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Appendix A - Collateral agreements and the pricing of counterparty risk

In the text, I argue that the collateral agreements used for CDS contracts during the
financial crisis were unlikely to eliminate counterparty risk. Buyers of CDS protection were
aware of this and priced it into the spreads. Here I report some evidence for the main points
of the argument.

An initial question is whether counterparty risk was perceived at all by market participants.
The growth of the percentage of OTC derivative contracts covered by some form of collateral
confirms this indirectly: for credit derivatives, the volume-weighted percentage of collateralized
contracts went from 39% in 2004 to 58% in 2005, to 66% in 2007 and 2008 (ISDA Margin
Survey 2006, 2008). Besides, documents and interviews from practitioners directly confirm
that the issue was taken into account by financial participants throughout the crisis. Robert
McWilliam, head of Counterparty Risk management at ABN Amro, reports in January 2008 :
“The golden rule is to start early. If you start worrying about the counterparty when they are
under duress your options are fairly limited”. A document from Barclays dated February 2008
states: “While the maximum potential loss to the seller of protection is the contract spread for
the rest of the contract duration, the buyer of protection could arguably lose the full notional of
the contract (in case of simultaneous defaults by counterparty and the reference credit and zero
recovery). Thus, counterparty risk is evidently more of a concern for buyers of protection.”

Even if agents were aware of counterparty risk, it was standard practice to ask for relatively
little collateral, especially from the largest counterparties. ISDA reports that only about %
of the contracts were covered by a collateral agreement, up to 2009. Besides, calculations by

Singh and Aitken (2009) and Singh (2010) show that, even at the end of 2009, large financial
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institutions still carried large under-collateralized derivative liabilities. In particular, they
compute the total value of “residual derivative payables” - liabilities from derivative positions
after netting under master netting agreements and in excess of the collateral posted. For the
5 largest US dealers this amount was more than $250bn. Even though these numbers include
all derivative contracts, and not only CDSs, they suggest a general under-collateralization of
derivative positions from these counterparties. As an example of this, in 2008 Goldman Sachs
had received collateral for 45% of the value of its receivable OTC derivatives, but posted only
18% of the value of payables. Similarly, JP Morgan in the same year had received collateral
for 47% of receivables, but posted only 37% of the payables®. Finally, as reported in the text,
even the most active dealer in counterparty risk management, Goldman Sachs, failed to cover
the full value of exposure on its CDS position with AIG.

Even when a collateral agreement is in place and actively managed, residual counterparty
risk cannot be eliminated when the value of the derivative is subject to jumps. While during
the crisis we did see gradual increases in CDS spreads of banks, a crucial episode - the Lehman
bankruptcy - shows that correlated jumps in credit risk (and defaults) are indeed possible.
Just before the weekend of the 13th and 14th of September 2008, many institutions were
considered at risk, but neither the credit ratings nor the CDS spreads indicated an extremely
high likelihood of immediate default. For example, the Lehman 5 year CDS was trading at
around 700bp per year, Merrill’s at 400bp, and the credit ratings of their debt were still as
high as 4 months before, with an implied default probability of less than 0.25% per annum. A
buyer who bought a Lehman or a Merrill CDS at 350bp per year a month before the default
would have seen the value of the contract (the present discounted value of the difference in
spreads) grow to 15 cents and 5 cents on the dollar respectively on Friday September 12th.
Therefore, even if the buyers had called for enough collateral to cover the current value of
such contracts, they would have improved their recovery rate by only 5% to 15%.

For the reasons explained above, buyers were generally aware that the collateral agree-
ments in place (if any) would have left them exposed to the risk of double default. In fact,
several sources document that in early 2008 buyers of CDS contracts were buying additional
CDS contracts against their counterparties to hedge the residual counterparty risk. For ex-
ample, from the documents on the AIG bailout (Maiden Lane III) from the Financial Crisis
Inquiry Commission, we see that starting November 2007, Goldman Sachs - which had bought
$22bn of CDS on a super-senior tranche of a CDO from AIG - was adjusting the amount of
CDS protection against AIG together with their margin calls to AIG (which were caused by
increases in the default probability of the underlying asset). Up to June 2008, the nominal

amount of protection bought against AIG was of the same order of magnitude as the total
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amount of collateral called by Goldman.

In a document issued by Goldman Sachs in 2009 regarding the AIG bailout?, the firm
declares: “In mid-September 2008, prior to the government’s action to save AIG, a majority
of Goldman Sachs’ exposure [current market value| to AIG was collateralized and the rest was
covered through various risk mitigants. Our total exposure on the securities on which we bought
protection was roughly $10 billion. Against this, we held roughly $7.5 billion in collateral. The
remainder was fully covered through hedges we purchased, primarily through CDS for which
we received collateral from our market counterparties. Thus, if AIG had failed, we would
have had the collateral from AIG and the proceeds from the CDS protection we purchased.”.
Similarly, in an interview with ABN Amro, Reuter reports®: When counterparties [to OTC
derivatives| are large corporations, which do not usually put up collateral, ABN buys protection
in the CDS market against the default of the counterparty itself. ABN’s trading desk must
go into the market constantly to rebalance those CDS holdings so that its protection equals its
counterparty risk profile.”.

This evidence indicates that buyers were understanding the direct and indirect costs of
the residual counterparty risk. Note that the fact that collateral was not enough to eliminate
counterparty risk does not mean that buyers were making a bad deal on their contracts.
Simply, they would have been compensated by paying a lower spread for the contracts when
the counterparty was at higher risk of double default. In fact, the 2008 Barclays report titles a
section: How much should I pay for a higher-rated counterparty? (The analysis then quantifies

this number for generic corporate reference entities of different credit rating).

Appendix B - Implementation of the Linear Programming Problem

This appendix describes in detail the algorithm employed to transform the probability

bounds problem into a linear programming problem.

B.1 - Linear programming representation in the general case

This section describes the algorithm used to transform the probability problem
max P,

s.t.
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into the LP representation
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for the general case of N banks.
Start with a matrix B of size (2, N) whose rows contain the binary representation of all

numbers between 0 and 2 — 1. For example, with N=4:

o O o O
o O o O
_— = O O
= O = O

Each row of this matrix corresponds to a particular element of the partition of the sample
space: the event
ATNAIN...NAY

where A7 = A; if element j of the row is 1, and A} = A; if element j of the row is 0.
The probability system p will then be determined as a vector of 2V elements containing the
probability of each of the elements of the partition represented by the 2V rows of the matrix
B. For example p; will be the probability that none of the A; events occur, ps will represent
the probability that event Ay occurs but none of the other events does, and so on. Finally,
the element p,~ will represent the probability that all events occur.

The maximization problem presented above tries to find the vector p that maximizes the
probability of systemic event of degree r (P,) while satisfying constraints on marginal and
pairwise default probabilities, as well as the constraints implied by the consistency of the
probability measure. The latter are immediate: because the events represented by the rows

of B are a partition of the sample space, and p is a probability measure on these events, all



elements of p need to be nonnegative and sum to one:
p=0

pi=1

To obtain in LP form the inequalities and equalities that involve marginal and pairwise
default probabilities, note first that because the elements of the partition are disjoint events,
the probability of any union of them is equal to the sum of their probabilities. Therefore, to
find the probability of an event A;, P(A;), in terms of p, one needs to sum the probabilities
of all the elements of the partition in which event A; occurs. But this is immediate given the

representation in B:

P(4;) = Z bj

3:B(j,i)=1
or:
P(A;) = a'p
for a vector a; of size (2V,1) s.t.:
a; = B(j;1)

In other words, to find which elementary events form event A; one needs to find all the
rows of B in which element 7 is equal to 1. The union of these events will coincide with A;,
and therefore the sum of their probabilities will be P(A;). Given the linearity, this sum is
equivalent to the product of the vector p with a vector a;, whose elements are ones whenever
the corresponding elementary event is a subset of A;.

Similarly, the probability of a joint event:
P(A;N Ag) = > p;
j:B(j,i)=1and B(j,k)=1

or:

P(A; N Ag) =0
for a vector by, of size (2V,1) s.t.:
bj = B(]7 Z)B<.]7 k)

i.e., the probability of the joint default is obtained summing the elements of p s.t. the cor-
responding element of the partition involves both the occurrence of A; and of A;. All these

constraint can then be collected in the matrix form Ap = b.



Finally, the probability that at least r events occur can be found as follows:
P= 2
3:(ZhAL BG.R) ) 2r

or:
’

P.=cp

for a vector ¢ of size (2V,1) s.t.:

ro__
cj—I

> B(j.h) > r]

h=1

where [[] is the indicator function.

Given this decomposition, the LP representation follows immediately.

B.2 - Symmetry of the probability system: Proposition 2

This section introduces the relevant definitions for a formal exposition of Proposition 2,
and proves that Proposition. Consider the vector p € R2" representing a probability system
on the o-algebra generated by the basic events Ay, ..., Ay, as in Proposition 1. Consider a
permutation J of the indices of the basic events: Ay, ..., Ay, and call M the set of permuta-
tions. Call p; € R2" the vector representing the probability system generated by Ay, ..., A,
that corresponds to p, constructed as described in the text.

For example, take two events A; and A,. The vector p would have four elements: p; =
P(A;NAy), po = P(A1 N Ay), p3 = P(A; N Ay) and py = P(A; N Ay). In this case, only
one additional permutation of the generating events is possible, J = {2,1}, with p;; = py,

P2 = D3, Pj3 = P2, and pyy = p4.

Definition. A linear combination of the elements of p defined by the vector ¢ is symmetric
with respect to the generating events Ay, ..., Ay if p = p; VJ € M. A linear programming
problem, max p s.t. Ap < b, is symmetric if ¢ and all rows of A are symmetric with respect
to the generating events Ay, ..., Ay.

An example of a symmetric weighting vector ¢ is the one corresponding to the probability
of the union of the events, ¢ = [1101]', since ¢'p = 'p; = P(A; U As).

Definition. A probability system p is symmetric if every event in V| the finest partition of
the sample space generated by the basic events, has the same probability in all permutations

of the generating events.

For example, with three generating events (N = 3), the probability system is symmetric



if P(A;) = P(Ay) = P(A3) and P(A; N Ay) = P(A; N As) = P(A; N A;s). I can now prove

the following proposition:

Proposition. Suppose that the probability bounds correspond to a symmetric LP problem.

Then, the bounds are attained by a symmetric probability system.

Proof. Start from a symmetric LP problem
max c'p

st.Ap <b

Suppose that p* is a solution to the problem. Given the definition of symmetry presented
in the text, it is clear that p is also a solution to the problem: ¢'p* = ¢/p% and similarly hold
for every row of the constraints, for every J.

Now, construct p** as follows:
ok 1 *

where the first J correspond to no permutation, and J cycles across all permutations of indices
Aq, ..., An.

Note that it is also possible to construct p** in the following way, considering the binary
representation introduced in the text. Every b; vector has O; ones and N — O; zeros. Call H;
the set of all vectors of size N that have O; ones and N — O; zeroes in different positions. Call

bir, the vector corresponding to element h from H;. Then, for every i, construct p** as:
o —1

P = l Z bin

( N > heH;

From the first construction, it is clear why p** is a solution to the maximization problem,
being just an average of solutions. Additionally, p** is symmetric, which proves the statement
of the Proposition.

An example with N = 3. We can construct the probability system p* as follows:
pi = P’I“{Zl HZQ mZ:;}

p; = PT{Zl ﬂZQ N Ag}

p; = PT’{Zl ﬂAQ 023}



pi = Pr{A; N AyN A3}
pi = Pr{A; N A,N A3}
pi = Pr{A; N Ay N A3}
pi=Pr{A;N Ay N A3}
py = Pr{A; N Ay N A3}

Suppose p* solves the maximization problem, and construct p** as:
Py =1

pr=pr =pr =2 TS

3
by =D¢ =DP7 :T

Ps = Dg

p** solves the maximization problem and is symmetric.

O

Corollary. (Proposition 2) The bounds on systemic events of the type “at least r insti-
tutions default” given a symmetric constraint set (for example, constraints on the average

marginal and pairwise default probabilities) are attained by a symmetric probability system.

The bounds obtained in a symmetric network in which we observe all marginal and pairwise
probabilities will always be at least as wide as those obtained in an asymmetric network with
the same averages of the low-order probabilities. The difference between the bounds obtained
in the two cases captures precisely the extent to which asymmetry in the shape of the network

affects the probability of systemic events.

Appendix C: additional pricing details

C.1 - Bond pricing model

The bond pricing model used corresponds to the one in Longstaff et al. (2005), with the

exception that the process for h! has no drift term. Following their notation, the closed-form



solution for the bond price at time 0 is:
T
P(c,R,T) = c/A(t)eB(t)hOC’(t)D(t)e‘”’Otdt
0

+A(T)ePDhoC(T)D(T)e 0T at

+R /T eBOR () D(t)(G(t) + H(t)ho)e ldt (1)
with: O
A(t) =1
0= = e s (1 o)
et = eap("1)

G(t) =
H(t) = exp(V20*)(— jmf

C.2 - Additional details of CDS contracts

Besides those considered explicitly in this paper, there are other elements of CDS contracts
that potentially affect their spreads.

First, liquidity of the CDS market could influence the CDS spreads, just as bond liquidity
is known to affect bond prices. In this paper, I explicitly take into account liquidity premia
in bond prices, but not in CDS spreads. For the case of CDSs, liquidity is much less likely to
be an issue, especially because they require much less capital at origination and they are not
in fixed supply.

Also, I abstract from restructuring clauses and the cheapest-to-deliver option sometimes
present in CDS contracts. A restructuring clause (under which payment is triggered for simple

debt restructuring, in addition to bankruptcy) is more frequent for European bonds, and this

SFor an additional discussion of this and on the supporting evidence, see Blanco, Brennan and Marsh
(2003,2005).



results in the contract being triggered in cases close to the Chapter 11 for the US. Berndt,
Jarrow and Kang (2007) estimate that the presence of such clause increases the value of the
CDSs by 6-8%, and all the results in this paper are robust to an adjustment of CDS spreads
of that magnitude. The value of the cheapest-to-deliver option (which allows the buyer to
deliver to the seller the cheapest of the defaulted bonds of the same seniority as the reference
bond) will be small relative to the CDS spread as long as in default all senior unsecured bonds
have similar recovery rates. Additionally, as observed in the Delphi and Calpine defaults in
2005, the high demand for the cheapest bonds might determine shortages of such securities

and therefore, anticipating this, a reduction in the ex-ante value of the option (De Wit 2006).

C.3 - CDS pricing approximation

This section shows how to derive the linearized version of the CDS pricing equation.
For notational simplicity, we compute the CDS price at time 0. I obtain the derivation in
continuous time, though the same derivation can be obtained in discrete time as well. Start

from the pricing equation:

T . .
g {Z] / e—./grs+(hz+hz;—h?>dsdt}
0

T | .
=F {/ {[hi — h?} (1 — R) + hijS(l _ R)} e~ I3 ret(RL+hL—hG )dsdt}
0

Assuming independence of the interest rate process, we can write

’ i J_3ij
Zji / 5(t)E [e—‘/o<hz+hs—hs >d5] @t
0

T ’ .
= [0 [ - R - R+ ROS(— R)y HO] g
0

or: | ”
s do SOE [{ [hi — nP] + b SY e—f5<hi+hz—h?>ds} ”

ji Y0

Lok 7 s [e o] gy

0

where d(t) is the time-0 risk-free discount factor.

The expectations above are conditional on information at time 0, and they are a nonlinear
function of the information at time 0 (h{, h%, hf)j ). We now make two simple approximations
to the formula above that will hold for small values of the intensities {hs}, and we verify
numerically that the approximation works extremely well for a wide range of calibrated values

of the probabilities (h{, b}, hi) that span the values we observe in the data.
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First, we consider a linear approximation of the functions that appear within the expec-
tations, for all h%, hJ and h¥ close to 0. Note that these functions are effectively deterministic
because they condition on the realized path of the A’s.

Consider first the denominator. Calling X (¢ fO (hi+ hi—h¥)ds, a first-order expansion
around X (¢) = 0 gives:

e~ Johithahif)ds _ o=X(1) n p X(t)=1- /t(hi + hl — h¥)ds
0
For the numerator, consider the function
l7:{hﬁ—h?+h§5}eﬁﬁ%+@4ﬁwsz{hﬁ—h?+h§5}y“@
Taking a Taylor expansion of F' for both {h} — he +hS } and X (t) close to 0, we obtain:
Fehi—h?4+h7s

We can now express the right-hand side of the pricing equation as a function of A, hg) and
héj , exploiting the fact that h are martingales:
T i ] tj T i ] ij
Zji Jo 0()E [ht —h + hy S} dt I 5( ) [h — hg + hy S] dt
LR 0508 [ fih+ b pidyds] de Jy0() [1= (hf+ hg = k)] i

Finally, in order to have a linear constraint in the optimization, we approximate the resulting
function linearly around hi = h} = h§ = 0. Call the function
T i ] ij
fy 6(t) [hi — hg + Ry S] dt
[ 8(t) [1— (ki + ) — hi)t] dt

Notice first that G(0) = 0. Then compute:

g 30 [ =+ i) ] (1000 [1 = 1+ = i) ],
o (f, ot) [1—<h6+hé—héf>}dt>2 '

Gh%

[ JE0) [h — b + K S] dt]o [d;jé SIS U= (ki + b — h)] dt]o
(Jo 80 [L = (h + i — hg))i] dt)?
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it I 300 T = 1§+ ms] ] [ a0y

_ - o = S=1
[ ) (t)dt} [ I 5(t)dt]
Similarly, one can compute
Gh{)‘ﬁ =0
and
Gl = (S—1)
Therefore, putting all together we can write
2ji = (hy — hg )(L = R) + hif S(1 = R) = (1 = R)(hy — (1 — S)hy) (2)

The pricing formula can also be obtained directly in discrete-time, by writing down the
pricing equation for CDSs in discrete time (again, assuming a martingale for h* and h* and
ignoring the convexity effects due to future variability of hazard rates), and employing first-
order Taylor expansions analogous to the ones used in continuous time above. In particular,

the approximation one obtains in discrete time is:

01 6(0,5)
|0 0(0,5 - 1))

zij ~ (1-R) (ho — (1= S)hy)

which is almost identical to eq. (2), apart of a (negligible) adjustment term that depends on
the risk free rate and comes from the fact that when working in discrete time I assume that
the payment of CDS premia happens at the beginning of each period while payouts happen
at the end of each period.

Note also that the same pricing formula would hold if agents priced the CDS using a
constant-hazard rate model, treating the hazard rates as if they will be constant at level h!
and h? for all the life of the CDS, when pricing a CDS at time ¢. This is a result of the
first-order approximation that ignores the volatility adjustment together with the fact that
hazard rates are assumed to be martingales.

It is important to check the accuracy of the approximation for a realistic range of param-
eters. For several different points in time (every 50 days) between 1/1/2007 and 3/31,/2009, I
compare the correct spread and the approximated spread, computed using the US yield curve
at that time. I simulate the CDS spreads using the discretized version of the model, and

compare it with the approximated one. I consider a large range of parameters:
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o different values of h; = P(A;): between 0 and the maximum probability implied by
bond data under no liquidity assumptions (maz;{h;(0)}).

e different values of h"/ = P(A; N A;): between 0 and P(A4,)

o different values of R and S: between 0.1 and 0.4.

In all these simulations, the approximation error is always below 0.3% of the true value of the

CDS spread. The approximation therefore is extremely accurate.

Appendix D - Robustness Tests

In this section I study the robustness of the main results of the paper to different assump-
tions. For each robustness test (all performed under the calibration of the liquidity to the
basis of nonfinancial institutions, f_yi = a;A\}), I report in Appendix Table 1 the average value
of the bounds, in basis points per month, during different periods: January to December 2007,
January 2008 to March 15 2008 (the run-up to Bear Stearns’ collapse), from Bear’s episode
to Lehman’s default (on September 15th 2008), the month after Lehman’s default (in which
CDS spreads and bond yields spiked), the period between September 2008 and April 2009
(the latest peak of the crisis, just before the stress test results were released) and finally from
May 2009 to June 2010. The subperiods were chosen to reflect the main events identified in
the Figures. In the three panels, I show values for the lower and upper bound on P;, and the
upper bound on Pj (the lower bound on Pj is always 0).

Besides showing the level and the time series of the bounds, this Table allows us to check
that the main results reported in the paper hold under different assumptions. The bold line
in each panel of Appendix Table 1 reports the baseline case presented in the paper. We can
confirm the result, presented in Figure 4, that systemic risk was low in the months preceding
Bear Stearns’ collapse, while idiosyncratic risk was already high. Besides, we can see that
during the month after Lehman’s default, idiosyncratic risk (P;) spiked: it increased sharply
and then decreased as sharply. The upper bound on systemic risk, Py, increases as well,
but not as much: in most cases, it does not even reach the level observed in the following 6
months. Only for two specifications (only US banks and alternative bond model) P, is actually
higher in September 2008 than in the next 6 months, but in those cases P, is much higher
in September 2008 than in the following 6 months: idiosyncratic risk still spikes more than

systemic risk. The results, as explained below, only stop holding for the case of full recovery
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of CDSs in case of double default, S = 100%, and in that case systemic and idiosyncratic risk

are essentially indistinguishable.

D.1 - Assumptions on S

Let us start with robustness with respect to the assumed recovery rate of CDSs when
double default occurs, S € [R, 1]. The effect of changes in this assumption depends crucially
on the liquidity-adjusted bond/CDS basis of each bank. For some banks; the basis is small
enough that it can be completely explained by counterparty risk. For these banks, an increase
in S means that the same basis can account for higher counterparty risk. For other banks,
instead, the basis is large enough that, due to internal constraints of the probability system,
it cannot be completely explained by counterparty risk: even at the upper bound for systemic
risk, a part of the basis must be explained by liquidity. For these banks, an increase in S means
that the same amount of counterparty risk - which was already at the maximum possible -
will explain an even smaller fraction of the basis. This means that the marginal probability of
default, P(A;), has to decrease. In turn, this directly reduces the maximum possible amount
of counterparty risk for contracts written by i against other banks, since for each ;7 we must
have P(A; N A;) < P(A;).

An increase in S then has a different effect on banks with a relatively small basis and banks
with a large basis. The two effects are also at play for each bank individually, for different
starting levels of S: when S is low enough counterparty risk has a large effect on CDS spreads,
and therefore the basis will be relatively small - it can be completely explained by counterparty
risk. When S is large enough, not all the basis can be explained by counterparty risk, and the
second mechanism operates. Typically, because of asymmetry in the basis across banks, for
most values of S the two effects described above will operate for some banks in one direction
and for other banks in the opposite direction. This explains why we see the bounds on systemic
risk being very robust to changes in S (at least up to a recovery rate of 90%), as shown in
Appendix Table 1.

To see formally the effect of S on the implied estimate of systemic risk, it is useful to look
at a symmetric network. Remember that the upper bound on systemic risk is attained by the

most correlated probability system that satisfies the constraints:

P(A;) < hi(7})

P(A;) — (1—5) <ﬁ S P4 Aj)) _ b

J#
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where b; = (i—im 7

Intuitively, for a given S, one can obtain the most correlated probability system by setting
P(A;) as high as possible (up to the constraint /;(7?)) for all banks and then increasing the
term = > izj P(Ai M Aj) to match the CDS spreads (b;). Counterparty risk would explain
the whole bond/CDS basis, and a higher recovery rate S would imply that a higher joint
default probability is needed to match it, increasing the upper bound on systemic risk. This
intuitive reasoning, however, does not take into account the internal restrictions of consistency
of the probability system. For a symmetric network, call the marginal probability of default
of each bank ¢; and the pairwise joint probabilities of default of each pair ¢;. The previous

constraints become:

¢ <h
g—1=5)g¢=0>

where h is the (common) upper bound on the marginal probability of default and b is the
(common) b;.

To maximize systemic risk, we would intuitively set ¢; = h, and then ¢, will be set to
match CDS spreads:

—b
@ =T (3)

For given ¢, ¢o is increasing in S, as is systemic risk. This captures the intuition that a
higher recovery rate of CDSs implies that higher counterparty risk is needed to explain the
same bond/CDS basis.

In fact, this effect is at play only when S is small enough. As S grows, ¢» keeps increasing,
and at some point it will reach the level ¢o = ¢;. At that point, the internal consistency
of the probability system kicks in, preventing further increases: it would violate the implicit
constraint that ¢o < ¢.

What happens then if S increases further? The only way to satisfy the constraints is to
lower q; below h: for q; = h there might exist no probability systems able to satisfy both

constraints: matching the CDS spread and satisfying internal consistency. Instead, with a

"I focus on the upper bound for the probability of at least r > 1 events occurring. Following the analysis
reported in section 3, the same argument holds for the lower bound for the probability that at least 1 institution
defaults, since that is achieved for a very correlated system. It is easy to see why the results for the lower
bound for » > 1 and the upper bound for » = 1 do not depend on S: these bounds look for the least correlated
system, which can always be obtained by setting the marginal default probabilities at the levels implied by
the CDS spreads and attributing the bond/CDS basis entirely to liquidity.

15



lower ¢, it is possible to set g, to be equal to ¢; and satisfy the CDS constraint, so that:

b

Q2=C]1=§

which is decreasing in S. This means that for large enough values of S, the bond/CDS basis
is too large to be explained by counterparty risk. Even at the upper bound on systemic risk,
liquidity has to explain part of the basis. In a symmetric system, then, the bounds on systemic
risk first increase and then decrease with S.

These forces play out in similar but very nonlinear ways for asymmetric networks. The
asymmetry in the bond/CDS basis across banks means that the upper bounds on marginal
probabilities (that are obtained from bond prices) will bind for some banks and not for others.
So, as S increases, the maximum counterparty risk increases for some banks and decreases for
others. Empirically, these opposite effects tend to cancel out for S as large as 90%, as shown
by Appendix Table 1. As a result, the upper bound on systemic risk does not depend much
on S as long as S is not too large. As S approaches 100%, all the banks that have a basis
of 0 or very close to zero, and thus are essentially disconnected from the financial system for
all but very high S, can become more correlated to the rest of the financial system. When
S = 100% the CDS spread is not affected by counterparty risk at all, so all the banks can be
maximally correlated with each other, with no restriction coming from the basis. Even a bank
with a basis of 0, which necessarily has zero counterparty risk as long as the basis contains
some information about counterparty risk (S < 100%), can become highly correlated with
the other banks when S = 100%, since then there is no information about counterparty risk
in the basis. This explains why at S = 100% we find a higher level of systemic risk, and why
in that case systemic risk is driven entirely by movements in the level of CDS spreads, not by

the basis: the basis is completely uninformative about counterparty risk if recovery is always
full.

D.2 - Assumptions on R

The case for the recovery rate of bonds R is different. R affects the prices of both bonds
and CDSs. A higher expected recovery rate in case of default increases the value of a bond,
and at the same time decreases the value of CDS insurance written on that bond, since the
payment from the CDS seller covers only the amount of bond value not recovered in default.
Because this recovery rate multiplies the marginal and joint default probabilities in the pricing
formulas, when R changes all probabilities implied in bonds and CDSs are scaled up or down

by approximately the same amount.® Therefore, the bounds on systemic risk will scale in a

8The difference between the two comes from differences in the cash flow timing of bonds and CDSs. They
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similar way. However, the main results on the time series of the bounds will not change, as

shown by Appendix Table 1.

D.3 - Time varying recovery rates

Above I have studied robustness to different assumptions about S and R, when these are
assumed to be constant during the whole sample period. In theory, it is possible that these
recovery rates vary over time in a way that affects the results on the time-series of systemic
risk presented in section 4. Suppose that at every time ¢ bonds and CDSs are still priced
assuming that at all future periods t + s the recovery rates are constant and equal to .S; and
Ry; however, let now S; and R; vary over time. How will this affect the bounds on systemic
risk?

The tests presented above show that the bounds on systemic risk scale in the same direction
as R. If we believe that, during peak episodes like the one following Lehman’s default, recovery
rates R might have dropped, this would in fact strengthen the result that the spike in systemic
risk was then relatively low, because it would further reduce the bound on P, during that
month.

Another possibility is a reduction in the recovery rate of CDSs, S, in times when systemic
risk increases. However, it is easy to see that this case actually reinforces the main empirical
results. If the recovery rate S becomes smaller during the key episodes of the crisis, then joint
default risk has to be smaller as well. This stems once more from the fact that during these
episodes the bond/CDS basis is small relative to CDS and yield spreads. When S is reduced,
the probability of joint default has a greater effect on the basis. To still match the basis even
if S is higher, joint default risk has to decrease. Therefore, the main results in the paper will

be robust to a decrease in the recovery rate S in times of crisis.

D.4 - Stochastic recovery rate on bonds R

Another possibility is that when pricing bonds and CDSs, agents incorporate the possibility
that recovery rates might be stochastic and correlated with the default events in the financial
sector. In particular, one could think that recovery rates of both bonds and CDSs might
deteriorate the more defaults happen in the financial system.

Because of the limited data available, it is difficult to solve explicitly for the case of
stochastic recovery rates. However, it is possible to gain some intuition on the effect of this
assumption under simple modeling assumptions. Suppose that the recovery rate on bonds is
Ry whenever one bank defaults alone, and R;, < Ry whenever two or more banks default.

Below I show that we can decompose as follows the change in the bounds on systemic risk,

are scaled by exactly the same amount in the simple two-period example of section 2.
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going from a non-stochastic recovery rate R to the stochastic recovery process described above.
First, we can shift the (constant) recovery rate downwards for both bonds and CDSs to Ry.
This component scales down the bond-implied and the CDS-implied probabilities by a similar
amount, as discussed above. This would scale the bounds on systemic risk downwards. Second,
we increase the present value of bonds by an amount Yj,,4, and decrease the present value
of payments of the CDS contract by an amount Yops & Yyona (in a first-order approximation
with small probabilities of default). This second effect shifts the CDS spread and the yield
spread in the same direction by a similar amount, with minimal effect on the basis and hence
on counterparty risk. We then expect the bounds on systemic risk to become lower if we
introduce a stochastic recovery rate with R; < R. The reason is that for the purpose of
systemic risk, the relevant recovery rate is the one that obtains in states of multiple defaults,
or Ry in this case. However, as long as the recovery rates R; and Ry themselves do not vary
over time, the time series of the bounds should still look as in Figure 4.

Define X; = Uy Ay the event of at least one default among the banks different from ¢,
and similarly X;; = U ;Ag. Call h;x the joint intensity of default of < and at least one other
bank (X;) during dt (the event A; N X;). Call h’X the intensity of the event 4; N X;, h7¥Xi
the intensity of the event A; N Zj N Yij, and hXii the intensity of the event A; N Zj N Xij.
Call Bg(0,T) the price of a bond under the assumption of constant recovery rate R and
Br, r,;(0,T) the price of a bond with stochastic recovery rate described above, and similarly

for the CDS spreads. Then the bond pricing equation — ignoring liquidity — is:

T
t
BRLRH(OvT) =FE C/exp(—/ Ts +hsd8)dt
0
0

T

T o ¢
+F [exp(—/ T —i—hsds)} + F RH/hiXie:cp(—/ rs + hsds)dt
0 0

0

T
t
+F RL/hf;Xie:Ep(—/ rs + hsds)dt
0
0

while the CDS pricing equation is:

T

t
E[Z;Z%L’RH /exp(—/ rs + (B + bl — h)ds)dt]
0

0
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T
t —_— — ..
_ E[/ exp(— / rs 4+ (B + R — h)ds) {h? X9 (1 = Ry) + h7™ 9 (1 — Rp) + h?S(1 — Ry)}di]
0
0

Now, rewrite bond prices as:

T
t
BRLyRH(()?T) =FE C/e:cp(—/ Ts +h5d8)dt
0
0

T _ ¢
+E {e:cp(—/ rs + hSdS)l + (Ry — RL)E hiXiea:p(—/ rs + hsds)dt
0 0

St~

T
o t
+RE /(hiX + hixi)exp(—/ rs + hsds)dt
0
0

Noting that hi¥idt + hi~'dt = hidt, we can rewrite

T
t
Brmy(0.7) = B |c [ eap(= [ .+ huds)as
0
0

+E {exp(— /0 ' re + hsds)]

T
t
+R.E /hiemp(—/ rs + hsds)dt | + Yoond
0
0

Or:

BRLRH (Oa T) = BRL (O, T) + Yl-)ond

where
T

Yiona = (Rir — R1)E / hiXiexp(— / t re + hyds)dt
/ 0
The price of the bond is now equal to the price of the bond in case that the recovery rate
is constant and equal to Ry plus the last term, which is the present value of the additional
recoveries in case ¢ defaults alone.
A similar formula holds for CDS spreads. Since hiiXi = BiXi we can rewrite the CDS

spread as
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T
t
E[ZﬁL’RH /exp(—/o rs + (h; + hi - hij)d5>dt]
0

T
= B [ eap(— [ ro-+ (b 1] = 1)) (770~ Rip) — W7V (1= )
0
0

_}_hierij(l . RL) + hijxij(l . RL) + hiJS(l — RL)}dt]

T
t T
— E[/ ea:p(—/ rs + (RL 4 hi — hY)ds) {h?X”(RL — Ry)
0
0

H(1— R (hTX0 4 pT%0 4 piighay)

Since
i X
t

WX g+ B9 qt 4+ B Sdt = hdt + b7 Sdt = hidt — (1 — S)hdt

we can write:

T
t
E[Z;‘:%L’RH /exp(—/ rs + (A + by — h)ds)di]
0
0

T
t e
= E[/ 6‘7719(_/ ro + (hi + h! — hid)ds) {h/™"(R; — Rp)
0
0

+(1 = R,)(hidt — (1 — S)h)}dt]

or: ,
E[zﬁL’RH /exp(— /t re 4+ (BL 4 h! — hY)ds)dt]
0
0
T t
= E[zﬁL /e:cp(—/o rs + (hL 4+ h? — h9)ds)dt] — Yeops

0

where

T
t —
Yops = (Ru — RL)E[/ earp(—/ re + (hi + b — hi7)ds) hiX Y dt
0
0

A first-order approximation of both Yj,,q and Yeopg around hi = hJ = h¥ = 0 just as in

Appendix C immediately shows that to the first order Yj,,a = Yops. As discussed above the
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addition to the same term to both bond yields and CDS spread does not affect the bounds.

D.5 - Assumptions about the hazard rate process

In this section I allow for a more flexible form for the hazard rate process. Assume that for
each institution ¢, from the perspective of an agent pricing bonds at time ¢, the hazard rate

will evolve from the current level, h;, following the deterministic but time-varying process:

dhs = p(h — hy)ds s>t (4)
Here, h; (the current level of the intensity process), h (the long-run default intensity level)
and p (the speed of convergence to the long-run intensity level 2) are known at time ¢ when
the bond is priced. For simplicity, I consider here a deterministic path for the hazard rate,
from the perspective of time ¢, ignoring the effect of the variability in future hazard rates on
bond prices. I also assume that agents potentially revise their estimates of p and h at each
time ¢t. Therefore, the cross-section of bond prices at time ¢ contains information about the
current intensity h; as well as the time-t beliefs of the agents about the parameters p and h:
these are used by agents to price bonds of all maturities at time t.

This simple specification allows me to use the cross-section of bond prices to estimate h, p
and h separately at each t, at the same time allowing for time variation in the slope of the
term structure of default intensities (determined by p and h). After estimating h; and the
implied time-t values of parameters p and h, I construct the bounds on systemic risk using h;
as an upper bound to the marginal probabilities (linear inequality from bond prices).

As discussed in section 3, the main problem with this approach is that while it is easy to
estimate a more flexible function for the marginal hazard rate of default using bond prices,
CDS data do not contain enough information to estimate a similarly flexible process for joint
default risk process h¥ (because at each time ¢ we only observe consistently the spread of
one CDS, with maturity of 5 years). To tackle this limitation, I assume that the joint hazard
process replicates the shape of the marginal hazard process of the reference entity: the process
decays at the same rate (p) and displays the same ratio between short-term and long-term
default hazards (h/h) as that estimated from bond prices. Therefore, I can use the 5-year CDS
spread to back out h,’;j at each time t. Appendix Table 1 shows the results obtained using these
assumptions. Note that, just as for the baseline case, I employ a first-order approximation of
CDS spreads analogous to that presented in appendix C. I also discretize all pricing formulas
at the monthly horizon, just like in the baseline case. Because we are trying to extract the
time series of the one-month-ahead default probabilities using bonds of maturities much longer

than one month, the estimated hazard rates will be quite noisy. However, Appendix Table
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1 shows that the main empirical results are still valid under these assumptions. While the
level of the short-term joint default risk increases, the broad time-series behavior of the upper

bounds on P; and P, is the same as in the baseline case.

D.6 - Using interest rate swaps as the risk-free rate

While swap rates may not be the appropriate rate to discount cash flows under risk neutral
probabilities (because they are indexed to a risky reference, LIBOR, and because they contain
counterparty risk), it is interesting to check how the results change if we use them in place of
Treasury rates.” Because these rates are higher than the Treasury rates, and therefore result
in a lower basis for all banks, we would expect the upper bounds on systemic risk to decrease
noticeably. At the same time, one must remember that we are calibrating the time variation
in the liquidity process to the basis of non-financial firms, and the level of the liquidity process
to the basis of each bank in 2004. Therefore, the change in the risk-free rate will be offset by
a corresponding decrease in the liquidity process (even though the offset is not exactly one to

one). Appendix Table 1 shows that the change in the bounds is very small.

D.7 - Assumptions about the weighting of contributors in CDS contracts

As discussed in section 3, the bounds are computed under the assumption that the CDS
spreads are obtained by averaging quotes obtained from all the other dealers in the sample. If
some dealers do not post quotes at all times, the average spread observed will, in expectation,
overweight dealers which send quotes in more frequently. In turn, this is most likely related
to how active the dealer is in the CDS market.

While we cannot obtain directly estimates of the activity of the dealers (in terms of number
of contracts written and volume of CDS protection sold), Fitch Ratings' reports a ranking of
the top 5 counterparties by trade count (which in turn is very correlated with gross positions
sold), for each year between 2006 and 2010. We might then think that because these dealers are
more active, quotes are more likely to be obtained from them, and therefore the average CDS
spread observed will in expectation reflect more their contribution. Given this, as a robustness
test I compute bounds that overweight the top 5 institutions in the formula for CDS contracts.
I consider two relatively extreme weighting schemes. In all of them, institutions ranked below
5 have the same weight (I do not have information about the relative ranking of these dealers).
In the first weighting scheme, I compute the bounds assuming that the top 5 institutions are

5 times more likely than the other 10 to contribute quotes, and therefore their contribution

9T bootstrap the zero-coupon yield curve from the par swap rate curve of the different currencies using
linear interpolation.
10Fitch Ratings, 2008, Global Credit Derivatives Survey.
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is weighted 5 times more than the other institutions in the sample. The second weighting
scheme again assumes that all institutions ranked 6-15 have the same weight, and the top
dealer has 10 times their weight, the second dealer 8 times, and so on up to the 5th largest
dealer (with a weight twice that of the smaller dealers).

The effect of this overweighting on the bounds of systemic risk is not immediate. Suppose,
for example, that in the bounds computed under equal weighting, systemic risk comes from
the joint default risk among top-5 banks. Then, increasing the weight on these banks will
have the effect, everything else constant, of lowering the weighted CDS spreads. But this is
not possible because the CDS spreads were chosen to match the observed ones. Therefore,
the joint default risk among these banks will have to decrease. At the same time, joint default
risk with smaller banks can increase. But if these smaller banks were contributing little to
default risk before the change in weights, an increase in the possibility of joint default risk
with them might not make up for the reduction in maximum systemic risk coming from the
top-5 dealers. In this example, systemic risk will likely decrease when we overweight top-5
dealers. It is easy to see that the opposite is true if systemic risk mainly comes from non top-5
dealers.

If instead in both groups (top-5 and non-top-5 dealers) we find dealers with large contri-
bution to systemic risk as well as dealers with small contribution to systemic risk, under equal
weighting, the bounds will be relatively robust to changes in the weights. In fact, this is the
case. The top 5 banks include both banks with high contribution to systemic risk as well as
banks with low contribution to systemic risk, such as one or two European banks. Appendix
Table 1 shows that under both weighting schemes the main results still hold.

This robustness test also allows us to say something about heterogeneity in collateral
agreements across counterparties. All the results in the paper have been derived assuming
that the recovery rate in case of double default, S, is the same for all banks. How do the main
results change if instead (because of different collateral agreements and exposure to other
shocks) the recovery rate is different across institutions? While we have no direct information
about the expected recovery rates of each counterparty, it is easy to show that if the recovery
rates S; are different across counterparties j, the average quote reflects not an equally weighted
average across j’s of the joint default probabilities P(A; N A;), but rather a weighted average
Y wjP(A; N A;), where w; = % and S = ﬁzj S;j. Therefore, given a certain
average recovery rate S, the joint default risk with counterparty j will be weighted more in
the observed quote if j’s recovery rate is lower. Now, it is reasonable to assume that more
important counterparties (that have a larger volume of the business) are also the counterparties
that are able to obtain less stringent collateral agreements — and therefore buyers of CDSs

from them might obtain a lower recovery rate in case of double default. As a consequence,
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the robustness test presented in this section can also be interpreted as robustness to this case

of heterogeneity in recovery rates.

D.8 - Assumptions about the exchange rate

The construction of the bounds on systemic risk involves the estimation of risk-neutral
probabilities from bond prices and of joint default probabilities from CDS spreads. Using
probabilities obtained from different securities to obtain risk-neutral probabilities of joint de-
fault requires additional assumptions if the securities are denominated in different currencies.
In particular, while most bonds issued by American firms and the CDSs written on them are
denominated in dollars, European firms issue several bonds in Euros and in other currencies,
and the CDSs written on them are denominated in Euros.

To simplify the discussion, consider one-period bonds and CDSs written by banks ¢ and
j. Call my, the stochastic discount factor of a US investor in state (s,e). Here, s indicates
the default state of the banks ¢ and j, so that it can take values ¢ (only ¢ defaults), j (only
J defaults), 7j (both default), and 0 (none defaults). e indicates the exchange rate with a
foreign currency. Call 7, the probability of s occurring, and note that m,E[m.|s] is the price
of a security that pays 1 if default state s happens. The price of a state-contingent security
that pays a unit of foreign currency if default state s happens is then 7, FE[em.|s].

It is easy to see that a sufficient condition for correctly estimating risk-neutral default
probabilities using bonds and CDSs denominated in different currencies (using the risk-free
rates denominated in the respective currencies to discount cash flows) is that for each s:

Ele-mgls]  Ele-my)

Elmuls] . Efma] (5)

which requires that the relative price of domestic and foreign risk-free securities is the same
as the relative price of domestic and foreign state-contingent securities that pay off in the
various default states. Of course, it is reasonable to assume that the relative price of dollar-
denominated and foreign currency-denominated default-contingent securities might be differ-
ent depending on the default state (think for example of a flight-to-quality to US securities
if several banks default). As a robustness test for the validity of the bounds in case these
conditions are violated, I perform the estimation exercise including only American firms, for
which all bonds and CDSs are dollar-denominated. Appendix Table 1 shows that the results
still hold for this subset of banks.

To derive equation (5), we can start by considering the price of a bond issued by i denom-
inated in different currencies. Consider the variable d; which indicates i’s default, and is 1 if

s =1 or s =17, and 0 otherwise. Cal m4,—; the probability that ¢ defaults.
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Note that
71-di:IEJ[n’Lseldi = 1] + 71-di:OEJ[Tnseldi = O] = E[mse]

For a dollar-denominated risky bond (R is the recovery rate), the dollar price is:

pd =714 E[mse|d; = 0] + Rrg—1 E[mye|d; = 1] = E[mye] — (1 — R)mg,—1 E[mg|d; = 1]

Now consider a euro-denominated bond issued by the same firm, and of equal seniority.

Calling eq the time-0 exchange rate, we obtain:
pFey = Tg,—oE[e - mye|d; = 0] + Rrg—1Ele - mye|d; = 1]
= Ele-mse] — (1 — R)mg,—1E[e - mge|d; = 1]
The prices of the respective risk-free securities are:
t5 = Elmy

tfey = Ele - my)
Combining defaultable and risk-free bonds we get:

Elmge|d; = 1])

=1 <1 — (1 = R)mg,=1 Bl

Ele-msg|d; =1
pfeo = tEeo <1 — (1 — R)ﬂ.dizl [6 m | ]>

Ele - my]

We can then use either bond to estimate the risk-neutral probability of default of firm ¢

Elmye|d; = 1]

P(Ai) = Td;=1 E[mse]

discounting cash flows by the appropriate risk-free rate as long as the following condition

holds:
Ele-mg|d;]  Ele - mge]

Elmald] — Elma) (6)

which requires that the relative price of domestic and foreign risk-free securities is the same as

the relative price of domestic and foreign state-contingent securities that pay off if ¢ defaults.
Now, consider the case of a CDS written by one bank on the default of another bank. The
CDS is written on a european bank (i) but the counterparty (j) is american. The contract is

denominated in euros.
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The CDS contract costs zj; euros. So we must have

Ele-mgls = 1]
Ele - mg]

+ (]. - R)S?Tij

o Em] ((1 o Ele-ma|s = ij]>

Ele - mg]

Therefore, as long as the european yield curve is used to discount cash flows for euro-

denominated CDSs the sufficient condition is:

Ele-mgls]  Ele-my]
E[mse|3] N E[mse] <7)

for every default event in s. Note that equation (7) implies (6) so it is a sufficient condition
for both bonds and CDSs of different currencies.

D.9 - Using only larger transactions from TRACE

A concern with using bond prices from Bloomberg is that they might incorporate stale
information (for European bonds, for which I use quoted prices), or they might depend on
very small trades, which might be less reflective of credit risk (see for example Dick-Nielsen
et al. (2010)). To make sure results are robust to these problems, I compute the bounds for
the subset of US firms using only transaction data from TRACE, and ignoring all trades with
nominal amounts of less than $100,000. Of course, this will exclude several bonds for several

days. Appendix Table 1 reports that the bounds change very little.
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Appendix Tables

Appendix Table 1a: max P1

Model
5007  Jan 2008 Bear to '\g‘;t”;:‘ Oct 2008 to After April
to Bear Lehman April 2009 2009
Lehman
1/1/07 1/1/08 3/16/08 9/15/08 10/16/08 5/1/09
R S 12/31/07 3/15/08 9/12/08 10/15/08 4/30/09 6/10/10
0.10 0.10 50.5 178.8 168.5 295.5 221.6 132.8
0.10 0.30 50.5 178.8 168.5 295.5 221.6 132.8
0.10 0.40 50.5 178.8 168.5 295.5 221.6 132.8
0.10 0.70 50.5 178.8 168.5 295.5 221.6 132.8
0.10 0.90 50.5 178.8 168.5 295.5 221.6 132.8
0.10 1.00 50.5 178.8 168.5 295.5 221.6 132.8
0.30 0.30 64.9 229.9 216.7 380.0 284.9 170.7
0.30 0.40 64.9 229.9 216.7 380.0 284.9 170.7
0.30 0.70 64.9 229.9 216.7 380.0 284.9 170.7
0.30 0.90 64.9 229.9 216.7 380.0 284.9 170.7
0.30 1.00 64.9 229.9 216.7 380.0 284.9 170.7
0.40 0.40 75.7 268.3 252.8 443.3 332.4 199.2
0.40 0.70 75.7 268.3 252.8 443.3 332.4 199.2
0.40 0.90 75.7 268.3 252.8 443.3 332.4 199.2
0.40 1.00 75.7 268.3 252.8 443.3 332.4 199.2
Using swap rates 64.9 230.1 216.8 380.3 285.1 170.8
US banks 49.5 167.3 156.7 274.9 182.8 101.9
US banks, larger trans 46.4 167.4 156.2 270.5 182.6 96.3
Reweight top 5 banks 65.1 229.9 216.7 380.0 285.3 171.2
Reweight, decreasing 65.1 229.9 216.7 380.0 285.3 171.2
Alternative bond model 34.7 120.2 164.7 665.4 242.7 53.5
Appendix Table 1b: max P4
Model
ooy  Jan2008  Bearto '\g‘;t”;:‘ Oct 2008 to After April
to Bear Lehman April 2009 2009
Lehman
1/1/07 1/1/08 3/16/08 9/15/08 10/16/08 5/1/09
R S 12/31/07 3/15/08 9/12/08 10/15/08 4/30/09 6/10/10
0.10 0.10 2.3 1.8 16.2 23.8 49.3 31.1
0.10 0.30 2.4 2.0 18.0 24.7 49.1 31.4
0.10 0.40 2.5 2.2 18.8 25.0 48.9 31.3
0.10 0.70 2.7 2.8 21.1 25.3 47.7 30.7
0.10 0.90 3.2 3.2 22.3 25.9 46.5 29.9
0.10 1.00 12.6 44.7 42.1 69.6 55.4 33.2
0.30 0.30 3.2 2.8 25.2 37.8 65.3 40.6
0.30 0.40 3.3 3.0 26.3 38.2 64.8 40.5
0.30 0.70 3.5 3.7 28.8 39.5 62.6 39.6
0.30 0.90 3.9 4.2 30.2 41.7 61.0 38.4
0.30 1.00 16.2 57.5 54.2 89.5 71.2 42.7
0.40 0.40 3.9 3.7 32.7 48.6 77.2 47.3
0.40 0.70 4.2 4.4 35.5 49.5 74.2 46.1
0.40 0.90 4.7 5.3 36.5 50.4 72.0 44.8
0.40 1.00 18.9 67.1 63.2 104.4 83.1 49.8
Using swap rates 2.0 1.9 19.2 38.6 58.4 28.1
US banks 1.2 0.5 11.7 31.9 34.7 17.1
US banks, larger trans 1.7 0.6 16.7 38.1 43.4 18.3
Reweight top 5 banks 1.5 1.1 24.3 36.9 69.2 42.3
Reweight, decreasing 1.6 1.3 24.8 36.0 70.3 42.6
Alternative bond model 4.6 7.0 25.1 83.9 62.7 8.0
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Appendix Table 1c: min P1

Model Average level of the bounds (bp per month)
2007 Jan 2008 Bear to l:?tn;r Oct 2008 to After April
to Bear Lehman April 2009 2009
Lehman
Start 1/1/07 1/1/08 3/16/08 9/15/08 10/16/08 5/1/09
R S End 12/31/07 3/15/08 9/12/08 10/15/08 4/30/09 6/10/10

0.10 0.10 42.6 164.9 121.7 221.9 109.8 62.3
0.10 0.30 42.0 164.3 117.4 217.3 101.3 56.1
0.10 0.40 41.8 163.8 115.0 214.7 97.0 53.0
0.10 0.70 40.9 162.2 107.2 205.8 85.8 44.4
0.10 0.90 39.1 160.6 101.1 202.8 80.6 40.3
0.10 1.00 7.4 27.3 25.1 84.7 41.3 22.6
0.30 0.30 53.9 210.3 146.4 252.2 125.9 71.3
0.30 0.40 53.6 209.5 143.1 248.0 120.4 67.3
0.30 0.70 52.5 206.6 132.9 237.4 106.5 56.6
0.30 0.90 50.9 204.8 125.3 232.8 99.4 51.6
0.30 1.00 9.5 35.1 32.2 108.9 53.1 29.0
0.40 0.40 62.4 243.7 161.9 281.8 135.8 77.9
0.40 0.70 61.2 241.3 149.8 273.5 120.1 65.6
0.40 0.90 59.7 238.9 142.3 268.4 111.1 59.7
0.40 1.00 11.1 40.9 37.6 127.0 61.9 33.8
Using swap rates 56.6 217.0 156.1 258.2 141.5 97.8
US banks 43.3 157.9 117.0 187.0 110.6 62.3

US banks, larger trans 39.8 154.1 109.8 168.8 100.6 57.4
Reweight top 5 banks 50.4 204.8 128.2 243.5 121.5 67.5
Reweight, decreasing 50.9 204.4 128.2 249.7 121.1 64.6
Alternative bond model 25.2 92.4 107.5 397.8 121.3 26.6

Note: Table reports the average value of the bounds on monthly P1 (probability that at least one bank
defaults) and P4 (probability that at least four banks default) for different nonoverlapping periods, under
different assumptions discussed in the text. The lower bound for P4 is 0 throughout.
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