structure of the SDF

Instead of a single priced variable xt , suppose there is an m×1 vector of
priced variables, xt , with

mt+1 =f (It )−�Et+1

∞∑
k=0

zkxt+1+k, (28)

where zk is a 1×m vector of weights and f (It ) is an unspecified scalar valued
function as before.

Assumption 2a: Dynamics of the economy
We assume that xt is driven by a vector moving average process as before:

xt =Jx̄t , (29)

x̄t =�(L)εt , (30)
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for some matrix J of dimension m×n, and where � is an n×n matrix-valued
power series in the lag operator with coefficients �k .

We have the following extension of Result 1,

Result 2. Under Assumptions 1a and 2a, we can write the innovations to the
SDF as

�Et+1mt+1 =−
∑

j

(
1

2π

∫ π

−π

Z(ω)G(ω)dω

)
εj,t+1 (31)

where Z(ω) is a 1×m vector-valued weighting function and G(ω) is an m×n

transfer function that measures the dynamic effects of εt on x in the frequency
domain:

Z(ω)≡Z0 +2
∞∑
k=1

Zk cos(ωk), (32)

G(ω)≡
∞∑
k=0

cos(ωk)gk, (33)

and gk is the matrix of impulse response functions:

gk ≡J�k. (34)

In this case, then, we have multiple variables whose impulse responses we
track in G, and each of the priced variables has its own weighting function,
represented as one of the elements of Z(ω).

3.2 Epstein-Zin with time-varying higher moments
In our main analysis of Epstein-Zin preferences, we examined the case in
which the expected excess return on a consumption claim is constant. That case
requires that the conditional moments of consumption growth above order 1
be constant. We now show how to extend the result to a case where any of the
higher moments of consumption may vary.

We assume that consumption growth follows a vector moving average
process as before:

�ct =
∑

j

gj (L)εj,t . (35)

We now assume, though, that rather than the εj,t having fixed distributions
over time, their distributions are driven by a factor x̃t , which, without loss
of generality, we restrict to have zero mean (here we assume x̃t is a scalar for
simplicity, but the analysis trivially extends to the case where x̃t is a vector). We
assume that x̃t affects the distribution of εj,t linearly in its cumulant-generating
function:

logEt exp
(
τεj,t+1

)
=fj,0 (τ )+fj,1 (τ )x̃t . (36)

A special case of the above is where εj,t+1 is conditionally normally distributed,
in which case fj,0 (τ )+fj,1 (τ )x̃t = 1

2vart

(
εj,t+1

)
, so the conditional variance of

εj,t+1 would be linear in x̃t (as in Bansal and Yaron, 2004).
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x̃t is also assumed to follow a VMA process that depends on the same
innovations that drive consumption growth (though note that x̃ and �c may be
made independent with particular choices of the lag polynomials).

x̃t =
∑

k

g̃k (L)εk,t (37)

(As is common in the literature, for example, in Bansal et al., 2014 or Campbell
et al., 2015, we ignore here the fact that this specification implies that volatilities
can become negative.)

The Online Appendix then shows that the price of risk for εj,t is∫
Z�c (ω)Gj (ω)dω+

∫
Zx̃ (ω)G̃j (ω)dω, (38)

where

Gj (ω)≡
∞∑
j=0

gj cos(ωj ), (39)

G̃j (ω)≡
∞∑
j=0

g̃j cos(ωj ), (40)

and

Z�c (ω)≡ρ+(α−ρ)
∞∑
j=1

θj 2cos(ωj ), (41)

Zx̃ (ω)≡k1
ρ−α

1−ρ

⎛
⎝1+

∞∑
j=1

θj 2cos(ωj )

⎞
⎠, (42)

where k1 is an equilibrium coefficient that determines the effect of a unit increase
in x̃t on the expected excess return on wealth.

Each shock is now associated with a pair of transfer functions that measure
the effects of the shock on consumption and on the distribution of the
innovations, and those transfer functions are interacted with a pair of spectral
weighting functions, Z�c and Zx̃ . The weighting functions have a number of
notable features. First, Z�c is identical to the weighting function obtained for
consumption in the case where the innovations were identically distributed
over time. That is, adding variation in higher moments (linearly dependent on a
variable x̃) does not affect the pricing of innovations to expected consumption
growth.

Second, note that the weighting functions for �c and x̃ are almost identical up
to a scaling factor. When ρ =0, they are in fact proportional to each other, and for
α�ρ, they are nearly proportional. So Epstein-Zin preferences imply nearly

2051

 at U
niversity of C

alifornia, L
os A

ngeles on Septem
ber 29, 2016

http://rfs.oxfordjournals.org/
D

ow
nloaded from

 

http://rfs.oxfordjournals.org/


The Review of Financial Studies / v 29 n 8 2016

identical treatment of variation in higher moments of consumption growth to
variation in the first moment.

Third, the shape of Zx̃ does not depend on how x̃ affects the distribution
of consumption growth. Regardless of how x̃ affects the cumulant-generating
function of consumption growth (36), its risk price depends purely on its effects
on the expected excess return on wealth, through the coefficient k1.

Finally, note that if G̃j (ω)=0 for some shock εj – that is, if it does not affect
x̃ – then the shock is priced in this setting exactly the same way that it is in a
homoskedastic model.

In the empirical analysis below, in addition to trying to estimate weighting
functions for consumption growth, we also examine the pricing of shocks to
expected future volatility. We leave the empirical analysis of variation in other
higher moments (such as disaster risk) to future work.

4. Estimation

We now proceed to estimate the weighting function Z in U.S. equity markets.
In addition to providing novel evidence on what model of preferences best
describes the pricing of risks, the estimation also demonstrates how difficult
the estimation problem is that investors face.

We begin by describing the parametric specifications of the weighting
function that we estimate. We then carry out the full estimation, focusing in
particular on the ability of our frequency domain analysis to help increase the
precision of estimates of consumption dynamics.

4.1 Parameterized weighting functions
4.1.1 The utility specification. The analysis of the utility functions in Section
3 suggests modeling Z as

ZU (ω;q)=q1

∞∑
j=1

θj cos(ωj )+q2 +q3cos(ω), (43)

where q1, q2, and q3 are unknown coefficients and q≡[q1,q2,q3]. We call (43)
the utility specification because it exactly nests the weighting functions derived
from utility-based models. If q3 =0, (43) precisely matches the weighting
function for Epstein-Zin preferences in (20). If q1 =0, the long-run component
that is crucial in the Epstein-Zin case is shut off, and we obtain the specific
weighting function for internal habit formation in (16). Finally, if both q1 =0
and q3 =0, then we have the weighting function for power utility.

So tests of hypotheses that those coefficients are equal to zero represent tests
of the different specifications of the utility functions. Specifically, if we were
to find values for q1 and q2 that are significantly different from zero while q3 is
not, that would imply that the data is consistent with Epstein-Zin preferences.
On the other hand, if q2 and q3 are significant but q1 is not, the data would
support habit formation.
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Moreover, the parameters map directly to preferences. For example, if
investors have Epstein-Zin preferences, then q1 =2(α−ρ), q2 =α, and q3 =0.
Estimation of ZU is identical to estimating the pricing kernel as though the
three utility functions hold. That is, the fact that we do this estimation in the
frequency domain has no implications for the results.

For the long-run component, we choose θ =0.9751/4 for quarterly data,
corresponding to a 2.5% annual consumption/wealth ratio as above.23

Because the utility specification is composed of the weighting functions
we derived under various preference specifications, the constituent functions
are already plotted in Figure 2. In particular, the lines in the right-hand panel
represent the first function,

∑∞
j=1θ

j cos(ωj ), shifted upward by a constant.
This function clearly isolates very low frequencies, and the extent to which
the lowest frequencies are isolated depends on the parameter θ . Estimates of
the utility specification allow us to empirically measure the ability of the three
different utility functions to explain the cross-section of risk premiums.

4.1.2 The bandpass specification. As an alternative to the strict utility
specification, we also model Z more flexibly. We break the interval [0,π ] into
three economically motivated intervals, corresponding to business-cycle length
fluctuations, with wavelength between 6 and 32 quarters (as is standard in the
macro literature, for example, Christiano and Fitzgerald, 2003), and frequencies
above and below that window. Z then takes the form of a step function on those
three frequency windows, and the levels of the steps are the free parameters to
estimate.

We refer to the set of three step functions as the bandpass specification,
ZBP(ω;q), since it is composed of the sum of three bandpass filters:

ZBP(ω;q)=q1Z
(0,2π/32) (ω)+q2Z

(2π/32,2π/6) (ω)+q3Z
(2π/6,π ) (ω), (44)

where Z(a,b) (ω)≡
{

1 if a< |ω|≤b,

0 otherwise.
(45)

If investors are averse to long-run risks, we would expect risk prices
to be highest below business cycle frequencies, while habit formation type
preferences imply that the risk prices should be highest at higher frequencies.
That is, Epstein-Zin preferences imply a high value for q1 compared to q2 and
q3, while habit formation implies a high value for q3 compared to q1 and q2.
Note that what is considered “long-run risk” here is not the literal interpretation
of Epstein-Zin preferences (centuries); rather, the long-run is anything longer
than the business cycle.

The bandpass specification demonstrates one of the key features of our
approach: we are able to estimate the sources of risk premiums in a way that

23 In principle, we could estimate θ . However, we find that it is poorly identified in the data, so we proceed to
calibrate it to a value widely used in the literature.
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is clearly linked to underlying economic risks – fluctuations in consumption at
meaningfully chosen frequencies – but we do not necessarily need to use the
highly constrained specifications required by structural models. That said, if
the number of steps in the bandpass specification were allowed to increase, it
could eventually represent arbitrary preferences accurately. We also expect that
the bandpass specification will increase estimation power as it does not isolate
its mass nearly as close to frequency zero as the utility specification.

One potential drawback of the bandpass specification is that since it is
somewhat reduced-form, it is difficult to see the precise link to microeconomic
behavior. The Online Appendix therefore describes a setting in which
the bandpass specification would arise endogenously if investors estimate
consumption dynamics using a restricted model (e.g. due to information
processing constraints).

4.2 Estimates
We now estimate the weighting function Z in the U.S. equity market. The
overall estimation method has three basic steps:

1. Estimate a model of consumption dynamics with news at various
horizons, based on a factor-augmented vector autoregression (FAVAR)
model.

2. Estimate transfer functions and a rotation from the time to the frequency
domain.

3. Estimate risk prices on the innovations to consumption growth in the
frequency domain.

4.2.1 Step 1: Estimation of the dynamics. We estimate the dynamics
of consumption by specifying and estimating a factor-augmented vector
autoregression (FAVAR).24 The FAVAR specification combines the advantages
of the VAR methodology with the dimension reduction properties of factor
models. Vector autoregressions (VARs) have the advantage that they are easy
to estimate (in that they require no numerical optimization), they have been
widely used in the previous literature,25 and because when the number of
lags in the VAR increases, the VAR structure can asymptotically capture
arbitrarily rich dynamics (Lewis and Reinsel, 1985; Mitchell and Brockwell,
1997; Schorfheide, 2005).

Our estimation of the dynamics follows Jurado, Ludvigson, and Ng (2015),
not only because we apply the same methodology to set up and estimate the
FAVAR system, but also because we use the same 131 macroeconomic series.

24 See Bernanke, Boivin, and Eliasz (2005), Ludvigson and Ng (2007), and Jurado, Ludvigson, and Ng (2015).

25 For example, Vuolteenaho (2002), Campbell and Vuolteenaho (2004), Bansal, Dittmar, and Lundblad (2005),
Larrain and Yogo (2008), Lustig and van Nieuwerburgh (2008), Campbell, Polk, and Vuolteenaho (2010), and
Campbell et al. (2015).
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The FAVAR we estimate has three variables: log real consumption growth
(observable factor), and two latent factors, F1t and F2t . The VAR is therefore
specified as

x̄t = �̄(L)x̄t−1 +εt , (46)

where x̄t contains �ct ,F1t ,F2t .
Note that if the lag polynomial �̄(L) has order k, then we can stack

k consecutive observations of x̄t so that xt ≡
[
x̄′

t ,x̄
′
t−1,...,x̄

′
t−k+1

]′
follows a

VAR(1):
xt =�xt−1 +εt (47)

and �ct =b1xt .26 F1t and F2t are estimated from the 131 macroeconomic series
of Jurado, Ludvigson, and Ng (2015) using principal component analysis. The
VAR is then estimated through OLS, using the estimated factors F̂1t and F̂2t ,
yielding estimates of � and the innovations εt . For readability, the two principal
components are scaled to have the same variance as consumption growth.

We use quarterly data over the longest sample for which all the variables are
available, 1961–2011.27 We select three lags for the VAR, as recommended by
cross-validation.28 Table A1 in the Online Appendix reports the estimated VAR
matrix �.

4.2.2 Step 2: Estimate transfer functions and a rotation. Given the
estimated FAVAR, the transfer function for shock j is

Gj (ω)=
∞∑
k=0

cos(ωk)b1�
kb′

j , (48)

The two finite-order specifications for Z, the utility and the bandpass
specification, both take the form

Z(ω;q)=q1Z1 (ω)+q2Z2 (ω)+q3Z3 (ω) (49)

=q[Z1 (ω),Z2 (ω),Z3 (ω)]′ (50)

26 Recall that bj represents a conformable selection vector equal to 1 in element j and 0 elsewhere.

27 Our primary sample uses quarterly data because that is the highest frequency at which consumption data are
available for the full postwar sample. Parker and Julliard (2005) and Malloy, Moskowitz, and Vissing-Jorgenson
(2009) find that using lower frequency or time-aggregated data can producer stronger evidence in favor of the
consumption CAPM. Note that, in our setting, the shortest wavelength cycle that we can price is two periods
long. When the unit of observation is quarterly, we can potentially price fluctuations as short as two quarters.
The effect of aggregating consumption to a lower (e.g., annual) frequency is thus to eliminate our ability to price
higher frequency fluctuations. We examine results using the annual data below and find results consistent with
the main quarterly analysis.

28 We have explored other criteria for lag selection. The cross-validation criterion is the most natural in this context,
as it is based on the forecasting ability of the model, which plays a central role in our analysis (since the VAR is
used to construct news about future consumption at different horizon). Among the other criteria we analyzed, the
AIC and the FPE criteria favored using three lags, consistent with the cross-validation approach. BIC suggests
two lags, while HQIC favors two lags only slightly against three lags. The Online Appendix reports robustness
tests using two lags in the VAR.
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(for different sets of functions Z1,Z2,Z3). Denoting the risk price for shock j

as pj , we have (from Result 1)

pj =
1

π
q
∫ π

0
[Z1 (ω),Z2 (ω),Z3 (ω)]′Gj (ω)dω. (51)

It is straightforward then to show that the vector of risk prices is

p≡[p1,p2,p3] (52)

=qW, (53)

where the (i,j )th element of W is

Wi,j =
1

π

∫ π

0
Zi(ω)Gj (ω)dω. (54)

This result tells us that once we estimate the rotation matrix W from the
consumption dynamics, we can express the coefficients of the Z function, q,
as a function of the risk prices of the VAR innovations, p, as29

q=pW−1. (55)

The matrix W summarizes the interactions of the transfer functions with the
components of the weighting function, Zi (which, given a choice of a set of
functions Z1,Z2,Z3, are fully known and need not be estimated). W allows
us to rotate between the risk prices on the reduced-form shocks, p, and the
frequency domain risk prices, q. The entire point of estimating the VAR for
consumption growth is to develop estimates of the consumption dynamics,
and all the relevant information for asset prices originating from the model
dynamics is contained in W.

It is important to note here that there is no need to make any assumptions
to identify “structural” shocks in the VAR. Nowhere in the derivations above
did we make any assumptions about the shocks εt being somehow structural;
for example, their covariance matrix is entirely unrestricted. Our results are
therefore analytically identical regardless of how the estimated shocks are
rotated. That is a major advantage of our approach – the frequency domain
risk prices may be estimated without having to make assumptions to identify a
structural VAR. The Online Appendix provides a full derivation of that result.

The VAR has three innovations: one to consumption growth and two to
the two factors, so we have three impulse transfer functions. Figure 4 plots
the estimated impulse transfer functions for each shock. The shaded regions
in each figure are pointwise 95% confidence intervals. The vertical bar in
each plot corresponds to cycles of eight years – that determines the barrier
between business-cycle and below-business-cycle fluctuations. Note that there

29 For this last step, W needs to be invertible.
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Table 2
Estimates of the rotation matrix W

Utility spec. Shock 1 Shock 2 Shock 3

Long-run 0.76∗∗ −0.61∗∗ 0.64∗∗
SD (0.27) (0.25) (0.23)
t-stat 2.83 −2.45 2.85

Constant 1 0 0
SD − − −
t-stat − − −

Habit 0.19∗∗∗ −0.02 0.18∗∗∗
SD (0.03) (0.05) (0.05)
t-stat 6.31 −0.45 3.53

Bandpass spec. Shock 1 Shock 2 Shock 3

Long-run 0.16∗∗∗ −0.06∗ 0.08∗∗
SD (0.03) (0.03) (0.03)
t-stat 5.77 −1.68 2.85

BC 0.29∗∗∗ 0.04 0.02
SD (0.03) (0.03) (0.02)
t-stat 11.51 1.19 0.96

High freq 0.55∗∗∗ 0.02 −0.10∗∗∗
SD (0.02) (0.04) (0.03)
t-stat 27.00 0.41 −3.42

The table reports the estimates of each element of the rotation matrix W , for both the bandpass and the utility
specifications. *, **, and *** indicate significance at 10%, 5%, and 1%, respectively.

are meaningful qualitative and quantitative differences across the functions in
how power is distributed, which will help identify the underlying risk prices
of different frequencies. If the transfer functions were all highly similar, then
we would not expect to be able to distinguish risk prices across frequencies
very well.

The ultimate reason that we estimate the VAR for consumption growth is
to generate a rotation matrix W. Table 2 reports the rotation matrix W for the
utility and bandpass specifications.

Since the frequency domain risk prices, q, are rotated from the time domain
prices, p, using W, estimation error in W is a key factor in determining the
standard errors of q. Heuristically, we can think of the moment conditions for
the estimate of q as being the vector (p−qW) (we discuss the precise moment
conditions used for q below). Using the formula for the optimal-GMM standard
errors for q (and ignoring uncertainty in p for the moment), we have30

cov(q)≈W′−1qcov(W)q′W−1. (56)

This equation approximates the uncertainty in estimates of q coming from
uncertainty in W. The covariance matrix of the estimates q depends crucially

30 Specifically, given a moment condition m(q)≡p−qW, the covariance matrix of the estimates of q is(
��−1�′)−1

=�′−1��−1, where � = dm(q)
dq =−W and �=cov(m(q))=qcov(W)q′. This all assumes that the

model is correctly specified and is simply meant for illustrative purposes.
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on the covariance matrix of the estimates of W. Doubling the variance of W
doubles the variance of the estimates of q.31

4.2.3 Step 3: Estimation of frequency domain risk prices q. We
now proceed to estimate the full model, using the sequential GMM
estimation described in Hansen (2008). We account for heteroscedasticity
and serial correlation in the errors using Newey-West standard errors with
12 quarterly lags.

Under the assumption that returns are log-normally distributed, the risk prices
can be estimated from the asset pricing condition (see the Online Appendix for
the derivation)

E[exp(rit+1)−exp
(
r

f

t+1

)
]=−cov(mt+1,rit+1), (57)

=E
[
qWεt+1rit+1

]
, (58)

where rit are log test asset returns, rt is the corresponding vector, and r
f
t is the

log risk-free rate.32 Our full set of moment conditions identifying the parameters
of the model is

Ht+1(�,x)=⎡
⎢⎢⎢⎣(xt+1 −�xt )⊗xt︸ ︷︷ ︸

VAR moments

, exprt+1 −expr
f

t+1 −
Mapping into frequency domain(︷︸︸︷

qW (xt+1 −�xt )

)
rt+1︸ ︷︷ ︸

Asset pricing moments

⎤
⎥⎥⎥⎦.

(59)

The first set of moment conditions identifies the dynamics and therefore W. The
second set of moment conditions are the cross-sectional asset pricing moments
that identify q.

While we could in principle minimize the GMM objective function for
all the parameters simultaneously, that method has the drawbacks that the
optimization is difficult to perform (due to the large number of parameters)
and that it allows errors in the asset pricing model to affect the VAR estimates.
We therefore construct estimates of � and q by minimizing the two sets of
moment conditions separately. That is, � is simply estimated through OLS and

31 In the utility specification, the constant term appears without error because we have normalized the component
functions by the variance of consumption growth. Since the constant is simply a one-standard-deviation shock
to consumption growth, there is no uncertainty left in it.

32 The lognormality assumption for the empirics is standard in the literature. See, for example, Campbell and
Vuolteenaho, 2004, Campbell et al., 2015, Bansal et al., 2014. While not necessary for our theoretical result,
assuming lognormality allows us to avoid making assumptions about the mean of the conditional log SDF when
estimating the model and purely focus on its innovations; in addition, it yields a linear factor model, which is
easy to estimate and interpret.
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Table 3
Estimates of the Z(ω) function

Estimate p-value Estimate p-value Estimate p-value Estimate p-value

Epstein-Zin 556 0.07∗ 183 0.26 210 0.18 729 0.10∗
Constant −299 0.19 −226 0.05∗ −254 0.04∗∗ −795 0.09∗
Habit 62 0.96 827 0.17 787 0.22 −968 0.45

Z_low 4,837 0.03∗∗ 2,375 0.06∗ 2,526 0.03∗∗ 4,681 0.09∗
Z_BC −1,486 0.61 439 0.77 336 0.83 −3,117 0.16
Z_high −413 0.72 −804 0.15 −820 0.18 −396 0.62

p-value (difference test) 0.04 0.01 0.01 0.18

Z_low 4,386 0.01∗∗∗ 2,639 0.04∗∗ 2,796 0.01∗∗ 5,164 0.06∗
Z_BC and higher −754 0.05∗∗ −358 0.27 −407 0.15 −1,545 0.01∗∗

p-value (difference test) 0.01 0.06 0.02 0.04

Portfolios used
25 BE and BE/ME X X X X
49 industries X X X
25 O.P. and investment X X
9 risk-sorted X

The table reports risk price estimates for the period 1962:1–2011:2 using quarterly data. The first set of rows
presents the estimates of the coefficients for the utility specification. The second set of rows shows the estimates
of the coefficients of the three-window bandpass specification, that is, the levels of the three steps (below-BC,
BC, above-BC). The third set of rows shows the estimates for a two-window bandpass specification (cycles below
and above eight years). For each bandpass specification, the table reports the p-value of a test for the difference
in the coefficients. For the three-window specification, the test is a chi-squared test of the null hypothesis that the
three coefficients are the same. For the two-window specification, the test is a t-test for the difference between
the two coefficients. Each column reports results using different set of portfolios, indicated at the bottom of the
table: the 25 size and book-to-market sorted portfolios, 49 industry portfolios, 25 portfolios sorted by operating
profitability and investment, and 9 portfolios double-sorted by their exposure to the long-run and medium-run
shocks (corresponding to the first two risk prices reported in the table for each specification). *, **, and ***
indicate significance at 10%, 5%, and 1%, respectively.

then q is estimated taking � as given, using standard two-step GMM.33 This is
precisely the sequential GMM procedure described by Hansen (2008), and we
calculate standard errors following that paper. The Online Appendix describes
the details.

Table 3 reports the estimated risk prices. We repeat the estimation using
different test assets, sequentially adding groups of test assets (all but the last
one obtained from Ken French’s website). The first column uses the set of
twenty-five size- and book/market-sorted portfolios; the second column adds a
set of forty-nine industry portfolios (we drop six industry portfolios that have
missing data in the period considered). The third column adds a set of twenty-
five portfolios sorted by investment and operating profitability. The last column
reports our most comprehensive test, which also adds nine risk-sorted portfolios
(double sorted based on the exposure to the estimated low- and business-cycle
frequency shocks, as described in the Online Appendix). For each portfolio set
we estimate both the bandpass and the utility specification.

For the utility specification in the top set of rows, no coefficients are
significant at the 5% level and only two out of four are significant at the 10%

33 The same sequential method is used by Campbell and Vuolteenaho (2004) and Campbell et al. (2015).
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level. That is, none of the three structural models nested in our specification
is robustly significant. This result would normally be taken as showing that
consumption is not meaningfully priced in the cross-section of returns.

That conclusion would be premature, though. The second set of rows shows
that when we use our three-window bandpass specification, low-frequency
shocks are in fact priced significantly for all sets of test assets, at the 10level
in two specifications and 5% in the other two. Business-cycle and higher-
frequency shocks, on the other hand, are not priced.34 Tests for equality of the
coefficients (p-values of the chi-squared test are reported in the table) strongly
reject the null of equality in all but the last case.35

The third set of rows reports the results of the bandpass estimation when
we constrain q2 =q3, or, in other words, we use only two bandpass windows:
cycles longer than eight years (low frequencies) and shorter than 8 years.
The coefficients on the low frequency shocks change only minimally and are
significant in all cases; cycles shorter than eight years in fact have average risk
prices with the wrong sign. A t-test for the difference is statistically significant
for all sets of test assets.

We conclude that, when we use the bandpass specification, we find clear
evidence that low-frequency shocks to consumption growth are actually priced,
and the price of risk is significantly different than for higher-frequency
fluctuations.

Figure 5 plots the estimated spectral weighting functions obtained using the
twenty-five Fama-French portfolios for the utility specification (top row) and
the bandpass specification (bottom row).36 The left panels plot all frequencies,
while the right panels zoom in on the cycles longer than 5 years. The lighter
shaded area corresponds to the 95% confidence intervals, and the darker shaded
area reports one-standard-deviation intervals.

Consistent with the results in Table 3, the figure shows significant weight
at low frequencies for both the bandpass and the utility specification. The
price of low-frequency shocks is estimated quite precisely using the bandpass
specification (and is significantly different from zero at the 95% level), while
the standard errors of the utility specification estimates diverge quickly as we
look at frequencies closer to zero, confirming the large amount of statistical
uncertainty exactly in the frequency range most important for Epstein-Zin
preferences.

Table 3 and Figure 5 together show that when we use the bandpass
specification to estimate average risk prices in the three frequency ranges,

34 The Online Appendix reports results using bootstrapped t-statistics instead of the asymptotic approximation, and
we obtain similar results.

35 In addition, the hypothesis that the weighting function is monotonically downward sloping cannot be rejected
statistically, consistent with the view that investors are relatively more averse to low-frequency fluctuations.

36 The Online Appendix reports the factor loadings of the size and book/market sorted portfolios on low-frequency
and business-cycle frequency fluctuations.
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Figure 5
Estimated spectral weighting function
Estimated weighting function for consumption growth as the priced variable using the utility specification
(top row) and the bandpass specification (bottom row). Risk prices are estimated using the 25 Fama-French
portfolios. The light shaded areas denote 95% confidence regions. The dark shaded areas are one standard
deviation confidence intervals. The utility specification uses a discount factor of 0.975 at the annual horizon. The
x-axis gives the cycle length in years.

we find that low-frequency shocks are significantly priced, consistent with the
economic intuition underlying Epstein-Zin preferences. Using the frequency
domain decomposition leads us to very different conclusions about the
underlying theories than standard time-domain techniques would have. The
results that employ the utility specification show little support for Epstein-Zin
preferences. Looking at the problem using the bandpass filter and targeting
the economically relevant set of frequencies instead yields strong and robust
support for the idea that low-frequency shocks to the economy are priced in
equity markets.

To further assess the role of estimation uncertainty, we also report in figureA1
confidence intervals for the risk prices that ignore the estimation uncertainty
of the VAR, and therefore treat the VAR and the associated Gj (ω) functions as
certain. These (tighter) confidence intervals are captured by the darker shaded
area. For the utility specification, the difference is dramatic: ignoring the fact
that the very lowest frequencies are hard to measure, one would conclude
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that Epstein-Zin preferences are strongly supported statistically, since the dark
confidence intervals are tight even around frequency zero. The light shaded area,
which reports the confidence intervals including the estimation uncertainty at
those frequencies, reveals that the power of a test of the Epstein-Zin model
is much smaller, since all the weight of the model is on frequencies that are
extremely difficult to measure.

A comparison of the light and shaded confidence intervals for the bandpass
specification reveals that treating long-run shocks as all shocks with cycles
longer than the business cycle makes the estimation results much more robust.
Since the first section of ZBP(ω) covers a range of frequencies that not only
includes those isolated by Epstein-Zin preferences (cycles lasting 210 years
or more) but also shorter frequencies which are much better identified in the
data (as low as eight years), adding the estimation uncertainty from the VAR
increases the width of the confidence bands in a less dramatic way.

4.3 Alternative specifications of the model: Stochastic volatility and
external habit formation

In our baseline specification (reported in Table 3 and Figure 5) we have
estimated the pricing of different fluctuations in consumption by estimating
two specifications of the Z function.

In this section we report the results of two additional model specifications.
The first one estimates the price of risk for fluctuations in volatility in addition to
consumption growth. The second one estimates the prices of risk allowing these
prices to vary with the surplus consumption ratio (calculated as in Campbell
and Cochrane, 1999): it therefore considers a conditional version of the model,
where each element that enters the function Zt (ω) is allowed to depend on a
time-t conditioning variable (the surplus consumption ratio).

In a model where both consumption growth and volatility are priced (as
described in Section 4), the stochastic discount factor will depend on two
weighting functions, one for each priced variable: Zc(ω) for consumption and
Zv(ω) for volatility. In our implementation, we use realized variance as a proxy
for consumption volatility, since it can be estimated much more precisely than
the variance of consumption growth using high-frequency data (in addition,
the two are closely related in those models).37 For each weighting function, we
employ either the utility or the bandpass basis. It is important to note that the
estimation of the weighting functions requires observing as many shocks as
the parameters of the Z functions to estimate. For example, estimating a three-
parameter utility specification for Zc and Zv requires estimating a VAR with at
least six variables. We do so by adding three extra principal components from
the Ludvigson and Ng (2007) data; we report the results in Online Appendix
Table A3. Given the large dimension of the VAR, it is not surprising that the

37 Realized variance has been often used in studies of long-run risks and intertemporal CAPM, for example, by
Bansal et al. (2014) and Campbell et al. (2015).
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estimates of the risk prices are not statistically significant.38 Overall, we do not
have enough power in our data to be able to statistically discern the pricing of
volatility in addition to consumption.

Table A4 reports instead the specification in which Zt is allowed to vary
with the surplus-consumption ratio, in the spirit of Campbell and Cochrane
(1999). The left side of each panel reports the results when each element of
Zt is allowed an unrestricted interaction with the surplus consumption ratio,
constructed exactly as in Campbell and Cochrane (1999) and then normalized
to have zero mean and unit variance. The “level” estimates indicate the average
price of risk for each rotated shock; the “interaction” coefficients are negative
when the risk prices are higher in times of low surplus consumption (as predicted
by the habit model). For both the utility and the bandpass specifications, the
estimation provides evidence that prices of risk for the low-frequency shocks
are indeed higher when the surplus consumption ratio is higher; in addition, the
unconditional level of the price of risk is positive as in the baseline estimate.
This analysis reinforces our main finding that low-frequency fluctuations are
significantly priced, and adds evidence that risk prices for these fluctuations
increase in bad times (times of low consumption relative to the habit).

The Online Appendix describes a wide range of robustness tests and
extensions to the results in addition to those mentioned above. We show that the
results are qualitatively unchanged when we use annual rather than quarterly
data, when we use alternative data to form the factors for the FAVAR, when we
use alternative methods to construct confidence intervals, and when we use two
lags in the VAR instead of three (though in that case the results are no longer
statistically significant). Overall, the results reported in Table A5 confirm that
low-frequency fluctuations are significantly priced across a number of different
data sources, specifications, and estimation methods.

5. Conclusion

This paper studies risk prices in the frequency domain. The impulse response
of consumption growth to a given shock to the economy can be decomposed
into components of varying frequencies. We show that in any log-linear asset
pricing model, we can analytically derive the price of risk that investors assign to
fluctuations in consumption at different frequencies. In addition, this frequency-
specific price of risk depends only on the investor’s preferences, not on the
underlying consumption dynamics in the economy.

First, we show quantitatively how important consumption fluctuations
at different frequencies are for investors in different models. In standard
calibrations of Epstein-Zin preferences investors the majority of their focus on
consumption cycles that last a century or more when pricing assets. Conversely,

38 The Table also reports a restricted specification, with only the low-frequency component of consumption and the
three components of volatility. Again, the results are not statistically significant.
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very little weight is placed on fluctuations shorter than 100 years, and there is
essentially no weight on business-cycle fluctuations.

Second, we provide estimates of the spectral weighting function in U.S.
equity markets. While the highly constrained preferences for dynamics implied
by standard models (e.g., Epstein-Zin and habit formation) fail to explain asset
prices empirically in a robust way, we show that a generalization of preferences
for dynamics in the frequency domain yields strong support for aversion to
low-frequency fluctuations by investors in the equity market.

Appendix A. Derivation of Result 1

For any gj,k , we have

gj,k =
1

2π

∫ π

−π

G̃j (ω)(cos(ωk)+ isin(ωk))dω. (A1)

Now since gj,k =0 for k<0, for any k>0, we have

gj,k =gj,k +gj,−k =
1

2π

∫ π

−π

G̃j (ω)

(
cos(ωk)+ isin(ωk)

+cos(−ωk)+ isin(−ωk)

)
dω (A2)

=
1

2π

∫ π

−π

G̃j (ω)2cos(ωk)dω. (A3)

Furthermore, note that the complex part of G̃(ω), multiplied by any cos(ωk) for integer k integrates
to zero, which is why we can just study G≡re

(
G̃
)
. We thus have

∞∑
k=0

zkgj,k =
1

2π

∫ π

−π

Gj (ω)

(
z0 +2

∞∑
k=1

zk cos(ωk)

)
dω. (A4)

The result is related to Parseval’s theorem, but it has the advantage of yielding a decomposition
that is entirely real valued, which is achieved by exploiting the fact that gj,k =0 for k<0.
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