
Online Appendices

A Theoretical Appendix

A.1 Assumptions

Assumption 1. Let It denote the information set at time t and Qτ (yt+1|It) denote the
time-t conditional τ−quantile of yt+1. Let ft be 1×1 and gt be Kg×1 with K = 1+Kg,
F t ≡ (ft, g

′
t)
′, and xt be N × 1, for t = 1, . . . , T . Then

1. Qτ (yt+1|It) = Qτ (yt+1|f t) = α0 +α(τ)′F t = α0 + α(τ)ft

2. yt+1 = α0 + α(τ)ft + ηt+1(τ)

3. xt = λ0 + φft + Ψgt + εt = λ0 + ΛF t + εt

where Λ ≡ (λ1, . . . ,λN)′.

Assumption 2. Let ||A|| = (tr(A′A))1/2 denote the norm of matrix A, and M be
some positive finite scalar.

1. The variables {Λi}, {F t}, {εit} and {ηit} are independent groups.

2. E||F t||4 ≤ M < ∞ and 1
T

∑T
t=1 F tF

′
t → ΣF or some K × K positive definite

matrix ΣF ≡
[

Σf 0
0 Σg

]
.

3. ||λi|| ≤ λ̄ <∞ and ||Λ′Λ/N −ΣΛ|| → 0 for some K×K positive definite matrix

ΣΛ ≡
[

Σφ 0
0 Σψ

]
.

4. For all (i, t), E(εit) = 0,E|εit|8 ≤M

5. There exist E(εitεjs) = σij,ts and |σij,ts| < σ̄ij for all (t, s), and |σij,ts| ≤ τts for all
(i, j) such that 1

N

∑N
i,j=1 σ̄ij ≤M , 1

T

∑T
t,s=1 τts ≤M , and 1

NT

∑
i,j,s,t=1 |σij,ts| ≤M

6. For every (t, s), E| 1√
N

∑N
i=1[εisεit − E(εisεit)]|4 ≤M

Assumption 3. Let m,M be positive finite scalars. For each τ ∈ (0, 1) the shock
ηt+1(τ) has conditional density πτ (·|It) ≡ πτt and is such that

1. πτt is everywhere continuous

2. m ≤ πτt ≤M for all t

3. πτt satisfies the Lipschitz condition |πτt(κ1)− πτt(κ2)| ≤M |κ1 − κ2| for all t

Assumption 4. Let M be a positive finite scalar.

1. In addition to Assumption 2.1, {ft} is independent of {gt} and {φi} is indepen-
dent of {ψi}
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2. {εit} are i.i.d.

3. limN→∞
1
N

∑N
i=1

1
φi
< M .

4. E(fnt ), E(gnt ) and E(εnt ) exist and are finite for all n.

5. {gt} and {ψi} have symmetric distributions.

Proof Outline Assumptions 1 and 2 are the same as those in Bai and Ng’s (2006)
work on principal components factor estimates in OLS regressions. Adding assump-
tion 3 is sufficient to show that quantile regression is consistent in a time series setting,
because the assumptions imply Engle and Manganelli’s (2004) assumptions C0-C7 and
AN1-AN4, which they show satisfy Corollary 5.12 of White (1994). Assumption 4
strengthens some moment and independence conditions of Assumption 2 and addition-
ally imposes conditions on the distributions of φi, ψi and gu.

Our approach views the latent factor structure among systemic risk measures as
an errors-in-variables quantile regression problem. To address this, we rely heavily on
mis-specified quantile regression results from Angrist, Chernozhukov and Fernandez-
Val (2006, ACF hereafter) to express biases that arise in population for various stages
of the PCQR and PQR procedures.30

For PCQR, Bai (2003) tells us that the principal component factor estimates con-
verge to a rotation of the true factor space at rate min(

√
N, T ) under Assumptions 1

and 2. We write an infeasible second stage quantile regression of yt+1 on the factor
estimate and its deviation from the true factor. The probability limit of this infeasible
quantile regression follows by Assumption 3 and allows for an ACF bias representation
of the feasible quantile regression of yt+1 on the factor estimate alone. This allows us
to show that the fitted conditional quantile from the second stage quantile regression
is consistent for the true conditional quantile for N, T large.

The proof for PQR looks similar. The main difference is PQR’s latent factor
estimator, which is not based on PCA. PQR’s first stage quantile regressions of yt+1 on
xit involves an errors-in-variables bias that remains in the largeN and T limit. We write
an infeasible first stage quantile regression of yt+1 on xit and the two components of its
measurement error (gt, εit). For each i, the probability limit of this infeasible quantile
regression follows by Assumptions 1-3 and allows for an ACF bias representation of
the feasible quantile regression regression of yt+1 on xit alone. For each t, the factor
estimate comes from cross-sectional covariance of xit with the mis-measured first-stage
coefficients. This converges to a scalar times the true factor at rate min(

√
N,
√
T ) under

Assumption 4. This results makes use of a fact about the covariance of a symmetrically-
distributed random variable with a rational function of its square, which is proved in
Lemma 1. The third stage quantile regression using this factor is consistent for the
true conditional quantile in the joint N, T limit, by following the argument in the proof
for PCQR.

30The results of Bai (2003) and Bai and Ng (2008a) can be used to establish the consistency of
the PCQR. Alternatively, one could deduce the consistency from Ando and Tsay’s (2011) consistency
proof for an information criteria using a PCQR model. We provide an alternative derivation in order
to closely connect the proofs of both PCQR and PQR.
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A.2 Proof of Theorem 1

Proof. Let F̂ t be given by the firstK principal components of xt. Bai (2003) Theorem 1
implies that for each t, F̂ t−HF t is at least Op(δ

−1
NT ), where δNT ≡ min(

√
N,
√
T ),H =

Ṽ
−1

(F̃
′
F /T )(Λ′Λ/N), F̃ ≡ (F̃ 1, . . . , F̃ T ) is the matrix of K eigenvectors (multiplied

by
√
T ) associated with the K largest eigenvalues of XX ′/(TN) in decreasing order,

and Ṽ is the K ×K diagonal matrix of the K largest eigenvalues.31

The second stage quantile regression coefficient is given by

(α̂0, α̂) = argmin
α0,α

1

T

T∑
t=1

ρτ (yt+1 − α0 −α′F̂ t).

Consider an infeasible regression of yt+1 on the PCA factor estimate F̂ t as well as the
factor estimation error F̂ t−HF t (for given N and T ). Because F t linearly depends on
(F̂ t, F̂ t−HF t), this regression nests the correctly specified quantile forecast regression.
By White (1994) Corollary 5.12 and the equivariance properties of quantile regression
we have that the infeasible regression coefficients

(α̇0, α̇, α̇1) = arg min
α0,α1,α

1

T

T∑
t=1

ρτ (yt+1 − α0 −α′F̂ t −α′1(F̂ t −HF t)),

are such that α̇ satisfies
√
T (α̇−α′H−1)

d−−−→
T→∞

N(0,Σα̇).

Next, ACF (2006) Theorem 1 implies that

α̂ = α̇+

(
T∑
u=1

wuF̂ uF̂
′
u

)−1( T∑
u=1

wuF̂ uα̇
′
1(F̂ u −HF u)

)
(A1)

where they derive the weight function wt = 1
2

∫ 1

0
πτ

(
v
[
α̂′F̂ t − αft

])
dv.

Next, we rewrite the forecast error as

α̂′F̂ t −α′F t = α̂′(F̂ t −HF t) + (α̂′ −α′H−1)HF t. (A2)

As stated above, the first term of (A2) is no bigger than Op(δ
−1
NT ). To evaluate the

second term, use (A1) to obtain

(α̂′ −α′H−1) = (α̇′ −α′H−1) +

(
1

T

T∑
u=1

wuF̂ uF̂
′
u

)−1(
1

T

T∑
u=1

wuF̂ uα̇
′
1(F̂ u −HF u)

)
.

(A3)

31Bai (2003) shows that F̂ t−HF t is Op(min(
√
N,T )−1), which is at least as fast a rate of conver-

gence as Op(min(
√
N,
√
T )−1).
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The first term on the right-hand side is Op(T
−1/2), as stated above. Use F̂ u ≡ F̂ u −

HF u +HF u to rewrite the numerator of the second term on the right-hand side

1

T

T∑
u=1

wuF̂ uα̇
′
1(F̂ u −HF u)

= δ−2
NT

1

T

T∑
u=1

wtδNT (F̂ u −HF u)α̇
′
1δNT (F̂ u −HF u) + δ−1

NT

1

T

T∑
u=1

wtHF uα̇
′
1δNT (F̂ u −HF u)

= δ−2
NTOp(1) + δ−1

NTOp(1).

Therefore the right-hand side of (A3) is Op(T
−1/2) + Op(1)Op(δ

−1
NT ) = Op(δ

−1
NT ). This

implies that α̂′ − α′H−1 is Op(δ
−1
NT ). Putting this back into (A2), we see therefore

that α̂′F̂ t − α′F t is Op(1)Op(δ
−1
NT ) + Op(δ

−1
NT )Op(1) = Op(δ

−1
NT ) which completes the

result.

A.3 Proof of Theorem 2

Proof. For each i, the first stage quantile regression coefficient is given by

(γ̂0i, γ̂i) = argmin
γ0,γ

1

T

∑
ρτ (yt+1 − γ0 − γxit). (A4)

Consider the infeasible quantile regression of yt+1 on (xit, g
′
t, εit)

′, yielding coefficient
estimates

(γ̇0i, γ̇i, γ̇
′
ig, γ̇iε)

′ = arg min
γ0,γ,γg ,γε

1

T

T∑
t=1

ρτ (yt+1 − γ0 − γxit − γ ′ggt − γεεit).

Note that ft linearly depends on the vector (xit, g
′
t, εit)

′. By White (1994) Corollary
5.12 and the equivariance properties of quantile regression, these coefficients satisfy

√
T (γ̇i, γ̇

′
ig, γ̇iε)

′ d−−−→
T→∞

N

((
α

φi
,− α

φi
ψ′i,−

α

φi

)′
,Σγ

)
ACF (2006) Theorem 1 implies that

γ̂i = γ̇i +

(
T∑
u=1

wiux
2
iu

)−1( T∑
u=1

wiuxiu
(
γ̇ ′iggu + γ̇iεεiu

))
. (A5)

for the weight wit = 1
2

∫ 1

0
(1−u)πτ (u [xitγ̂i −Q (yt+1|ft)] |ft) du.32 Expanding the weight

32This weight comes from the fact that in our factor model the true conditional quantile Q(yt+1|It)
is identical to the quantile conditioned only on ft. In addition, the conditioning of πτ on ft is a choice
of representation and consistent with our assumption that no other time t information influences the
distribution of ηt+1. ACF provide a detailed derivation of this weight as a function of the quantile
forecast error density, which they denote as f rather than π.
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around xit = 0, we have

wit =
∞∑
n=1

κn(ft)x
n
it , κn(ft) ≡

1

n!

∂nwit
(∂xit)n

∣∣∣∣
xit=0

(A6)

and can use this to rewrite (A5). Note that κn(ft) is a function only of ft and is
therefore independent of gt, εit. Also note that xnit =

∑n
j=0(φift)

n−j(ψ′gt + εit)
jan,j,

where the an,j’s are polynomial expansion coefficients. Using the following notation

Γ1 =

(
T∑
u=1

wiux
2
iu

)−1( T∑
u=1

wiuxiu

[
(γ̇ig +

α

φi
ψi)

′gu + (γ̇iε +
α

φi
)εiu

])
,

Γ2 = − α
φi

(
1

T

T∑
u=1

wiux
2
iu

)−1( ∞∑
n=0

n+1∑
j=0

an+1,j

[
1

T

T∑
u=1

κn(fu)(φifu)
n+1−j(ψ′igu + εiu)

j+1

− E
(
κn(fu)(φifu)

n+1−j(ψ′igu + εiu)
j+1
) ])

,

Γ3 = − α
φi
×

(
∞∑
n=0

n+1∑
j=0

an+1,jE
(
κn(fu)(φifu)

n+1−j(ψ′igu + εiu)
j+1
))

(
∞∑
n=0

n+2∑
j=0

an+2,j

[
E
(
κn(fu)(φifu)

n+2−j(ψ′igu + εiu)
j
)
− 1

T

T∑
u=1

κn(fu)(φifu)
n+2−j(ψ′igu + εiu)

j

])−1

,

Γ4 = γ̇i −
α

φi
,

we can rewrite (A5) as

γ̂i =
α

φi
− α

φi

∑∞
n=0

∑n+1
j=0 an+1,jE [κn(ft)(φift)

n+1−j]
∑j+1

k=0 aj+1,kE
[
(ψ′igt)

j+1−k]E [εkit]∑∞
n=0

∑n+2
j=0 an+2,jE [κn(ft)(φift)n+2−j]

∑j
k=0 aj,kE [(ψ′igt)

j−k]E
[
εkit
]

+ Γ1 + Γ2 + Γ3 + Γ4. (A7)

Because of the probability limit noted above for (γ̇i, γ̇
′
ig, γ̇iε)

′, we know that Γ1 and Γ4

are Op(T
−1/2). Γ2 and Γ3 are also Op(T

−1/2) by Assumption 4, the continuous mapping
theorem, and the law of large numbers. By Assumption 4, for any i and for n odd we
have E [(ψ′igt)

n] = 0. Therefore we can rewrite the above expression for γ̂i as

γ̂i =
α

φi
− α

φi
Υ(ψ2

i , φi) +Op(T
−1/2)

where Υ is the rational function given by the second term in A7. We write Υ as a
function of ψ2

i and φi because we have integrated out the dependence on f, g, εi using
the expectation operator.
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The second stage factor estimate is33

f̂t =
1

N

N∑
i=1

(
γ̂i − ¯̂γ

)
(xit − x̄t)

=
1

N

N∑
i=1

(
α

φi
− α

φi
Υ(ψ2

i , φi) +Op(T
−1/2)− ¯̂γ

)(
(φi − φ̄)ft + (ψi − ψ̄)′gt + (εit − ε̄t)

)
.

What we need is that the parts of f̂t involving gt and εit vanish as N, T → ∞. Sums
involving εit vanish as N becomes large by the independence of εit and (φi,ψ

′
i)
′. Now

consider all the terms involving gt. The term involving gt multiplied by N−1
∑

i(
α
φi
−

ᾱ
φi

)(ψi − ψ̄)′ vanishes from f̂t for N large due to the independence of φi,ψi. Then the
term involving cross products of Υ(ψ2

i , φi) and (ψi − ψ̄)′ vanish in probability as N
becomes large by the symmetry of ψi (Assumption 4) and Lemma 1. The remaining
terms are of smaller stochastic order.

Then straightforward algebra shows that f̂t− hft is at least Op(δ
−1
NT ), where is h a

finite nonzero constant.34 From here, Theorem 1’s argument applies, starting from the
paragraph involving (A2).

Lemma 1. For any symmetrically-distributed random variable x, random vector y =
(y1, ..., yd−1) such that x ⊥ y, and rational function f : Rd → R1 that is infinitely
differentiable at some number a ∈ Rd, it is the case that Cov(f(x2,y), x) = 0.

Proof. Define the vector x = (x2,y′)′, so that x1 = x2 and xj = yj−1. The Taylor
series for f(x) at a is

f(a1, . . . , ad) +
d∑
j=1

∂f(a1, . . . , ad)

∂xj
(xj − aj) +

1

2!

d∑
j=1

d∑
k=1

∂2f(a1, . . . , ad)

∂xj∂xk
(xj − aj)(xk − ak)+

+
1

3!

d∑
j=1

d∑
k=1

d∑
l=1

∂3f(a1, . . . , ad)

∂xj∂xk∂xl
(xj − aj)(xk − ak)(xl − al) + . . .

Any cross products involving xj for j > 1 have zero covariance with x by independence.
By the symmetry of x, Cov(xi1, x) = 0 for any i = 0, 1, ..., which proves the result.

A.4 Simulation Evidence

Table A7 compares PCQR and PQR estimates with the true 0.1 conditional quan-
tile. We report the time series correlation between the true conditional quantile and

33Overbar denotes a sample mean over i.
34It can be shown that

N−1
N∑
i=1

(
Υ(ψ2

i , φi)−Υ(ψ2, φ)
) (
φi − φ̄

)
converges to a finite constant that is different from one, which implies that h is nonzero.

A6



the fitted series as well as the time series mean absolute error (MAE) averaged over
simulations. The simulated model is

yt+1 = −ft1L + (ση + ft1S) ηt+1

xt = φft +ψgt + et

We draw f ∼ U(0, 1), g ∼ N(0, 0.52), eit ∼ N(0, 0.52), η ∼ N(0, 0.52), φi ∼ N(0, 0.52),
and ψi ∼ N(0, 0.52), all independent. We pick 1L = 1 for a location model and 1L = 0
otherwise, 1S = 1 for a scale model and 1S = 0 otherwise, and 1L = 1S = 1 for a
location and scale model. We vary T , set N = T , and run 1,000 simulations of each
specification. The table reports performance of quantile forecasts from PCQR using
two principal component indexes and from PQR using a single index. It shows that
conditional quantile forecasts are increasingly accurate in the size of the predictor panel.
As N and T grow, the time series correlation between fits and the true conditional
quantile approaches one and the forecast error shrinks toward zero.

B Empirical Appendix

B.1 Systemic Risk Measures

CoVaR and ∆CoVaR (Adrian and Brunnermeier (2011)) CoVaR is defined as
the value-at-risk (VaR) of the financial system as a whole conditional on an institution
being in distress. The distress of the institution, in turn, is captured by the institution
being at its own individual VaR (computed at quantile q):

Pr(X i < VaRi) = q

CoVaR for institution i is then defined as:

Pr(Xsyst < CoVaRi|X i = VaRi) = q

which we estimate using conditional linear quantile regression after estimating
VaRi. ∆CoVaRi is defined as the VaR of the financial system when institution i is at
quantile q (in distress) relative to the VaR when institution i is at the median of its
distribution:

∆CoVaRi = CoVaRi(q)− CoVaRi(0.5).

In estimating CoVaR, we set q to the 5th percentile. Note that Adrian and Brunner-
meier (2011) propose the use of a conditional version of CoVaR as well, called forward
CoVaR, in which the relation between the value-at-risk of the system and an individual
institution is allowed to depend on an additional set of covariates. Here we use the
alternative approach of rolling window CoVaR estimates with an estimation window of
252 days. We construct individual CoVaR for each firm separately and calculate the
aggregate measure as an equal-weighted average among the largest 20 financial firms.
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MES (Acharya, Pedersen, Philippon and Richardson (2010)) These measures
capture the exposure of each individual firm to shocks to the aggregate system. MES
captures the expected return of a firm conditional on the system being in its lower tail:

MESi = E[Ri|Rm < q]

where q is a low quantile of the distribution of Rm (we employ the 5th percentile). We
construct individual MES for each firm separately using a rolling window of 252 days
and calculate the aggregate measure as an equal-weighted average among the largest
20 financial firms.

MES-BE (Brownlees and Engle (2011)) This version of MES employs dynamic
volatility models (GARCH/DCC for σ·,t, ρt) to estimate the components of MES:

MES-BEi,t−1 = σi,tρtE

[
εm,t|εm,t <

k

σm,t

]
+ σi,t

√
1− ρ2

tE

[
εi,t|εm,t <

k

σm,t

]
.

where εm,t are market return shocks, εi,t is the individual firm return and k is set to
2 following Brownlees and Engle (2011). We construct the measure individually for
each firm and calculate the aggregate measure as an equal-weighted average among the
largest 20 financial firms.

CatFin (Allen, Bali and Tang (2012)) This measure computes the time-varying
value at risk (VaR) of financial institutions at the 99% confidence level, using the
cross-sectional distribution of returns on the equity of financial firms in each period.
In particular, the methodology first fits (parametrically or nonparametrically) a dis-
tribution for the lower tail (bottom 10%) of the cross-sectional distribution of returns
of financial institutions, separately in each month. CatFin is then obtained as the 1st
percentile of returns under the fitted distribution, computed separately in each month.

Allen et al. (2012) propose computing the VaR by fitting two types of parametric
distributions, the Generalized Pareto Distribution (GPD) and the Skewed Generalized
Error Distribution, as well as nonparametrically using the empirical cross-sectional
distribution of returns (simply computing in each month the 1st percentile of the
returns realized across firms in that month), and then averaging the three measures to
construct CatFin.

In our implementation of CatFin (which differs slightly from the specification in
Allen et al. (2012) for consistency with the other measures we build), we construct
the measure at the monthly frequency by pooling together all daily returns of the top
20 financial firms in each month, and using them to estimate the tail distribution and
compute the 1st percentile of returns. Given the extremely high correlation (above
99%) among the three ways of computing the VaR (already noted by Allen et al.
(2012)), we use the nonparametric version of CatFin obtained using the empirical
distribution of returns.
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Absorption Ratio (Kritzman et al. (2010)) This measure computes the fraction
of return variance of a set of N financial institutions explained by the first K < N
principal components:

Absorption(K) =

∑K
i=1 V ar(PCi)∑N
i=1 V ar(PCi)

.

A leading distress indicator is then constructed as the difference between absorption
ratios calculated for long and short estimation windows

∆Absorption(K) = Absorption(K)short − Absorption(K)long.

In our empirical analysis we construct the Absorption(3) measure using returns for the
largest 20 financial institutions at each point in time. We construct ∆Absorption(3)
using 252 and 22 days for the long and short windows, respectively.

Dynamic Causality Index or DCI (Billio et al. 2012) The index aims to cap-
ture how interconnected a set of financial institutions is by computing the fraction of
significant Granger-causality relationships among their returns:

DCIt =
# significantGC relations

# relations

A Granger-causality relation is defined as significant if its p-value falls below 0.05. We
construct the measure using daily returns of the largest 20 financial institutions, with
a rolling window of 36 months.

International Spillover (Diebold and Yilmaz 2009) The index, downloaded
from http://economicresearchforum.org/en/bcspill, aggregates the contribution
of each variable to the forecast error variance of other variables across multiple return
series. It captures the total extent of spillover across the series considered (a measure
of interdependence).

Volatility We construct individual volatility series of financial institutions by com-
puting the within-month standard deviation of daily returns. We construct the ag-
gregated series of volatility by averaging the individual volatility across the 20 largest
institutions.

Book and Market Leverage We construct a measure of aggregate book leverage
(debt/assets) and aggregate market leverage (debt/market equity) among the largest
20 financial institutions to capture the potential for instability and shock propagation
that occurs when large intermediaries are highly levered.
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Size Concentration We construct the Herfindal index of the size distribution among
financial firms:

Herfindahlt = N
ΣN
i=1ME2

i

(ΣN
i=1MEi)2

The concentration index captures potential instability due to the threat of default of
the largest firms. The index corrects for the changing number of firms in the sample by
multiplying the measure of dispersion by the number of firms, N . When constructing
this measure we use the market equity of the largest 100 firms.

Turbulence (Kritzman and Li (2010)) Turbulence is a measure of excess volatil-
ity that compares the realized squared returns of financial institutions with their his-
torical volatility:

Turbulencet = (rt − µ)′Σ−1(rt − µ)

where rt is the vector of returns of financial institutions, and µ and Σ are the historical
mean and variance-covariance matrix. We compute the moments using data for the
largest 20 financial institutions and a rolling window of 60 months.

AIM (Amihud 2002) AIM captures a weighted average of stock-level illiquidity
AIMi

t, defined as:

AIMi
t =

1

K

t∑
τ=t−K

|ri,τ |
turnoveri,τ

We construct an aggregated measure by averaging the measure across the top 20 fi-
nancial institutions.35

TED Spread The difference between three-month LIBOR and three-month T-bill
interest rates.

Default Yield Spread The difference between yields on BAA and AAA corporate
bonds. The series is computed by Moody’s and is available from the Federal Reserve
Bank of St. Louis.

Gilchrist-Zakrajsek Spread Gilchrist and Zakrajsek (2012) propose an alternative
measure of credit spread constructed from individual unsecured corporate bonds, where
the yield of each bond is compared to the yield of a synthetic treasury bond with the
same cash flows to obtain a precise measure of its credit spread. The individual credit
spreads are then averaged across all maturities and all firms to obtain an index, GZ.
We obtained the series from Simon Gilchrist’s website.

Term Spread The difference between yields on the ten year and the three month
US Treasury bond. The series is obtained from Global Financial Data.

35Our definition of AIM differs from that of Amihud (2002). We replace dollar volume with share
turnover to avoid complications due to non-stationarity.
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B.2 Macroeconomic Shocks

Let the monthly macroeconomic series (CFNAI or IP growth) be denoted Yt. We
construct shocks to these series as residuals in an autoregression of the form

Yt = c+

p∑
l=1

alYt−l = cp + ap(L)Yt

for a range of autoregressive orders, p, and select the p that minimizes the Akaike In-
formation Criterion. This approach purges each macroeconomic variable of predictable
variation based on its own lags, and is a convention in the macro forecasting literature
(e.g. Bai and Ng (2008b) and Stock and Watson (2012)).

Shocks are estimated in a recursive out-of-sample scheme to avoid look-ahead bias
in our out-of-sample quantile forecasting tests. For each month τ , we estimate the AR
and AIC on data only known through τ , and construct the forecast residual at time
τ + 1 based on these estimates. Finally, we construct quarterly shocks as a moving
three-month sum of the monthly residuals.

B.3 In-Sample Statistics

The in-sample R2 lies between zero and one. In sample, we report the statistical
significance of the predictive coefficients as found by Wald tests (or t-statistics for
univariate regressions) using standard errors from the residual block bootstrapped with
block lengths of six months and 1,000 replications.

Table A3 Panel A reports the quantile R2 from in-sample 20th percentile forecasts of
IP growth shocks in the US, UK and EU using the collection of systemic risk measures.
Our main analysis uses data from 1946-2011 for the US, 1978-2011 for the UK, and
1994-2011 for the EU. In sample, a wide variety of systemic risk measures demonstrate
large predictive power for the conditional quantiles for IP growth shocks in various
countries. This picture changes when we look out-of-sample.

Panel B of Table A3 shows that joint use of many systemic risk measures produces a
high in-sample R2 when predicting the 20th percentile of future IP growth shocks in the
US, UK and EU. The table shows that Multiple QR (that simultaneously includes all
the systemic risk variables) works best by this metric. But Table 2 Panel B illustrates
the expected results of in-sample overfit: Multiple QR’s out-of-sample accuracy is
extremely poor.

B.4 Quantile Granger Causality Tests

An alternative to the pre-whitening procedure described in Appendix B.2 is to control
for the history each dependent variable within the quantile regression specification, as
in an in-sample Granger causality test. This alternative procedure yields qualitatively
similar results to those reported in the main text.

To conduct a Granger causality test in our framework, consider the quantile re-
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gression

Qτ (Yt|It) = β0 +

p∑
l=1

βpYt−p +

q∑
k=1

γkxt−k

where Y is monthly IP growth and x is a systemic risk measure. We investigate whether
x Granger causes the quantiles of Y by testing the hypothesis: γ1 = · · · = γq = 0.
We estimate the standard error matrix of (β′,γ ′)′ using Politis and Romano’s (1994)
stationary block-bootstrap with 1,000 bootstrap replications and choose q = 1. Table
A8 reports the resulting Wald statistics for the 20th percentile and median, each of
which is asymptotically distributed as a χ2(1).

B.5 Interval Coverage Tests

An alternative method of evaluating the quantile forecasts follows Christoffersen (1998).
We take the quantile forecast q̂ to define the interval (−∞, q̂) and evaluate this interval’s
coverage. Christoffersen (1998) provides likelihood ratio tests for the intervals’ correct
conditional coverage. Table A9 reports the resulting likelihood ratio tests using the
20th percentile.
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Table A1: Correlations Among Systemic Risk Measures

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19)

Panel A: US

Absorption (1) 1.00

AIM (2) -0.01 1.00

CoVaR (3) 0.60 0.20 1.00

∆CoVaR (4) 0.68 0.06 0.95 1.00

MES (5) 0.63 0.14 0.92 0.93 1.00

MES-BE (6) 0.35 -0.09 0.38 0.41 0.47 1.00

Book Lvg. (7) 0.24 -0.06 0.13 0.10 0.10 -0.06 1.00

CatFin (8) 0.36 0.33 0.59 0.48 0.53 0.33 0.11 1.00

DCI (9) 0.13 -0.07 0.34 0.36 0.39 0.28 0.08 0.23 1.00

Def. Spr. (10) 0.25 0.33 0.67 0.53 0.55 0.34 -0.25 0.56 0.24 1.00

∆Absorption (11) -0.51 -0.02 -0.25 -0.28 -0.31 -0.15 -0.05 0.13 -0.02 -0.06 1.00

Intl. Spillover (12) 0.42 -0.13 0.40 0.45 0.45 0.25 0.12 0.19 0.17 0.34 -0.15 1.00

GZ (13) 0.73 -0.12 0.75 0.71 0.71 0.36 0.33 0.62 0.26 0.37 -0.23 0.31 1.00

Size Conc. (14) 0.04 0.28 0.34 0.18 0.26 0.00 0.40 0.29 0.14 0.36 -0.04 -0.07 0.45 1.00

Mkt Lvg. (15) -0.14 0.11 0.22 0.19 0.17 -0.09 0.30 0.24 0.51 0.45 0.13 0.29 0.15 0.00 1.00

Real Vol. (16) 0.38 0.24 0.71 0.59 0.64 0.44 0.13 0.88 0.28 0.61 0.07 0.19 0.69 0.29 0.19 1.00

TED Spr. (17) 0.10 0.05 0.19 0.20 0.20 0.34 -0.34 0.48 0.12 0.38 0.02 -0.16 0.24 -0.2 0.09 0.49 1.00

Term Spr. (18) 0.29 0.01 0.35 0.37 0.33 0.34 -0.22 0.12 0.20 0.40 -0.12 0.31 0.16 0.09 -0.08 0.14 -0.07 1.00

Turbulence (19) 0.13 -0.05 0.20 0.18 0.18 0.22 0.1 0.42 0.12 0.16 0.02 0.06 0.41 0.02 0.17 0.48 0.54 -0.06 1.00

Panel B: UK

Absorption (1) 1.00

CoVaR (2) 0.56 1.00

∆CoVaR (3) 0.68 0.97 1.00

MES (4) 0.60 0.92 0.93 1.00

MES-BE (5) 0.43 0.48 0.53 0.65 1.00

CatFin (6) 0.30 0.64 0.61 0.62 0.61 1.00

DCI (7) 0.40 0.33 0.37 0.45 0.39 0.19 1.00

∆Absorption (8) -0.48 -0.30 -0.36 -0.33 -0.12 0.15 -0.22 1.00

Size Conc. (9) 0.01 0.25 0.23 0.41 0.51 0.32 0.27 0.01 1.00

Real Vol. (10) 0.35 0.69 0.66 0.67 0.68 0.94 0.21 0.13 0.35 1.00

Turbulence (11) 0.14 0.41 0.38 0.39 0.48 0.66 0.04 0.04 0.15 0.70 1.00

Panel C: EU

Absorption (1) 1.00

CoVaR (2) 0.65 1.00

∆CoVaR (3) 0.75 0.95 1.00

MES (4) 0.76 0.94 0.96 1.00

MES-BE (5) 0.49 0.46 0.61 0.59 1.00

CatFin (6) 0.20 0.35 0.26 0.30 0.09 1.00

DCI (7) 0.44 0.55 0.58 0.59 0.42 0.19 1.00

∆Absorption (8) -0.51 -0.32 -0.37 -0.40 -0.24 0.30 -0.21 1.00

Size Conc. (9) -0.01 0.21 0.19 0.10 0.00 -0.17 0.20 -0.10 1.00

Real Vol. (10) 0.31 0.56 0.50 0.50 0.31 0.84 0.34 0.20 -0.04 1.00

Turbulence (11) 0.03 0.13 0.11 0.10 0.16 0.30 0.13 0.08 -0.07 0.43 1.00

Notes: Correlation is calculated using the longest available coinciding sample for each pair.
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Table A2: Pairwise Granger Causality Tests

US UK EU
Causes Caused by Causes Caused by Causes Caused by

Absorption 7 4 2 1 1 5
AIM 1 3 - - - -
CoVaR 9 5 6 4 4 4
∆CoVaR 7 7 4 5 3 4
MES 6 10 5 7 3 6
MES-BE 3 11 5 9 1 6
Book Lvg. 0 0 - - - -
CatFin 10 10 6 6 3 4
DCI 1 7 0 8 3 0
Def. Spr. 9 4 - - - -
∆Absorption 4 0 5 0 4 0
Intl. Spillover 0 8 - - - -
GZ 8 1 - - - -
Size Conc. 1 0 1 0 0 0
Mkt Lvg. 2 0 - - - -
Real Vol. 10 6 7 3 7 5
TED Spr. 5 1 - - - -
Term Spr. 1 10 - - - -
Turbulence 7 4 7 5 6 1

Notes: For each pair of variables, we conduct two-way Granger causality tests. The table reports the
number of other variables that each measure significantly Granger causes (left column) or is caused
by (right column) at the 2.5% one-sided significance level (tests are for positive causation only). Tests
are based on the longest available coinciding sample for each pair.
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Table A3: In-Sample 20th Percentile IP Shock Forecasts

US UK EU

Panel A: Individual Systemic Risk Measures

Absorption 0.10 2.20∗∗ 8.38∗∗∗

AIM 3.75∗∗∗ 0.56 0.67

CoVaR 3.07∗∗∗ 4.95∗∗∗ 7.20∗∗∗

∆CoVaR 1.27∗∗∗ 4.45∗∗∗ 7.96∗∗∗

MES 1.53∗∗∗ 3.28∗∗∗ 6.86∗∗∗

MES-BE 0.14 2.32∗∗ 6.11∗∗∗

Book Lvg. 1.06 0.27 0.32

CatFin 5.65∗∗∗ 4.87∗∗∗ 11.47∗∗∗

DCI 0.14∗ 0.44 7.09∗∗∗

Def. Spr. 2.11∗∗∗ 9.95∗∗∗ 15.04∗∗∗

∆Absorption 0.18∗∗ 0.11 0.42

Intl. Spillover 0.55∗∗ 1.58∗∗∗ 2.36∗

GZ 8.05∗∗∗ 5.06∗∗∗ 19.44∗∗∗

Size Conc. 0.04 0.77∗∗ 3.02∗∗

Mkt. Lvg. 10.42∗∗∗ 0.76∗∗ 12.21∗∗∗

Volatility 3.81∗∗∗ 8.00∗∗∗ 12.65∗∗∗

TED Spr. 7.73∗∗∗ 6.61∗∗∗ 8.30∗∗∗

Term Spr. 1.65∗∗ 0.07 3.08∗∗∗

Turbulence 3.85∗∗∗ 2.43∗∗∗ 5.46∗∗∗

Panel B: Systemic Risk Indexes

Multiple QR 32.69 22.89 41.40

Mean 0.20 1.99∗∗∗ 9.03∗∗∗

PCQR1 13.24∗∗∗ 11.30∗∗∗ 16.28∗∗∗

PCQR2 17.91∗∗∗ 12.50∗∗∗ 18.24∗∗∗

PQR 18.44∗∗∗ 10.93∗∗∗ 11.55∗∗∗

Notes: The table reports in-sample quantile forecast R2 (in percentage) relative to the historical
quantile model. Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***,
respectively; we do not test the Multiple QR model. Sample is 1946-2011 for US data, 1978-2011 for
UK data, and 1994-2011 for EU data. Rows “Absorption” through “Turbulence” use each systemic
risk measure in a univariate quantile forecast regression for the IP growth shock of the region in each
column. “Multiple QR” uses all systemic risk measures jointly in a multiple quantile regression. Rows
“Mean” through “PQR” use dimension reduction techniques on all the systemic risk measures. Mean
is a simple average, PCQR1 and PCQR2 use one and two principal components, respectively, in the
PCQR forecasting procedure, while PQR uses a single factor.
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Table A4: 10th Percentile IP Shock Forecasts

Out-of-sample start: 1950 1976 1990

Panel A: Individual Systemic Risk Measures

Absorption −2.98 −9.93 −9.26

AIM 6.41∗∗∗ 3.12 6.02∗

CoVaR −0.62 −0.07 −1.02

∆CoVaR −1.34 −1.48 −1.40

MES −2.14 −0.51 0.62

MES-BE −2.56 −4.82 −17.19

Book Lvg. − 7.22∗∗∗ 3.31∗∗∗

CatFin 5.48∗∗∗ 12.63∗∗∗ 15.40∗∗∗

DCI 0.56 2.65 4.31∗

Def. Spr. 0.67 3.58∗∗∗ 6.96∗∗∗

∆Absorption −1.91 −0.27 −0.36

Intl. Spillover − 6.51∗∗ 8.22∗∗∗

GZ − 6.92∗∗ 16.46∗∗∗

Size Conc. −2.19 −7.56 −3.24

Mkt. Lvg. − 18.68∗∗∗ 18.94∗∗∗

Volatility 2.99∗ 5.28∗ 4.94

TED Spr. − − 11.45∗∗

Term Spr. 1.13 4.53∗∗ −1.91

Turbulence 2.32 8.01∗∗ 12.74∗∗

Panesk Indexes

Multiple QR −114.56 −63.29 −6.86

Mean −5.12 −11.00 −22.95

PCQR1 −1.10 2.71 −1.57

PCQR2 0.51 10.07∗∗ 9.90∗

PQR 5.07∗ 16.54∗∗∗ 15.48∗∗∗

Notes: The table reports out-of-sample quantile forecast R2 (in percentage) relative to the historical
quantile model. Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***,
respectively; we do not test the Multiple QR model. Sample is . In-sample statistics are in column
one. The out-of-sample start is noted for columns two through four. Rows “Absorption” through
“Turbulence” use each systemic risk measure in a univariate quantile forecast regression for US IP
growth rate shocks. “Multiple QR” uses all systemic risk measures jointly in a multiple quantile
regression. Rows “PCQR1” through “PQR” use dimension reduction techniques on all the systemic
risk measures. Mean is a simple average, PCQR1 and PCQR2 use one and two principal components,
respectively, in the PCQR forecasting procedure, while PQR uses a single factor. “−” indicates
insufficient data for estimation in a given sample.
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Table A5: 10th Percentile CFNAI Shock Forecasts

Total PH PI SOI EUH

Panel A: Individual Systemic Risk Measures

Absorption −7.19 −5.13 −6.84 −8.79 −5.21

AIM −7.75 −4.35 −8.19 −5.56 −4.43

CoVaR −6.12 −1.13 −4.87 −2.32 −0.64

∆CoVaR −6.53 −1.16 −7.53 −5.10 −4.17

MES −8.13 −2.46 −10.35 −6.55 −4.97

MES-BE −5.30 −3.13 −3.64 −4.12 −4.52

Book Lvg. −3.52 −3.08 −1.71 −0.76 1.30

CatFin 5.72 1.26 5.72 5.22 9.52∗

DCI −2.69 −1.63 −0.68 −2.67 −1.57

Def. Spr. −1.04 −3.82 −1.48 −0.78 −0.05

∆Absorption 0.21 −5.05 −0.85 1.87 0.74

Intl. Spillover −6.30 −3.85 −3.44 −3.23 −2.07

GZ −12.13 −6.08 −11.19 −11.99 −8.17

Size Conc. −4.04 −2.97 −2.21 −6.14 −0.64

Mkt. Lvg. 8.74∗∗ 4.95∗∗ 2.68 4.39 4.13

Volatility −2.06 −3.51 −1.68 1.30 2.08

TED Spr. 6.29∗ 7.67∗∗ 5.66 11.47∗∗ −1.32

Term Spr. 1.40 −2.58 0.42 0.97 1.02

Turbulence 13.41∗∗∗ 5.08∗ 14.65∗∗ 11.64∗∗∗ 9.63∗∗

Panel B: Systemic Risk Indexes

Multiple QR −104.76 −109.39 −98.97 −74.59 −86.96

Mean 0.80 1.16 −0.09 2.21 −7.10

PCQR1 −9.73 −2.38 −9.70 −5.75 −3.16

PCQR2 −4.09 −2.93 −2.41 −1.54 1.01

PQR 7.29∗ 1.79 8.21∗ 7.33∗ 8.15∗

Notes: The table reports out-of-sample quantile forecast R2 (in percentage) relative to the historical
quantile model. Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***,
respectively; we do not test the Multiple QR model. Sample is 1967-2011. Out-of-sample period starts
in 1976, except for Ted Spread which begins later. Rows “Absorption” through “Turbulence” use each
systemic risk measure in a univariate quantile forecast regression for the CFNAI index or sub-index in
each column. “Multiple QR” uses all systemic risk measures jointly in a multiple quantile regression.
Rows “PCQR1” through “PQR” use dimension reduction techniques on all the systemic risk measures.
Mean is a simple average, PCQR1 and PCQR2 use one and two principal components, respectively,
in the PCQR forecasting procedure, while PQR uses a single factor.
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Table A6: 80th Percentile IP Shock Forecasts

IP CFNAI

Panel A: Individual Systemic Risk Measures

Absorption 1.14 0.01

AIM 3.57∗∗∗ −3.97

CoVaR 0.76 −2.52

∆CoVaR 0.40 −2.97

MES −1.29 −3.12

MES-BE 0.33 −0.53

Book Lvg. − −1.32

CatFin 0.19 −2.78

DCI −3.96 −0.80

Def. Spr. −4.48 −3.38

∆Absorption −0.92 −1.85

Intl. Spillover − −0.75

GZ − −2.34

Size Conc. −3.02 −0.59

Mkt. Lvg. − 0.23

Volatility 0.34 −2.69

TED Spr. 16.22∗∗∗ 7.41∗∗∗

Term Spr. −4.14 −4.28

Turbulence 0.31 −0.28

Panel B: Systemic Risk Indexes

Multiple QR −48.21 −68.59

Mean 4.69∗∗ 0.44

PCQR1 −3.47 −2.39

PCQR2 −6.00 −8.74

PQR −5.73 0.24

Notes: The table reports out-of-sample quantile forecast R2 (in percentage) relative to the historical
quantile model. Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***,
respectively; we do not test the Multiple QR model. Sample is 1946-2011 for IP and 1967-2011
for CFNAI. Out-of-sample period starts in 1976, except for Ted Spread which begins later. Rows
“Absorption” through “Turbulence” use each systemic risk measure in a univariate quantile forecast
regression for IP growth shocks. “Multiple QR” uses all systemic risk measures jointly in a multiple
quantile regression. Rows “PCQR1” through “PQR” use dimension reduction techniques on all the
systemic risk measures. Mean is a simple average, PCQR1 and PCQR2 use one and two principal
components, respectively, in the PCQR forecasting procedure, while PQR uses a single factor.

A18



Table A7: Simulation Evidence

Location Scale Loc. and Scale
T,N Corr. MAE Corr. MAE Corr. MAE

Panel A: PCQR
T,N = 50 0.87 0.61 0.76 2.77 0.89 0.50
T,N = 100 0.94 0.33 0.85 6.39 0.95 0.28
T,N = 500 0.99 0.12 0.98 0.16 0.99 0.11
T,N = 1, 000 0.99 0.08 0.99 0.11 1.00 0.07

Panel B: PQR
T,N = 50 0.74 0.80 0.56 3.07 0.72 0.90
T,N = 100 0.84 0.51 0.70 1.06 0.84 0.54
T,N = 500 0.96 0.22 0.91 0.33 0.96 0.21
T,N = 1, 000 0.98 0.15 0.95 0.22 0.98 0.15

Notes: Simulation evidence using the model described in the text. We consider dimensions for T,N
between 50 and 1,000. We report time series correlation and mean absolute pricing error between the
true and estimated 0.1 conditional quantiles. Panel A reports results for PCQR using two principal
component indexes, and Panel B reports results for PQR using a single index. The simulated model
is described in Appendix A.
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Table A8: In-Sample Granger Causality Tests

20th Median

Absorption 0.04 2.92∗

AIM 74.54∗∗∗ 0.00

CoVaR 11.16∗∗∗ 12.10∗∗∗

∆CoVaR 8.33∗∗∗ 5.30∗∗

MES 6.04∗∗ 4.46∗∗

MES-BE 0.03 0.00

Book Lvg. 0.24 0.00

CatFin 40.74∗∗∗ 10.86∗∗∗

DCI 0.14 0.13

Def. Spr. 8.77∗∗∗ 20.51∗∗∗

∆Absorption 0.03 0.08

Intl. Spillover 0.21 1.77

GZ 6.24∗∗ 20.07∗∗∗

Size Conc. 0.01 0.00

Mkt. Lvg. 10.37∗∗∗ 7.19∗∗∗

Volatility 12.48∗∗∗ 23.19∗∗∗

TED Spr. 4.65∗∗ 0.04

Term Spr. 1.02 1.11

Turbulence 12.64∗∗∗ 6.64∗∗∗

Notes: The table reports Wald statistics of the test that the systemic risk measure (by row) does not
Granger cause (in the quantile sense) IP growth in the regression at a particular quantile (by column).
Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***, respectively; we do
not test the Multiple QRmodel. Sample period is 1946-2011. Rows “Absorption” through “Turbulence”
use each systemic risk measure (by row) singly in a quantile regression.
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Table A9: Conditional Coverage Tests of the Intervals defined by the 20th Percentile,
for IP Shocks

1950 1970 1990

Absorption 0 0 0

AIM 0 0 0

CoVaR 0 0 ∗ ∗ ∗
∆CoVaR 0 0 ∗ ∗ ∗
MES 0 ∗ ∗ ∗ ∗ ∗ ∗
MES-BE 0 0 0

Book Lvg. 0 0 0

CatFin 0 0 0

DCI 0 0 0

Def. Spr. 0 0 0

∆Absorption 0 0 0

Intl. Spillover 0 0 0

GZ 0 0 ∗ ∗ ∗
Size Conc. 0 0 0

Mkt. Lvg. 0 0 0

Volatility 0 ∗∗ ∗ ∗ ∗
TED Spr. − − 0

Term Spr. 0 0 0

Turbulence 0 0 0

Multiple QR 0 0 0

MEAN 0 0 0

PCQR1 0 0 ∗ ∗ ∗
PCQR2 0 0 ∗ ∗ ∗
PQR 0 0 0

Notes: The table reports likelihood ratio test significant of the null hypothesis that the estimated
quantile q̂ defines an interval (−∞, q̂) that has correct conditional coverage, following Christoffersen
(1998). Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***, respectively;
acceptance of the null hypothesis is denoted by “0”.
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