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ABSTRACT

The internet appendix is organized as follows. In I, we show results

for Monte Carlo simulations and a robustness check to the recursive

factor evaluation. In II, we include technical details and mathematical

proof for our proposed methodology.

I. Simulation Evidence

One of the central advantages of our double-selection method is that it pro-

duces proper inference on the SDF loading λg of a factor, explicitly taking

into account the possibility that the model selection step (based on LASSO)

may mistakenly include some irrelevant factors or exclude useful factors in

any finite sample.

In this section, we study the finite-sample performance of our inference pro-
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cedure using Monte Carlo simulations. We show that if one were to make

inference on λg by selecting the control factors via standard LASSO (and

ignoring potential mistakes in model selection), the omitted variable bias

resulting from selection mistakes would yield incorrect inference about λg.

Instead, our double-selection procedure fully corrects for this problem in a

finite sample and produces valid inference. In what follows, we first discuss

the simulation procedure in Section A. We then provide the results of the

Monte Carlo experiment in Section B.

A. Simulating the Data-Generating Process (DGP)

We are interested in making inference on λg, the vector of SDF loadings of

three factors in gt, where gt includes a useful factor (denoted by g1t) as well

as a useless factor and a redundant factor (denoted together by the 2 × 1

vector g2t). Note that g2t has a zero SDF loading, that is, λg2 = 0, but

the covariance of the redundant factor is correlated with the cross section of

expected returns. In our simulation, ht comprises a large set of factors that

includes four useful factors, h1t, and p− 4 useless and redundant factors, h2t

(so the total dimension of ht is p).

To simulate returns of test assets and factors, we employ the following steps:

(1) Simulate Ce (n × d) and Ch1 (n × 4) independently from multivariate

normal distributions.

(2) Calculate Ch2 = ιnθ
ᵀ
0 +Ch1θ

ᵀ
1 +Cε, where Cε is simulated independently

from an n× (p− 4) multivariate normal distribution, θ0 is a (p− 4)× 1

vector, and θ1 is a (p− 4)× 4 matrix.
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(3) Calculate Cg from Ce and Ch = (Ch1 : Ch2) using Cg = ιnξ+Chχ
ᵀ+Ce,

where χ is a d× p matrix.

(4) Calculate Cz using Cz = Cg − Chη
ᵀ, as implied from the DGP gt =

ηht + zt we aim to simulate, where η is a d× p matrix.

(5) Calculate E(rt) using E(rt) = ιnγ0 + Cgλg + Chλh, where λg is a d× 1

vector and λh is a p× 1 vector.

(6) Calculate βg = CzΣ
−1
z and βh = ChΣ

−1
h −βgη, as implied from the DGP

of rt we aim to simulate: rt = E(rt) + βggt + βhht + ut.

(7) For each Monte Carlo trial, generate ut from a Student’s t distribution

with five degrees of freedom and covariance matrix Σu. Generate ht ∼

Np(0,Σh) and zt ∼ Nd(0,Σz), and calculate gt and then rt using the

DGPs specified in steps (4) and (6), respectively.

The total number of Monte Carlo trials is 2,000. Because we assume non-

random selection of assets and that the randomness in the selection of test

assets does not affect the inference to the first order, we simulate only once

Cg, Ch, and hence βg, βh, in Steps (1) - (6), so that they are constant

throughout the Monte Carlo trials in Step (7).

We calibrate our DGP to mimic the actual Fama-French five-factor model.

In particular, we calibrate χ, η, λ, Σz, the mean and covariance matrices

of Ce, Ch1 , as well as Σh to match the summary statistics (time-series and

cross-sectional R2, factor return covariances, etc.) of the Fama-French five

factors estimated using characteristic-sorted portfolios, described in detail in

Section II. We calibrate a diagonal Σu to match the average time-series R2 for
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this five-factor model. For redundant and useless factors, we calibrate their

parameters using all of the other factors in our data library, again described

in detail in Section II. We maintain the sparsity requirement on χ, η, and λ

by restricting the loadings of Cg, E(rt), and g on Ch2 and h2 to be zero. We

set to zero the loading of Cg on Ch for the useless factor in g2. Moreover,

we randomly simulate θ1 from normal distribution so that factors in h2 are

either redundant or (rather close to) useless. We allow nonzero loading of g2

on h1, and the covariance matrix Σh to be nondiagonal, so that both useless

and redundant factors in g2 and h2 can be correlated with the true factors

in g1 and h1, that is, they can command risk premia simply due to this

correlation, even though they have zero SDF loadings because they do not

affect marginal utility once the true factors are taken into account.

B. Simulation Results

In this section, we report results of various simulations from the model. We

consider various settings with number of total factors p = 25, 50, 100, 200,

number of assets n = 100, 200, 300, and length of time series T = 240, 360, 480.

Figure IA.1 compares the asymptotic distributions of the proposed double-

selection estimator with that of the single-selection estimator for the case p =

100, n = 300, and T = 480. The right side of the figure shows the distribution

of the t-test for λg of the three factors (useful in the first row, redundant in the

second row, and useless in the third row) when using the controls selected

by standard LASSO (i.e., a single-selection-based estimator). The panels

show that inference without double-selection adjustment displays substantial
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bias for useful and redundant factors and distortion from normality for all

factors. The left side of the figure shows instead that our double-selection

procedure produces an unbiased and asymptotically normal test, as predicted

by Theorem 1.

Figure IA.2 plots the frequency with which each of the simulated factors is

selected across simulations (with each bar corresponding to a different simu-

lated factor, identified by its ID from 1 to 100). The top panel corresponds

to the factors selected in the first LASSO selection, the second panel cor-

responds to the factors selected in the second selection, and the last panel

corresponds to the union of the two.

Note that, by construction, the true factors in ht are the first four factors

(the fifth true factor is part of gt). So if model selection were able to identify

the correct control factors in all samples perfectly, the first four bars should

read 100%, while all other bars (corresponding to factors 5-100) should read

0%.

This is not the case in the simulations. While some factors are often selected

by LASSO (top panel), not all are: factor 1 is selected in about 70% of the

samples, and factor 3 in about 40% of the samples. Therefore, in a large

fraction of samples, the control model would not include some true factors,

generating the omitted variable bias displayed in Figure IA.1. At the same

time, LASSO often includes erroneously spurious factors, as shown in Table

IA.V. The key to our procedure’s ability make correct inference is that the

two-step selection procedure minimizes the potential omitted factor bias.
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Tables IA.II, IA.III, and IA.IV compare the biases and root-mean-squared

errors (RMSEs) for double-selection (DS), single-selection (SS), and the OLS

estimators for each entry of λg. All regularization parameters are selected

based on ten-fold cross-validation.

Not surprisingly, the bias of SS is clearly visible when compared to DS and

OLS for useful and redundant factors. In addition, DS outperforms SS and

OLS in terms of their RMSEs in these scenarios. The efficiency gain of DS

over OLS is particularly substantial when p is large relative to n. When p is

equal to n, OLS becomes infeasible (because the number of regressors is p+d).

For the useless factor, because SS does not suffer from bias, its RMSE is the

smallest among all. This result confirms the efficiency benefits of machine

learning techniques over OLS. Although DS is generally less biased than SS,

its main advantage relative to SS is in removing the distortions to inference,

as can be seen from the distribution of standardized statistics in Figure

IA.1.

Overall, the simulation results confirm the results of our econometric analysis:

the DS estimator outperforms the benchmarks.
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Table IA.I. Testing Factors Recursively by Sample Year

This table provides a robustness check to the recursive factor evaluation in the main text.
However, the date used to order the factors is the last date of the sample used in each
paper.

(1) (2) (3)
Year # Assets # Controls New factors (IDs)
1995 240 47 42 43 46 52 53 54 55 56 57 69 71
1996 306 58 47
1997 306 59 58 59 60 61 63 67
1998 342 65 48 49 50 51
1999 360 69 65 92 95
2000 378 72 62 74 93 97 98 99 104
2001 408 79 68 70 75 76 77 78 79 80 81 82 83

84 85 86 87 88 89 90 101 102 108
2002 504 100 72 73 112 116 117 118 119 120
2003 546 108 94 96 100 105 106 114
2004 582 114 111
2005 588 115 103 113 115 123 127 129 131
2006 630 122 91 110 122 126 144
2007 654 127
2008 654 127 124 125 128 130 132 134 139
2009 696 134 121 133 135 136
2010 720 138 138 142 143
2011 738 141 137
2012 738 142 140 141 147 148 149 150
2013 738 148 145 146
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Table IA.II. Asymptotic Approximation Performance for λuseful

This table reports the biases and root-mean-squared errors (RMSE) of the estimates of
the SDF loading λ of the useful factor from Monte Carlo simulations. DS is the double-
selection estimator, SS is the single-selection estimator, and OLS is ordinary least squares
without selection. The regularization parameters in the LASSO are selected using ten-
fold cross-validation, where we partition the cross-validation subsamples in the time-series
dimension. The true value λuseful is 16.76. Note that in cases of n ≥ p, OLS is infeasible.

p = 25 p = 50 p = 100 p = 200
T n DS SS OLS DS SS OLS DS SS OLS DS SS OLS

Panel A: Bias

240 100 -0.71 -9.23 -0.19 -0.96 -9.32 -0.13 -2.06 -11.26 - -3.37 -9.88 -
240 200 -0.82 -9.53 -0.13 -0.95 -9.11 -0.14 -1.80 -9.01 -0.43 -3.14 -9.65 -
240 300 -0.26 -7.87 0.06 -1.06 -10.39 -0.50 -1.41 -8.43 -0.24 -2.81 -9.93 0.08

360 100 -0.31 -8.33 -0.14 -0.40 -8.71 0.08 -1.60 -10.66 - -2.27 -9.07 -
360 200 -0.32 -8.48 0.00 -0.43 -8.44 -0.08 -1.33 -8.31 -0.28 -2.23 -8.79 -
360 300 -0.05 -7.07 0.18 -0.51 -9.44 -0.16 -1.09 -7.41 -0.13 -1.99 -8.79 -0.31

480 100 -0.21 -7.87 0.03 -0.12 -8.22 0.39 -1.02 -10.06 - -1.83 -8.71 -
480 200 -0.14 -7.86 0.13 -0.19 -7.80 0.06 -0.87 -7.89 -0.09 -1.57 -8.57 -
480 300 -0.01 -6.76 0.15 -0.25 -8.74 0.05 -0.55 -7.18 -0.07 -1.33 -8.53 -0.11

Panel B: RMSE

240 100 5.80 11.60 6.46 6.14 11.57 8.19 7.52 13.93 - 8.98 12.23 -
240 200 5.78 12.05 5.84 5.94 11.56 6.55 6.73 11.33 9.07 7.88 11.82 -
240 300 5.54 10.33 5.66 5.83 13.05 5.98 6.46 11.09 7.21 7.54 11.94 19.76

360 100 4.62 10.90 5.07 4.88 10.94 6.68 5.73 13.12 - 6.88 11.23 -
360 200 4.53 11.23 4.63 4.66 10.80 5.23 5.22 10.57 6.55 6.54 10.84 -
360 300 4.40 9.66 4.49 4.66 12.23 4.84 5.03 9.99 5.55 6.13 10.89 10.11

480 100 4.10 10.31 4.44 4.16 10.60 5.53 5.01 12.77 - 5.92 10.83 -
480 200 3.99 10.63 4.12 4.00 10.21 4.45 4.47 10.17 5.64 5.41 10.52 -
480 300 3.88 9.23 4.01 3.92 11.51 4.15 4.22 9.77 4.71 4.85 10.56 7.88
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Table IA.III. Asymptotic Approximation Performance for λredundant

This table provides the biases and root-mean-squared errors (RMSE) of the estimates
of the SDF loading λ of the redundant factor from Monte Carlo simulations. DS is the
double-selection estimator, SS is the single-selection estimator, and OLS is the ordinary
least squares without selection. The regularization parameters in the LASSO are selected
using 10-fold cross-validation, where we partition the cross-validation subsamples in the
time series dimension. The true value λredundant is zero. Note that in cases of n ≥ p, OLS
is infeasible.

p = 25 p = 50 p = 100 p = 200
T n DS SS OLS DS SS OLS DS SS OLS DS SS OLS

Panel A: Bias

240 100 0.24 6.34 0.10 0.29 6.24 -0.22 0.64 7.23 - 1.58 5.95 -
240 200 0.39 6.78 0.14 0.11 7.25 0.08 0.33 6.74 0.06 1.22 5.76 -
240 300 0.17 5.98 0.07 0.15 6.92 0.06 0.63 6.39 -0.04 0.84 6.39 -0.46

360 100 0.09 5.20 0.09 0.04 5.36 0.06 0.06 6.60 - 0.74 6.07 -
360 200 0.08 5.63 0.02 0.06 6.38 -0.02 0.00 6.02 -0.05 0.50 5.35 -
360 300 0.08 4.86 0.08 0.10 5.95 0.04 0.12 5.87 0.04 0.33 6.37 0.08

480 100 0.04 4.64 0.08 0.00 4.80 -0.15 0.05 6.10 - 0.22 5.89 -
480 200 -0.03 5.12 -0.06 -0.01 5.53 0.04 0.01 5.84 0.08 0.11 5.51 -
480 300 0.02 4.56 0.02 -0.01 4.98 -0.03 0.07 5.45 -0.07 0.08 6.55 0.19

Panel B: RMSE

240 100 5.58 9.96 6.40 5.76 10.01 8.15 6.12 11.67 - 7.69 9.98 -
240 200 5.65 10.40 5.78 5.47 11.15 6.19 5.62 10.76 9.07 6.56 9.98 -
240 300 5.43 9.71 5.55 5.42 10.85 6.01 5.69 10.66 7.20 5.83 10.61 20.00

360 100 4.34 8.43 5.01 4.70 8.86 6.60 4.62 10.83 - 5.21 9.53 -
360 200 4.30 8.99 4.49 4.53 9.95 5.26 4.32 9.70 6.64 4.72 9.12 -
360 300 4.26 8.27 4.38 4.42 9.78 4.76 4.50 9.73 5.54 4.44 10.33 9.71

480 100 3.80 7.75 4.23 3.86 8.11 5.62 3.88 10.03 - 3.99 8.97 -
480 200 3.70 8.41 3.88 3.83 9.07 4.37 3.73 9.28 5.44 3.75 8.99 -
480 300 3.66 7.85 3.80 3.75 8.64 4.09 3.77 9.02 4.71 3.61 10.17 7.82
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Table IA.IV. Asymptotic Approximation Performance for λuseless

This table provides the biases and root-mean-squared errors (RMSE) of the estimates of
the SDF loading λ of the useless factor from Monte Carlo simulations. DS is the double-
selection estimator, SS is the single-selection estimator, and OLS is the ordinary least
squares without selection. The regularization parameters in the LASSO are selected using
10-fold cross-validation, where we partition the cross-validation subsamples in the time
series dimension. The true value λuseless is zero. Note that in cases of n ≥ p, OLS is
infeasible.

p = 25 p = 50 p = 100 p = 200
T n DS SS OLS DS SS OLS DS SS OLS DS SS OLS

Panel A: Bias

240 100 -0.37 -1.04 -0.22 -0.19 -2.26 -0.11 -0.03 -0.85 - -0.08 -0.37 -
240 200 0.03 1.86 -0.06 -0.20 -2.03 -0.32 -0.05 -0.66 -0.04 -0.23 -0.20 -
240 300 -0.35 -0.29 -0.28 -0.02 -0.09 -0.01 -0.08 -1.04 0.05 -0.05 0.03 0.43

360 100 -0.10 -0.71 -0.02 -0.18 -2.13 -0.06 0.13 -0.58 - -0.03 -0.18 -
360 200 0.17 2.10 0.17 -0.23 -1.89 -0.31 0.06 -0.44 0.01 -0.06 -0.01 -
360 300 -0.11 -0.01 -0.12 -0.12 0.00 -0.19 0.02 -0.87 0.05 0.04 0.29 -0.24

480 100 0.01 -0.55 0.13 0.01 -1.89 0.09 -0.10 -0.78 - 0.07 -0.03 -
480 200 0.14 1.88 0.08 0.04 -1.53 0.03 -0.10 -0.65 -0.04 0.09 -0.06 -
480 300 0.03 0.07 0.05 0.14 0.16 0.06 -0.06 -0.96 0.09 0.13 0.30 -0.05

Panel B: RMSE

240 100 5.37 5.56 6.17 5.40 6.72 8.24 5.51 6.13 - 5.87 5.74 -
240 200 5.17 5.61 5.47 5.22 6.01 6.36 5.19 5.24 8.90 5.46 5.73 -
240 300 5.16 5.09 5.41 5.29 5.33 5.92 5.19 5.72 7.14 5.23 5.40 19.69

360 100 4.40 4.46 5.01 4.40 5.47 6.53 4.46 5.00 - 4.41 4.60 -
360 200 4.32 5.08 4.51 4.27 4.97 5.02 4.28 4.54 6.85 4.37 4.59 -
360 300 4.25 4.18 4.42 4.24 4.30 4.65 4.27 4.75 5.63 4.18 4.38 10.31

480 100 3.80 3.90 4.32 3.84 5.01 5.58 3.73 4.28 - 3.64 4.02 -
480 200 3.74 4.50 3.96 3.68 4.38 4.33 3.65 3.79 5.50 3.57 3.84 -
480 300 3.67 3.68 3.79 3.66 3.79 3.96 3.66 4.05 4.54 3.50 3.77 7.73
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Table IA.V. Variable Selection in Simulations

The table reports how often useful, redundant and useless factors are selected in each
step of our double selection procedure (first and second columns corresponding to the
first and second step, and their union in the third column), in Monte Carlo simulations.
Panel A reports the average selection percentages for useful factors, and Panel B reports
the average selection percentages for redundant or useless factors. The regularization
parameters in the LASSO are selected using 10-fold cross-validation, where we partition
the cross-validation subsamples in the time series dimension.

p = 25 p = 50 p = 100 p = 200
T n 1st 2nd Total 1st 2nd Total 1st 2nd Total 1st 2nd Total

Panel A: Useful Factors

240 100 45.5 98.5 99.2 45.6 97.3 98.4 46.8 94.6 96.6 46 86.9 92.1
240 200 46.5 97.3 98.5 47.4 98.4 99.1 47 96.6 97.9 45.7 86.1 90.9
240 300 48 98.7 99.2 48.1 99 99.3 50.4 94.2 96.7 48.5 89.7 93.7

360 100 52.2 99.7 99.9 50.4 99.2 99.6 50.9 98.2 98.9 48 94.3 96.9
360 200 54.5 99.2 99.6 52.9 99.6 99.8 51.6 99.1 99.4 50.2 94.2 96.6
360 300 54.6 99.8 99.9 53.6 99.7 99.8 54 97.3 98.5 51.9 96.5 98.1

480 100 56.1 99.9 100 54 99.8 99.9 53.7 99.3 99.6 49.9 97.6 98.7
480 200 57.9 99.7 99.9 57.4 99.9 99.9 53.1 99.7 99.8 50.3 97.8 98.7
480 300 57.1 100 100 58.5 99.9 100 56.2 99.2 99.7 51.9 98.5 99.2

Panel B: Redundant and Useless Factors

240 100 5.6 2.5 7.9 4.4 1.7 5.9 3.4 2.2 5.4 2.5 3 5.2
240 200 6.3 3.4 9.2 5.4 1.8 7 4.5 2.5 6.8 3.3 4.4 7.3
240 300 6.4 3.1 9.1 6.4 2 8.1 5.8 4.7 9.8 3.9 4.5 7.9

360 100 5 1.6 6.4 4.1 1 4.9 3.3 0.8 4 2.1 1 2.9
360 200 6.5 2.4 8.6 5.3 1.1 6.2 4.8 0.9 5.6 3.2 1.8 4.8
360 300 6.1 2.2 8 6.3 0.9 7.1 5.3 1.5 6.6 3.8 1.6 5.2

480 100 4.7 1.1 5.7 3.4 0.7 4 2.7 0.5 3.1 2 0.4 2.3
480 200 5.1 1.6 6.5 5.1 0.7 5.7 4.3 0.4 4.7 2.7 0.8 3.4
480 300 4.9 1.5 6.2 5.4 0.7 6 4.3 0.8 5 3 0.7 3.6
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Figure IA.1. Histograms of the standardized estimates in simula-
tions.

The figure presents the histograms of the standardized double-selection (DS) and single-
selection (SS) estimates using estimated standard errors, compared with the standard
normal density in dashed lines. The left panels show the double-selection histograms, and
the right panels the single-selection histograms. The top row reports the distribution of
standardized estimates for a useful factor; the middle row for a redundant factor; the last
row for a useless factor. In the simulation, we set T = 480, n = 300, and p = 100. The
regularization parameters in the LASSO are selected using ten-fold cross-validation, where
we partition the cross-validation subsamples in the time-series dimension.
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Figure IA.2. Histograms of selected variables.

The figure reports how often each factor is selected in each step of our double selection
procedure (first and second panels corresponding to the first and second step, and their
union in the bottom panel), in Monte Carlo simulations. Each factor corresponds to a
number on the X axis. Factors 1 - 4 are part of the true factors in the DGP. Factors 5 -
100 are either redundant or close to be useless. We set T = 480, n = 300, and p = 100.
The regularization parameters in the LASSO are selected using 10-fold cross-validation,
where we partition the cross-validation subsamples in the time series dimension.
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II. Technical Details and Proofs

A. Notation

We summarize the notation used throughout. Let ei be a vector with 1 in

the ith entry and 0 elsewhere whose dimension depends on the context. Let

ιk denote a k-dimensional vector with all entries being 1. We use a ∨ b to

denote the max of a and b, and a∧ b as their min for any scalars a and b. We

also use the notation a . b to denote a ≤ Kb for some constant K > 0 and

a .p b to denote a = Op(b). For any time series of vectors {at}Tt=1, we denote

ā = T−1
∑T

t=1 at. In addition, we write āt = at−ā. We use the capital letter A

to denote the matrix (a1 : a2 : . . . : aT ), and we write Ā = A−ιᵀT ā correspond-

ingly. We use λmin(A) and λmax(A) to denote the minimum and maximum

eigenvalues of A. We use ‖A‖1, ‖A‖∞, ‖A‖, and ‖A‖F to denote the L1 norm,

the L∞ norm, the operator norm (or L2 norm), and the Frobenius norm of

a matrix A = (aij), that is, maxj
∑

i |aij|, maxi
∑

j |aij|,
√
λmax(AᵀA), and√

Tr(AᵀA), respectively. We also use ‖A‖MAX = maxi,j |aij| to denote the

L∞ norm of A on the vector space. When a is a vector, both ‖a‖ and ‖a‖F

are equal to its Euclidean norm. We use ‖a‖0 to denote
∑

i 1{ai 6=0}. We also

denote Supp(a) = {i : ai 6= 0}. We write the projection operator with re-

spect to a matrix A as PA = A(AᵀA)−1Aᵀ, and the corresponding annihilator

as MA = I − PA, where I is the identity matrix whose size depends on the

context. For a set of indices I, let A[I] denote a submatrix of A, which

contains all columns indexed in I.
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B. Technical Assumptions

Assumption 1 (Sparsity): ‖λh‖0 ≤ s, ‖χj,·‖0 ≤ s, ‖ηj,·‖0 ≤ s, and 1 ≤ j ≤ d

for some s such that sn−1 → 0.

Definition 1 (LASSO and Post-LASSO Estimators). We consider a generic

linear regression problem with sparse coefficients,

Y = Xβ + ε, subject to ‖β‖0 ≤ s,

where Y is a n × 1 vector, X is a n × p matrix, and β is p × 1 vector of

parameters. We define the LASSO estimator as

β = arg min
β

{
n−1 ‖Y −Xβ‖2 + n−1τ ‖β‖1

}
.

We define the Post-LASSO estimator β̃Î as

β̃Î = arg min
β

{
n−1 ‖Y −Xβ‖2 : βj = 0, j /∈ Î

}
,

where Î is the set of indices of variables selected by a first-step LASSO, that

is, Î = Supp(β).

We adopt a high-level assumption on the model selection properties of LASSO

and the prediction error bounds of the Post-LASSO estimators in (7) and (8).

Belloni and Chernozhukov (2013) provide more primitive conditions for these

bounds to hold.

Assumption 2 (Properties of Post-LASSO Estimators): The Post-LASSO es-

15



timators in (7) and (8) satisfy the following properties:

1. ŝ = |Î1
⋃
Î2| .p s.

2. Moreover, if τ0 ≥ 2c
∥∥∥λᵀgCᵀ

e (ιn : Ĉh)
∥∥∥
1
, for some c > 1, then

n−1/2
∥∥∥ιn(γ̃Î1 − γ̆0) + Ĉh(λ̃Î1 − λ̆h)

∥∥∥ .p sT
−1/2(log(n ∨ p ∨ T ))1/2 + τ0s

1/2n−1,

(IA1)

where γ̆0 = γ0 + ξᵀλg and λ̆h = χᵀλg +λh are the true parameter values

given in (2) and (6).

If τj ≥ 2cj

∥∥∥eᵀjCᵀ
e (ιn : Ĉh)

∥∥∥
1
, for some cj > 1 and j = 1, 2, . . . , d, then

n−1/2
∥∥∥ιn(ξ̃Î2 − ξ)

ᵀ + Ĉh(χ̃Î2 − χ)ᵀ
∥∥∥ .p sT

−1/2(log(n ∨ p ∨ T ))1/2 + ‖τ‖MAX s
1/2n−1,

(IA2)

where τ = (τ1, τ2, . . . , τd)
ᵀ, ξ, and χ are the true parameter values given

in (6).

Assumption 2 gives a probabilistic upper bound on ŝ. The prediction error

bounds in (IA1) and (IA2) are more conservative than the standard results,

because the regressors here are estimated. We provide a sketch of the proof

for (IA1) in Appendix D, for which we need the following sparse eigenvalues

assumption. The proof of (IA2) is similar and simpler. Our theoretical result

below would also hold if other model selection procedures are employed,

provided that they obey similar properties in Assumption 2.

Assumption 3 (Sparse Eigenvalues): There exist K1, K2 > 0 and a sequence
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ln →∞ such that with probability approaching 1,

K1 ≤ φmin(lns)
[
n−1(ιn : Ĉh)

ᵀ(ιn : Ĉh)
]
≤ φmax(lns)

[
n−1(ιn : Ĉh)

ᵀ(ιn : Ĉh)
]
≤ K2,

where we denote

φmin(k)[A] = min
1≤‖v‖0≤k

vᵀAv

‖v‖2
and φmax(k)[A] = max

1≤‖v‖0≤k

vᵀAv

‖v‖2
.

Assumption 3 resembles one of the sufficient conditions that lead to desirable

statistical properties of LASSO, which has been adopted by, for example, Bel-

loni, Chernozhukov, and Hansen (2014). It implies the restricted eigenvalue

condition proposed by Bickel, Ritov, and Tsybakov (2009).

Assumption 4 (Large Deviation Bounds): The stochastic discount factor, re-

turns, and factors satisfy

‖ā‖MAX .p T
−1/2(log(n ∨ p ∨ T ))1/2, where a ∈ {m, v, z, u}. (IA3)∥∥T−1ĀB̄ᵀ − Cov(at, bt)

∥∥
MAX

.p T
−1/2(log(n ∨ p ∨ T ))1/2, where A,B ∈ {M,V, Z, U}.

(IA4)

Assumption 4 imposes high-level assumptions on the large deviation type

bounds, which can be verified using the same arguments as in Fan, Liao, and

Mincheva (2011) under stationarity, ergodicity, strong mixing, and exponential-

type tail conditions.

Next, we impose additional uniform bounds that impose restrictions on the

cross-sectional dependence of the “residuals” in the covariance projection
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(6). Similar assumptions on factor loadings are employed by Giglio and Xiu

(2016).

For the sake of clarity and simplicity, we assume that the set of testing assets

used is not sampled randomly but deterministically, so that the covariances

and loadings are treated as nonrandom. This is without loss of generality,

because their sampling variation does not affect the first-order asymptotic

inference. By contrast, Gagliardini, Ossola, and Scaillet (2016) consider ran-

dom loadings as a result of a random sampling scheme from a continuum of

assets.

Assumption 5 (“Moment” Conditions): The following restrictions hold:

‖Ce‖MAX . 1, ‖Cᵀ
e ιn‖MAX . n1/2, ‖Cᵀ

eCh‖MAX . n1/2, (IA5)

‖Cᵀ
e ū‖MAX .p n

1/2T−1/2,
∥∥Cᵀ

e Ū V̄
ᵀ
∥∥
MAX

.p n
1/2T 1/2, (IA6)

λmin(n−1Cᵀ
eCe) ≥ K, ‖Cᵀ

e (βgη + βh)‖∞ . sn1/2, ‖βh‖∞ . s. (IA7)

In addition, for a ∈ {m, v, z, u}, it holds that

‖Σa‖MAX . 1, ‖Ca‖MAX . 1. (IA8)

Finally, we impose a joint central limit theorem for (zt, λ
ᵀvtzt) = (zt, (1 −

γ0mt)zt). This can be verified by the standard central limit theory for de-

pendent stochastic processes, if more primitive assumptions are satisfied, for

example, White (2000).
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Assumption 6 (CLT): The following results hold as T →∞:

T 1/2

 z̄

−T−1γ0Z̄M̄ᵀ − Σzλg

 L−→ N


 0

0

 ,

 Π11 Π12

Πᵀ
12 Π22


 ,

where Π11, Π12, and Π22 are given by

Π11 = lim
T→∞

1

T

T∑
t=1

T∑
s=1

E(zsz
ᵀ
t ),

Π12 = lim
T→∞

1

T

T∑
t=1

T∑
s=1

E (λᵀvszsz
ᵀ
t ) ,

Π22 = lim
T→∞

1

T

T∑
t=1

T∑
s=1

E (λᵀvsλ
ᵀvtzsz

ᵀ
t ) .

Assumption 7 (Selection for the Asymptotic Variance Estimator): The Post-

LASSO estimator η̃Ĩ satisfies the usual bounds. That is, if τ̄j ≥ 2c̄j ‖HZᵀ‖∞,

for some c̄j > 1, j = 1, 2, . . . , d, then

∥∥(η̃Ĩ − η)H
∥∥ .p s

1/2(log(p ∨ T ))1/2, and
∥∥η̃Ĩ − η∥∥ .p s

1/2T−1/2(log(p ∨ T ))1/2.

C. Proof of Main Theorems

Proof of Theorem 1. The estimator of λg can be written in closed-form as

λ̂g =
(
Ĉᵀ
gM(ιn:Ĉh[Î])

Ĉg

)−1 (
Ĉᵀ
gM(ιn:Ĉh[Î])

r̄
)
. (IA9)
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Moreover, by (2) and (5), we can relate Cg and Ch to βg and βh:

Cg = Chη
ᵀ + Cz, where Ch = (βgη + βh)Σh, Cz = βgΣz. (IA10)

Using (3), (5), (IA10), and the fact that

Ĉg − Cg = (Ĉh − Ch)ηᵀ + (Ĉz − Cz),

Ĉz − Cz = βg
(
T−1Z̄Z̄ᵀ − Σz

)
+ T−1Ū Z̄ᵀ + T−1 (βgη + βh) H̄Z̄

ᵀ,

Ĉh − Ch = (βgη + βh)
(
T−1H̄H̄ᵀ − Σh

)
+ T−1ŪH̄ᵀ + T−1βgZ̄H̄

ᵀ,

we obtain the decomposition

T 1/2(λ̂g − λg)

=
(
n−1Ĉᵀ

gM(ιn:Ĉh[Î])
Ĉg

)−1
n−1T 1/2Ĉᵀ

gM(ιn:Ĉh[Î])

(
(Cg − Ĉg)λg + Chλh + βgz̄ + ((βgη + βh)h̄+ ū)

)
=T 1/2Σ−1z

(
z̄ −

(
T−1Z̄V̄ ᵀλ− Σzλg

))
+
(
n−1Ĉᵀ

gM(ιn:Ĉh[Î])
Ĉg

)−1 (
n−1T 1/2Ĉᵀ

gM(ιn:Ĉh[Î])

(
ū− T−1Ū V̄ ᵀλ

)
+n−1T 1/2Ĉᵀ

gM(ιn:Ĉh[Î])
(βg − ĈgΣ−1z )×

(
z̄ −

(
T−1Z̄V̄ ᵀλ− Σzλg

))
−n−1T 1/2Ĉᵀ

gM(ιn:Ĉh[Î])
(βgη + βh)

(
T−1H̄V̄ ᵀλ− Σh(η

ᵀλg + λh)− h̄
)

+n−1T 1/2Ĉᵀ
gM(ιn:Ĉh[Î])

Ĉhλh

)
.

We first analyze the leading term. Note that by γ0M̄
ᵀ = −V̄ ᵀλ, Assumption

6, and the Delta method, we have

T 1/2
(
Σ−1z z̄ − Σ−1z

(
−T−1γ0Z̄M̄ᵀ − Σzλg

))
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L−→ N

(
0, lim

T→∞

1

T

T∑
t=1

T∑
s=1

E
(
(1− λᵀvt)(1− λᵀvs)Σ−1z ztz

ᵀ
sΣ−1z

))
. (IA11)

Next, we show that the remaining terms are of smaller order. By (IA42), we

have

n−1T 1/2
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])

(
ū− T−1Ū V̄ ᵀλ

)∥∥∥ .p s(n
−1/2 + T−1/2) log(n ∨ p ∨ T ).

By (IA27), we have

n−1T 1/2
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
Ĉhλh

∥∥∥ .p s
2(n−1T 1/2 + T−1/2) log(n ∨ p ∨ T ).

By (IA40), we have

n−1T 1/2
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
(βgη + βh)

(
T−1H̄V̄ ᵀλ− Σh(η

ᵀλg + λh)− h̄
)∥∥∥

.ps
2(n−1/2 + T−1/2) log(n ∨ p ∨ T ).

Finally, Assumption 4, (IA11), and (IA35), we have

n−1T 1/2
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
(βg − ĈgΣ−1z )

(
z̄ −

(
T−1Z̄V̄ ᵀλ− Σzλg

))∥∥∥
≤n−1T 1/2

∥∥∥Ĉᵀ
gM(ιn:Ĉh[Î])

(βg − ĈgΣ−1z )
∥∥∥∥∥z̄ − (T−1Z̄V̄ ᵀλ− Σzλg

)∥∥
.ps(n

−1/2 + T−1/2) log(n ∨ p ∨ T ).

This concludes the proof.

Proof of Theorem 2. By an identical argument as in the proof of Theorem 2
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of Newey and West (1987), we have

1

T

T∑
t=1

T∑
r=1

Qtr(1− λᵀvt)(1− λᵀvr) (ztz
ᵀ
r + zrz

ᵀ
t )

p−→ ΣzΠΣz.

So, by applying the continuous mapping theorem, it is sufficient to show that

Σ̂z
p−→ Σz, (IA12)

Π̃− 1

T

T∑
t=1

T∑
r=1

Qtr(1− λᵀvt)(1− λᵀvr) (ztz
ᵀ
r + zrz

ᵀ
t )

p−→ 0, (IA13)

where

Qtr =

(
1− |r − t|

q + 1

)
1{|t−r|≤q}, Π̃ = Σ̂zΠ̂Σ̂z.

To prove (IA12), we note that by Assumptions 4 and 7, we have

∥∥∥Σ̂z − Σz

∥∥∥
MAX

.T−1/2
∥∥(η̃Ĩ − η)H

∥∥ ‖Z‖MAX + T−1
∥∥(η̃Ĩ − η)H

∥∥2 +
∥∥T−1ZZᵀ − Σz

∥∥
MAX

.ps
1/2T−1/2(log(p ∨ T ))1/2 ‖Z‖MAX + sT−1 log(p ∨ T ) + T−1/2(log(n ∨ p ∨ T ))1/2

=op(1). (IA14)

As to (IA13), we can decompose its left-hand side as

1

T

T∑
t=1

T∑
r=1

Qtr(λ̂− λ)ᵀvt(1− λ̂ᵀvr) (ẑtẑ
ᵀ
r + ẑrẑ

ᵀ
t ) (IA15)

+
1

T

T∑
t=1

T∑
r=1

Qtr(1− λᵀvt)(λ̂− λ)ᵀvr (ẑtẑ
ᵀ
r + ẑrẑ

ᵀ
t ) (IA16)
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+
1

T

T∑
t=1

T∑
r=1

Qtr(1− λᵀvt)(1− λᵀvr) ((ẑt − zt) ẑᵀr + (ẑr − zr) ẑᵀt ) (IA17)

+
1

T

T∑
t=1

T∑
r=1

Qtr(1− λᵀvt)(1− λᵀvr) (zt (ẑr − zr)ᵀ + zr (ẑt − zt)ᵀ) . (IA18)

Analyzing each of these terms, we obtain

∥∥∥∥∥ 1

T

T∑
t=1

T∑
r=1

Qtr(λ̂− λ)ᵀvt(1− λ̂ᵀvr) (ẑtẑ
ᵀ
r + ẑrẑ

ᵀ
t )

∥∥∥∥∥
MAX

.qT−1
∥∥∥Ẑ∥∥∥∥∥∥ιᵀT − λ̂ᵀV ∥∥∥∥∥∥(λ̂− λ)ᵀV

∥∥∥
MAX

∥∥∥Ẑ∥∥∥
MAX

.p qs
1/2(T−1/2 + n−1/2) ‖V ‖MAX ‖Z‖MAX ,∥∥∥∥∥ 1

T

T∑
t=1

T∑
r=1

Qtr(1− λᵀvt)(λ̂− λ)ᵀvr (ẑtẑ
ᵀ
r + ẑrẑ

ᵀ
t )

∥∥∥∥∥
MAX

.qT−1 ‖ιᵀT − λ
ᵀV ‖

∥∥∥Ẑ∥∥∥∥∥∥(λ̂− λ)ᵀV
∥∥∥
MAX

∥∥∥Ẑ∥∥∥
MAX

.p qs
1/2(T−1/2 + n−1/2) ‖V ‖MAX ‖Z‖MAX ,∥∥∥∥∥ 1

T

T∑
t=1

T∑
r=1

Qtr(1− λᵀvt)(1− λᵀvr) ((ẑt − zt) ẑᵀr + (ẑr − zr) ẑᵀt )

∥∥∥∥∥
MAX

.qT−1 ‖ιᵀT − λ
ᵀV ‖ ‖(η̂ − η)H‖

∥∥∥Ẑ∥∥∥
MAX
‖ιᵀT − λ

ᵀV ‖MAX

.pqs
3/2(T−1/2 + n−1/2) ‖V ‖MAX ‖Z‖MAX ,

where we use

‖ιᵀT − λ
ᵀV ‖ . T 1/2 +

∥∥M̄∥∥+ ‖λᵀv̄‖ .p T
1/2,

‖ιᵀT − λ
ᵀV ‖MAX . 1 + ‖λᵀV ‖MAX . s ‖V ‖MAX ,∥∥∥ιᵀT − λ̂ᵀV ∥∥∥ ≤ ‖ιᵀT − λᵀV ‖+

∥∥∥(λ̂− λ)ᵀV
∥∥∥ .p T

1/2 +
∥∥∥λ̂− λ∥∥∥ ‖V ‖ .p T

1/2,∥∥∥Ẑ∥∥∥ . T 1/2
∥∥∥Σ̂z

∥∥∥1/2 .p T
1/2 ‖Σz‖1/2 . T 1/2,∥∥∥(λ̂− λ)ᵀV

∥∥∥
MAX

≤
∥∥∥λ̂− λ∥∥∥

∞
‖V ‖MAX ≤

∥∥∥λ̂− λ∥∥∥ ‖V ‖MAX .p s
1/2(T−1/2 + n−1/2) ‖V ‖MAX ,
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∥∥∥Ẑ∥∥∥
MAX

≤ ‖(η̂ − η)H‖+ ‖Z‖MAX .p ‖Z‖MAX ,

which hold by (IA14), Assumption 4, and Lemma 7. This concludes the

proof.

D. Proof of Lemmas

Proof of (IA1). We provide a sketch of the proof, as it is very similar to

Belloni and Chernozhukov (2013). With respect to optimization problem

(7), we define

Q(γ, λ) = n−1
∥∥∥r̄ − ιnγ − Ĉhλ∥∥∥2 .

We denote the solution to this problem of γ̃ and λ̃. Let δ = λ̃ − λ̆h. Note

that by (5) and (2), we have

E(rt) = ιnγ̆0 + Chλ̆h + Ceλg and r̄ = E(rt) + βgḡ + βhh̄+ ū.

By direct calculations, we have

Q(γ̃, λ̃)−Q(γ̆0, λ̆h)− n−1
∥∥∥ιn(γ̃ − γ̆0) + Ĉhδ

∥∥∥2
=− 2n−1

(
r̄ − ιnγ̆0 − Ĉhλ̆h

)ᵀ (
ιn(γ̃ − γ̆0) + Ĉhδ

)
=− 2n−1

(
βgḡ + βhh̄+ ū+ (Ch − Ĉh)λ̆h + Ceλg

)ᵀ (
ιn(γ̃ − γ̆0) + Ĉhδ

)
≥− 2n−1

∥∥∥βgḡ + βhh̄+ ū+ (Ch − Ĉh)λ̆h
∥∥∥∥∥∥ιn(γ̃ − γ̆0) + Ĉhδ

∥∥∥
− 2n−1

∥∥∥(Ceλg)
ᵀ (ιn : Ĉh)

∥∥∥
1
‖(γ̃ − γ̆0 : δᵀ)ᵀ‖1
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≥− 2n−1
∥∥∥βgḡ + βhh̄+ ū+ (Ch − Ĉh)λ̆h

∥∥∥∥∥∥ιn(γ̃ − γ̆0) + Ĉhδ
∥∥∥

− τ0K−1n−1 (|γ̃ − γ̆0|+ ‖δI‖1 + ‖δIc‖1) ,

where I is the set of nonzeros in λ̆h, I
c is its complement, and δI is a sub-

vector of δ with all entries taken from I.

On the other hand, by definition of γ̃ and λ̃, we have

Q(γ̃, λ̃)−Q(γ̆0, λ̆h) ≤τ0n−1
(∥∥∥(γ̆0 : λ̆ᵀh)

ᵀ
∥∥∥
1
−
∥∥∥(γ̃ : λ̃ᵀ)ᵀ

∥∥∥
1

)
≤τ0n−1(|γ̃ − γ̆0|+ ‖δI‖1 − ‖δIc‖1).

Therefore, we obtain

n−1
∥∥∥ιn(γ̃ − γ̆0) + Ĉhδ

∥∥∥2 − τ0c−1n−1 (|γ̃ − γ̆0|+ ‖δI‖1 + ‖δIc‖1)

− 2n−1
∥∥∥βgḡ + βhh̄+ ū+ (Ch − Ĉh)λ̆h

∥∥∥∥∥∥ιn(γ̃ − γ̆0) + Ĉhδ
∥∥∥

≤τ0n−1(|γ̃ − γ̆0|+ ‖δI‖1 − ‖δIc‖1), (IA19)

where we use the fact that

τ0 ≥ 2c
∥∥∥λᵀgCᵀ

e (ιn : Ĉh)
∥∥∥
1
.

If it holds that

n−1
∥∥∥ιn(γ̃ − γ̆0) + Ĉhδ

∥∥∥− 2n−1
∥∥∥βgḡ + βhh̄+ ū+ (Ch − Ĉh)λ̆h

∥∥∥ < 0,
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we can establish

n−1/2
∥∥∥ιn(γ̃ − γ̆0) + Ĉhδ

∥∥∥ .p sT
−1/2(log(n ∨ p ∨ T ))1/2,

where we use the fact that

n−1/2 ‖βgḡ‖ . ‖βg‖MAX ‖ḡ‖MAX .p T
−1/2, (IA20)

n−1/2 ‖ū‖ . ‖ū‖MAX .p T
−1/2(log(n ∨ p ∨ T ))1/2, (IA21)

n−1/2
∥∥βhh̄∥∥ ≤‖βh‖∞ ∥∥h̄∥∥MAX

.p sT
−1/2(log(n ∨ p ∨ T ))1/2,

(IA22)

n−1/2
∥∥∥(Ch − Ĉh)λ̆h

∥∥∥ .
∥∥∥Ch − Ĉh∥∥∥

MAX

∥∥∥λ̆h∥∥∥
1
.p sT

−1/2(log(n ∨ p ∨ T ))1/2.

(IA23)

Otherwise, from (IA19) it follows that

−c−1 (|γ̃ − γ̆0|+ ‖δI‖1 + ‖δIc‖1) ≤ |γ̃ − γ̆0|+ ‖δI‖1 − ‖δIc‖1 ,

which leads to, writing c̄ = (c+ 1)(c− 1)−1,

‖δIc‖ ≤ c̄(|γ̃ − γ̆0|+ ‖δI‖1).

Then by (IA19) again as well as the restricted eigenvalue condition in Belloni

and Chernozhukov (2013), we obtain

∥∥∥ιn(γ̃ − γ̆0) + Ĉhδ
∥∥∥2 − 2

∥∥∥βgḡ + βhh̄+ ū+ (Ch − Ĉh)λ̆h
∥∥∥∥∥∥ιn(γ̃ − γ̆0) + Ĉhδ

∥∥∥
≤(1 + c−1)τ0(|γ̃ − γ̆0|+ ‖δI‖1) . τ0s

1/2n−1/2
∥∥∥ιn(γ̃ − γ̆0) + Ĉhδ

∥∥∥ .
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We, therefore, have

n−1/2
∥∥∥ιn(γ̃ − γ̆0) + Ĉhδ

∥∥∥ .n−1/2
∥∥∥βgḡ + βhh̄+ ū+ (Ch − Ĉh)λ̆h

∥∥∥+ τ0s
1/2n−1

.psT
−1/2(log(n ∨ p ∨ T ))1/2 + τ0s

1/2n−1.

The Post-LASSO estimator converges at the same rate following the same

arguments as in Belloni and Chernozhukov (2013).

Lemma 1: Under Assumptions 1, 2, 4, 5, we have

n−1/2
∥∥∥M(ιn:Ĉh[Î])

Ĉhχ
ᵀ
∥∥∥ .ps(n

−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2. (IA24)

n−1/2
∥∥∥M(ιn:Ĉh[Î])

Ĉhλh

∥∥∥ .ps(n
−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2. (IA25)

Proof of Lemma 1. Using the fact that Î2 ⊆ Î and by (IA2), we have

n−1/2
∥∥∥M(ιn:Ĉh[Î])

Ĉhχ
ᵀ
∥∥∥ =n−1/2

∥∥∥M(ιn:Ĉh[Î])
(Ĉhχ

ᵀ + ιnξ
ᵀ)
∥∥∥ ≤ n−1/2

∥∥∥M(ιn:Ĉh[Î2])
(Ĉhχ

ᵀ + ιnξ
ᵀ))
∥∥∥

≤n−1/2
∥∥∥ιn(ξ − ξ̃Î2)

ᵀ + Ĉhχ
ᵀ − Ĉhχ̃ᵀ

Î2

∥∥∥
.psT

−1/2(log(n ∨ p ∨ T ))1/2 + ‖τ‖MAX s
1/2n−1.

By Assumptions 4 and 5, our choice of τ satisfies

n−1 ‖τ‖MAX .n−1 max
1≤j≤d

∥∥∥eᵀjCᵀ
e Ĉh

∥∥∥
1
. n−1 ‖Cᵀ

eCh‖MAX + n−1
∥∥∥Cᵀ

e (Ĉh − Ch)
∥∥∥
MAX

.p(n
−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2. (IA26)
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This concludes the proof of (IA24).

Similarly, to prove (IA25), by (IA1) we have

n−1/2
∥∥∥M(ιn:Ĉh[Î1])

(
Ĉhλ̆h + ιnγ̆0

)∥∥∥
≤n−1/2

∥∥∥(ιn : Ĉh)(γ̃Î1 − γ̆0 : (λ̃Î1 − λ̆h)
ᵀ)ᵀ
∥∥∥ .p sT

−1/2(log(n ∨ p ∨ T ))1/2 + τ0s
1/2n−1.

Because we can select τ0 to satisfy

n−1τ0 ≤n−1
∥∥∥λᵀgCᵀ

e (ιn : Ĉh)
∥∥∥
1
≤ n−1 |λᵀgCᵀ

e ιn|+ n−1
∥∥∥λᵀgCᵀ

e Ĉh

∥∥∥
MAX

.n−1 ‖Ceιn‖MAX + ‖Ce‖MAX

∥∥∥Ĉh − Ch∥∥∥
MAX

+ n−1 ‖Cᵀ
eCh‖MAX

.p(n
−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2,

it follows that

n−1/2
∥∥∥M(ιn:Ĉh[Î1])

(
Ĉh(λh + χᵀλg) + ιnγ0

)∥∥∥ .p s(n
−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2.

By the triangle inequality and M(ιn:Ĉh[Î1])
ιn = 0, we have

∥∥∥M(ιn:Ĉh[Î1])
Ĉhλh

∥∥∥ ≤ ∥∥∥M(ιn:Ĉh[Î1])

(
Ĉh(λh + χᵀλg) + ιnγ0

)∥∥∥+
∥∥∥M(ιn:Ĉh[Î1])

Ĉhχ
ᵀ
∥∥∥ ‖λg‖ ,

which, combined with (IA24) and ‖λg‖ . 1, lead to the conclusion.

Lemma 2: Under Assumptions 1, 2, 3, 4, 5, we have

n−1
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
Ĉhλh

∥∥∥ .p s
2(n−1 + T−1) log(n ∨ p ∨ T ). (IA27)
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Proof of Lemma 2 . We note by (6) that

Ĉg = Ĉhχ
ᵀ + Ĉg − Cg + ιnξ

ᵀ + (Ch − Ĉh)χᵀ + Ce, (IA28)

thereby it follows that

n−1
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
Ĉhλh

∥∥∥ ≤n−1 ∥∥∥χĈᵀ
hM(ιn:Ĉh[Î])

Ĉhλh

∥∥∥+ n−1
∥∥∥Cᵀ

eM(ιn:Ĉh[Î])
Ĉhλh

∥∥∥
+ n−1

∥∥∥(Ĉg − Cg + (Ch − Ĉh)χᵀ)ᵀM(ιn:Ĉh[Î])
Ĉhλh

∥∥∥ .
On the one hand, by Lemma 1, we have

n−1
∥∥∥χĈᵀ

hM(ιn:Ĉh[Î])
Ĉhλh

∥∥∥ ≤n−1/2 ∥∥∥M(ιn:Ĉh[Î])
Ĉhχ

ᵀ
∥∥∥n−1/2 ∥∥∥M(ιn:Ĉh[Î])

Ĉhλh

∥∥∥
.ps

2(n−1 + T−1) log(n ∨ p ∨ T ). (IA29)

On the other hand, note that

M(ιn:Ĉh[Î])
Ĉhλh =(ιnγ0 + Ĉhλh)− (ιn : Ĉh)(γ̂0 : λ̂ᵀh)

ᵀ = (ιn : Ĉh)(γ0 − γ̂0 : λᵀh − λ̂
ᵀ
h)

ᵀ,

where (γ̂0 : λ̂ᵀh)
ᵀ = arg minγ,λ{ιnγ0 + Ĉhλh − ιnγ − Ĉhλ : λj = 0, j ∈ Îc}. By

Assumption 3, we have

n−1/2
∥∥∥M(ιn:Ĉh[Î])

Ĉhλh

∥∥∥ =n−1/2
∥∥∥(ιn : Ĉh)(γ0 − γ̂0 : λᵀh − λ̂

ᵀ
h)

ᵀ
∥∥∥

≥φ1/2
min(s+ ŝ+ 1)

[
n−1(ιn : Ĉh)

ᵀ(ιn : Ĉh)
] ∥∥∥(γ0 − γ̂0 : λᵀh − λ̂

ᵀ
h)
∥∥∥

&
∥∥∥(γ0 − γ̂0 : λᵀh − λ̂

ᵀ
h)
∥∥∥ ,
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hence it follows from (IA25) that

∥∥∥(γ0 − γ̂0 : λᵀh − λ̂
ᵀ
h)
∥∥∥ .p s(n

−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2. (IA30)

Using this, we have

n−1
∥∥∥Cᵀ

eM(ιn:Ĉh[Î])
Ĉhλh

∥∥∥ =n−1
∥∥∥Cᵀ

e (ιn : Ĉh)(γ0 − γ̂0 : λᵀh − λ̂
ᵀ
h)

ᵀ
∥∥∥

.n−1
∥∥∥Cᵀ

e (ιn : Ĉh)
∥∥∥
MAX

∥∥∥(γ0 − γ̂0 : λᵀh − λ̂
ᵀ
h)

ᵀ
∥∥∥
1
.

(IA31)

Using (IA5) and Assumption 4, it follows that

n−1
∥∥∥Cᵀ

e (ιn : Ĉh)
∥∥∥
MAX

≤n−1
∥∥∥Cᵀ

e (Ĉh − Ch)
∥∥∥
MAX

+ n−1 ‖Cᵀ
eCh‖MAX + n−1 ‖Cᵀ

e ιn‖MAX

. ‖Ce‖MAX

∥∥∥Ĉh − Ch∥∥∥
MAX

+ n−1 ‖Cᵀ
eCh‖MAX + n−1 ‖Cᵀ

e ιn‖MAX

.p(n
−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2. (IA32)

Moreover, since by sparsity of λh and λ̂h, we have

∥∥∥(γ0 − γ̂0 : λᵀh − λ̂
ᵀ
h)

ᵀ
∥∥∥
1
≤ (s+ ŝ+ 1)1/2

∥∥∥(γ0 − γ̂0 : λᵀh − λ̂
ᵀ
h)

ᵀ
∥∥∥ .

Combining (IA30), (IA31), and (IA32), we obtain

n−1
∥∥∥Cᵀ

eM(ιn:Ĉh[Î])
Ĉhλh

∥∥∥ .p s
3/2(n−1 + T−1) log(n ∨ p ∨ T ). (IA33)
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Finally, by (IA25) we have

n−1
∥∥∥(Ĉg − Cg + (Ch − Ĉh)χᵀ)ᵀM(ιn:Ĉh[Î])

Ĉhλh

∥∥∥
.
∥∥∥Ĉg − Cg + (Ch − Ĉh)χᵀ

∥∥∥
MAX

n−1/2
∥∥∥M(ιn:Ĉh[Î])

Ĉhλh

∥∥∥
.ps

2(n−1/2T−1/2 + T−1)(log(n ∨ p ∨ T ))1/2.

The above estimate, along with (IA33) and (IA29), conclude the proof of

(IA27).

Lemma 3: Under Assumptions 1, 2, 3, 4, 5, we have

n−1
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
Chη

ᵀ
∥∥∥ .p s(n

−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2. (IA34)

n−1
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
(βg − ĈgΣ−1z )

∥∥∥ .p s(n
−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2.

(IA35)

Proof of Lemma 3. (i) By (6), we have

n−1
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
Chη

ᵀ
∥∥∥ ≤n−1 ∥∥∥Cᵀ

eM(ιn:Ĉh[Î])
Chη

ᵀ
∥∥∥+ n−1

∥∥∥χĈᵀ
hM(ιn:Ĉh[Î])

Chη
ᵀ
∥∥∥

+ n−1
∥∥∥((Ĉg − Cg)ᵀ + χ(Ch − Ĉh)ᵀ

)
M(ιn:Ĉh[Î])

Chη
ᵀ
∥∥∥ .

Moreover, by (IA24), we obtain

n−1
∥∥∥χĈᵀ

hM(ιn:Ĉh[Î])
Chη

ᵀ
∥∥∥ ≤n−1/2 ∥∥∥χĈᵀ

hM(ιn:Ĉh[Î])

∥∥∥n−1/2 ‖Chηᵀ‖
.ps(n

−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2, (IA36)
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where we use the fact that Cg = Chη
ᵀ + Cz and that

n−1/2 ‖Chηᵀ‖ . ‖Chηᵀ‖MAX . ‖Cg‖MAX + ‖Cz‖MAX . 1.

In addition, we have

n−1
∥∥∥Cᵀ

eM(ιn:Ĉh[Î])
Chη

ᵀ
∥∥∥ ≤n−1 ‖Cᵀ

eChη
ᵀ‖+ n−1

∥∥∥Cᵀ
eP(ιn:Ĉh[Î])

Chη
ᵀ
∥∥∥ .

To bound the first term, we have

n−1 ‖Cᵀ
eChη

ᵀ‖ . n−1 ‖Cᵀ
eCh‖MAX ‖η‖∞ .p sn

−1/2(log(n ∨ p ∨ T ))1/2.

As to the second term, using (IA32) we obtain

n−1
∥∥∥Cᵀ

eP(ιn:Ĉh[Î])
Chη

ᵀ
∥∥∥

=n−1
∥∥∥∥Cᵀ

e (ιn : Ĉh[Î])
(

(ιn : Ĉh[Î])ᵀ(ιn : Ĉh[Î])
)−1

(ιn : Ĉh[Î])ᵀChη
ᵀ

∥∥∥∥
≤n−1

∥∥∥Cᵀ
e (ιn : Ĉh[Î])

∥∥∥∥∥∥∥((ιn : Ĉh[Î])ᵀ(ιn : Ĉh[Î])
)−1∥∥∥∥∥∥∥(ιn : Ĉh[Î])ᵀChη

ᵀ
∥∥∥

.(1 + ŝ)φ−1min(ŝ+ 1)
[
n−1(ιn : Ĉh)

ᵀ(ιn : Ĉh)
]
n−1

∥∥∥Cᵀ
e (ιn : Ĉh[Î])

∥∥∥
MAX

n−1
∥∥∥(ιn : Ĉh[Î])ᵀChη

ᵀ
∥∥∥
MAX

.ps(n
−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2,

where we also use ‖Chη‖MAX ≤ ‖Cg‖MAX + ‖Cz‖MAX . 1, and

n−1
∥∥∥(ιn : Ĉh[Î])ᵀChη

∥∥∥
MAX

≤n−1
∥∥∥(ιn : Ĉh)

ᵀChη
∥∥∥
MAX

.
∥∥∥(ιn : Ĉh)

∥∥∥
MAX
‖Chη‖MAX

.
(
‖(ιn : Ch)‖MAX +

∥∥∥Ĉh − Ch∥∥∥
MAX

)
‖Chη‖MAX .p 1.
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Therefore, we have

n−1
∥∥∥Cᵀ

eM(ιn:Ĉh[Î])
Chη

ᵀ
∥∥∥ .p s(n

−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2. (IA37)

Similarly, because we have

n−1
∥∥∥((Ĉg − Cg)ᵀ + χ(Ch − Ĉh)ᵀ

)
Chη

ᵀ
∥∥∥

.
∥∥∥(Ĉg − Cg)ᵀ + χ(Ch − Ĉh)ᵀ

∥∥∥
MAX
‖Chηᵀ‖MAX .p sT

−1/2(log(n ∨ p ∨ T ))1/2.

n−1
∥∥∥((Ĉg − Cg)ᵀ + χ(Ch − Ĉh)ᵀ

)
(ιn : Ĉh[Î])

∥∥∥
MAX

≤K
∥∥∥(Ĉg − Cg)ᵀ + χ(Ch − Ĉh)ᵀ

∥∥∥
MAX

∥∥∥(ιn : Ĉh[Î])
∥∥∥
MAX

.p sT
−1/2(log(n ∨ p ∨ T ))1/2,

it follows that

n−1
∥∥∥((Ĉg − Cg)ᵀ + χ(Ch − Ĉh)ᵀ

)
M(ιn:Ĉh[Î])

Chη
ᵀ
∥∥∥ .p s(n

−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2,

which, along with (IA36) and (IA37), establish the first claim.

(ii) Next, by (5) we have

Ĉg = Ĉhη
ᵀ + Ĉz.

Recall that βg = CzΣ
−1
z . We therefore have

n−1
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
(βg − ĈgΣ−1z )

∥∥∥
≤n−1

∥∥∥Ĉᵀ
gM(ιn:Ĉh[Î])

(Cz − Ĉz)Σ−1z
∥∥∥+ n−1

∥∥∥Ĉᵀ
gM(ιn:Ĉh[Î])

(Ĉh − Ch)ηᵀΣ−1z
∥∥∥

+ n−1
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
Chη

ᵀΣ−1z

∥∥∥ .
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Using Assumption 4 and
∥∥∥M(ιn:Ĉh[Î])

∥∥∥ ≤ 1, we have

n−1
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
(Cz − Ĉz)Σ−1z

∥∥∥
.
∥∥∥Ĉg∥∥∥

MAX

∥∥∥Cz − Ĉz∥∥∥
MAX

∥∥Σ−1z
∥∥ .p T

−1/2(log(n ∨ p ∨ T ))1/2, (IA38)

where we also use the fact that

∥∥Σ−1z
∥∥ ≤ λ−1min(Σz) . 1,

∥∥∥Ĉg∥∥∥
MAX

≤
∥∥∥Ĉg − Cg∥∥∥

MAX
+ ‖Cg‖MAX . 1.

Similarly, we obtain

n−1
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
(Ĉh − Ch)ηᵀΣ−1z

∥∥∥ .
∥∥∥Ĉg∥∥∥

MAX

∥∥∥Ĉh − Ch∥∥∥
MAX
‖η‖∞

∥∥Σ−1z
∥∥

.psT
−1/2(log(n ∨ p ∨ T ))1/2. (IA39)

Combining (IA38), (IA39), and (IA34) concludes the proof.

Lemma 4: Under Assumptions 1, 2, 3, 4, 5, we have

n−1
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])
(βgη + βh)

(
T−1H̄V̄ ᵀλ− Σh(η

ᵀλg + λh)− h̄
)∥∥∥

.ps
2(n−1/2T−1/2 + T−1) log(n ∨ p ∨ T ). (IA40)

Proof of Lemma 4. From (IA24) and Assumption 4, it follows that

n−1
∥∥∥χĈᵀ

hM(ιn:Ĉh[Î])
(βgη + βh)

(
T−1H̄V̄ ᵀλ− Σh(η

ᵀλg + λh)− h̄
)∥∥∥

≤n−1/2
∥∥∥χĈᵀ

hM(ιn:Ĉh[Î])

∥∥∥ ‖βgη + βh‖∞
(∥∥T−1H̄V̄ ᵀλ− Σh(η

ᵀλg + λh)
∥∥
MAX

+
∥∥h̄∥∥

MAX

)
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.ps
2(n−1/2T−1/2 + T−1) log(n ∨ p ∨ T ). (IA41)

Next, by the triangle inequality, we have

n−1
∥∥∥Cᵀ

eM(ιn:Ĉh[Î])
(βgη + βh)

(
T−1H̄Z̄ᵀλg +

(
T−1H̄H̄ᵀ − Σh

)
(ηᵀλg + λh)− h̄

)∥∥∥
≤n−1

∥∥Cᵀ
e (βgη + βh)

(
T−1H̄V̄ ᵀλ− Σh(η

ᵀλg + λh)− h̄
)∥∥

+ n−1
∥∥∥Cᵀ

eP(ιn:Ĉh[Î])
(βgη + βh)

(
T−1H̄V̄ ᵀλ− Σh(η

ᵀλg + λh)− h̄
)∥∥∥ .

For the first term, by Assumption 5 we have

n−1
∥∥Cᵀ

e (βgη + βh)
(
T−1H̄V̄ ᵀλ− Σh(η

ᵀλg + λh)− h̄
)∥∥

≤n−1 ‖Cᵀ
e (βgη + βh)‖∞

∥∥(T−1H̄V̄ ᵀλ− Σh(η
ᵀλg + λh)− h̄

)∥∥
MAX

.psn
−1/2T−1/2(log(n ∨ p ∨ T ))1/2.

For the second term, we use Assumptions 1, 3, 4, as well as (IA32), to obtain

n−1
∥∥∥Cᵀ

eP(ιn:Ĉh[Î])
(βgη + βh)

(
T−1H̄V̄ ᵀλ− Σh(η

ᵀλg + λh)− h̄
)∥∥∥

.(1 + ŝ)φ−1min(ŝ+ 1)
[
n−1(ιn : Ĉh)

ᵀ(ιn : Ĉh)
]
n−1

∥∥∥Cᵀ
e (ιn : Ĉh[Î])

∥∥∥
MAX

×
∥∥∥(ιn : Ĉh[Î])ᵀ

∥∥∥
MAX
‖βgη + βh‖∞

∥∥T−1H̄V̄ ᵀλ− Σh(η
ᵀλg + λh)− h̄

∥∥
MAX

.ps
2(n−1/2T−1/2 + T−1) log(n ∨ p ∨ T ).

Finally, by Assumptions 1 and 4, we have

n−1
∥∥∥(Ĉg − Cg + (Ch − Ĉh)χᵀ)ᵀM(ιn:Ĉh[Î])

(βgη + βh)
(
T−1H̄V̄ ᵀλ− Σh(η

ᵀλg + λh)− h̄
)∥∥∥
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.
∥∥∥(Ĉg − Cg + (Ch − Ĉh)χᵀ)ᵀ

∥∥∥
MAX
‖βgη + βh‖∞

∥∥T−1H̄V̄ ᵀλ− Σh(η
ᵀλg + λh)− h̄

∥∥
MAX

.ps
2T−1 log(n ∨ p ∨ T ).

The conclusion then follows from (IA28).

Lemma 5: Under Assumptions 1, 2, 3, 4, we have

n−1
∥∥∥Ĉᵀ

gM(ιn:Ĉh[Î])

(
ū− T−1Ū V̄ ᵀλ

)∥∥∥ .p s(n
−1/2T−1/2 + T−1) log(n ∨ p ∨ T ).

(IA42)

Proof of Lemma 5. Note that by (IA24), we have

n−1
∥∥∥χĈᵀ

hM(ιn:Ĉh[Î])

(
ū− T−1Ū V̄ ᵀλ

)∥∥∥ ≤n−1/2 ∥∥∥M(ιn:Ĉh[Î])
Ĉhχ

ᵀ
∥∥∥n−1/2 ∥∥ū− T−1Ū V̄ ᵀλ

∥∥
.ps(n

−1/2T−1/2 + T−1) log(n ∨ p ∨ T ),

where we use the following estimates as a result of Assumptions 1 and 4:

n−1/2 ‖ū‖ . ‖ū‖MAX .p T
−1/2(log n ∨ p ∨ T )1/2,

n−1/2
∥∥T−1Ū V̄ ᵀλ

∥∥ .
∥∥T−1ŪM̄ᵀγ0

∥∥
MAX

.p T
−1/2(log(n ∨ p ∨ T ))1/2.

Moreover, by triangle inequality, we have

n−1
∥∥∥Cᵀ

eM(ιn:Ĉh[Î])

(
ū− T−1Ū V̄ ᵀλ

)∥∥∥
≤n−1

∥∥Cᵀ
e

(
ū− T−1Ū V̄ ᵀλ

)∥∥+ n−1
∥∥∥Cᵀ

eP(ιn:Ĉh[Î])

(
ū− T−1Ū V̄ ᵀλ

)∥∥∥ .
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For the first term, we have

n−1
∥∥Cᵀ

e

(
ū− T−1Ū V̄ ᵀλ

)∥∥ ≤ n−1 ‖Cᵀ
e ū‖+ T−1n−1

∥∥Cᵀ
e Ū V̄

ᵀλ
∥∥ .p sn

−1/2T−1/2.

As to the second term, using Assumption 3 and (IA32) we have

n−1
∥∥∥Cᵀ

eP(ιn:Ĉh[Î])

(
ū− T−1Ū V̄ ᵀλ

)∥∥∥
=n−1

∥∥∥∥Cᵀ
e (ιn : Ĉh[Î])

(
(ιn : Ĉh[Î])

ᵀ
(ιn : Ĉh[Î])

)−1
(ιn : Ĉh[Î])

ᵀ (
ū− T−1Ū V̄ ᵀλ

)∥∥∥∥
.sn−1

∥∥∥Cᵀ
e (ιn : Ĉh[Î])

∥∥∥
MAX

n−1
∥∥∥(ιn : Ĉh[Î])

ᵀ (
ū− T−1Ū V̄ ᵀλ

)∥∥∥
MAX

.ps(n
−1/2T−1/2 + T−1) log(n ∨ p ∨ T ),

where we also use

n−1
∥∥∥(ιn : Ĉh)

ᵀ
(
ū− T−1Ū V̄ ᵀλ

)∥∥∥
MAX

≤
(∥∥∥Ĉh − Ch∥∥∥

MAX
+ ‖(ιn : Ch)‖MAX

)∥∥ū− T−1Ū V̄ ᵀλ
∥∥
MAX

.pT
−1/2(log(n ∨ p ∨ T ))1/2.

Finally, we note that

n−1
∥∥∥(Ĉg − Cg + (Ch − Ĉh)χᵀ

)ᵀ
M(ιn:Ĉh[Î])

(
ū− T−1Ū V̄ ᵀλ

)∥∥∥
.
∥∥∥Ĉg − Cg + (Ch − Ĉh)χᵀ

∥∥∥
MAX

∥∥ū− T−1ŪM̄ᵀ
∥∥
MAX

.p sT
−1 log(n ∨ p ∨ T ).

This concludes the proof.

Lemma 6: Under Assumptions 1, 2, 3, 4, 5, we have

∥∥∥∥n(Ĉᵀ
gM(ιn:Ĉh[Î])

Ĉg

)−1∥∥∥∥ .p 1.
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Proof of Lemma 6. Note that by (IA28), we have

Ĉᵀ
gM(ιn:Ĉh[Î])

Ĉg

=Cᵀ
eM(ιn:Ĉh[Î])

Ce + Cᵀ
eM(ιn:Ĉh[Î])

Ĉhχ
ᵀ + χĈᵀ

hM(ιn:Ĉh[Î])
Ce + χĈᵀ

hM(ιn:Ĉh[Î])
Ĉhχ

ᵀ

+ Cᵀ
eM(ιn:Ĉh[Î])

(
Ĉg − Cg + (Ch − Ĉh)χᵀ

)
+
(
Ĉg − Cg + (Ch − Ĉh)χᵀ

)ᵀ
M(ιn:Ĉh[Î])

Ce

+ χĈᵀ
hM(ιn:Ĉh[Î])

(
Ĉg − Cg + (Ch − Ĉh)χᵀ

)
+
(
Ĉg − Cg + (Ch − Ĉh)χᵀ

)ᵀ
M(ιn:Ĉh[Î])

Ĉhχ
ᵀ

+
(
Ĉg − Cg + (Ch − Ĉh)χᵀ

)ᵀ
M(ιn:Ĉh[Î])

(
Ĉg − Cg + (Ch − Ĉh)χᵀ

)

There are nine terms in total on the right-hand side. By (IA24), we have

n−1
∥∥∥χĈᵀ

hM(ιn:Ĉh[Î])
Ce

∥∥∥ =n−1
∥∥∥Cᵀ

eM(ιn:Ĉh[Î])
Ĉhχ

ᵀ
∥∥∥ . ‖Ce‖MAX n

−1/2
∥∥∥M(ιn:Ĉh[Î])

Ĉhχ
ᵀ
∥∥∥

.ps(n
−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2,

n−1
∥∥∥χĈᵀ

hM(ιn:Ĉh[Î])
Ĉhχ

ᵀ
∥∥∥ ≤n−1 ∥∥∥M(ιn:Ĉh[Î])

Ĉhχ
ᵀ
∥∥∥2 .p s

2(n−1 + T−1) log(n ∨ p ∨ T ).

Also, we have

n−1
∥∥∥Cᵀ

eM(ιn:Ĉh[Î])

(
Ĉg − Cg + (Ch − Ĉh)χᵀ

)∥∥∥
=n−1

∥∥∥(Ĉg − Cg + (Ch − Ĉh)χᵀ
)
M(ιn:Ĉh[Î])

Ce

∥∥∥
. ‖Ce‖MAX

∥∥∥Ĉg − Cg + (Ch − Ĉh)χᵀ
∥∥∥
MAX

.p sT
−1/2(log(n ∨ p ∨ T ))1/2,

n−1
∥∥∥χĈᵀ

hM(ιn:Ĉh[Î])

(
Ĉg − Cg + (Ch − Ĉh)χᵀ

)∥∥∥
=n−1

∥∥∥(Ĉg − Cg + (Ch − Ĉh)χᵀ
)
M(ιn:Ĉh[Î])

Ĉhχ
ᵀ
∥∥∥

.n−1/2
∥∥∥χĈᵀ

hM(ιn:Ĉh[Î])

∥∥∥∥∥∥Ĉg − Cg + (Ch − Ĉh)χᵀ
∥∥∥
MAX

.ps
2(n−1/2T−1/2 + T−1) log(n ∨ p ∨ T ),
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n−1
∥∥∥(Ĉg − Cg + (Ch − Ĉh)χᵀ

)ᵀ
M(ιn:Ĉh[Î])

(
Ĉg − Cg + (Ch − Ĉh)χᵀ

)∥∥∥
.
∥∥∥Ĉg − Cg + (Ch − Ĉh)χᵀ

∥∥∥2
MAX

.p s
2T−1 log(n ∨ p ∨ T ).

Finally, by (IA32) and Assumptions 2 and 3, we have

n−1
∥∥∥Cᵀ

eP(ιn:Ĉh[Î])
Ce

∥∥∥ =n−1
∥∥∥∥Cᵀ

e (ιn : Ĉh[Î])
(

(ιn : Ĉh[Î])ᵀ(ιn : Ĉh[Î])
)−1

(ιn : Ĉh[Î])ᵀCe

∥∥∥∥
.sn−2

∥∥∥Cᵀ
e (ιn : Ĉh[Î])

∥∥∥2
MAX

.p s(n
−1 + T−1) log(n ∨ p ∨ T ).

We therefore obtain

n−1Ĉᵀ
gM(ιn:Ĉh[Î])

Ĉg = n−1Cᵀ
eCe + op(1).

The conclusion follows from (IA5) and Weyl inequalities.

Lemma 7: Under Assumptions 1, 2, 3, 4, 5, 6, we have

∥∥∥(γ̂0 : λ̂ᵀh)− (γ0 : λᵀh)
∥∥∥ .p s(n

−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2.

Proof. It follows from (9) that

(γ̂0 : λ̂h[Î]ᵀ)ᵀ =
((
ιn : Ĉh[Î]

)ᵀ (
ιn : Ĉh[Î]

))−1 (
ιn : Ĉh[Î]

)ᵀ (
r̄ − Ĉgλ̂g

)
,

which implies that

∥∥∥(γ̂0 : λ̂ᵀh)
ᵀ − (γ0 : λᵀh)

ᵀ
∥∥∥ ≤ ∥∥∥(γ̃0 : λ̃ᵀh)

ᵀ − (γ̆0 : λ̆ᵀh)
ᵀ
∥∥∥+

∥∥∥(ξ̃ : χ̃)ᵀλ̂g − (ξ : χ)ᵀλg

∥∥∥ ,
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where

(γ̃0 : λ̃ᵀh)
ᵀ = arg min

γ,λ

{∥∥∥r̄ − ιnγ − Ĉhλ∥∥∥ : λj = 0, j /∈ Î
}
,

(ξ̃j : χ̃j,·)
ᵀ = arg min

ξj ,χj,·

{∥∥∥Ĉg,·,j − ιnξj − Ĉhχᵀ
j,·

∥∥∥ : χj,k = 0, k /∈ Î
}
, j = 1, 2, . . . , d.

Moreover, because

M(ιn:Ĉh[Î])
r̄ = ιnγ̆0 + Ĉhλ̆h − ιnγ̃0 − Ĉhλ̃h + (Ch − Ĉh)λ̆h + Ceλg + βgḡ + βhh̄+ ū,

we obtain, using Î1 ⊆ Î, (IA1), (IA5), (IA20) - (IA23), (IA26),

n−1/2
∥∥∥(ιn : Ĉh

)(
γ̃0 − γ̆0 : (λ̃h − λ̆h)ᵀ

)ᵀ∥∥∥
≤n−1/2

∥∥∥M(ιn:Ĉh[Î1])
r̄
∥∥∥+ n−1/2

∥∥∥(Ch − Ĉh)λ̆h + Ceλg + βgḡ + βhh̄+ ū
∥∥∥

≤n−1/2
∥∥∥(ιn : Ĉh

)(
γ̃Î1 − γ̆0 : (λ̃Î1 − λ̆h)

ᵀ
)ᵀ∥∥∥+ 2n−1/2

∥∥∥(Ch − Ĉh)λ̆h + Ceλg + βgḡ + βhh̄+ ū
∥∥∥

.ps(n
−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2.

Since we have

n−1/2
∥∥∥(ιn : Ĉh

)(
γ̃0 − γ̆0 : (λ̃h − λ̆h)ᵀ

)ᵀ∥∥∥
≥φ1/2

min(1 + ŝ)
[
n−1(ιn : Ĉh)

ᵀ(ιn : Ĉh)
] ∥∥∥(γ̃0 − γ̆0 : (λ̃h − λ̆h)ᵀ

)∥∥∥ ,
it follows that

∥∥∥(γ̃0 − γ̆0 : (λ̃h − λ̆h)ᵀ
)∥∥∥ .p s(n

−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2.
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Similarly, we can obtain

∥∥∥(ξ̃ − ξ : χ̃− χ
)∥∥∥ .p s(n

−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2.

Therefore, using this, as well as Assumption 1 and Theorem 1, we obtain

∥∥∥(ξ̃ : χ̃)ᵀλ̂g − (ξ : χ)ᵀλg

∥∥∥ ≤∥∥∥(ξ̃ − ξ : χ̃− χ)
∥∥∥∥∥∥λ̂g∥∥∥+ ‖(ξ : χ)‖

∥∥∥λ̂g − λg∥∥∥
.ps(n

−1/2 + T−1/2)(log(n ∨ p ∨ T ))1/2.

This concludes the proof.
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