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1. Introduction

The financial crisis of 2007-2009 has made systemic
risk a focal point of research and policy, and has estab-
lished the financial sector as its center of analysis. The em-
pirical side of the literature focuses on measuring distress
in financial markets. This has produced a staggering variety
of systemic risk proxies, many hoping to serve as an early
warning signal of market dislocations like those observed
during the crisis.

In this paper, we investigate how a buildup of systemic
risk in the financial sector increases risks in the real econ-
omy. Specifically, we exploit the large set of existing mea-
sures of financial sector distress to quantify how fluctua-
tions in systemic risk impact the probability of a macroe-
conomic downturn. We propose a new systemic risk index
that efficiently aggregates recession-relevant information
across the gamut of individual measures. We show that in-
creases in the index are associated with a large widening
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of the left tail of economic activity. A one standard devi-
ation increase in systemic risk shifts the 20th percentile
of the industrial production (IP) growth shock distribution
downward by more than 50%, from around —1.4% uncon-
ditionally, to —2.2% (annualized). In several occasions in
US history (including during the recent financial crisis), the
conditional 20th percentile was below —3%, twice as large
as in normal times. In addition, we show that the systemic
risk index also predicts reactions of policymakers: the 20th
percentile of innovations in the Federal Funds rate drops
by 60%, from —50 basis points (bps) to —80 bps.

Our analysis uses out-of-sample predictive quantile re-
gression, which forecasts how specific features of the
macroeconomic shock distribution respond to systemic
risk. We argue that a quantile approach is appropriate for
evaluating the potentially asymmetric and nonlinear asso-
ciation between systemic risk and the macroeconomy that
has been emphasized in the theoretical literature.> These
theories predict that distress in the financial system can
amplify adverse fundamental shocks and result in severe
downturns or crises, while the absence of stress does not
necessarily trigger a macroeconomic boom. Quantile re-
gression is a flexible tool for investigating the impact of
systemic risk on the left tail of macroeconomic shocks, as
opposed to focusing on their central tendency via least
squares.

We examine 19 previously proposed measures of sys-
temic risk in the US and ten measures for the UK and Eu-
rope. In building these measures, we use the longest possi-
ble data history, which in some cases allows us to use the
entire postwar sample in the US. To the extent that sys-
temically risky episodes are rarely observed phenomena,
our long time series and international panel provide em-
pirical insights over several business cycles, in contrast to
much of the literature’s emphasis on the 2007-2009 sam-
ple in the US.

We first investigate each systemic risk measure individ-
ually, asking whether or not it provides significant out-of-
sample information about future macroeconomic shocks.
Next, we ask whether it is possible to aggregate risk mea-
sures into a systemic risk index to enhance forecasting
power. A naive way to do this is by including all the mea-
sures as separate right-hand-side variables in a multiple
quantile regression. But we find that this approach has vir-
tually no out-of-sample forecasting power. This is due to
multiple quantile regression overfitting the sample data,
analogous to well-understood problems of overfit in multi-
ple least squares regression (e.g., Stock and Watson, 2006).

As an alternative, we propose dimension reduction
techniques for a conditional quantile factor model. We
show how these estimators may be used to construct sys-
temic risk indexes with theoretically attractive asymptotic
properties. Most importantly, we demonstrate their signif-
icant forecasting power in our empirical setting. We de-
rive these estimators as a solution to the following statisti-
cal problem. Suppose all systemic risk measures are imper-

3 See, for example, Bernanke and Gertler (1989), Kiyotaki and Moore
(1997), Bernanke, Gertler, and Gilchrist (1999), Brunnermeier and San-
nikov (2014), Gertler and Kiyotaki (2010), Mendoza (2010), and He and
Krishnamurthy (2012).

fectly measured versions of an unobservable systemic risk
factor. Furthermore, suppose that the conditional quan-
tiles of macroeconomic variables also depend on the unob-
served factor. How may we identify this latent factor that
drives both measured systemic risk and the distribution of
future macroeconomic shocks?

The first solution is principal components quantile re-
gression (PCQR). This two-step procedure first extracts
principal components from the panel of systemic risk mea-
sures and then uses these factors in predictive quantile re-
gressions.* The second solution is partial quantile regres-
sion (PQR), which is an adaptation of partial least squares
to the quantile setting. We prove that both approaches
consistently estimate conditional quantiles of macroeco-
nomic shocks under mild conditions. We also show that
PQR, our preferred estimator, produces consistent quantile
forecasts with typically fewer factors than PCQR.?

A set of new stylized facts emerges from our empiri-
cal investigation. First, we find that a select few systemic
risk measures possess significant predictive content for the
downside quantiles of macroeconomic shocks such as in-
novations in IP growth or the Chicago Fed National Activ-
ity Index. Measures of financial sector equity volatility per-
form well in a variety of specifications; other variables, in-
cluding leverage and liquidity measures, work well in some
specifications but not others.

Next, we find that dimension-reduced systemic risk in-
dexes reveal robust dependence between systemic risk and
the probability of future negative macroeconomic shocks.
In particular, our novel PQR estimator achieves significant
forecast improvements across macroeconomic variables in
a wide range of specifications.

Third, systemic risk measures are more informative
about the left tail of macroeconomic shocks than about
their central tendency or right tail. This is evident not only
for systemic risk indexes, but is uniformly true across in-
dividual measures as well. This supports the idea that sys-
temic risk is an inherently asymmetric and nonlinear phe-
nomenon, a feature emphasized in much of the theoretical
literature.

Next, we show that measures of financial sector eq-
uity volatility are the most useful individual predictors of
macroeconomic downturns. In contrast, equity volatility in
the nonfinancial sector appears to have little, if any, pre-
dictive power. This suggests that economic mechanisms
connecting aggregate stock market volatility to the real
economy, such as the uncertainty shocks mechanism in
Bloom (2009), may blur an important distinction between

4 The use of principal components to aggregate information among a
large number of predictor variables is well-understood for least squares
forecasting—see Stock and Watson (2002) and Bai and Ng (2006). The use
of principal components in quantile regression has been used by Ando
and Tsay (2011).

5 The key difference between PQR and PCQR is their method of dimen-
sion reduction. PQR condenses the cross section according to each predic-
tor’s quantile covariation with the forecast target, choosing a linear com-
bination of predictors that is a consistent quantile forecast. On the other
hand, PCQR condenses the cross section according to covariance within
the predictors, disregarding how closely each predictor relates to the tar-
get. Dodge and Whittaker (2009) discuss a version of PQR but do not an-
alyze its sampling properties.
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uncertainty in the financial sector and uncertainty in other
industries.

Finally, we find that systemic risk indicators forecast
policy decisions. A rise in systemic risk predicts an in-
creased probability of a large drop in the Federal Funds
rate, suggesting that the Federal Reserve takes preventive
action amid elevated risk levels. Combined with these pre-
dictable drops in the Fed Funds rate, our main result im-
plies that such preventative action fails to fully counteract
the risk of economic downturns that accompanies severe
financial system distress.

In summary, our results reach a positive conclusion re-
garding the empirical systemic risk literature. When taken
altogether, systemic risk measures indeed contain useful
information regarding the probability of future macroe-
conomic downturns. This conclusion is based on out-of-
sample tests and is robust across different choices of left
tail quantiles, macroeconomic variables, and geographic
region.

The remainder of the paper proceeds as follows.
Section 2 defines and provides a quantitative descrip-
tion of a set of systemic risk measures in the US and
Europe. In Section 3, we examine the power of these mea-
sures for predicting quantiles of macroeconomic shocks us-
ing univariate quantile regressions. In Section 4, we de-
fine PCQR and PQR estimators, discuss their properties,
and use them to form predictive systemic risk indexes.
Section 5 discusses stylized facts based on our empirical
results. Section 6 concludes. The online appendix contains
proofs and Monte Carlo evidence regarding PCQR and PQR
estimators and other supporting material.

2. Data

This section outlines our construction of systemic risk
measures and describes the macroeconomic outcomes that
we study - data can downloaded from www.sethpruitt.
net/GKPwebdata.zip. US measures are based on data for
financial institutions identified by two-digit SIC codes 60
through 67 (finance, insurance, and real estate).5 We ob-
tain equity returns for US financial institutions from CRSP
and book data from Compustat.

We also construct measures for Europe. Our “EU” mea-
sures pool data on financial institution equity returns from
France, Germany, Italy, and Spain, which are the largest
continental European Union economies. Our “UK” mea-
sures are for the United Kingdom. UK and EU returns data
are obtained from Datastream.” We do not construct mea-
sures that require book data for the UK and EU, nor do
we have data for some counterparts to US measures such

6 This definition of financial sector corresponds to that commonly used
in the literature (see, e.g., Acharya, Pedersen, Philippon, and Richardson,
2010).

7 Datastream data require cleaning. We apply the following filters. (1)
When a firm's data series ends with a string of zeros, the zeros are con-
verted to missing, since this likely corresponds to a firm exiting the data
set. (2) To ensure that we use liquid securities, we require firms to have
nonzero returns for at least one-third of the days that they are in the
sample, and we require at least three years of nonzero returns in total.
(3) We winsorize positive returns at 100% to eliminate large outliers that
are likely to be recording errors.

Table 1

Sample start dates.

Measures begin in the stated year and are available through 2011 with
the exception of Intl. spillover, which runs through 2009, and GZ, which
runs through September 2010.

us UK EU
Absorption 1927 1973 1973
AIM 1926 - -
CoVaR 1927 1974 1974
ACoVaR 1927 1974 1974
MES 1927 1973 1973
MES-BE 1926 1973 1973
Book lvg. 1969 - -
CatFin 1926 1973 1973
DCI 1928 1975 1975
Def. spr. 1926 - -
AAbsorption 1927 1973 1973
Intl. spillover 1963 - -
GZ 1973 - -
Size conc. 1926 1973 1973
Mkt lvg. 1969 - -
Volatility 1926 1973 1973
TED spr. 1984 - -
Term spr. 1926 - -
Turbulence 1932 1978 1978

as the default spread. When reporting forecasts of foreign
macroeconomic outcomes, we use the US version of the
risk measure if it is not available in the foreign data set.

2.1. Overview of measures

Bisias, Flood, Lo, and Valavanis (2012) categorize and
collect definitions of more than 30 systemic risk measures.
We construct variables from that survey to the extent
that we have access to requisite data, and refer readers
to the online appendix and to Bisias, Flood, Lo, and Vala-
vanis (2012) for additional details. In addition, we study
the CatFin measure of Allen, Bali, and Tang (2012) and
the Gilchrist and Zakrajsek (2012) credit spread measure,
which are not included in Bisias, Flood, Lo, and Valavanis
(2012) but are relevant to our analysis. Below we provide a
brief overview of the measures that we build, grouped by
their defining features.

We are interested in capturing systemic risk stemming
from the core of the financial system, and thus construct
our measures using data for the 20 largest financial in-
stitutions in each region (US, UK, and EU) in each pe-
riod.> Whenever the systemic risk measure is constructed
from an aggregation of individual measures (for example,
in the case of CoVaR, which is defined at the individual
firm level), we compute the measure as an equal-weighted
average of the 20 largest institutions. The only exception is
size concentration of the financial sector for which we use
the largest 100 institutions (or all institutions if they num-
ber fewer than 100). Table 1 shows the available sample
period for each measure by region.

8 If less than 20 institutions are available, we construct measures from
all available institutions, and if data for fewer than 10 financial institu-
tions are available the measure is treated as missing.
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2.1.1. Institution-specific risk

Institution-specific measures are designed to capture an
individual bank’s contribution or sensitivity to economy-
wide systemic risk. These measures include CoVaR and
ACoVaR from Adrian and Brunnermeier (2011), marginal
expected shortfall (MES) from Acharya, Pedersen, Philip-
pon, and Richardson (2010), and MES-BE, a version of
marginal expected shortfall proposed by Brownlees and
Engle (2011).

2.1.2. Comovement and contagion

Comovement and contagion measures quantify depen-
dence among financial institution equity returns. We con-
struct the Absorption Ratio described by Kritzman, Li, Page,
and Rigobon (2011), which measures the fraction of the
financial system variance explained by the first K prin-
cipal components (we use K = 3). We also construct the
Dynamic Causality Index (DCI) from Billio, Lo, Getmansky,
and Pelizzon (2012) which counts the number of signifi-
cant Granger-causal relations among bank equity returns,
and the International Spillover Index from Diebold and Yil-
maz (2009) which measures comovement in macroeco-
nomic variables across countries.’

2.1.3. Volatility and instability

To measure financial sector volatility, we construct
two main variables. First, we compute the average equity
volatility of the largest 20 financial institutions and take
its average as our “volatility” variable. In addition, we con-
struct a “turbulence” variable, following Kritzman and Li
(2010), which considers returns’ recent covariance relative
to a longer-term covariance estimate.

Allen, Bali, and Tang (2012) propose CatFin as a value-
at-risk (VaR) measure derived by looking at the cross sec-
tion of financial firms at any one point in time. Such a VaR
measure for financial firms is well-suited to provide an al-
ternative measure of financial sector volatility.'?

Motivated by the fact that loan ratios forecast GDP
growth in crises (Schularick and Taylor, 2012), we cal-
culate aggregate book leverage and market leverage for
the largest 20 financial institutions. We also compute size
concentration in the financial industry (the market equity
Herfindal index), which captures potential instability in the
sector.

2.14. Liquidity and credit

Liquidity and credit conditions in financial markets are
measured by Amihud’s (2002) illiquidity measure (AIM)
aggregated across financial firms, the TED spread (LIBOR

9 We do not include the volatility connectedness measure of Diebold
and Yilmaz (2014). Arsov, Canetti, Kodres, and Mitra (2013) show that this
is a dominant leading indicator of financial sector stress in the recent cri-
sis. Unfortunately, the Diebold-Yilmaz index is only available beginning in
1999 and thus does not cover a long enough time series to be included
in our tests.

10 Allen, Bali, and Tang’s (2012) CatFin measure is the simple average
of three different approaches to estimating the financial sector’s VaR in
any particular month. Those authors note that the three components are
highly correlated. We simply use the nonparametric version of CatFin,
given the high correlation between all three measures (above 99%) noted
by Allen, Bali, and Tang (2012).

minus the T-bill rate), the default spread (BAA bond yield
minus AAA bond yield), the Gilchrist and Zakrajsek (2012)
credit spread measure (GZ), and the term spread (the slope
of the Treasury yield curve).

2.1.5. Measures not covered

Due to data constraints, particularly in terms of time
series length, we do not include measures of linkages be-
tween financial institutions (such as interbank loans or
derivative positions), stress tests, or credit default swap
spreads.

2.2. Macroeconomic data

Our analysis focuses on real macroeconomic shocks
measured by innovations to IP growth in the US, UK, and
EU. These data come from the Federal Reserve Board for
the US and OECD for the UK and EU."" Our sample for the
US is the entire postwar era 1946-2011. For the UK, data
begin in 1978. Our EU sample begins in 1994.

In robustness checks, we consider US macroeconomic
shocks measured by innovations to the Chicago Fed Na-
tional Activity Index (CFNAI) and its subcomponents: pro-
duction and income (PI), employment, unemployment, and
hours (EUH), personal consumption and housing (PH), and
sales, orders, and inventory (SOI). These data come from
the Federal Reserve Bank of Chicago and are available be-
ginning in 1967.

Our focus is on how systemic risk affects the distri-
bution of future macroeconomic shocks. We define macro
shocks as innovations to an autoregression in the under-
lying macroeconomic series (IP growth or CFNAI). This
strips out variation in the target variable that is fore-
castable using its own history, following the forecasting lit-
erature such as Bai and Ng (2008b) and Stock and Watson
(2012).12 We choose the autoregressive order based on the
Akaike Information Criterion (AIC) for each series—typical
orders are between three and six in monthly data. We
perform the autoregression (AR) estimation (including the
AIC-based model selection) recursively out-of-sample.!? Fi-
nally, we aggregate monthly shocks into a quarterly shock
by summing monthly innovations to put the targets on a
forecast horizon that is relevant for policy-makers. Further
details are available in the online appendix.

1 For the EU, we use the OECD series for the 17-country Euro zone.

12 This is often referred to as “pre-whitening” in the forecasting liter-
ature. An alternative to pre-whitening is to conduct Granger causality
tests that control for lags of the dependent variable. The online appendix
shows that Granger causality tests, using Politis and Romano’s (1994) sta-
tionary bootstrap, broadly agree with our findings based on autoregres-
sion residuals. We have also performed pre-whitening with autoregres-
sions augmented to include lagged principal components from Stock and
Watson'’s (2012) data. This produced minor quantitative changes to our
results and does not alter any of our conclusions.

13 Using the full-sample AR estimate in out-of-sample quantile forecasts
has little effect on our results, as the recursively estimated AR projection
is stable after only a few years of observations.
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Fig. 1. Systemic risk measures. The figure plots a subset of our panel of systemic risk measures. All measures have been standardized to have equal

variance.

2.3. Summary of comovement among systemic risk measures

Fig. 1 plots the monthly time series of select mea-
sures in the US."* All measures spiked during the re-
cent financial crisis, which is not surprising given that
many of these measures were proposed post hoc. In ear-
lier episodes, many systemic risk measures reached similar
levels to those experienced during the recent crisis. Dur-
ing the oil crisis and high uncertainty of the early and mid
1970s, financial sector market leverage and return turbu-
lence spike. All the measures display substantial variabil-
ity and several experience high levels in non-recessionary
climates. Many of the spikes that do not seem to corre-
spond to a financial crisis might be considered “false pos-
itives.” One interpretation of the plot is that these mea-
sures are simply noisy. Another interpretation is that these
measures sometimes capture stress in the financial system
that does not result in full-blown financial crises, either
because policy and regulatory responses diffused the insta-
bility or the system stabilized itself (we discuss this further
in Section 5.3). Yet another interpretation is that crises de-
velop only when many systemic risk measures are simul-
taneously elevated, as during the recent crisis.

The online appendix reports correlations among differ-
ent measures for the US, UK, and EU. Most correlations are
quite low. Only small groups of measures comove strongly.
For example, turbulence, volatility, and the TED spread
are relatively highly correlated. Similarly, CoVaR, ACoVaR,
MES, and GZ tend to comove. The other measures display
low or even negative correlations with each other, suggest-
ing that many measures capture different aspects of finan-

4 The plotted measures are standardized to have the same variance
(hence no y-axis labels are shown) and we only show a subset of the
series we study for readability.

cial system stress or are subject to substantial noise. If low
correlations are due to the former, then our tests for as-
sociation between systemic risk measures and macroeco-
nomic outcomes can help distinguish which aspects of sys-
temic risk are most relevant from a policy standpoint.
Finally, some measures of systemic risk may be inter-
preted as contemporaneous stress indicators and others as
leading indicators of systemic risk. We describe lead-lag
relations between these variables by conducting two-way
Granger causality tests in the online appendix. The GZ,
default spread, turbulence, CoVaR, and volatility measures
appear to behave as leading indicators in that they fre-
quently Granger-cause other variables and not the reverse.
The term spread, the international spillover index, MES,
MES-BE, and DCI tend to lag other measures and thus may
be viewed as coincident indicators of a systemic shock.
These associations appear consistent across countries.

3. Systemic risk measures and the macroeconomy

We propose a criterion for evaluating systemic risk
measures based on the relevance of each of these mea-
sures for forecasting real economic outcomes. In partic-
ular, we investigate which systemic risk measures give
policy-makers significant out-of-sample information about
the distribution of future bad macroeconomic shocks. We
believe this criterion provides a new but natural method
for evaluating policy relevance when selecting among a
pool of candidate systemic risk measures.

The basic econometric tool for our analysis is predic-
tive quantile regression, which we use to judge the rela-
tion of a systemic risk measure to future economic activity.
We view quantile regression as a flexible statistical tool for
investigating potentially nonlinear dynamics between sys-
temic risk and economic outcomes. Such a reduced-form
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statistical approach has benefits and limitations. Benefits
include potentially less severe specification error and, most
importantly, the provision of new empirical descriptions
to inform future theory. A disadvantage is the inability to
identify “fundamental” shocks or specific mechanisms as
in a structural model. Hansen (2013) provides an insight-
ful overview of advantages to systemic risk modeling with
and without the structure of theory.

3.1. Quantile regression

Before describing our empirical results, we offer a
brief overview of the econometric tools and notation
that we use. Denote the target variable as y;,4, a scalar
real macroeconomic shock whose conditional quantiles we
wish to capture with systemic risk measures. The tth
quantile of y,, is its inverse probability distribution func-
tion, denoted

Qr We1) =infly : P(yeq < y) = 7).

The quantile function may also be represented as the solu-
tion to an optimization problem

Qr (Vi) = arg i{Jle[,Or Ver1 — @]

where pr(x) = x(t — Iyo) is the quantile loss function.

Previous literature shows that this expectation-based
quantile representation is convenient for handling con-
ditioning information sets and deriving a plug-in M-
estimator. In the seminal quantile regression specification
of Koenker and Bassett (1978), the conditional quantiles of
Ye,1 are affine functions of observables x;,

Qr Wes11Ze) = Bro + Brke. (1)

An advantage of quantile regression is that the coefficients
Bz o, Br are allowed to differ across quantiles.”> Thus,
quantile models can provide a richer picture of the tar-
get distribution when conditioning information shifts more
than just the distribution’s location. As Eq. (1) suggests, we
focus on quantile forecasts rather than contemporaneous
regression since leading indicators are most useful from a
policy and regulatory standpoint.

Our focus is on the out-of-sample information provided
by systemic risk measures. In everything that follows, we
are careful to construct systemic risk measures (and later
on, systemic risk indexes) in a recursive out-of-sample
manner. This means that the forecast of a macroeconomic
shock at time t + 1 is constructed using only information
from the estimation sample {1,2,...,t — 1, t}. In particular,
all parameters and fitted values are estimated using data
ending no later than time t.

Forecast accuracy can be evaluated via a quantile R?
based on the loss function p-:

%Zt[pf(yt+l - - th)]‘

R=1-1% _
T Yilor Yee1 — qo)]

15 Chernozhukov, Fernandez-Val, and Galichon (2010) propose a mono-
tone rearranging of quantile curve estimates using a bootstrap-like proce-
dure to impose that they do not cross in sample. We focus attention on
only the 10th, 20th, and 50th percentiles and these estimates never cross
in our sample.

This expression captures the typical loss using condition-
ing information (the numerator) relative to the loss using
the historical unconditional quantile estimate (the denom-
inator). The out-of-sample R? can be negative if the histor-
ical unconditional quantile offers a better forecast than the
conditioning variable. We arrive at a description of statis-
tical significance for our out-of-sample estimates by com-
paring the sequences of quantile forecast losses based on
conditioning information, pr (g1 — & — EXt), to the quan-
tile loss based on the historical unconditional quantile,
pr (Vey1 — Gz ), following Diebold and Mariano (1995) and
West (1996).16

Our benchmark results focus attention on the 20th per-
centile, or t = 0.2. This choice represents a compromise
between the conceptual benefit of emphasizing extreme
regions of the distribution and the efficiency cost of using
too few effective observations. In the online appendix we
show that results for the 10th percentile are similar. We
also estimate median regressions (t = 0.5) to study sys-
temic risk impacts on the central tendency of macroeco-
nomic shocks.!”

3.2. Empirical evaluation of systemic risk measures

Table 2 Panel A reports recursive out-of-sample pre-
dictive statistics. The earliest out-of-sample start dates are
1950 for the US, 1990 for the UK, and 2000 for the EU (due
to the shorter data samples outside the US). We take ad-
vantage of the longer US time series to perform subsample
analysis, and report results for out-of-sample start dates of
1976 and 1990.

Only financial sector volatility, CatFin, and market lever-
age are significant for every region and start date. Focus-
ing on the US, Table 2 Panel A shows that book leverage,
CatFin, GZ, volatility, and turbulence are significantly infor-
mative out-of-sample for all split dates. Table 3 Panel A in-
vestigates the robustness of this observation when macroe-
conomic shocks are measured by the CFNAI series. Since
the CFNAI begins later, we consider out-of-sample perfor-
mance starting in 1976. There we see that only financial
sector turbulence provides significant out-of-sample pre-
dictive content for the total CFNAI index and each of its
component series.!s

Turning to the central tendency of macroeconomic
shocks, Table 4 Panel A shows that systemic risk mea-
sures demonstrate substantially weaker forecast power for
the median shock. The default spread, CatFin, GZ, volatil-
ity, and turbulence possess some predictive power for the
median, but less than they do for lower percentiles.

16 In the online appendix, we also consider testing for the correct con-
ditional 20th percentile coverage following Christoffersen (1998). We find
somewhat similar results, in terms of accuracy and significance, for the
various measures and indexes we construct using this alternative crite-
ria, but see that the test has lower power to discriminate between risk
measures in our context.

17 We also consider upper tail (r = 0.8) quantile regressions in the on-
line appendix to highlight the nonlinear relation between systemic risk
and future macroeconomic shocks.

8 In the online appendix, Tables A4 and A5 report that US results are
broadly similar if we study the 10th rather than the 20th percentile of IP
growth and CFNAI shocks.
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Table 2

20th percentile IP shock forecasts.

The table reports out-of-sample quantile forecast R? (in percentage) rela-
tive to the historical quantile model. Statistical significance at the 10%, 5%,
and 1% levels are denoted by *, **, and ***, respectively; we do not test
the multiple QR model. Sample is 1946-2011 for US data, 1978-2011 for
UK data and 1994-2011 for EU data. Out-of-sample start date is noted for
each column. Rows “Absorption” through “Turbulence” use each systemic
risk measure in a univariate quantile forecast regression for IP growth rate
shocks. “Multiple QR” uses all systemic risk measures jointly in a multiple
quantile regression. Rows “Mean” through “PQR” use dimension reduction
techniques on all the systemic risk measures. Mean is a simple average,
PCQR1 and PCQR2 use one and two principal components, respectively,
in the PCQR forecasting procedure, while PQR uses a single factor. “~"
Indicates insufficient data for estimation in a given sample.

us UK EU

Out-of-sample start: 1950 1976 1990 1990 2000

Panel A: Individual systemic risk measures

Absorption -3.14 -8.86 -3.78 0.91 7.63*
AIM 2.92% 2.62 3.56* -0.23 0.55*
CoVaR 1.37 0.86 179 6.83** 6.41*
ACoVaR -0.79  -3.40 -0.82 6.22% 6.92*
MES -046  -2.09 144 2.70 447+
MES-BE -125 -1.36 -7.17 -1.10 4.65*
Book lvg. - 2.63** 138  -2.80 -3.24
CatFin 5.74%* 1327 17.79**  6.16**  10.73"*
DCI -1.80 -1.92 -3.35 -5.18 5.63*
Def. spr. -030 3.93* 866 1635  11.70*
AAbsorption -0.83 -0.06 -0.30 0.17 0.04
Intl. spillover - 2.02*% 1.01 -0.15 -1.01
Gz - 526 14.68** -1.82  15.83*
Size conc. -225 -593 -3.37 —3.53 —-0.40
Mkt lvg. - 1044  12.67**  6.81* 8.48*
Volatility 321 5.62* 8.14* 730 11.96***
TED spr. - - 9.76**  —1.01 110
Term spr. 0.23 2.90* 1.31 -2.64 127
Turbulence 3.60**  9.23** 13.01** -3.55 -0.62
Panel B: Systemic risk indexes
Multiple QR -58.18 -36.94 7.07 -32.12 -449
Mean -226 -381 -1135 -8.83 0.57
PCQR1 -0.76 1.02 1.67 8.48**  15.06***
PCQR2 2.74 751 10.64** 1.47 13.73*
PQR 6.39**  13.01%* 14.98"* 1.42 432

In summary, we find that few systemic risk mea-
sures possess significant power to forecast downside
macroeconomic quantiles. Exceptions include measures of
financial sector volatility, but even these are not robust in
every specification. To the extent that we find any forecast-
ing power, it is stronger for the lower quantiles of macroe-
conomic shocks than for their central tendency.

4. Systemic risk indexes and the macroeconomy

Individually, many systemic risk measures lack a robust
statistical association with macroeconomic downside risk.
This could be because measurement noise obscures the
useful content of these series, or because different mea-
sures capture different aspects of systemic risk. Is it possi-
ble, then, to combine these measures into a more informa-
tive systemic risk index?

A naive way to aggregate information across measures
is to include all the systemic risk measures as multiple
regressors in the same quantile regression (QR). However,
multiple QR is likely to suffer from in-sample overfit due

Table 3

20th percentile CFNAI shock forecasts.

The table reports out-of-sample quantile forecast R? (in percentage) rel-
ative to the historical quantile model. Statistical significance at the 10%,
5%, and 1% levels are denoted by *, **, and ***, respectively; we do not
test the Multiple QR model. Sample is 1967-2011. Out-of-sample period
starts in 1976, except for Ted Spread which begins later. Rows “Absorp-
tion” through “Turbulence” use each systemic risk measure in a univariate
quantile forecast regression for the CFNAI index or sub-index in each col-
umn. “Multiple QR” uses all systemic risk measures jointly in a multiple
quantile regression. Rows “PCQR1” through “PQR” use dimension reduc-
tion techniques on all the systemic risk measures. Mean is a simple av-
erage, PCQR1 and PCQR2 use one and two principal components, respec-
tively, in the PCQR forecasting procedure, while PQR uses a single factor.

Total PH PI SOl EUH
Panel A: Individual systemic risk measures
Absorption -3.07 -1.31 -2.98 —4.17 -2.52
AIM —4.65 -1.89 -5.33 -8.12 -3.19
CoVaR -3.37 -0.93 -1.85 -5.91 -2.15
ACoVaR -5.70 -1.12 -3.16 -5.97 -4.34
MES —6.40 -1.87 -5.28 -8.01 -5.36
MES-BE -2.73 -1.89 —-0.59 -3.30 -3.09
Book lvg. -2.50 -3.01 -1.48 —-2.06 -2.14
CatFin 2.46 -0.62 4,78 -1.05 5.44
DCI -2.28 0.01 -1.75 -2.20 -1.55
Def. spr. 0.69 -1.33 0.19 0.60 -0.25
AAbsorption -0.58 -1.89 1.04 -0.29 0.55
Intl. spillover -2.07 -1.27 -0.13 -2.66 -2.02
GZ -8.23 —6.00 —4.14 -9.84 —4.83
Size conc. -1.75 -1.12 —-0.61 -4.20 -0.63
Mkt lvg. 2.61 3.56** 2.49 -0.20 3.18
Volatility -5.26 —2.55 -2.79 -3.92 0.02
TED spr. 2.36 1.85 3.38* 2.42 -2.76
Term spr. 1.58 0.78 0.86 0.89 3.50
Turbulence 7.68** 5.26** 9.41%* 7.78** 5.83*
Panel B: Systemic risk indexes

Multiple QR —-55.70 -72.10 -60.84  -37.01 —53.54
Mean 2.16 113 2.88 -0.67 -2.23
PCQR1 -6.21 -0.58 -4.93 -9.38 —-2.08
PCQR2 -0.75 -0.57 -0.42 -6.09 1.90
PQR 3.68 0.45 5.27* 7.05%* 4.60

to proliferation of parameters, similar to the overfit seen
in multiple regression with many predictors (see Stock and
Watson, 2006).

Alternatively, we propose a statistical model in which
the conditional quantiles of y;,; depend on a low-
dimension unobservable factor f;, and each individual sys-
temic risk variable is a noisy measurement of f;. This struc-
ture embodies the potential for dimension reduction tech-
niques to help capture information about future macroe-
conomic shocks present in the cross section of individual
systemic risk measures. The factor structure is similar to
well-known conditional mean factor models (e.g., Geweke,
1977; Sargent and Sims, 1977; Stock and Watson, 2002).
The interesting feature of our model is that it links multi-
ple observables to latent factors that drive the conditional
quantile of the forecast target.

We present two related procedures for constructing
systemic risk indexes: principal components quantile re-
gression and partial quantile regression. We show that
they consistently estimate the latent conditional quantile
driven by f;, and we verify that these asymptotic results
are accurate approximations of finite sample behavior us-
ing numerical simulations. We also show that they are
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Table 4

Median IP shock forecasts.

The table reports out-of-sample quantile forecast R? (in percentage) rela-
tive to the historical quantile model. Statistical significance at the 10%, 5%,
and 1% levels are denoted by *, **, and ***, respectively; we do not test
the Multiple QR model. Sample is 1946-2011 for US data, 1978-2011 for
UK data and 1994-2011 for EU data. Out-of-sample start date is noted for
each column. Rows “Absorption” through “Turbulence” use each systemic
risk measure in a univariate quantile forecast regression for IP growth rate
shocks. “Multiple QR” uses all systemic risk measures jointly in a multiple
quantile regression. Rows “PCQR1” through “PQR” use dimension reduc-
tion techniques on all the systemic risk measures. Mean is a simple av-
erage, PCQR1 and PCQR2 use one and two principal components, respec-
tively, in the PCQR forecasting procedure, while PQR uses a single factor.
“—" Indicates insufficient data for estimation in a given sample.

us UK EU

Out-of-sample start: 1950 1976 1990 1990 2000

Panel A: Individual systemic risk measures

Absorption -0.92 0.99 1.62 -1.22 173
AIM -0.03 -2.08 0.16* -0.34 -0.00
CoVaR -0.03 —4.47 0.71 -1.55 1.45
ACoVaR -0.62 -456 -0.05 -0.84 0.58
MES -0.57 -4.17 -079 -1.61 -0.35
MES-BE —1.47 -0.50 -0.38  3.81* 0.17
Book lvg. — -1.87 0.42 2.02% -1.84
CatFin 0.59 0.89 6.85%* 2.55* 2.30*
DCI -1.69 -0.80 -096 -1.05 0.67
Def. spr. -0.62 3.23% 491" 0.66 -2.28
AAbsorption -0.83 -062 -0.28 -0.08 -0.18
Intl. spillover - -1.39 -0.67 -2.15 -0.03
GZ - 0.51 7.59** 6.24** 2.44
Size conc. —3.42 —1.05 —-3.43 -1.45 —5.25
Mkt lvg. - -0.26 3.20* 1.52* -0.70
Volatility 0.73 —0.84 4.71* 3.61* 3.62*
TED spr. - — 2.13* —2.47 -1.39
Term spr. —-0.02 -0.58 -038 -038 -1.71
Turbulence 133 2.69* 4.45* 0.33 -0.50
Panel B: Systemic risk indexes
Multiple QR -32.21 -28.30 0.12 -25.08 -14.66
Mean 1.18** 323+  531%  -1.93 -1.79
PCQR1 -1.35 -5.19 439 0.56 -0.42
PCQR2 0.43 -5.17 2.72 0.22 -0.58
PQR -3.11 -1.49  5.54* -2.30 -8.21

empirically successful, demonstrating robust out-of-sample
forecasting power for downside macroeconomic risk.

4.1. A latent factor model for quantiles

We assume that the tth quantile of y;,, conditional on
an information set 7, is a linear function of an unobserv-
able univariate factor f;:19

Qr Vet |Z) = afy.

This formulation is identical to a standard quantile regres-
sion specification, except that f; is latent. Realizations of
Y41 can be written as o ft + 1¢.q where 1, is the quan-
tile forecast error. The cross section of predictors (systemic
risk measures) is defined as the vector x;, where

X =AF +e =¢f + Vg + €.

Idiosyncratic measurement errors are denoted by &;. We
follow Kelly and Pruitt (2013; 2015) and allow x; to depend

19 We omit intercept terms to ease notation in the main text; our proofs
and empirical implementations include them.

on the vector g;, which is an additional factor that drives
the risk measures but does not drive the conditional quan-
tile of y,,1.%° Thus, common variation among the elements
of x; has a portion that depends on f; and is therefore rel-
evant for forecasting the conditional distribution of y, q,
as well as a forecast-irrelevant portion driven by g;. For
example, g: may include stress in financial markets that
never metastasizes to the real economy or that is systemi-
cally remedied by government intervention. Not only does
g serve as a source of noise when forecasting y; 1, but it
is particularly troublesome because it is pervasive among
predictors.

4.2. Estimators

We propose two dimension reduction approaches that
consistently estimate the conditional quantiles of y;,; as
the numbers of predictors and time series length simulta-
neously become large. We first prove each estimator’s con-
sistency and then test their empirical performance.

One can view our latent factor model as being explicit
about the measurement error that contaminates each pre-
dictor’s reading of f;. The econometrics literature has pro-
posed instrumental variables solutions and bias corrections
for the quantile regression errors-in-variables problem.?!
We instead exploit the large N nature of the predictor set
to deal with errors-in-variables. Dimension reduction tech-
niques aggregate large numbers of individual predictors to
isolate forecast-relevant information while averaging out
measurement noise.

We list requisite assumptions in the online appendix.
They include restrictions on the degree of dependence be-
tween factors, idiosyncrasies, and quantile forecast errors
in the factor model just outlined. They also impose regu-
larity conditions on the quantile forecast error density and
the distribution of factor loadings.

In addition to PCQR and PQR, we consider an index that
equals the simple mean of the available systemic risk mea-
sures each period. This will not be a consistent estimator
of a latent factor in our model, but it is a straightforward,
albeit ad hoc, benchmark for comparison.

4.2.1. Principal components quantile regression (PCQR)

The first estimator is principal component quantile re-
gression (PCQR). In this method, we extract common fac-
tors from x; via principal components and then use them
in an otherwise standard quantile regression (the algo-
rithm is summarized in Table 5).

PCQR produces consistent quantile forecasts when both
the time series dimension and the number of predictors
become large, as long as we extract as many principal
components (PCs) as there are elements of F; = (f;,g')’.

Theorem 1 (Consistency of PCQR). Under Assumptions 1-
3, the principal components quantile regression predictor of

20 We assume a factor normalization such that f; is independent of g;.
For simplicity, we treat f; as scalar, but this could be relaxed.

21 Examples of instrumental variables approaches include Abadie, An-
grist, and Imbens (2002), Chernozhukov and Hansen (2008), and
Schennach (2008). Examples of bias correction methods include He and
Liang (2000), Chesher (2001), and Wei and Carroll (2009).
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Table 5

Estimators.

The predictors x; are each time-series standardized. All quantile regres-
sions and orthogonal quantile regressions are run for quantile 7.

Principal components quantile regression (PCQR)

Estimate F; by (A’A)~1A’x, for A the K
eigenvectors associated with the K largest
eigenvalues of Y|, x.x,

Time series quantile regression of y;,; on a
constant and F,

Factor stage:

Predictor stage:

Partial Quantile Regression (PQR)

Factor stage: 1. Time series quantile regression of y;.1 on a
constant and x;, to get slope estimate 43,-

2. Cross-section covariance of x; and d;i for
each t to get factor estimate f[

Time series quarltile regression of y;,; on a

constant and f;

Predictor stage:

Qr Ves1|Tt) = o'Fy = af; is given by &'F¢, where F rep-
resents the first K principal components of X'X/(TN), K =
dim(f:, &), and & is the quantile regression coefficient on
those components. For each t, the PCQR quantile forecast sat-
isfies

&/F[ — a/f[ NL) 0.

,T—o00

The theorem states that PCQR builds consistent fore-
casts for the conditional quantile of y, ;. All proofs are
in the online appendix. Theorem 1 is implied by Bai and
Ng's (2008a) alternative arguments for extremum estima-
tors using PCs, or could be deduced from Ando and Tsay
(2011).

4.2.2. Partial quantile regression (PQR)

For simplicity, our factor model assumes that a scalar
ft comprises all information relevant for the conditional
quantile of interest. But PCQR and Theorem 1 use the vec-
tor F; because PCQR is only consistent if the entire factor
space (f;, g¢') is estimated. This is analogous to the distinc-
tion between principal components least squares regres-
sion and partial least squares. The former produces a con-
sistent forecast when the entire factor space is spanned,
whereas the latter is consistent as long as the subspace of
relevant factors is spanned (see Kelly and Pruitt, 2015).

Our second estimator is called partial quantile regres-
sion (PQR) and extends the method of partial least squares
to the quantile regression setting. PQR condenses the cross
section of predictors according to their quantile covariation
with the forecast target, in contrast to PCQR which con-
denses the cross section according to covariance within the
predictors. By weighting predictors based on their predic-
tive strength, PQR chooses a linear combination that is a
consistent quantile forecast.

PQR forecasts are constructed in three stages as follows
(the algorithm is summarized in Table 5). In the first pass
we calculate the quantile slope coefficient of y;,; on each
individual predictor x; (i =1, ...,N) using univariate quan-

tile regression (denote these estimates as 7).22 The second
pass consists of T covariance estimates. In each period ¢,
we calculate the cross-sectional covariance of x; with i's
first-stage slope estimate. This covariance estimate is de-
noted f;. These serve as estimates of the latent factor re-
alizations, f;, by forming a weighted average of individual
predictors with weights determined by first-stage slopes.
The third and final pass estimates a predictive quantile re-
gression of y,,1 on the time series of second-stage cross
section factor estimates. Denote this final stage quantile re-
gression coefficient as &.

PQR uses quantile regression in the factor estimation
stage. Similar to Kelly and Pruitt’s (2015) argument for par-
tial least squares, this is done to extract only the relevant
information f; from cross section x;, while omitting the
irrelevant factor g;. Factor latency produces an errors-in-
variables problem in the first-stage quantile regression, and
the resulting bias introduces an additional layer of com-
plexity in establishing PQR’s consistency. To overcome this,
we require the additional Assumption 4. This assumption
includes finiteness of higher moments for the factors and
measurement errors f;, 8;, and &;, and symmetric distribu-
tions for the target-irrelevant factor g; and its loadings, ¥;.
Importantly, we do not require additional assumptions on
the quantile forecast error, 1. 1.

Theorem 2 (Consistency of PQR). Under Assumptions 1-4,
the PQR predictor of Qr(V¢411Zt) = auf; is given by afr
where fr is the second-stage factor estimate and & is the
third-stage quantile regression coefficient. For each t, the PQR
quantile forecast satisfies

~ 7 p
afi—ofy —— 0.
ft ft N,T—o0

Our proof build on arguments found in White (1994),
Bai (2003), Engle and Manganelli (2004), and Angrist,
Chernozhukov, and Fernandez-Val (2006). Simulation evi-
dence in the online appendix demonstrates that our PCQR
and PQR consistency results are accurate approximations
of finite sample behavior. In the next section, we refer to
PCQR and PQR factor estimates as “systemic risk indexes”
and evaluate their forecast performance versus individual
systemic risk measures.

4.3. Empirical evaluation of systemic risk indexes

Table 2 shows that PQR provides positive out-of-sample
performance for the lower tail of future IP growth shocks
in every region and every sample split. The improvement
in R? over the historical quantile is 1-5% in the UK and
EU. In the US, the forecast improvement is 6-15%.

Fig. 2 plots fitted quantiles for the sample beginning
in 1975. The thin dashed line is the in-sample historical
20th percentile. The actual shocks are plotted as black cir-
cles alongside their forecasted values based on informa-
tion three months earlier (i.e., the PQR data point plotted

22 In a preliminary step all predictors are standardized to have equal
variance, as is typically done in other dimension reduction techniques
such as principal components regression and partial least squares.
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Fig. 2. IP growth shocks and predicted 20th percentiles. Fitted values for the 20th percentile of one-quarter-ahead shocks to IP growth. “Historical IS” (the
thin dashed line) is the in-sample (1946-2011) 20th percentile of IP growth shocks that are shown as black circles. “PQR O0S” (the thick solid line) is the
out-of-sample 20th percentile forecast based on PQR. Timing is aligned so that the one-quarter-ahead out-of-sample forecast is aligned with the realized

quarterly shock. NBER recessions are shaded.

for January 2008 is the forecast constructed using infor-
mation known at the end of October 2007). NBER reces-
sions are shown in the shaded regions. The PQR-predicted
conditional quantile (the thick solid line) exhibits signifi-
cant variation over the last four decades, but much more
so prior to the 1990s. It is interesting to note that the
PQR systemic risk index predicted a large downshift in the
20th percentile of IP growth after the oil price shock of
the 1970s and the recessions of the early 1980s. While the
2007-2009 financial crisis led to a downward shift in the
lower quantile of IP growth, this rise in downside risk is
not without historical precedent.

Table 3 Panel B shows that the PQR index also extracts
positive forecasting power for the CFNAI and each subcom-
ponent. For two of the series this forecast improvement is
significant.?

Finally, we evaluate the ability of systemic risk indexes
to forecast the central tendency of macro shocks. Table 4
Panel B shows that either PCQR or PQR rarely provide sig-
nificant out-of-sample information for the median of fu-
ture IP shocks.?*

In summary, the compendium of systemic risk mea-
sures when taken together, especially in the PQR algo-
rithm, demonstrates robust predictive power for the lower
tail of macroeconomic shocks. This relation is significant
when evaluated over the entire postwar period in the US,

23 The online appendix shows that the PQR index successfully forecasts
the 10th percentile IP growth shocks out-of-sample—the R? starting in
1976 is 16.5%. For the 10th percentile of CFNAI shocks, the PQR index
demonstrates predictability that is statistically significant in four out of
five series. The PQR forecast of the total CFNAI index achieves an R? of
7%.

24 The median shock is reasonably well forecasted by the historical sam-
ple mean.

as well as in more recent sample periods in the US, UK,
and EU. And while systemic risk is strongly related to
lower tail risk, it appears to have little effect on the center
of the distribution. This fact highlights the value of quan-
tile regression methods, which freely allow for an asym-
metric impact of systemic risk on the distribution of future
macroeconomic shocks.?>

5. Stylized facts

Our main question in this paper is whether systemic
risk measures are informative about the future distribution
of macroeconomic shocks. Three central facts emerge from
our analysis.

5.1. Systemic risk and downside macroeconomic risk

First, systemic risk indexes are significantly related to
macroeconomic lower tail risk, but not to the central ten-
dency of macroeconomic variables. The preceding tables
report significant predictability for the 20th percentile, but
find little evidence of predictability for the median.

In Table 6 we formally test the hypothesis that the 20th
percentile and median regression coefficients are equal.?®
If the difference in coefficients (20th percentile minus
median) is negative, then the variable predicts a down-
ward shift in lower tail relative to the median. Of the 22

25 We also analyze the upper tail (80th percentile forecasts) of macroe-
conomic shocks in the online appendix and find less out-of-sample fore-
casting power than for the lower tail.

26 The t-statistics for differences in coefficients are calculated with a
residual block bootstrap using block lengths of six months and 1,000
replications.
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Table 6

Difference in coefficients, median versus 20th percentile.

In the first two columns, the table reports quarterly quantile regression
coefficients for IP growth shocks at the 50th and 20th percentiles. We
sign each predictor so that it is increasing in systemic risk and normalize
it to have unit variance. The third column is the difference between the
20th and 50th percentile coefficients. The last column reports t-statistics
for the difference in coefficients. Sample is the longest span for which the
predictor is available.

Table 7

IP shock quantile forecasts: financial versus nonfinancial volatility.

The table reports out-of-sample quantile forecast R? (in percentage) rela-
tive to the historical quantile model. Statistical significance at the 10%, 5%,
and 1% levels are denoted by *, **, and ***, respectively. Sample is 1946-
2011 and out-of-sample period begins in 1950. Rows use either financial
or nonfinancial volatility (calculated as the average individual equity re-
turn volatility for stocks in each sector) in a quantile forecasting regres-
sion for IP growth shocks.

80th percentile  Median  20th percentile

Median 20th pctl. Difference t
Absorption -0.1936 —0.4686 —0.2750 -3.54
AIM -0.0711 —0.0090 0.0622 0.75
CoVaR —-0.2076 —0.6946 —0.4870 —-6.07
ACoVaR —-0.1509 —0.4963 —0.3454 -4.17
MES —0.0980 —-0.6326 —0.5346 —6.63
MES-BE —-0.0735 —0.3487 —0.2752 -3.37
Book lvg. —0.0628 —0.1596 —0.0968 -1.20
CatFin -0.5114 —0.7190 —0.2075 —2.65
DCI -0.1775 -0.6132 —-0.4357 —5.47
Def. spr. —0.4237 —0.6438 —0.2202 -2.79
AAbsorption 0.0721 0.1110 0.0389 0.47
Intl. spillover 0.0455 —0.3459 -0.3914 -4.81
GZ —0.5586 —-0.6910 -0.1325 -1.72
Size conc. -0.1515 —0.3256 -0.1741 -2.13
Mkt lvg. —0.4958 -0.6243 —-0.1285 -1.75
Volatility -0.3798 —0.6675 —0.2877 -3.54
TED spr. -0.2139 —0.5470 -0.3332 —4.14
Term spr. 0.1348 0.1372 0.0024 0.03
Turbulence —0.5331 —0.9204 -0.3873 —4.96
Mean —0.4119 —0.8830 —-0.4710 —-6.01
PCQR1 -0.4721 -0.6533 —-0.1812 —2.40
PQR —0.3086 -0.6188 —-0.3102 -3.87

systemic risk measures and indexes in the table, 19 are
stronger predictors of downside risk than central tendency.
Of these, 16 are statistically significant at the 5% level.
These results support macroeconomic models of systemic
risk that feature an especially strong link between finan-
cial sector stress and the probability of a large negative
shock to the real economy, as opposed to a simple down-
ward shift in the distribution.

5.2. Financial volatility measures and economic downturns

The second stylized fact is that financial sector equity
return volatility variables are the most informative individ-
ual predictors of downside macroeconomic risk.

The macroeconomic literature on uncertainty shocks,
most notably Bloom (2009), argues that macroeconomic
“uncertainty” (often measured by aggregate equity mar-
ket volatility) is an important driver of the business cy-
cle. Bloom shows that rises in aggregate volatility predict
economic downturns.?” Is our finding that financial sector
volatility predicts downside macroeconomic risks merely
picking up the macroeconomic uncertainty effects shown
in Bloom’s analysis of aggregate volatility? Or, instead, is
the volatility of the financial sector special for understand-
ing future macroeconomic conditions?

To explore this question, we construct two volatility
variables. These are the standard deviation of daily value-
weighted equity portfolio returns within each month for

27 Recent papers such as Baker, Bloom, and Davis (2012) and Orlik and
Veldkamp (2013) expand this line of research in a variety of dimensions.

Financial volatility -1.58 2.86%** 521+
Nonfinancial volatility ——1.61 0.95 -0.72

the set of either all financial institution stocks or all nonfi-
nancial stocks.?8 We then compare quantile forecasts of IP
growth shocks based on each volatility variable.

Table 7 shows that nonfinancial volatility possesses no
significant out-of-sample predictive power for the tails or
median of future macroeconomic shocks. Financial volatil-
ity is a significant predictor of both central tendency and
lower tail risk, but is relatively more informative about the
lower tail.

These findings are consistent with the view of Schwert
(1989), who uses a present value model to argue
that the “rational expectations/efficient markets approach
implies that time-varying stock volatility (conditional
heteroskedasticity) provides important information about
future macroeconomic behavior.” His empirical analysis
highlights comovement among aggregate market volatility,
financial crises, and macroeconomic activity. Our empiri-
cal findings offer a refinement of these facts. First, they
indicate that volatility of the financial sector is especially
informative regarding macroeconomic outcomes compared
to volatility in nonfinancial sectors. Second, they suggest
that stock volatility has predictive power for macroeco-
nomic downside outcomes (recessions) in addition to cen-
tral tendency.?’

Motivated by the result that financial volatility, and not
nonfinancial volatility, provides information about the fu-
ture central tendency of IP shocks, we consider an exten-
sion of Bloom’s (2009) vector autoregression (VAR) anal-
ysis. We include financial volatility as an additional VAR
element and study the dynamic response of IP growth.

We closely follow Bloom’s (2009) original work, to
make sure that any difference in results is due entirely
to decomposing uncertainty into financial and nonfinan-
cial components.?® In particular, we estimate a nine-

28 The volatility variable studied in preceding quantile regressions is the
average equity volatility across financial firms, an aggregation approach
that is consistent with our aggregation of other firm-level measures of
systemic risk. The variable described here is volatility of returns on a
portfolio of stocks, which is directly comparable to the market volatility
variable studied in Bloom (2009).

29 Schwert (2011) studies the association between stock volatility and
unemployment in the recent crisis and notes that the extent of comove-
ment between these two variables was weaker during the recent crisis
than during the Great Depression.

30 We follow the VAR specification shown in Bloom’s (2009) Figure A1,
where aggregate volatility is included in the VAR directly. IP and volatil-
ity are Hodrick-Prescott (HP) detrended using a smoothing parameter of
129,600.
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Fig. 3. Impulse response function of IP: financial volatility before aggregate volatility. Impulse response functions from Bloom's (2009) VAR, with finan-
cial volatility ordered before aggregate volatility. Orthogonal shocks identified by a Cholesky decomposition. Gray area is one-standard-error band from
bootstrapping with 1,000 simulations. We use log IP, aggregate volatility, and financial volatility that have been Hodrick-Prescott (HP) detrended using
smoothing parameter 129,600. Vertical axis is in log percent deviations from trend.

variable VAR, adding financial volatility to Bloom’s orig-
inal eight-variable specification (using exactly the same
data for those eight variables, available from his website).
Bloom uses a Cholesky decomposition to identify structural
shocks and their effects on IP log deviations from trend.
We place financial volatility either immediately before or
immediately after aggregate stock market volatility, and re-
port results in both cases.

In Fig. 3, financial volatility is ordered ahead of aggre-
gate volatility. We plot the impulse response of IP to a fi-
nancial volatility shock and to the orthogonalized aggre-

gate volatility shock. The latter is essentially a shock to
nonfinancial volatility that moves aggregate volatility but
keeps financial volatility constant. As seen in the figure, we
find that the financial volatility shock drives out any signif-
icant negative effect of the aggregate volatility shock.

In Fig. 4, we instead order aggregate volatility first.
Here, we find that financial volatility still has a signif-
icantly negative effect on IP, even after first controlling
for shocks to aggregate volatility. Note that in this version
we are effectively studying a shock to the composition of
volatility: The total level of volatility is held constant, but
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Panel A: Aggregate volatility shock
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Fig. 4. Impulse response function of IP: aggregate volatility before financial volatility. Impulse response functions from Bloom’s (2009) VAR, with aggre-
gate volatility ordered before financial volatility. Orthogonal shocks identified by a Cholesky decomposition. Gray area is a one-standard-error band from
bootstrapping with 1,000 simulations. We use log IP, aggregate volatility, and financial volatility that have been Hodrick-Prescott (HP) detrended using
smoothing parameter 129,600. Vertical axis is in log percent deviations from trend.

the composition is shifted from nonfinancial firms toward
financial firms.

In both cases, we find that the response of IP to a finan-
cial volatility shock remains negative for years afterwards.
This contrasts with the shock to aggregate volatility that
leads to a “volatility overshoot” where IP is above trend
for 1.5-3 years after the shock.

The take-away from our predictive quantile and VAR
evidence is that financial volatility plays a special role
in predicting future macroeconomic activity. There are
many possible explanations for why this is the case. One

possibility, suggested in part by the VAR analysis, is that
nonfinancial volatility can reflect good news about the fu-
ture macroeconomy (as during the tech boom of the late
1990s), whereas financial volatility is predominantly bad
news and reflects a weakening in the financial system’s
ability to efficiently match capital with projects.

5.3. Federal funds policy and systemic risk

The third stylized fact we identify is that systemic risk
indicators predict an increased probability of monetary
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Table 8

Federal funds rate shock forecasts.

The table reports out-of-sample quantile forecast R? (in percentage) rela-
tive to the historical quantile model.

Statistical significance at the 10%, 5%, and 1% levels are denoted by *,
. and ***, respectively. Sample is 1960-2011. Out-of-sample begins 1965.
Rows “Volatility” and “Turbulence” report univariate quantile forecast re-
gressions on quarterly shocks to the Federal Funds rate. Row “PQR” uses
a single factor estimated from all systemic risk measures. Row “Bond fac-
tors” uses three factors extracted from Fama-Bliss bond series.

Median 20th pctl.
Volatility 1.00 3.98*
Turbulence 1.34* 3.06*
PQR 0.15 8.86***
Bond factors -1.12 —4.01

policy easing. To show this, we examine how the Federal
Reserve responds to fluctuations in various systemic risk
measures. Historically, monetary policy was the primary
tool at the disposal of policy-makers for regulating finan-
cial sector stress. To explore whether policy responds to
systemic risk indicators, we therefore test whether the in-
dicators predict changes in the Federal Funds rate. As in
our earlier analysis, we use quantile regression to fore-
cast the median and 20th percentile of rate changes. For
brevity, we restrict our analysis to three predictor vari-
ables: financial sector volatility, turbulence, and the PQR
index of all systemic risk measures.

Results reported in Table 8 show that all three mea-
sures have significant out-of-sample predictive power for
the 20th percentile of rate changes. Furthermore, the out-
of-sample 20th percentile predictive coefficient is signifi-
cantly larger than the median coefficient, indicating that
these predictors are especially powerful for forecasting
large policy moves.

Is there any information in asset prices themselves that
could predict these sharp movements in the Federal Funds
rate? To explore this question, we test if the Treasury yield
curve possesses predictive power for the quantiles of the
federal funds rate. The term structure contains forward-
looking information about the future path of interest rates.
Thus, level, slope, and curvature of the yield curve might
reflect investor beliefs regarding policy responses to the
current level of systemic risk.

The last row of Table 8 reports that the yield curve
does not contain predictive information about the condi-
tional distribution of shocks to the Fed Funds rate. A po-
tential explanation for this finding is that crises develop
more rapidly than non-crisis recessions, and policy-makers
scramble to respond quickly, making it difficult for in-
vestors’ crisis policy expectations to show up in the stan-
dard (slow-moving) term structure factors.’! While this
test is obviously not conclusive, it highlights the usefulness
of “tail risk” measures, as opposed to standard economic

31 Because of this, it would be particularly interesting to study the
prices of short maturity interest rate derivatives, such as swaptions, which
would allow researchers to hone in on short-term policy expectations im-
mediately after crisis fears begin to surface. Unfortunately, these data are
traded over-the-counter, thus limited information is available, but it re-
mains a valuable question for future research.

indicators like interest rates, for understanding the distri-
bution of future macroeconomic shocks.

If Federal Funds rate reductions are effective in diffus-
ing systemically risky conditions before they affect the real
economy, then we would fail to detect a relation between
systemic risk measures and downside macroeconomic risk.
But our earlier analysis shows that the lower tail of fu-
ture macroeconomic shocks shifts downward amid high
systemic risk. This implies that monetary policy response
is insufficient to stave off adverse macroeconomic conse-
quences, at least in the most severe episodes.

6. Conclusion

In this paper we quantitatively examine a large collec-
tion of systemic risk measures proposed in the literature.
We argue that systemic risk measures should be demon-
strably associated with real macroeconomic outcomes if
they are to be relied upon for regulation and policy deci-
sions. We evaluate the importance of each candidate mea-
sure by testing its ability to predict quantiles of future
macroeconomic shocks. This approach is motivated by a
desire to flexibly model the way distributions of economic
outcomes respond to shifts in systemic risk. We find that
only a few individual measures capture shifts in macroe-
conomic downside risk, but none of them do so robustly
across specifications.

We then propose two procedures for aggregating infor-
mation in the cross section of systemic risk measures. We
motivate this approach with a factor model for the condi-
tional quantiles of macroeconomic activity. We prove that
PCQR and PQR produce consistent forecasts for the true
conditional quantiles of a macroeconomic target variable.
Our results lead to a positive conclusion regarding the em-
pirical systemic risk literature. When appropriately aggre-
gated, these measures contain robust predictive power for
the distribution of macroeconomic shocks.

We present three new stylized facts. First, systemic risk
measures have an especially strong association with the
downside risk, as opposed to central tendency, of future
macroeconomic shocks. The second is that financial sec-
tor equity volatility is particularly informative about future
real activity, much more so than nonfinancial volatility. The
third is that financial market distress tends to precede a
strong monetary policy response, though this response is
insufficient to fully dispel increased downside macroeco-
nomic risk. These empirical findings can potentially serve
as guideposts for macroeconomic models of systemic risk
going forward.

Supplementary material

Supplementary material associated with this article can
be found, in the online version, at 10.1016/j.jfineco.2016.01.
010.
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