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ABSTRACT

The internet appendix is organized as follows. In I, we show results
for Monte Carlo simulations and a robustness check to the recursive
factor evaluation. In II, we include technical details and mathematical

proof for our proposed methodology.

I. Simulation Evidence

One of the central advantages of our double-selection method is that it pro-
duces proper inference on the SDF loading A, of a factor, explicitly taking
into account the possibility that the model selection step (based on LASSO)
may mistakenly include some irrelevant factors or exclude useful factors in

any finite sample.

In this section, we study the finite-sample performance of our inference pro-
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cedure using Monte Carlo simulations. We show that if one were to make
inference on A, by selecting the control factors via standard LASSO (and
ignoring potential mistakes in model selection), the omitted variable bias
resulting from selection mistakes would yield incorrect inference about A,.
Instead, our double-selection procedure fully corrects for this problem in a
finite sample and produces valid inference. In what follows, we first discuss
the simulation procedure in Section A. We then provide the results of the

Monte Carlo experiment in Section B.

A.  Simulating the Data-Generating Process (DGP)

We are interested in making inference on g, the vector of SDF loadings of
three factors in ¢y, where g; includes a useful factor (denoted by g¢1;) as well
as a useless factor and a redundant factor (denoted together by the 2 x 1
vector go;). Note that go; has a zero SDF loading, that is, Ay, = 0, but
the covariance of the redundant factor is correlated with the cross section of
expected returns. In our simulation, h; comprises a large set of factors that
includes four useful factors, hy;, and p — 4 useless and redundant factors, ho;

(so the total dimension of h; is p).
To simulate returns of test assets and factors, we employ the following steps:

(1) Simulate C. (n x d) and Cj, (n x 4) independently from multivariate

normal distributions.

(2) Calculate Cp, = 1,00 +Ch, 0] +C., where C. is simulated independently
from an n x (p —4) multivariate normal distribution, 6y is a (p —4) x 1

vector, and 6, is a (p —4) X 4 matrix.



(3) Calculate Cy, from C, and Cj, = (Cy, : Cp,) using Cy = 1, +CpxT+C.,

where y is a d X p matrix.

4) Calculate C, using C, = C, — (07, as implied from the DGP ¢, =
g

nh; + z; we aim to simulate, where 7 is a d X p matrix.

(5) Calculate E(r;) using E(r;) = t,y0 + CyAg + CpAp, where A\, is a d x 1

vector and Ay, is a p x 1 vector.

(6) Calculate 8, = C,X " and B, = C), %, ' — 3,n, as implied from the DGP

of r; we aim to simulate: r, = E(ry) + S,9: + Brhe + uy.

(7) For each Monte Carlo trial, generate u; from a Student’s ¢ distribution
with five degrees of freedom and covariance matrix ¥,,. Generate h; ~
N,(0,%,) and 2z ~ Ny(0,X,), and calculate g, and then r; using the

DGPs specified in steps (4) and (6), respectively.

The total number of Monte Carlo trials is 2,000. Because we assume non-
random selection of assets and that the randomness in the selection of test
assets does not affect the inference to the first order, we simulate only once
Cy, Chp, and hence B,, B, in Steps (1) - (6), so that they are constant

throughout the Monte Carlo trials in Step (7).

We calibrate our DGP to mimic the actual Fama-French five-factor model.
In particular, we calibrate x, n, A, ¥,, the mean and covariance matrices
of C¢, Cy,, as well as 3, to match the summary statistics (time-series and
cross-sectional R?, factor return covariances, etc.) of the Fama-French five
factors estimated using characteristic-sorted portfolios, described in detail in

Section I1. We calibrate a diagonal ¥, to match the average time-series R? for



this five-factor model. For redundant and useless factors, we calibrate their
parameters using all of the other factors in our data library, again described
in detail in Section II. We maintain the sparsity requirement on y, n, and A
by restricting the loadings of C,, E(r;), and g on Cj, and hy to be zero. We
set to zero the loading of C; on C}, for the useless factor in g,. Moreover,
we randomly simulate 6; from normal distribution so that factors in hy are
either redundant or (rather close to) useless. We allow nonzero loading of go
on hy, and the covariance matrix Y; to be nondiagonal, so that both useless
and redundant factors in g, and hs can be correlated with the true factors
in g; and h;, that is, they can command risk premia simply due to this
correlation, even though they have zero SDF loadings because they do not

affect marginal utility once the true factors are taken into account.

B.  Simulation Results

In this section, we report results of various simulations from the model. We
consider various settings with number of total factors p = 25,50, 100, 200,

number of assets n = 100, 200, 300, and length of time series T" = 240, 360, 480.

Figure TA.1 compares the asymptotic distributions of the proposed double-
selection estimator with that of the single-selection estimator for the case p =
100, n = 300, and T' = 480. The right side of the figure shows the distribution
of the t-test for A, of the three factors (useful in the first row, redundant in the
second row, and useless in the third row) when using the controls selected
by standard LASSO (i.e., a single-selection-based estimator). The panels

show that inference without double-selection adjustment displays substantial



bias for useful and redundant factors and distortion from normality for all
factors. The left side of the figure shows instead that our double-selection
procedure produces an unbiased and asymptotically normal test, as predicted

by Theorem 1.

Figure TA.2 plots the frequency with which each of the simulated factors is
selected across simulations (with each bar corresponding to a different simu-
lated factor, identified by its ID from 1 to 100). The top panel corresponds
to the factors selected in the first LASSO selection, the second panel cor-
responds to the factors selected in the second selection, and the last panel

corresponds to the union of the two.

Note that, by construction, the true factors in h; are the first four factors
(the fifth true factor is part of g;). So if model selection were able to identify
the correct control factors in all samples perfectly, the first four bars should
read 100%, while all other bars (corresponding to factors 5-100) should read
0%.

This is not the case in the simulations. While some factors are often selected
by LASSO (top panel), not all are: factor 1 is selected in about 70% of the
samples, and factor 3 in about 40% of the samples. Therefore, in a large
fraction of samples, the control model would not include some true factors,
generating the omitted variable bias displayed in Figure IA.1. At the same
time, LASSO often includes erroneously spurious factors, as shown in Table
TA.V. The key to our procedure’s ability make correct inference is that the

two-step selection procedure minimizes the potential omitted factor bias.



Tables TA.II, TA.III, and IA.ITV compare the biases and root-mean-squared
errors (RMSEs) for double-selection (DS), single-selection (SS), and the OLS
estimators for each entry of ;. All regularization parameters are selected

based on ten-fold cross-validation.

Not surprisingly, the bias of SS is clearly visible when compared to DS and
OLS for useful and redundant factors. In addition, DS outperforms SS and
OLS in terms of their RMSEs in these scenarios. The efficiency gain of DS
over OLS is particularly substantial when p is large relative to n. When p is
equal to n, OLS becomes infeasible (because the number of regressors is p+d).
For the useless factor, because SS does not suffer from bias, its RMSE is the
smallest among all. This result confirms the efficiency benefits of machine
learning techniques over OLS. Although DS is generally less biased than SS,
its main advantage relative to SS is in removing the distortions to inference,

as can be seen from the distribution of standardized statistics in Figure

TA.1.

Overall, the simulation results confirm the results of our econometric analysis:

the DS estimator outperforms the benchmarks.



Table IA.I. Testing Factors Recursively by Sample Year

This table provides a robustness check to the recursive factor evaluation in the main text.
However, the date used to order the factors is the last date of the sample used in each

paper.

(1) (2) (3)

Year # Assets # Controls New factors (IDs)

1995 240 47 42 43 46 52 53 b4 55 56 57 69 71

1996 306 58 47

1997 306 59 58 59 60 61 63 67

1998 342 65 48 49 50 51

1999 360 69 65 92 95

2000 378 72 62 74 93 97 98 99 104

2001 408 79 68 70 vw 76 77 78 79 8 81 82 83
8 8 8 87 8 89 90 101 102 108

2002 504 100 7273 112 116 117 118 119 120

2003 546 108 94 96 100 105 106 114

2004 582 114 111

2005 588 115 103 113 115 123 127 129 131

2006 630 122 91 110 122 126 144

2007 654 127

2008 654 127 124 125 128 130 132 134 139

2009 696 134 121 133 135 136

2010 720 138 138 142 143

2011 738 141 137

2012 738 142 140 141 147 148 149 150

2013 738 148 145 146




Table TA.II. Asymptotic Approximation Performance for

This table reports the biases and root-mean-squared errors (RMSE) of the estimates of
the SDF loading A of the useful factor from Monte Carlo simulations. DS is the double-
selection estimator, SS is the single-selection estimator, and OLS is ordinary least squares
without selection. The regularization parameters in the LASSO are selected using ten-
fold cross-validation, where we partition the cross-validation subsamples in the time-series
dimension. The true value Aygeru1 is 16.76. Note that in cases of n > p, OLS is infeasible.

p=25 p=>50 p =100 p =200
T n DS SS OLS DS SS OLS DS SS OLS DS SS OLS
Panel A: Bias
240 100 -0.71  -9.23 -0.19 -0.96 -9.32  -0.13 -2.06 -11.26 - -3.37 -9.88 -
240 200 -0.82 -9.53 -0.13 -0.95 -9.11 -0.14 -1.80 -9.01 -0.43 -3.14 -9.65 -
240 300 -0.26 -7.87 0.06 -1.06 -10.39 -0.50 -1.41 -843 -0.24 -2.81 -9.93 0.08
360 100 -0.31 -8.33 -0.14 -0.40 -8.71  0.08 -1.60 -10.66 - -2.27  -9.07 -
360 200 -0.32 -8.48 0.00 -0.43 -844  -0.08 -1.33 -831 -0.28 -2.23 879 -
360 300 -0.05 -7.07 0.18 -0.51 -9.44  -0.16 -1.09 -741  -0.13 -1.99 -879 -0.31
480 100 -0.21 -7.87 0.03 -0.12 -8.22  0.39 -1.02 -10.06 - -1.83 -871 -
480 200 -0.14 -7.86 0.13 -0.19 -7.80 0.06 -0.87 -7.89  -0.09 -1.57 -8.57 -
480 300 -0.01 -6.76 0.15 -0.25 -8.74  0.05 -0.55 -7.18  -0.07 -1.33  -853 -0.11
Panel B: RMSE

240 100 580 11.60 6.46 6.14 11.57 8.19 7.52 1393 - 8.98 12.23 -
240 200 5.78 12.05 5.84 594 11.56 6.55 6.73 11.33  9.07 7.88 11.82 -
240 300 554 10.33 5.66 583 13.05 5.98 6.46 11.09 7.21 754 1194 19.76
360 100 4.62 10.90 5.07 4.88 1094 6.68 573 1312 - 6.88 11.23 -
360 200 4.53 11.23 4.63 4.66 10.80 5.23 5.22 10.57  6.55 6.54 10.84 -
360 300 4.40  9.66  4.49 4.66 12.23 4.84 5.03 9.99 5.55 6.13 10.89 10.11
480 100 410 10.31 4.44 4.16  10.60 5.53 501 1277 - 592 10.83 -
480 200 3.99 10.63 4.12 4.00 10.21 445 4.47 1017  5.64 541 10.52 -
480 300 388 923 4.01 3.92 11.51 4.15 4.22  9.77 4.71 4.85 10.56 7.88




Table TA.I11. Asymptotic Approximation Performance for \ .qundant

This table provides the biases and root-mean-squared errors (RMSE) of the estimates
of the SDF loading A\ of the redundant factor from Monte Carlo simulations. DS is the
double-selection estimator, SS is the single-selection estimator, and OLS is the ordinary
least squares without selection. The regularization parameters in the LASSO are selected
using 10-fold cross-validation, where we partition the cross-validation subsamples in the
time series dimension. The true value Arequndant 1S zero. Note that in cases of n > p, OLS
is infeasible.

p=25 p=>50 p =100 p =200
T n DS SS OLS DS SS OLS DS SS OLS DS SS OLS
Panel A: Bias
240 100 0.24 6.34 0.10 029 624 -0.22 0.64 7.23 - 1.58 595 -
240 200 039 6.78 0.14 0.11 725  0.08 0.33 6.74  0.06 1.22 57 -

240 300 0.17 598  0.07 0.15 6.92  0.06 0.63 6.39 -0.04 0.84 6.39 -0.46

360 100 0.09 520 0.09 0.04 536  0.06 0.06 6.60 - 0.74 6.07 -
360 200 0.08 5.63 0.02 0.06 638 -0.02 0.00 6.02  -0.05 0.50 5.35 -
360 300 0.08 4.86 0.08 0.10 595 0.04 0.12 587 0.04 033 6.37  0.08

480 100 0.04 4.64 0.08 0.00 480 -0.15 0.05 6.10 - 0.22 5.89 -

480 200 -0.03 5.12  -0.06 -0.01 553  0.04 0.01 5.84 0.08 0.11 551 -

480 300 0.02 4.56  0.02 -0.01 4.98 -0.03 0.07 5.45 -0.07 0.08 6.55  0.19
Panel B: RMSE

240 100 558 996 6.40 5.76 10.01 8.15 6.12 11.67 769 9.98 -

240 200 5.65 10.40 5.78 547 11.15 6.19 5.62 10.76 9.07 6.56 9.98 -
240 300 5.43 9.71 555 542 10.85 6.01 5.69 10.66 7.20 5.83 10.61 20.00

360 100 434 843 5.01 470 886  6.60 4.62 1083 - 521 9.53 -
360 200 430 899 449 453 995  5.26 432 9.70 6.64 4.72 912 -
360 300 4.26 827  4.38 442 978  4.76 450 9.73 554 444 1033 9.71

480 100 3.80 775 4.23 3.86 811  5.62 3.88 10.03 - 3.99 897 -
480 200 3.70 841 3.88 3.83 9.07 437 3.73 9.28 544 3.75 899 -
480 300 3.66 7.85 3.80 3.75  8.64  4.09 377 9.02 471 3.61 10.17 7.82




Table TA.IV. Asymptotic Approximation Performance for A\ sess

This table provides the biases and root-mean-squared errors (RMSE) of the estimates of
the SDF loading A of the useless factor from Monte Carlo simulations. DS is the double-
selection estimator, SS is the single-selection estimator, and OLS is the ordinary least
squares without selection. The regularization parameters in the LASSO are selected using
10-fold cross-validation, where we partition the cross-validation subsamples in the time
series dimension. The true value Aygeless 1S zero. Note that in cases of n > p, OLS is
infeasible.

p=25 p=>50 p =100 p =200
T n DS SS OLS DS SS OLS DS SS OLS DS SS OLS
Panel A: Bias
240 100 -0.37 -1.04 -0.22 -0.19 -2.26 -0.11 -0.03 -0.85 - -0.08 -0.37 -
240 200 0.03 1.8 -0.06 -0.20 -2.03 -0.32 -0.05 -0.66 -0.04 -0.23 -0.20 -
240 300 -0.35 -0.29 -0.28 -0.02 -0.09 -0.01 -0.08 -1.04 0.05 -0.05 0.03 0.43
360 100 -0.10 -0.71 -0.02 -0.18 -2.13 -0.06 0.13 -0.58 - -0.03 -0.18 -
360 200 0.17 210 0.17 -0.23 -1.89 -0.31 0.06 -0.44 0.01 -0.06 -0.01 -

360 300 -0.11  -0.01 -0.12 -0.12 0.00 -0.19 0.02 -0.87 0.05 0.04 029 -0.24

480 100 0.01 -0.55 0.13 0.01 -1.89 0.09 -0.10 -0.78 - 0.07 -0.03 -
480 200 0.14 1.88 0.08 0.04 -1.53 0.03 -0.10 -0.65 -0.04 0.09 -0.06 -
480 300 0.03 0.07 0.05 0.14 0.16 0.06 -0.06 -0.96 0.09 0.13 030 -0.05

Panel B: RMSE

240 100 5.37 5.56  6.17 5.40 6.72 8.24 551 6.13 - 587 574 -
240 200 5.17  5.61  5.47 5.22  6.01 6.36 519 524 890 546 573 -
240 300 516 5.09 541 529 533 5.92 519 572 T7.14 523 540 19.69
360 100 440 446 5.01 440 547 6.53 446  5.00 441 460 -

360 200 432 508 451 4.27 497  5.02 428 454 6.85 437 459 -
360 300 4.25 418 4.42 424 430 4.65 427 475 5.63 418 438 10.31

480 100 3.80 3.90 4.32 3.84 501 558 3.73 428 - 3.64 402 -
480 200 3.74 450  3.96 3.68 438 4.33 3.65 3.79 5.50 3.57 384 -
480 300 3.67 3.68 3.79 3.66 3.79  3.96 3.66  4.05 4.54 3.50 3.7 773
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Table TA.V. Variable Selection in Simulations

The table reports how often useful, redundant and useless factors are selected in each
step of our double selection procedure (first and second columns corresponding to the
first and second step, and their union in the third column), in Monte Carlo simulations.
Panel A reports the average selection percentages for useful factors, and Panel B reports
the average selection percentages for redundant or useless factors. The regularization
parameters in the LASSO are selected using 10-fold cross-validation, where we partition
the cross-validation subsamples in the time series dimension.

p=25 p =50 p =100 p =200
T n 1st 2nd  Total 1st 2nd  Total 1st 2nd  Total 1st 2nd  Total
Panel A: Useful Factors
240 100 45.5 98.5 99.2 45.6 97.3 98.4 46.8 94.6 96.6 46 86.9 92.1
240 200 46.5 97.3 98.5 474 984 99.1 47 96.6 97.9 45.7 86.1 90.9
240 300 48 98.7 99.2 48.1 99 99.3 50.4 94.2 96.7 48.5 89.7 93.7
360 100 52.2  99.7 99.9 50.4 99.2 99.6 50.9 98.2 98.9 48 94.3  96.9
360 200 54.5 99.2 99.6 52.9 99.6 99.8 51.6 99.1 994 50.2 94.2 96.6
360 300 54.6  99.8 99.9 53.6  99.7 99.8 54 97.3 98.5 51.9 96.5 98.1
480 100 56.1 99.9 100 54 99.8  99.9 53.7  99.3 99.6 49.9 97.6 98.7
480 200 57.9 99.7 99.9 57.4 99.9 99.9 53.1  99.7 99.8 50.3 97.8 98.7
480 300 57.1 100 100 58.5 99.9 100 56.2  99.2 99.7 51.9 98.5 99.2

Panel B: Redundant and Useless Factors

240 100 56 25 79 44 1.7 59 34 22 54 25 3 5.2
240 200 63 34 92 54 18 7 45 25 68 33 44 73
240 300 64 31 91 6.4 2 8.1 58 4.7 98 3.9 45 79
360 100 5 1.6 6.4 4.1 1 4.9 33 08 4 2.1 1 2.9
360 200 6.5 24 86 53 11 6.2 48 09 56 32 1.8 48
360 300 6.1 22 8 63 09 71 53 15 66 38 16 52
480 100 4.7 11 5.7 34 07 4 2.7 05 31 2 04 23
480 200 5.1 1.6 6.5 51 0.7 57 43 04 47 27 08 34
480 300 49 15 6.2 54 0.7 6 43 08 5 3 0.7 3.6

11



Figure IA.1. Histograms of the standardized estimates in simula-
tions.

The figure presents the histograms of the standardized double-selection (DS) and single-
selection (SS) estimates using estimated standard errors, compared with the standard
normal density in dashed lines. The left panels show the double-selection histograms, and
the right panels the single-selection histograms. The top row reports the distribution of
standardized estimates for a useful factor; the middle row for a redundant factor; the last
row for a useless factor. In the simulation, we set T' = 480, n = 300, and p = 100. The
regularization parameters in the LASSO are selected using ten-fold cross-validation, where
we partition the cross-validation subsamples in the time-series dimension.
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The figure reports how often each factor is selected in each step of our double selection

procedure (first and second panels corresponding to the first and second step, and their
union in the bottom panel), in Monte Carlo simulations. Each factor corresponds to a
number on the X axis. Factors 1 - 4 are part of the true factors in the DGP. Factors 5 -
100 are either redundant or close to be useless. We set T = 480, n = 300, and p = 100.
The regularization parameters in the LASSO are selected using 10-fold cross-validation,
where we partition the cross-validation subsamples in the time series dimension.
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Figure IA.2. Histograms of selected variables.
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II. Technical Details and Proofs

A. Notation

We summarize the notation used throughout. Let e; be a vector with 1 in
the ¢th entry and 0 elsewhere whose dimension depends on the context. Let
L denote a k-dimensional vector with all entries being 1. We use a V b to
denote the max of @ and b, and a A b as their min for any scalars a and b. We
also use the notation a < b to denote a < Kb for some constant K > 0 and
a <p b to denote a = O,(b). For any time series of vectors {a;}{_;, we denote
a="T" Zthl a;. In addition, we write a; = a;—a. We use the capital letter A
to denote the matrix (ay : as : ... : ar), and we write A= A—ra correspond-
ingly. We use Apin(A) and Apax(A) to denote the minimum and maximum
eigenvalues of A. We use ||A||;, [|A]| ., [[A4]|, and || Al|z to denote the Ly norm,
the Lo, norm, the operator norm (or L.y norm), and the Frobenius norm of
a matrix A = (a;;), that is, max; }, a;|, max; 3 |agl, vV Amax(ATA), and
V/Tr(ATA), respectively. We also use ||Alyax = max;; |ai;| to denote the
L norm of A on the vector space. When a is a vector, both ||a|| and ||a||p
are equal to its Euclidean norm. We use ||a||, to denote ), 114,20y We also
denote Supp(a) = {i : a; # 0}. We write the projection operator with re-
spect to a matrix A as P4 = A(ATA)*AT, and the corresponding annihilator
as My = I — P4, where I is the identity matrix whose size depends on the
context. For a set of indices I, let A[I] denote a submatrix of A, which

contains all columns indexed in [I.

14



B. Technical Assumptions

Assumption 1 (Sparsity): [[Anlly <5, (x5 llg < 85 [175:]lp <5, and 1 < 5 < d

for some s such that sn™" — 0.

Definition 1 (LASSO and Post-LASSO Estimators). We consider a generic

linear regression problem with sparse coefficients,
Y = X3 +e, subjectto B, <s,

where Y is a n x 1 vector, X is a n X p matrix, and § is p x 1 vector of

parameters. We define the LASSO estimator as
B = argmin {n~! |Y = XB|* + n7'r[|]I,}

We define the Post-LASSO estimator Ef as

A
)

By =engm {7t Y~ X9 =0, e T}

where 7 is the set of indices of variables selected by a first-step LASSO, that

is, T = Supp(P).

We adopt a high-level assumption on the model selection properties of LASSO
and the prediction error bounds of the Post-LASSO estimators in (7) and (8).
Belloni and Chernozhukov (2013) provide more primitive conditions for these

bounds to hold.

Assumption 2 (Properties of Post-LASSO Estimators): The Post-LASSO es-

15



timators in (7) and (8) satisfy the following properties:
1 5= hULIS, s

2. Moreover, if g > 20’ /\;Cg(Ln : (?*h)

¥ for some ¢ > 1, then

n1/2

(Y7, — Yo) + C*,Z(X,Al — S\h)H <, sT V2 (log(n vV p Vv T)"? + 1s'/?n71,

(IA1)

where Yo = Y0 +ETA, and :\h = XTAg + A\, are the true parameter values

given in (2) and (6).

[ij Z 2Cj

ejCOT (1 : éh)‘

, for some c; > 1 and j =1,2,...,d, then
1

02 (&, = OT + CalXg, = 0)T|| Sp 5T 2(log(n V p vV T2 + |7 [yax 8207,

(IA2)

where T = (11, T, ..., 7q)7, &, and x are the true parameter values given

in (6).

Assumption 2 gives a probabilistic upper bound on s. The prediction error
bounds in (IA1) and (IA2) are more conservative than the standard results,
because the regressors here are estimated. We provide a sketch of the proof
for (IA1) in Appendix D, for which we need the following sparse eigenvalues
assumption. The proof of (IA2) is similar and simpler. Our theoretical result
below would also hold if other model selection procedures are employed,

provided that they obey similar properties in Assumption 2.

Assumption 3 (Sparse Eigenvalues): There exist K1, Ko > 0 and a sequence

16



[, = o0 such that with probability approaching 1,
K1 < Guin(1n3) [0t s C) (00 Cn)| < Gmae(ls) |70 2 Co) (0 G| < Ko,

where we denote

vT Av vT Av

min(K)[A] = min ——= and Ppux(k)[A] = max —s.

Puin (A 1<]lollo <k [|v]|> Pu () 4] 1ol <k |jv]?
Assumption 3 resembles one of the sufficient conditions that lead to desirable
statistical properties of LASSO, which has been adopted by, for example, Bel-
loni, Chernozhukov, and Hansen (2014). It implies the restricted eigenvalue

condition proposed by Bickel, Ritov, and Tsybakov (2009).

Assumption 4 (Large Deviation Bounds): The stochastic discount factor, re-

turns, and factors satisfy

allyax <o T 2(l0g(n v pv T)2, where a € {m,v, 2, u}. (1A3)
HT_I/_XBT — Cov(ay, by

Mviax S

(IA4)

Assumption 4 imposes high-level assumptions on the large deviation type
bounds, which can be verified using the same arguments as in Fan, Liao, and
Mincheva (2011) under stationarity, ergodicity, strong mixing, and exponential-

type tail conditions.

Next, we impose additional uniform bounds that impose restrictions on the

cross-sectional dependence of the “residuals” in the covariance projection
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(6). Similar assumptions on factor loadings are employed by Giglio and Xiu

(2016).

For the sake of clarity and simplicity, we assume that the set of testing assets
used is not sampled randomly but deterministically, so that the covariances
and loadings are treated as nonrandom. This is without loss of generality,
because their sampling variation does not affect the first-order asymptotic
inference. By contrast, Gagliardini, Ossola, and Scaillet (2016) consider ran-
dom loadings as a result of a random sampling scheme from a continuum of

assets.

Assumption 5 (“Moment” Conditions): The following restrictions hold:

1Cellyiax S L CTtnllyiax S 02 ICIChllyax S 02, (IA5)
1CTllyax Sp ' 2TY2, ||CTOVT || pax Sp 0272, (IA6)

Amin(n_lceTCe) > K, HCeT(ﬁgn + 5h)Hoo N 3n1/27 ”ﬂhHoo S s (IAT)
In addition, for a € {m,v, z,u}, it holds that

Fallyax 1 [1Callyax S 1- (IA8)

Finally, we impose a joint central limit theorem for (z;, ATv;z;) = (2, (1 —
Yomy)z). This can be verified by the standard central limit theory for de-
pendent stochastic processes, if more primitive assumptions are satisfied, for

example, White (2000).
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Assumption 6 (CLT): The following results hold as T — oo:

TV? ) 2_ LN
—Til’y()ZMT — Zz/\g 0 HIQ 1199

Hll H12

where 1111, 119, and Iy are given by

T T
1
_ T
I, _Th—rgof E E E(zsz/),

t=1 s=1
1 T T
— 1; T
My = Tlgrolo 7 tz; ; E(Nvgzs2]) ,
1 T T
H22 = 7151010 T ; ; E (ATUSATUtZSZJ) .

Assumption 7 (Selection for the Asymptotic Variance Estimator): The Post-
LASSO estimator 7 satisfies the usual bounds. That is, if T; > 2¢; |HZT|| .,

for somec; >1,5=1,2,...,d, then

1@ —mH|| <p s (log(p V)2, and  |[ii; —n|| Sp 82T *(log(p v T)) 2.

C. Proof of Main Theorems

Proof of Theorem 1. The estimator of A\, can be written in closed-form as

~ N T
Agz(C;M(mzéh[f])Cg> (C’;M(Ln:@hm)r). (IA9)
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Moreover, by (2) and (5), we can relate Cy and C}, to 8, and fj:

Cg =Cyn"+C,, where C) = (597] + Bh)Eh, C, = ﬂgzz. (IAlO)

Using (3), (5), (IA10), and the fact that
Cy— Cy=(Cr — O™ + (C. = C2),

C.—C.=B, (T 22T %) + T UZT + T (Byn + B) HZT,

é\h —Chp = (597] + Bh) (T_IHHT — Eh) +T7YUHT + T_lﬂgZHT,
we obtain the decomposition
T1/2(:\\g - Ag)
~ N\ -1 ~ ~ _
= (n‘ngTM(Ln;ahm)C ) n_lTl/QCJMun:éhm) ((Cg — Cy)Ag + Cp Ay + Bz + ((Byn + Br)h + a))
=T (2= (T ZVTA = %.)))

~ ~\ —1 ~ _
—1 112 _ 1

+n ' TV2CIM, 6y (By — CoB1) X (2= (T7'ZVTA = £.0))

—n TPOIMY, my (B + Bu) (TTHHVTA = S4(n"Ag + M) — h)

—11/2 A ~

We first analyze the leading term. Note that by 4oMT = —V T\, Assumption

6, and the Delta method, we have

TV (S 2= S0 (T " ZMT - $.))
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T T
L .1 - -
— N <O,Tlgrolo T E 5 E (1= Xv)(1 = AT, 2218 1)) . (IA11)

t=1 s=1

Next, we show that the remaining terms are of smaller order. By (IA42), we

have

n 71/

CTM w:Cnll)) (u—T7'OV™A) H <, s(n Y2+ T Y% log(nVp Vv T).
By (IA27), we have

nLT1/2

GJM(Lntah[f])ah/\hH <, (T2 TV og(n Vp VvV T).
y (TA40), we have

n 171/

‘CTM 61y B + Bn) (TTHHVTA = Sy (n™Ag + M) — h) H

<ps2(n Y2+ T Y log(n vV p vV T).
Finally, Assumption 4, (IA11), and (IA35), we have

nl7l/2

CIM,,, 08 =GB (5 = (T 20T = 5.0) )|

<n T2 (T'ZVIA = 5.0 ||

CeM,, .6, (ﬁ C’ ¥t

<ps(n V2TV log(nVpVT).

This concludes the proof. O]

Proof of Theorem 2. By an identical argument as in the proof of Theorem 2
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of Newey and West (1987), we have

T
ST Qu(1 = Ao (1 = ATy (2] + 202]) 2 BLIIS..

t=1 r=1

Nl =

So, by applying the continuous mapping theorem, it is sufficient to show that

5. %, (IA12)
_ 1 T T
= 520D QL= AL = ATo,) (22 + 2:2]) 250, (IAL3)
t=1 r=1
where

T _t ~ AN AN A
Qi = (1 - ’q+ 1') L{t—risqy, 11=2.10I%;.

To prove (IA12), we note that by Assumptions 4 and 7, we have

Hiz_zz

MAX

ST i = mHIN Z s + T [ = )+ 771227 = S|y
<ps AT 2 (log(p V T2 || Z |yyax + 8T Hog(p VvV T) + T~ *(log(n VvV p Vv T))"/?

—o,(1). (IA14)

As to (IA13), we can decompose its left-hand side as

T T

1 -~ ~ o

T Z Z Qu-(A— N (1 = AT, (2T + 2.2]) (IA15)
t=1 r=1
T T

T Z Qu (1 — )\Tvt)()\ M, (227 + Z.2]) (IA16)
t=1 r=1
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+
N[ =
[M] =
]~

Qu(l = AT0)(1 = AT0) (B — 2) 2T+ (5 — 2)2))  (IA17)

o~
Il
—
<
Il

1

+
N[ =
[M] =
[M] =

Qu(1—=ANv)(1 = A0,) (2 (Zr — 2.) "+ 2. (2 — 2)7) . (TA18)

t=1 r=1

Analyzing each of these terms, we obtain

T T
1 ~ ~
70,2 Qu(A = NTu(1 = XTo,) (] + 52
t=1 r=1 MAX
1 A G [ 50 Wz
~4 lr ( ) MAX vax ~P 18 ( + 07 ) [V lyax 121 hax

T T
1 ~
=30 Qul1 = N = AT, (BT + 5

t=1 r=1 MAX
Sar g = avi||Z] [ G = mv |12 S et ) [V 12 g
1 T T
=Y Qe = N1 = AT (G = 20 5+ (5 — 2) E)
t=1 r=1 MAX

SaTH N = 2VIG = HN|Z]| e = ATV g

§pq33/2(T_1/2 + "_1/2) IV aax 12 |lyax
where we use

Ih = XV S T2 || 32| + Ao 5, TV
lep = ATV yax S T+ ATV yax < s 1V llyax
G-V < g - v+ |G- v S 72+ R - IviEs, T

~ —~ [11/2
2| sre|s]” s me s s v

R=v| < [R=A| IVlax < R = A IVlax Sp 8722 40772 1V g

MAX
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<N =mHN+ 1 Zlax Sp [12411ax

|70 =

which hold by (IA14), Assumption 4, and Lemma 7. This concludes the

proof. ]

D. Proof of Lemmas

Proof of (IA1). We provide a sketch of the proof, as it is very similar to
Belloni and Chernozhukov (2013). With respect to optimization problem
(7), we define

~ 2
Q(y,\) =n"" f—an—C’h)\H :

We denote the solution to this problem of 7 and X Let § = A — \,. Note

that by (5) and (2), we have
E(ry) = twyo + Chj\h +CcAy and 7= E(ry) + B,3 + 51171 + q.

By direct calculations, we have

2

~ v

Q(?? >‘) - Q(fuy(]? /\h> —n!
~ v \T _ 5 ~
= — 2n_1 (77 — Ln"j/o — Ch>\h) (Ln<")/ — ")/0) + Chd)

_ o~ o T - o o~
—— 207 (Byg + Buh + 1+ (Cn = C)d + Codg ) (3 = Ho) + Cd)

Ln(;\y/ - ’?0) + ah§

> _—on !

ByG + Buh + 1+ (Cj, — 5,1)5%”

Ln(% - '3/0) + é\hsz

—op~t

(CA)T (1 C)|| 15 =0 2 077l
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> _—on !

ByG + Buh + 1+ (Cj, — @h)S\hH

1)

Ln(:}; - ﬁ/O) + aI”L(SH

— oK' (7 = ol + 1671, + |15

where [ is the set of nonzeros in S\h, I¢ is its complement, and J; is a sub-

vector of § with all entries taken from I.

On the other hand, by definition of ¥ and X, we have

Q. \) — Q(%0, A) <mon™ (H

)

<ron ™ (17 = Yol + 107/l = 1dzell,)-

Therefore, we obtain

~ 2 - .
nt enF = 50) + Cud|| = 7o n (5 = Fol + ol + 13zl

— ot ‘

<ton (¥ = Yol + 16111, — 1|6z

B, 4 Brh + 1+ (Ch — Ch) A

1l = 50) + Chd

s (IA19)
where we use the fact that

7'0226‘

NCI (1 - Ch)Hl.
If it holds that

n—l

(Y = Fo) + éhc?H —2n~! ‘

ng + @Jl +u+ (Ch - ah)S\hH < 0,
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we can establish

n1/2

(Y — %) + ahéH <p sT’l/Q(log(n VpV T))I/Q,
where we use the fact that

02 1Beg |l S 1Bgllygax 19lviax Sp T2, (IA20)
n~ 2 a) S lallax Sp T2 (og(n v p v T)Y, (IA21)

n= 2 Buh]| < 11Balle 1ol ypax Sp T2 (log(n v p v 1))V,
(1A22)

n1/2

- o] sleu-ai,

< T Y21 VoV T2,
A ST (log(nVpVvT))

(IA23)

Otherwise, from (IA19) it follows that
—c (17 = ol + l10rlly + 10zel1) < 17 = Hol + llorlly = ll6ze]l,
which leads to, writing ¢ = (¢ +1)(c — 1)},

|07¢

< e[y = ol + [l9s]y)-

Then by (IA19) again as well as the restricted eigenvalue condition in Belloni

and Chernozhukov (2013), we obtain

~ 2
il =50) + Cd | — 2]

B, + Brh +u+ (Cy, — @)Xh”

a7 = 50) + G|

<(L+ e (7 = ol + [107],) S 708202

Ln(a// - ﬁvYO) + ahéH .
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We, therefore, have

n~1/? B,G + Buh + @+ (Cy, — @h)ihH + 1952071

a3 = 50) + Crd| S0

<psT2(log(n Vv p Vv T)Y? 4 75812071

The Post-LASSO estimator converges at the same rate following the same

arguments as in Belloni and Chernozhukov (2013).

Lemma 1: Under Assumptions 1, 2, /, 5, we have

n—1/2 HM(Lnéhm)ah)\hH Sps(n_l/Q + T_I/Q)(log(n VpV T))I/Q (IA25)
Proof of Lemma 1. Using the fact that I, C T and by (IA2), we have

n—1/2 HM(Lnréh[ﬂ)ChXTH —n1/2 HM(Ln:éh[ﬂ)(Cth )

<nlf? HM(W@@D(@XT + LnfT))H

<n~1/?

Ln(§ - gfz)T + é\hXT - 6}5{}2”

SpsT 2 (log(n V p v T))2 + ||7]|yyax /207
By Assumptions 4 and 5, our choice of 7 satisfies

~J

JCICH| S ICTCh g + 1"

CI(C, — Ch)“

-1 <
n |7 llyax Sn fgj‘figxd MAX

< (Y24 TV (log(n V p Vv T))Y2. (IA26)

~Pp
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This concludes the proof of (IA24).

Similarly, to prove (IA25), by (IA1) we have

n~1/? HM(anah[fl]) <Ch)\h + Ln’u}/0> ‘

< 2|(en s C) Gy, = 0+ (g, = M)

<, sT Y 2(log(n Vv pV T + 795t /?n L.

Because we can select 7y to satisfy

-1 -1 TOTO
n 1o <n e g A CICy,

ACT (1, - éh)H1 <n L NICTi,| + 07 ‘

HMAX

S Cotnlygae + ICelluax | € = G, + 77 ICIChllgax

gp(n_1/2 + T_1/2)(10g(n VpV T))l/z,
it follows that

n1/2

By the triangle inequality and M(anéh ftn = 0, we have
HM(Ln:éh[m)Ch)‘hH < HMan:éhmD (Ch(Ah +XTAg) + WO) H + HMon:éh[fl])ChXTH gl

which, combined with (IA24) and [|A\,]| < 1, lead to the conclusion. O

Lemma 2: Under Assumptions 1, 2, 3, 4, 5, we have

nfl

C;M(Ln3ah[f])0h)\hH <, st + T Hlog(nvpVvT). (IA27)
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Proof of Lemma 2 . We note by (6) that
é\g = ath + é\g — Cg + &7 + (Ch — é\h>XT + C., (IAQS)
thereby it follows that

n—l

A A -1
M., Cr| <

XC]IM(Ln:ah[T])Ch)\h H + nt

CQTM(Lniah [T])Ch)\h H

+nt

(Cy— Cy+ (Ch — Ch>XT)TM(Ln@hm)ChAhH .

On the one hand, by Lemma 1, we have

X@M(W@Lm)aﬁ‘hH <n”'/?

~ -1/2
Mun:éhm)ChXTH !

nfl M(anahm)ch/\hH

<8Pt + T Hlog(nvp Vv T). (IA29)
On the other hand, note that
M(Lnﬁh[f])éh)‘h =(ta0 + Cudn) = (tn 1 Co) (Ao : ADT = (tn 1 Ch) (90 — H0 = AL = AD)T,

where (4o : S\Z)T = arg min, x{t,70 + O — LnY — Cu) A =0,7€ fc} By

Assumption 3, we have

e HM(Lnréh[ﬂ)éh)‘hH =n"/? H(bn :Ch)(0 — ot AL — AT

Zﬁbrlrﬁ(s +35+1) [”_l(bn : 6h)T(Ln : 6h>} H(’Yo — o AL — 5\2)

Y

ZH(’YO — Yo : )\;L _S‘D
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hence it follows from (IA25) that

|0 =02 2L = AD)| S5 s(n™/2+ T72) log(n v p v T2 (1430)

Using this, we have

n—l

CT(tn = Ch) (Y0 — 0 = AL — AL)T

CgMunzahm)ChAhH =n""

—1
<n

Cllen: G| |0 =50 : L = A0

(IA31)

MAX

Using (IA5) and Assumption 4, it follows that

nfl

CT(ty - éh)H <n~*

MAX

CICh =), 7 ICTChluax + 7 I Ctnllyea
SICelhax [[Ca = G|+ 07 ICIChllygax + 1 ICTtallyiax

<, (V2 TV log(n v p v T)) Y2, (IA32)
Moreover, since by sparsity of A, and S\h, we have

<(s+5+ 1) (o —F0 s AL = ADT||-

[CIEEEPEYY §

Combining (IA30), (IA31), and (IA32), we obtain

nfl

CeTM(Ln:Gh[ﬂ)ah)‘hH <, 82t + T Hlog(nVp Vv T). (IA33)
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Finally, by (IA25) we have

Gy~ Cy + (Ch = Cux") M, 0, ﬂ)éhAhH

n1/2
MAX

(Ch — Cu)xXT M,,,

czAhH

i)
<2 (VAT Y2 L T (log(n Vv p v T)) V2,

The above estimate, along with (IA33) and (IA29), conclude the proof of
(IA27).

Lemma 3: Under Assumptions 1, 2, 3, 4, 5, we have

n~! ’

@O || Sp 572+ T2 log(n v p v T)V2 (1A34)

o s(nV2 £ T V) (log(n v p v T))V2.

iy Be = G| S
(IA35)

Proof of Lemma 3. (i) By (6), we have

n—l

CMy, .0,y Cot”| <n™ || CTMy, ., Cor”| + 07 |XCIM, ., Co|

+07|[((Cy = Co)T + X(Ch = Cu)T) M,y o

Moreover, by (IA24), we obtain

n:Cpl1]) Chn H sn- v

XCﬂRﬂLnamﬂA‘”_UQHC%nTH

Sjps(n*l/2 + T*I/z)(log(n VpV T))l/Q, (IA36)
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where we use the fact that Cy = C,n™ 4 C, and that
n G S NC hyax S 1Cslhax + 1C:lyax S 1

In addition, we have

n—l

CTP(Ln:éhm)Ch”TH '

e

CIML,, 2,y Co” || <0 ICTCT 4+ ™"

To bound the first term, we have

OIS nTH I CTChlliax 11l Sp s 2 (log(n v p v T))Y2,

As to the second term, using (IA32) we obtain

n_l CEP(L Ch I] C}ﬂ? H

(tn = Cu[1))

(e = Cull) n-l\

MAX

Sps(n”2 4+ T2 (log(n vV p v )2,

~p

where we also use ||Chnllyax < I1Cqllhyax + 11C:llyax S 1, and

(tn ChTChnH (Ln:@)H IChllvax

MAX

MAX ™ ‘

(tn = ColT TC/JIH

MAX ‘

S (||<Ln : Cllax + [[Co = G| ) 1€ sae S L

n ‘
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Therefore, we have

nfl

CTML, 6,7, Crl" H < s(n~V2 1+ TV (log(n vV p vV T))Y2.  (IA37)

Similarly, because we have

((é\g - Cg)T + X(Ch - 6h)T> Cyn’

n—l

<[ = o+ @ =G| G ax Sp ST (log(n v pv T2,

MAX

nt H ((59 — Cy)T+ x(Cy, — éh)T> (tn : ahm)H

MAX

<K (€ = Co)" + X(Ch — G

O IT < ~1/2 1/2
e G| < st 0ty py T,
it follows that

n|[((Go = C)T +X(Ch = G ) My, ) Co"| p 50 ™2+ T72)(log(n v p v 1)),

which, along with (IA36) and (IA37), establish the first claim.

(ii) Next, by (5) we have

Recall that 3, = C.% . We therefore have

n_l ‘ C;M(Lnéh[f])<6g - ngz_l)H
<n~'||CIM,, ., @ (Cz — Co)27H| + 07t |CIM, 6, 7y (Ch — Co)n™7
+n7H|CIM, a7, Crn ™S5 |-
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Using Assumption 4 and HM(W@[TD H < 1, we have

n—l

CIM

(tn:Ch, T])(CZ - CZ)ZZ_I

12 Sp T2 (log(n v p v T))Y2, (IA3B)

MAX) MAX

where we also use the fact that

D EPEAOGRES I

~Y

Cy

+1Cllyax S 1

MAX ‘ MAX

Similarly, we obtain

w:CulT)) (ah — Cpn>; !

ol 16 = g e 15

<,sT 2 (log(n Vv p Vv T))V2 (IA39)

MAX

Combining (IA38), (IA39), and (IA34) concludes the proof.

Lemma 4: Under Assumptions 1, 2, 3, 4, 5, we have

(n:Ga ) B + Br) (TTHHVTIN = Si(n™Ag + M) — h) H

<, (VAT . T Y log(n vV p vV T). (IA40)
Proof of Lemma /. From (IA24) and Assumption 4, it follows that

NIy, ) (B + B) (THHVTA = S + M) = B) |

<p~ 12

~ o
XChM(Ln:oh (1)

18+ Bl (17 BV = 20078 5 30y + [Pl
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<2 (nVPTY2 L T Y log(n v p v T). (IA41)

Next, by the triangle inequality, we have

nfl

CIM,. .6, (8ot + B) (TTHHZ™A + (T HHT = 33) (07™Ag + M) — h) H
<nH||CT(Byn + Bn) (T HVTA = Sh(n"Ag + An) — )|

+nt

CIB (B + ) (T VA= 53078 + 3 = )
For the first term, by Assumption 5 we have

n~|CT(Byn + Br) (T HVIA = S(n"Ag + An) — h) ||
< H|CT(Byn + Bn)ll oo || (TTHHVTA = Zi(™Ag + M) = 1) || yax

<psn V2T 12 (log(n v p v T))YV2,

For the second term, we use Assumptions 1, 3, 4, as well as (IA32), to obtain

CIP, iy (Bon + Br) (TTHHVTA = Su(n™Ag + M) — h) H

n—l

S+ 80 G+ D) [ e O (e Co) ™

Cl(en: Calll)|

MAX

X ‘ (tn : éh[f])T

MAX Hﬁgn + 5’1”00 HT_lﬁVT’\ - Eh(nT)‘g + M) — BHMAX

<2 ATY2 L T Y log(n VvV p v T).
Finally, by Assumptions 1 and 4, we have

n (G = G (o= BN,y B+ ) (T HV A= S0 + ) = )|
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s - o+ =Gy

MAX 1891 + Bull ”TAEVT)‘ = Za(nTAg + An) — B”MAX

<p,8°T Hog(nVpVvT).

The conclusion then follows from (IA28). O

Lemma 5: Under Assumptions 1, 2, 3, 4, we have

n ||CiM, a.m) (u—T"'UVTA) H <, s(n V2T Y2 L T Ylog(nVp Vv T).
(TA42)
Proof of Lemma 5. Note that by (IA24), we have
-1 2l ~ —177Y) -1/2 ~ -1/2 || 5 —177Y
nt \CIMy,, 6 (@ = 7OV | <072 My, g, 0, Con || 2 [la = T2077A|

<, s(n Y2TV2 4 T Y log(n Vv p vV T),
where we use the following estimates as a result of Assumptions 1 and 4:

w2 Jlull llallyax Sp T2 (logn v p v T)2,

~P

n~1/? ||T_1(_]VT)\H < HT_IU]\Z/T%HMAX Sp T_I/Q(log(n VpV T))1/2.

Moreover, by triangle inequality, we have

n7 ||, 0 (2= TTOVIN) |

<n~* HC’ST (u—T7'UVA) H +nt

CTB, oy (@ — TOVTN) H .

e
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For the first term, we have
nH|CT (@ —T'OVIA)|| < 7 ||CTa|| + T 'n || CTUVTA| S sn™ /2T 12
As to the second term, using Assumption 3 and (IA32) we have

01

CTP G (1) (Z_L — T_IUVT)\) H

e (Ln

~

CT (1 Cul1)) (@n - Cul) (1 : G| }))1 (b : CulD)) (= TLTVTA) H

-1

-1

(o GlT))' (@ =TTV |

CT(ty C/Z\'h[f])H n!

S € MAX

MAX

<ps(n V2T Y2 £ T Y log(n vV p vV T),

Y.

where we also use

nfl

(1 )T (5 =TTV

MAX

<, T 2(log(n Vv p Vv T))"2

Finally, we note that

~ ~ T R
n (G = €+ (= CuxT) My ) (@ =TTV
< ‘ Cy = Cy+ (Ch = G| o= T UMy Sp T og(n vV p vV T).
This concludes the proof. O

Lemma 6: Under Assumptions 1, 2, 3, 4, 5, we have

<, L.

~Pp

~ ~\ —1
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Proof of Lemma 6. Note that by (IA28), we have

CgM,,..6,m)Co
=CTM,,, ¢, 7)Ce + CIM,,.., ) Crx™ + XCIM,,, ¢, @) Ce + XCIM,,. ., 7y Crx"
T
+CIM,, 6,10 (Cg — Oy (C — Ch)XT) + ((Jg — Oy (C — oh)XT) M, ¢, Ce
~ ~ ~ T ~
+XCIM, 5,7 (Co = Co + (= CXT) + (Cy = Cy + (Cn = CXT) M, ) O™

~ ~ T
+(Cy = Cy+(Ch = Cx™) My, 3 (G = Gy + (G — C)xT)
There are nine terms in total on the right-hand side. By (IA24), we have

Ce

-1 ~ -1/2 ~
(LnZGh[ﬂ) =n HC;-M(Lnah[ﬂ)ChXTH S HC@”MAX” / HM(anéh[fDChXTH

Sps(V2 4+ T (log(n v p Vv T))2,

~ . . 2
n! HXCIIM(M:@[T])C}IXTH <n~! HM(W@[IA})O}LXTH <, St + T Hlog(nvpvT).

Also, we have

(tn:Cr (1) <C Cy+(Ch = Cu)x >H

(é\g - Cg + (Ch - C\h)XT) M(Lniahm)ce

(Ch — Cr)XT

S ||ce|\MAX\ g S ST V2(log(n v p v )2,

Gl (C C—l—(Ch—Ch) )
= (59 = Cy+ (G = Cax") My, O

§n—1/2

(Ch — Cr)XT

—_—
XCM,,.¢,m)

MAX

<ps2(n V2T Y2 T Y log(n vV p vV T),
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nfl

<6g —Cy+ (Ch — ah)XT)T M(Ln:@h[f]) (69 —Cy+ (Ch — 6h)XT)

N ~ 2
< ‘ Cy—Cy+ (Cp, — C’h)XTHMAX <p T 'log(nVvpVvT).

Finally, by (IA32) and Assumptions 2 and 3, we have

~ ~ ~ ~\—1 ~
ntCTB,, 6 m | =0~ CET(Ln:Ch[I])((Lntch[[])T(Ln:Ch[I])) (tn : CHI])TC,
~ o~ 2
<sn~? ‘ CT(tp : Ch[I])HMAX <ps(nt+ T Hlog(nVvpVvT).

We therefore obtain
n~'CIML,, ¢, 1) Co = 1 CICe + 0p(1).

The conclusion follows from (IA5) and Weyl inequalities. ]

Lemma 7: Under Assumptions 1, 2, 3, 4, 5, 6, we have

|Go: 30 = (o AD)|| S5 s+ 772 10g(m v p v )2

Proof. 1t follows from (9) that
Go W7 = (00 D) (10 G0)) (2 G (- G3).
which implies that

|Go: X7 = (o s AT

< || Go: X7 = Go s AT

[|E€ 0, - € o

I
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where

Xjk =0, k¢f}, j=1,2,...,d.

(Y0 : X;Tl)T = argr;yliAn{Hf — Y — ah)\H :

AT
i — & — Ohxj,.

(& @ Xj,.)T = arg min { C
é]yX],<

Moreover, because

M., 07" = tn0 + Cudn — ta¥o — Chdn + (Ch — Ci)An + Cedg + B, + Buh + 1,

we obtain, using I; C I, (IA1), (IA5), (IA20) - (IA23), (IA26),

n=1/? (Lni Ah) (% — o : O — M) ) H
21(Ch = Ch)An 4 Codg + Bo7 + Brh + aH
(Cy — Ch)Ah + CAy + ByG + Buh + uH

—1/2 =
<n IM,.6,m)7
<n~'/2 <Ln : éh) (%1 — %0 (A, — An) ) H +2n71/?

<,s(n V2 4+ T2 (log(n Vv p Vv T))Y2.

~p

Since we have

n /2 H(Ln Ch) <’Yo %0t (O — An) ) H
Ch)} H (% %0t (O — :\h)T>

I

2601 +3) [ e s C) (e

it follows that
| Sp (Y2 T log(n v p v T)) M2,

H <% — o : (Xh - S\h)T)
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Similarly, we can obtain

H (E— E:X— X) H <p s(n~V2 4+ T~V (log(n Vv p Vv T))Y2
Therefore, using this, as well as Assumption 1 and Theorem 1, we obtain
)‘g - /\g

[ERIRYENFRVIPY A

<[[€=e:x=0)||As] + 166 01

<ps(n V2 TV (log(n v p Vv T))2.

This concludes the proof.
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