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1. Introduction 

The financial crisis of 20 07–20 09 has made systemic

risk a focal point of research and policy, and has estab-

lished the financial sector as its center of analysis. The em-

pirical side of the literature focuses on measuring distress

in financial markets. This has produced a staggering variety

of systemic risk proxies, many hoping to serve as an early

warning signal of market dislocations like those observed

during the crisis. 

In this paper, we investigate how a buildup of systemic

risk in the financial sector increases risks in the real econ-

omy. Specifically, we exploit the large set of existing mea-

sures of financial sector distress to quantify how fluctua-

tions in systemic risk impact the probability of a macroe-

conomic downturn. We propose a new systemic risk index

that efficiently aggregates recession-relevant information

across the gamut of individual measures. We show that in-

creases in the index are associated with a large widening

http://dx.doi.org/10.1016/j.jfineco.2016.01.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/finec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfineco.2016.01.010&domain=pdf
http://www.sethpruitt.net/GKPwebdata.zip
mailto:stefano.giglio@chicagobooth.edu
mailto:bryan.kelly@chicagobooth.edu
mailto:seth.pruitt@asu.edu
http://dx.doi.org/10.1016/j.jfineco.2016.01.010


458 S. Giglio et al. / Journal of Financial Economics 119 (2016) 457–471 

4 The use of principal components to aggregate information among a 

large number of predictor variables is well-understood for least squares 

forecasting—see Stock and Watson (20 02) and Bai and Ng (20 06) . The use 

of principal components in quantile regression has been used by Ando 

and Tsay (2011) . 
5 The key difference between PQR and PCQR is their method of dimen- 
of the left tail of economic activity. A one standard devi- 

ation increase in systemic risk shifts the 20th percentile 

of the industrial production (IP) growth shock distribution 

downward by more than 50%, from around −1.4% uncon- 

ditionally, to −2.2% (annualized). In several occasions in 

US history (including during the recent financial crisis), the 

conditional 20th percentile was below −3%, twice as large 

as in normal times. In addition, we show that the systemic 

risk index also predicts reactions of policymakers: the 20th 

percentile of innovations in the Federal Funds rate drops 

by 60%, from −50 basis points (bps) to −80 bps. 

Our analysis uses out-of-sample predictive quantile re- 

gression, which forecasts how specific features of the 

macroeconomic shock distribution respond to systemic 

risk. We argue that a quantile approach is appropriate for 

evaluating the potentially asymmetric and nonlinear asso- 

ciation between systemic risk and the macroeconomy that 

has been emphasized in the theoretical literature. 3 These 

theories predict that distress in the financial system can 

amplify adverse fundamental shocks and result in severe 

downturns or crises, while the absence of stress does not 

necessarily trigger a macroeconomic boom. Quantile re- 

gression is a flexible tool for investigating the impact of 

systemic risk on the left tail of macroeconomic shocks, as 

opposed to focusing on their central tendency via least 

squares. 

We examine 19 previously proposed measures of sys- 

temic risk in the US and ten measures for the UK and Eu- 

rope. In building these measures, we use the longest possi- 

ble data history, which in some cases allows us to use the 

entire postwar sample in the US. To the extent that sys- 

temically risky episodes are rarely observed phenomena, 

our long time series and international panel provide em- 

pirical insights over several business cycles, in contrast to 

much of the literature’s emphasis on the 20 07–20 09 sam- 

ple in the US. 

We first investigate each systemic risk measure individ- 

ually, asking whether or not it provides significant out-of- 

sample information about future macroeconomic shocks. 

Next, we ask whether it is possible to aggregate risk mea- 

sures into a systemic risk index to enhance forecasting 

power. A naive way to do this is by including all the mea- 

sures as separate right-hand-side variables in a multiple 

quantile regression. But we find that this approach has vir- 

tually no out-of-sample forecasting power. This is due to 

multiple quantile regression overfitting the sample data, 

analogous to well-understood problems of overfit in multi- 

ple least squares regression (e.g., Stock and Watson, 2006 ). 

As an alternative, we propose dimension reduction 

techniques for a conditional quantile factor model. We 

show how these estimators may be used to construct sys- 

temic risk indexes with theoretically attractive asymptotic 

properties. Most importantly, we demonstrate their signif- 

icant forecasting power in our empirical setting. We de- 

rive these estimators as a solution to the following statisti- 

cal problem. Suppose all systemic risk measures are imper- 
3 See, for example, Bernanke and Gertler (1989) , Kiyotaki and Moore 

(1997) , Bernanke, Gertler, and Gilchrist (1999) , Brunnermeier and San- 

nikov (2014) , Gertler and Kiyotaki (2010) , Mendoza (2010) , and He and 

Krishnamurthy (2012) . 
fectly measured versions of an unobservable systemic risk 

factor. Furthermore, suppose that the conditional quan- 

tiles of macroeconomic variables also depend on the unob- 

served factor. How may we identify this latent factor that 

drives both measured systemic risk and the distribution of 

future macroeconomic shocks? 

The first solution is principal components quantile re- 

gression (PCQR). This two-step procedure first extracts 

principal components from the panel of systemic risk mea- 

sures and then uses these factors in predictive quantile re- 

gressions. 4 The second solution is partial quantile regres- 

sion (PQR), which is an adaptation of partial least squares 

to the quantile setting. We prove that both approaches 

consistently estimate conditional quantiles of macroeco- 

nomic shocks under mild conditions. We also show that 

PQR, our preferred estimator, produces consistent quantile 

forecasts with typically fewer factors than PCQR. 5 

A set of new stylized facts emerges from our empiri- 

cal investigation. First, we find that a select few systemic 

risk measures possess significant predictive content for the 

downside quantiles of macroeconomic shocks such as in- 

novations in IP growth or the Chicago Fed National Activ- 

ity Index. Measures of financial sector equity volatility per- 

form well in a variety of specifications; other variables, in- 

cluding leverage and liquidity measures, work well in some 

specifications but not others. 

Next, we find that dimension-reduced systemic risk in- 

dexes reveal robust dependence between systemic risk and 

the probability of future negative macroeconomic shocks. 

In particular, our novel PQR estimator achieves significant 

forecast improvements across macroeconomic variables in 

a wide range of specifications. 

Third, systemic risk measures are more informative 

about the left tail of macroeconomic shocks than about 

their central tendency or right tail. This is evident not only 

for systemic risk indexes, but is uniformly true across in- 

dividual measures as well. This supports the idea that sys- 

temic risk is an inherently asymmetric and nonlinear phe- 

nomenon, a feature emphasized in much of the theoretical 

literature. 

Next, we show that measures of financial sector eq- 

uity volatility are the most useful individual predictors of 

macroeconomic downturns. In contrast, equity volatility in 

the nonfinancial sector appears to have little, if any, pre- 

dictive power. This suggests that economic mechanisms 

connecting aggregate stock market volatility to the real 

economy, such as the uncertainty shocks mechanism in 

Bloom (2009) , may blur an important distinction between 
sion reduction. PQR condenses the cross section according to each predic- 

tor’s quantile covariation with the forecast target, choosing a linear com- 

bination of predictors that is a consistent quantile forecast. On the other 

hand, PCQR condenses the cross section according to covariance within 

the predictors, disregarding how closely each predictor relates to the tar- 

get. Dodge and Whittaker (2009) discuss a version of PQR but do not an- 

alyze its sampling properties. 
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Table 1 

Sample start dates. 

Measures begin in the stated year and are available through 2011 with 

the exception of Intl. spillover, which runs through 2009, and GZ, which 

runs through September 2010. 

US UK EU 

Absorption 1927 1973 1973 

AIM 1926 – –

CoVaR 1927 1974 1974 

�CoVaR 1927 1974 1974 

MES 1927 1973 1973 

MES-BE 1926 1973 1973 

Book lvg. 1969 – –

CatFin 1926 1973 1973 

DCI 1928 1975 1975 

Def. spr. 1926 – –

�Absorption 1927 1973 1973 

Intl. spillover 1963 – –

GZ 1973 – –

Size conc. 1926 1973 1973 

Mkt lvg. 1969 – –

Volatility 1926 1973 1973 

TED spr. 1984 – –

Term spr. 1926 – –

Turbulence 1932 1978 1978 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uncertainty in the financial sector and uncertainty in other

industries. 

Finally, we find that systemic risk indicators forecast

policy decisions. A rise in systemic risk predicts an in-

creased probability of a large drop in the Federal Funds

rate, suggesting that the Federal Reserve takes preventive

action amid elevated risk levels. Combined with these pre-

dictable drops in the Fed Funds rate, our main result im-

plies that such preventative action fails to fully counteract

the risk of economic downturns that accompanies severe

financial system distress. 

In summary, our results reach a positive conclusion re-

garding the empirical systemic risk literature. When taken

altogether, systemic risk measures indeed contain useful

information regarding the probability of future macroe-

conomic downturns. This conclusion is based on out-of-

sample tests and is robust across different choices of left

tail quantiles, macroeconomic variables, and geographic

region. 

The remainder of the paper proceeds as follows.

Section 2 defines and provides a quantitative descrip-

tion of a set of systemic risk measures in the US and

Europe. In Section 3 , we examine the power of these mea-

sures for predicting quantiles of macroeconomic shocks us-

ing univariate quantile regressions. In Section 4 , we de-

fine PCQR and PQR estimators, discuss their properties,

and use them to form predictive systemic risk indexes.

Section 5 discusses stylized facts based on our empirical

results. Section 6 concludes. The online appendix contains

proofs and Monte Carlo evidence regarding PCQR and PQR

estimators and other supporting material. 

2. Data 

This section outlines our construction of systemic risk

measures and describes the macroeconomic outcomes that

we study – data can downloaded from www.sethpruitt.

net/GKPwebdata.zip . US measures are based on data for

financial institutions identified by two-digit SIC codes 60

through 67 (finance, insurance, and real estate). 6 We ob-

tain equity returns for US financial institutions from CRSP

and book data from Compustat. 

We also construct measures for Europe. Our “EU” mea-

sures pool data on financial institution equity returns from

France, Germany, Italy, and Spain, which are the largest

continental European Union economies. Our “UK” mea-

sures are for the United Kingdom. UK and EU returns data

are obtained from Datastream. 7 We do not construct mea-

sures that require book data for the UK and EU, nor do

we have data for some counterparts to US measures such
6 This definition of financial sector corresponds to that commonly used 

in the literature (see, e.g., Acharya, Pedersen, Philippon, and Richardson, 

2010 ). 
7 Datastream data require cleaning. We apply the following filters. (1) 

When a firm’s data series ends with a string of zeros, the zeros are con- 

verted to missing, since this likely corresponds to a firm exiting the data 

set. (2) To ensure that we use liquid securities, we require firms to have 

nonzero returns for at least one-third of the days that they are in the 

sample, and we require at least three years of nonzero returns in total. 

(3) We winsorize positive returns at 100% to eliminate large outliers that 

are likely to be recording errors. 

 

 

 

 

 

as the default spread. When reporting forecasts of foreign

macroeconomic outcomes, we use the US version of the

risk measure if it is not available in the foreign data set. 

2.1. Overview of measures 

Bisias, Flood, Lo, and Valavanis (2012) categorize and

collect definitions of more than 30 systemic risk measures.

We construct variables from that survey to the extent

that we have access to requisite data, and refer readers

to the online appendix and to Bisias, Flood, Lo, and Vala-

vanis (2012) for additional details. In addition, we study

the CatFin measure of Allen, Bali, and Tang (2012) and

the Gilchrist and Zakrajsek (2012) credit spread measure,

which are not included in Bisias, Flood, Lo, and Valavanis

(2012) but are relevant to our analysis. Below we provide a

brief overview of the measures that we build, grouped by

their defining features. 

We are interested in capturing systemic risk stemming

from the core of the financial system, and thus construct

our measures using data for the 20 largest financial in-

stitutions in each region (US, UK, and EU) in each pe-

riod. 8 Whenever the systemic risk measure is constructed

from an aggregation of individual measures (for example,

in the case of CoVaR, which is defined at the individual

firm level), we compute the measure as an equal-weighted

average of the 20 largest institutions. The only exception is

size concentration of the financial sector for which we use

the largest 100 institutions (or all institutions if they num-

ber fewer than 100). Table 1 shows the available sample

period for each measure by region. 
8 If less than 20 institutions are available, we construct measures from 

all available institutions, and if data for fewer than 10 financial institu- 

tions are available the measure is treated as missing. 

http://www.sethpruitt.net/GKPwebdata.zip
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2.1.1. Institution-specific risk 

Institution-specific measures are designed to capture an 

individual bank’s contribution or sensitivity to economy- 

wide systemic risk. These measures include CoVaR and 

�CoVaR from Adrian and Brunnermeier (2011) , marginal 

expected shortfall (MES) from Acharya, Pedersen, Philip- 

pon, and Richardson (2010) , and MES-BE, a version of 

marginal expected shortfall proposed by Brownlees and 

Engle (2011) . 

2.1.2. Comovement and contagion 

Comovement and contagion measures quantify depen- 

dence among financial institution equity returns. We con- 

struct the Absorption Ratio described by Kritzman, Li, Page, 

and Rigobon (2011) , which measures the fraction of the 

financial system variance explained by the first K prin- 

cipal components (we use K = 3 ). We also construct the 

Dynamic Causality Index (DCI) from Billio, Lo, Getmansky, 

and Pelizzon (2012) which counts the number of signifi- 

cant Granger-causal relations among bank equity returns, 

and the International Spillover Index from Diebold and Yil- 

maz (2009) which measures comovement in macroeco- 

nomic variables across countries. 9 

2.1.3. Volatility and instability 

To measure financial sector volatility, we construct 

two main variables. First, we compute the average equity 

volatility of the largest 20 financial institutions and take 

its average as our “volatility” variable. In addition, we con- 

struct a “turbulence” variable, following Kritzman and Li 

(2010) , which considers returns’ recent covariance relative 

to a longer-term covariance estimate. 

Allen, Bali, and Tang (2012) propose CatFin as a value- 

at-risk (VaR) measure derived by looking at the cross sec- 

tion of financial firms at any one point in time. Such a VaR 

measure for financial firms is well-suited to provide an al- 

ternative measure of financial sector volatility. 10 

Motivated by the fact that loan ratios forecast GDP 

growth in crises ( Schularick and Taylor, 2012 ), we cal- 

culate aggregate book leverage and market leverage for 

the largest 20 financial institutions. We also compute size 

concentration in the financial industry (the market equity 

Herfindal index), which captures potential instability in the 

sector. 

2.1.4. Liquidity and credit 

Liquidity and credit conditions in financial markets are 

measured by Amihud’s (2002) illiquidity measure (AIM) 

aggregated across financial firms, the TED spread (LIBOR 
9 We do not include the volatility connectedness measure of Diebold 

and Yilmaz (2014) . Arsov, Canetti, Kodres, and Mitra (2013) show that this 

is a dominant leading indicator of financial sector stress in the recent cri- 

sis. Unfortunately, the Diebold-Yilmaz index is only available beginning in 

1999 and thus does not cover a long enough time series to be included 

in our tests. 
10 Allen, Bali, and Tang ’s (2012) CatFin measure is the simple average 

of three different approaches to estimating the financial sector’s VaR in 

any particular month. Those authors note that the three components are 

highly correlated. We simply use the nonparametric version of CatFin, 

given the high correlation between all three measures (above 99%) noted 

by Allen, Bali, and Tang (2012) . 
minus the T-bill rate), the default spread (BAA bond yield 

minus AAA bond yield), the Gilchrist and Zakrajsek (2012) 

credit spread measure (GZ), and the term spread (the slope 

of the Treasury yield curve). 

2.1.5. Measures not covered 

Due to data constraints, particularly in terms of time 

series length, we do not include measures of linkages be- 

tween financial institutions (such as interbank loans or 

derivative positions), stress tests, or credit default swap 

spreads. 

2.2. Macroeconomic data 

Our analysis focuses on real macroeconomic shocks 

measured by innovations to IP growth in the US, UK, and 

EU. These data come from the Federal Reserve Board for 

the US and OECD for the UK and EU. 11 Our sample for the 

US is the entire postwar era 1946–2011. For the UK, data 

begin in 1978. Our EU sample begins in 1994. 

In robustness checks, we consider US macroeconomic 

shocks measured by innovations to the Chicago Fed Na- 

tional Activity Index (CFNAI) and its subcomponents: pro- 

duction and income (PI), employment, unemployment, and 

hours (EUH), personal consumption and housing (PH), and 

sales, orders, and inventory (SOI). These data come from 

the Federal Reserve Bank of Chicago and are available be- 

ginning in 1967. 

Our focus is on how systemic risk affects the distri- 

bution of future macroeconomic shocks. We define macro 

shocks as innovations to an autoregression in the under- 

lying macroeconomic series (IP growth or CFNAI). This 

strips out variation in the target variable that is fore- 

castable using its own history, following the forecasting lit- 

erature such as Bai and Ng (2008b ) and Stock and Watson 

(2012) . 12 We choose the autoregressive order based on the 

Akaike Information Criterion (AIC) for each series—typical 

orders are between three and six in monthly data. We 

perform the autoregression (AR) estimation (including the 

AIC-based model selection) recursively out-of-sample. 13 Fi- 

nally, we aggregate monthly shocks into a quarterly shock 

by summing monthly innovations to put the targets on a 

forecast horizon that is relevant for policy-makers. Further 

details are available in the online appendix. 
11 For the EU, we use the OECD series for the 17-country Euro zone. 
12 This is often referred to as “pre-whitening” in the forecasting liter- 

ature. An alternative to pre-whitening is to conduct Granger causality 

tests that control for lags of the dependent variable. The online appendix 

shows that Granger causality tests, using Politis and Romano ’s (1994) sta- 

tionary bootstrap, broadly agree with our findings based on autoregres- 

sion residuals. We have also performed pre-whitening with autoregres- 

sions augmented to include lagged principal components from Stock and 

Watson ’s (2012) data. This produced minor quantitative changes to our 

results and does not alter any of our conclusions. 
13 Using the full-sample AR estimate in out-of-sample quantile forecasts 

has little effect on our results, as the recursively estimated AR projection 

is stable after only a few years of observations. 
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Fig. 1. Systemic risk measures. The figure plots a subset of our panel of systemic risk measures. All measures have been standardized to have equal 

variance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Summary of comovement among systemic risk measures 

Fig. 1 plots the monthly time series of select mea-

sures in the US. 14 All measures spiked during the re-

cent financial crisis, which is not surprising given that

many of these measures were proposed post hoc. In ear-

lier episodes, many systemic risk measures reached similar

levels to those experienced during the recent crisis. Dur-

ing the oil crisis and high uncertainty of the early and mid

1970s, financial sector market leverage and return turbu-

lence spike. All the measures display substantial variabil-

ity and several experience high levels in non-recessionary

climates. Many of the spikes that do not seem to corre-

spond to a financial crisis might be considered “false pos-

itives.” One interpretation of the plot is that these mea-

sures are simply noisy. Another interpretation is that these

measures sometimes capture stress in the financial system

that does not result in full-blown financial crises, either

because policy and regulatory responses diffused the insta-

bility or the system stabilized itself (we discuss this further

in Section 5.3 ). Yet another interpretation is that crises de-

velop only when many systemic risk measures are simul-

taneously elevated, as during the recent crisis. 

The online appendix reports correlations among differ-

ent measures for the US, UK, and EU. Most correlations are

quite low. Only small groups of measures comove strongly.

For example, turbulence, volatility, and the TED spread

are relatively highly correlated. Similarly, CoVaR, �CoVaR,

MES, and GZ tend to comove. The other measures display

low or even negative correlations with each other, suggest-

ing that many measures capture different aspects of finan-
14 The plotted measures are standardized to have the same variance 

(hence no y -axis labels are shown) and we only show a subset of the 

series we study for readability. 

 

 

 

 

 

cial system stress or are subject to substantial noise. If low

correlations are due to the former, then our tests for as-

sociation between systemic risk measures and macroeco-

nomic outcomes can help distinguish which aspects of sys-

temic risk are most relevant from a policy standpoint. 

Finally, some measures of systemic risk may be inter-

preted as contemporaneous stress indicators and others as

leading indicators of systemic risk. We describe lead-lag

relations between these variables by conducting two-way

Granger causality tests in the online appendix. The GZ,

default spread, turbulence, CoVaR, and volatility measures

appear to behave as leading indicators in that they fre-

quently Granger-cause other variables and not the reverse.

The term spread, the international spillover index, MES,

MES-BE, and DCI tend to lag other measures and thus may

be viewed as coincident indicators of a systemic shock.

These associations appear consistent across countries. 

3. Systemic risk measures and the macroeconomy 

We propose a criterion for evaluating systemic risk

measures based on the relevance of each of these mea-

sures for forecasting real economic outcomes. In partic-

ular, we investigate which systemic risk measures give

policy-makers significant out-of-sample information about

the distribution of future bad macroeconomic shocks. We

believe this criterion provides a new but natural method

for evaluating policy relevance when selecting among a

pool of candidate systemic risk measures. 

The basic econometric tool for our analysis is predic-

tive quantile regression, which we use to judge the rela-

tion of a systemic risk measure to future economic activity.

We view quantile regression as a flexible statistical tool for

investigating potentially nonlinear dynamics between sys-

temic risk and economic outcomes. Such a reduced-form
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16 In the online appendix, we also consider testing for the correct con- 

ditional 20th percentile coverage following Christoffersen (1998) . We find 

somewhat similar results, in terms of accuracy and significance, for the 

various measures and indexes we construct using this alternative crite- 

ria, but see that the test has lower power to discriminate between risk 
statistical approach has benefits and limitations. Benefits 

include potentially less severe specification error and, most 

importantly, the provision of new empirical descriptions 

to inform future theory. A disadvantage is the inability to 

identify “fundamental” shocks or specific mechanisms as 

in a structural model. Hansen (2013) provides an insight- 

ful overview of advantages to systemic risk modeling with 

and without the structure of theory. 

3.1. Quantile regression 

Before describing our empirical results, we offer a 

brief overview of the econometric tools and notation 

that we use. Denote the target variable as y t+1 , a scalar 

real macroeconomic shock whose conditional quantiles we 

wish to capture with systemic risk measures. The τ th 

quantile of y t+1 is its inverse probability distribution func- 

tion, denoted 

Q τ (y t+1 ) = inf { y : P (y t+1 < y) ≥ τ } . 
The quantile function may also be represented as the solu- 

tion to an optimization problem 

Q τ (y t+1 ) = arg inf 
q 

E[ ρτ (y t+1 − q )] 

where ρτ (x ) = x (τ − I x< 0 ) is the quantile loss function. 

Previous literature shows that this expectation-based 

quantile representation is convenient for handling con- 

ditioning information sets and deriving a plug-in M- 

estimator. In the seminal quantile regression specification 

of Koenker and Bassett (1978) , the conditional quantiles of 

y t+1 are affine functions of observables x t , 

Q τ (y t+1 |I t ) = βτ, 0 + β
′ 
τ x t . (1) 

An advantage of quantile regression is that the coefficients 

βτ , 0 , βτ are allowed to differ across quantiles. 15 Thus, 

quantile models can provide a richer picture of the tar- 

get distribution when conditioning information shifts more 

than just the distribution’s location. As Eq. (1) suggests, we 

focus on quantile forecasts rather than contemporaneous 

regression since leading indicators are most useful from a 

policy and regulatory standpoint. 

Our focus is on the out-of-sample information provided 

by systemic risk measures. In everything that follows, we 

are careful to construct systemic risk measures (and later 

on, systemic risk indexes) in a recursive out-of-sample 

manner. This means that the forecast of a macroeconomic 

shock at time t + 1 is constructed using only information 

from the estimation sample { 1 , 2 , . . . , t − 1 , t} . In particular,

all parameters and fitted values are estimated using data 

ending no later than time t . 

Forecast accuracy can be evaluated via a quantile R 2 

based on the loss function ρτ : 

R 

2 = 1 −
1 
T 

∑ 

t [ ρτ (y t+1 − ˆ α − ˆ βX t )] 
1 
T 

∑ 

t [ ρτ (y t+1 − ˆ q τ )] 
. 
15 Chernozhukov, Fernandez-Val, and Galichon (2010) propose a mono- 

tone rearranging of quantile curve estimates using a bootstrap-like proce- 

dure to impose that they do not cross in sample. We focus attention on 

only the 10th, 20th, and 50th percentiles and these estimates never cross 

in our sample. 
This expression captures the typical loss using condition- 

ing information (the numerator) relative to the loss using 

the historical unconditional quantile estimate (the denom- 

inator). The out-of-sample R 2 can be negative if the histor- 

ical unconditional quantile offers a better forecast than the 

conditioning variable. We arrive at a description of statis- 

tical significance for our out-of-sample estimates by com- 

paring the sequences of quantile forecast losses based on 

conditioning information, ρτ (y t+1 − ˆ α − ˆ βX t ) , to the quan- 

tile loss based on the historical unconditional quantile, 

ρτ (y t+1 − ˆ q τ ) , following Diebold and Mariano (1995) and 

West (1996) . 16 

Our benchmark results focus attention on the 20th per- 

centile, or τ = 0 . 2 . This choice represents a compromise 

between the conceptual benefit of emphasizing extreme 

regions of the distribution and the efficiency cost of using 

too few effective observations. In the online appendix we 

show that results for the 10th percentile are similar. We 

also estimate median regressions ( τ = 0 . 5 ) to study sys- 

temic risk impacts on the central tendency of macroeco- 

nomic shocks. 17 

3.2. Empirical evaluation of systemic risk measures 

Table 2 Panel A reports recursive out-of-sample pre- 

dictive statistics. The earliest out-of-sample start dates are 

1950 for the US, 1990 for the UK, and 20 0 0 for the EU (due

to the shorter data samples outside the US). We take ad- 

vantage of the longer US time series to perform subsample 

analysis, and report results for out-of-sample start dates of 

1976 and 1990. 

Only financial sector volatility, CatFin, and market lever- 

age are significant for every region and start date. Focus- 

ing on the US, Table 2 Panel A shows that book leverage, 

CatFin, GZ, volatility, and turbulence are significantly infor- 

mative out-of-sample for all split dates. Table 3 Panel A in- 

vestigates the robustness of this observation when macroe- 

conomic shocks are measured by the CFNAI series. Since 

the CFNAI begins later, we consider out-of-sample perfor- 

mance starting in 1976. There we see that only financial 

sector turbulence provides significant out-of-sample pre- 

dictive content for the total CFNAI index and each of its 

component series. 18 

Turning to the central tendency of macroeconomic 

shocks, Table 4 Panel A shows that systemic risk mea- 

sures demonstrate substantially weaker forecast power for 

the median shock. The default spread, CatFin, GZ, volatil- 

ity, and turbulence possess some predictive power for the 

median, but less than they do for lower percentiles. 
measures in our context. 
17 We also consider upper tail (τ = 0 . 8) quantile regressions in the on- 

line appendix to highlight the nonlinear relation between systemic risk 

and future macroeconomic shocks. 
18 In the online appendix, Tables A4 and A5 report that US results are 

broadly similar if we study the 10th rather than the 20th percentile of IP 

growth and CFNAI shocks. 
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Table 2 

20th percentile IP shock forecasts. 

The table reports out-of-sample quantile forecast R 2 (in percentage) rela- 

tive to the historical quantile model. Statistical significance at the 10%, 5%, 

and 1% levels are denoted by ∗ , ∗∗ , and ∗∗∗ , respectively; we do not test 

the multiple QR model. Sample is 1946–2011 for US data, 1978–2011 for 

UK data and 1994–2011 for EU data. Out-of-sample start date is noted for 

each column. Rows “Absorption” through “Turbulence” use each systemic 

risk measure in a univariate quantile forecast regression for IP growth rate 

shocks. “Multiple QR” uses all systemic risk measures jointly in a multiple 

quantile regression. Rows “Mean” through “PQR” use dimension reduction 

techniques on all the systemic risk measures. Mean is a simple average, 

PCQR1 and PCQR2 use one and two principal components, respectively, 

in the PCQR forecasting procedure, while PQR uses a single factor. “−”

Indicates insufficient data for estimation in a given sample. 

US UK EU 

Out-of-sample start: 1950 1976 1990 1990 20 0 0 

Panel A: Individual systemic risk measures 

Absorption −3 . 14 −8 . 86 −3 . 78 0.91 7.63 ∗∗

AIM 2.92 ∗∗ 2.62 3.56 ∗ −0 . 23 0.55 ∗

CoVaR 1.37 0.86 1.79 6.83 ∗∗ 6.41 ∗∗

�CoVaR −0 . 79 −3 . 40 −0 . 82 6.22 ∗∗ 6.92 ∗

MES −0 . 46 −2 . 09 1.44 2.70 4.47 ∗

MES-BE −1 . 25 −1 . 36 −7 . 17 −1 . 10 4.65 ∗

Book lvg. − 2.63 ∗∗ 1.38 ∗∗∗ −2 . 80 −3 . 24

CatFin 5.74 ∗∗∗ 13.27 ∗∗∗ 17.79 ∗∗∗ 6.16 ∗∗∗ 10.73 ∗∗∗

DCI −1 . 80 −1 . 92 −3 . 35 −5 . 18 5.63 ∗∗

Def. spr. −0 . 30 3.93 ∗∗ 8.66 ∗∗∗ 16.35 ∗∗∗ 11.70 ∗

�Absorption −0 . 83 −0 . 06 −0 . 30 0.17 0.04 

Intl. spillover − 2.02 ∗ 1.01 −0 . 15 −1 . 01

GZ − 5.26 ∗∗ 14.68 ∗∗∗ −1 . 82 15.83 ∗∗

Size conc. −2 . 25 −5 . 93 −3 . 37 −3 . 53 −0 . 40

Mkt lvg. − 10.44 ∗∗∗ 12.67 ∗∗∗ 6.81 ∗ 8.48 ∗

Volatility 3.21 ∗∗ 5.62 ∗∗ 8.14 ∗ 7.30 ∗∗ 11.96 ∗∗∗

TED spr. − − 9.76 ∗∗∗ −1 . 01 1.10 

Term spr. 0.23 2.90 ∗ 1.31 −2 . 64 1.27 

Turbulence 3.60 ∗∗∗ 9.23 ∗∗∗ 13.01 ∗∗∗ −3 . 55 −0 . 62

Panel B: Systemic risk indexes 

Multiple QR −58 . 18 −36 . 94 7.07 −32 . 12 −4 . 49

Mean −2 . 26 −3 . 81 −11 . 35 −8 . 83 0.57 

PCQR1 −0 . 76 1.02 1.67 8.48 ∗∗ 15.06 ∗∗∗

PCQR2 2.74 7.51 ∗∗ 10.64 ∗∗ 1.47 13.73 ∗∗

PQR 6.39 ∗∗∗ 13.01 ∗∗∗ 14.98 ∗∗∗ 1.42 4.32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

20th percentile CFNAI shock forecasts. 

The table reports out-of-sample quantile forecast R 2 (in percentage) rel- 

ative to the historical quantile model. Statistical significance at the 10%, 

5%, and 1% levels are denoted by ∗ , ∗∗ , and ∗∗∗ , respectively; we do not 

test the Multiple QR model. Sample is 1967–2011. Out-of-sample period 

starts in 1976, except for Ted Spread which begins later. Rows “Absorp- 

tion” through “Turbulence” use each systemic risk measure in a univariate 

quantile forecast regression for the CFNAI index or sub-index in each col- 

umn. “Multiple QR” uses all systemic risk measures jointly in a multiple 

quantile regression. Rows “PCQR1” through “PQR” use dimension reduc- 

tion techniques on all the systemic risk measures. Mean is a simple av- 

erage, PCQR1 and PCQR2 use one and two principal components, respec- 

tively, in the PCQR forecasting procedure, while PQR uses a single factor. 

Total PH PI SOI EUH 

Panel A: Individual systemic risk measures 

Absorption −3 . 07 −1 . 31 −2 . 98 −4 . 17 −2 . 52

AIM −4 . 65 −1 . 89 −5 . 33 −8 . 12 −3 . 19

CoVaR −3 . 37 −0 . 93 −1 . 85 −5 . 91 −2 . 15

�CoVaR −5 . 70 −1 . 12 −3 . 16 −5 . 97 −4 . 34

MES −6 . 40 −1 . 87 −5 . 28 −8 . 01 −5 . 36

MES-BE −2 . 73 −1 . 89 −0 . 59 −3 . 30 −3 . 09

Book lvg. −2 . 50 −3 . 01 −1 . 48 −2 . 06 −2 . 14

CatFin 2.46 −0 . 62 4.78 −1 . 05 5.44 

DCI −2 . 28 0.01 −1 . 75 −2 . 20 −1 . 55

Def. spr. 0.69 −1 . 33 0.19 0.60 −0 . 25

�Absorption −0 . 58 −1 . 89 1.04 −0 . 29 0.55 

Intl. spillover −2 . 07 −1 . 27 −0 . 13 −2 . 66 −2 . 02

GZ −8 . 23 −6 . 00 −4 . 14 −9 . 84 −4 . 83

Size conc. −1 . 75 −1 . 12 −0 . 61 −4 . 20 −0 . 63

Mkt lvg. 2.61 3.56 ∗∗ 2.49 −0 . 20 3.18 

Volatility −5 . 26 −2 . 55 −2 . 79 −3 . 92 0.02 

TED spr. 2.36 1.85 3.38 ∗ 2.42 −2 . 76

Term spr. 1.58 0.78 0.86 0.89 3.50 

Turbulence 7.68 ∗∗ 5.26 ∗∗ 9.41 ∗∗∗ 7.78 ∗∗ 5.83 ∗

Panel B: Systemic risk indexes 

Multiple QR −55 . 70 −72 . 10 −60 . 84 −37 . 01 −53 . 54

Mean 2.16 1.13 2.88 −0 . 67 −2 . 23

PCQR1 −6 . 21 −0 . 58 −4 . 93 −9 . 38 −2 . 08

PCQR2 −0 . 75 −0 . 57 −0 . 42 −6 . 09 1.90 

PQR 3.68 0.45 5.27 ∗ 7.05 ∗∗ 4.60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In summary, we find that few systemic risk mea-

sures possess significant power to forecast downside

macroeconomic quantiles. Exceptions include measures of

financial sector volatility, but even these are not robust in

every specification. To the extent that we find any forecast-

ing power, it is stronger for the lower quantiles of macroe-

conomic shocks than for their central tendency. 

4. Systemic risk indexes and the macroeconomy 

Individually, many systemic risk measures lack a robust

statistical association with macroeconomic downside risk.

This could be because measurement noise obscures the

useful content of these series, or because different mea-

sures capture different aspects of systemic risk. Is it possi-

ble, then, to combine these measures into a more informa-

tive systemic risk index? 

A naive way to aggregate information across measures

is to include all the systemic risk measures as multiple

regressors in the same quantile regression (QR). However,

multiple QR is likely to suffer from in-sample overfit due
to proliferation of parameters, similar to the overfit seen

in multiple regression with many predictors (see Stock and

Watson, 2006 ). 

Alternatively, we propose a statistical model in which

the conditional quantiles of y t+1 depend on a low-

dimension unobservable factor f t , and each individual sys-

temic risk variable is a noisy measurement of f t . This struc-

ture embodies the potential for dimension reduction tech-

niques to help capture information about future macroe-

conomic shocks present in the cross section of individual

systemic risk measures. The factor structure is similar to

well-known conditional mean factor models (e.g., Geweke,

1977; Sargent and Sims, 1977; Stock and Watson, 2002 ).

The interesting feature of our model is that it links multi-

ple observables to latent factors that drive the conditional

quantile of the forecast target. 

We present two related procedures for constructing

systemic risk indexes: principal components quantile re-

gression and partial quantile regression. We show that

they consistently estimate the latent conditional quantile

driven by f t , and we verify that these asymptotic results

are accurate approximations of finite sample behavior us-

ing numerical simulations. We also show that they are
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Table 4 

Median IP shock forecasts. 

The table reports out-of-sample quantile forecast R 2 (in percentage) rela- 

tive to the historical quantile model. Statistical significance at the 10%, 5%, 

and 1% levels are denoted by ∗ , ∗∗ , and ∗∗∗ , respectively; we do not test 

the Multiple QR model. Sample is 1946–2011 for US data, 1978–2011 for 

UK data and 1994–2011 for EU data. Out-of-sample start date is noted for 

each column. Rows “Absorption” through “Turbulence” use each systemic 

risk measure in a univariate quantile forecast regression for IP growth rate 

shocks. “Multiple QR” uses all systemic risk measures jointly in a multiple 

quantile regression. Rows “PCQR1” through “PQR” use dimension reduc- 

tion techniques on all the systemic risk measures. Mean is a simple av- 

erage, PCQR1 and PCQR2 use one and two principal components, respec- 

tively, in the PCQR forecasting procedure, while PQR uses a single factor. 

“−” Indicates insufficient data for estimation in a given sample. 

US UK EU 

Out-of-sample start: 1950 1976 1990 1990 20 0 0 

Panel A: Individual systemic risk measures 

Absorption −0 . 92 0.99 1.62 −1 . 22 1.73 

AIM −0 . 03 −2 . 08 0.16 ∗ −0 . 34 −0 . 00

CoVaR −0 . 03 −4 . 47 0.71 −1 . 55 1.45 

�CoVaR −0 . 62 −4 . 56 −0 . 05 −0 . 84 0.58 

MES −0 . 57 −4 . 17 −0 . 79 −1 . 61 −0 . 35

MES-BE −1 . 47 −0 . 50 −0 . 38 3.81 ∗∗ 0.17 

Book lvg. − −1 . 87 0.42 2.02 ∗∗ −1 . 84

CatFin 0.59 0.89 6.85 ∗∗∗ 2.55 ∗ 2.30 ∗

DCI −1 . 69 −0 . 80 −0 . 96 −1 . 05 0.67 

Def. spr. −0 . 62 3.23 ∗∗ 4.91 ∗∗∗ 0.66 −2 . 28

�Absorption −0 . 83 −0 . 62 −0 . 28 −0 . 08 −0 . 18

Intl. spillover − −1 . 39 −0 . 67 −2 . 15 −0 . 03

GZ − 0.51 7.59 ∗∗ 6.24 ∗∗ 2.44 

Size conc. −3 . 42 −1 . 05 −3 . 43 −1 . 45 −5 . 25

Mkt lvg. − −0 . 26 3.20 ∗ 1.52 ∗ −0 . 70

Volatility 0.73 −0 . 84 4.71 ∗ 3.61 ∗∗ 3.62 ∗∗

TED spr. − − 2.13 ∗∗ −2 . 47 −1 . 39

Term spr. −0 . 02 −0 . 58 −0 . 38 −0 . 38 −1 . 71

Turbulence 1.33 ∗∗ 2.69 ∗ 4.45 ∗ 0.33 −0 . 50

Panel B: Systemic risk indexes 

Multiple QR −32 . 21 −28 . 30 0.12 −25 . 08 −14 . 66

Mean 1.18 ∗∗ 3.23 ∗∗∗ 5.31 ∗∗∗ −1 . 93 −1 . 79

PCQR1 −1 . 35 −5 . 19 4.39 0.56 −0 . 42

PCQR2 0.43 −5 . 17 2.72 0.22 −0 . 58

PQR −3 . 11 −1 . 49 5.54 ∗∗ −2 . 30 −8 . 21

20 We assume a factor normalization such that f t is independent of g t . 

For simplicity, we treat f t as scalar, but this could be relaxed. 
empirically successful, demonstrating robust out-of-sample 

forecasting power for downside macroeconomic risk. 

4.1. A latent factor model for quantiles 

We assume that the τ th quantile of y t+1 , conditional on 

an information set I t , is a linear function of an unobserv- 

able univariate factor f t : 
19 

Q τ (y t+1 |I t ) = α f t . 

This formulation is identical to a standard quantile regres- 

sion specification, except that f t is latent. Realizations of 

y t+1 can be written as α f t + ηt+1 where ηt+1 is the quan- 

tile forecast error. The cross section of predictors (systemic 

risk measures) is defined as the vector x t , where 

x t = �F t + ε t ≡ φ f t + �g t + ε t . 

Idiosyncratic measurement errors are denoted by ε t . We 

follow Kelly and Pruitt (2013 ; 2015 ) and allow x t to depend 
19 We omit intercept terms to ease notation in the main text; our proofs 

and empirical implementations include them. 
on the vector g t , which is an additional factor that drives 

the risk measures but does not drive the conditional quan- 

tile of y t+1 . 
20 Thus, common variation among the elements 

of x t has a portion that depends on f t and is therefore rel- 

evant for forecasting the conditional distribution of y t+1 , 

as well as a forecast-irrelevant portion driven by g t . For 

example, g t may include stress in financial markets that 

never metastasizes to the real economy or that is systemi- 

cally remedied by government intervention. Not only does 

g t serve as a source of noise when forecasting y t+1 , but it 

is particularly troublesome because it is pervasive among 

predictors. 

4.2. Estimators 

We propose two dimension reduction approaches that 

consistently estimate the conditional quantiles of y t+1 as 

the numbers of predictors and time series length simulta- 

neously become large. We first prove each estimator’s con- 

sistency and then test their empirical performance. 

One can view our latent factor model as being explicit 

about the measurement error that contaminates each pre- 

dictor’s reading of f t . The econometrics literature has pro- 

posed instrumental variables solutions and bias corrections 

for the quantile regression errors-in-variables problem. 21 

We instead exploit the large N nature of the predictor set 

to deal with errors-in-variables. Dimension reduction tech- 

niques aggregate large numbers of individual predictors to 

isolate forecast-relevant information while averaging out 

measurement noise. 

We list requisite assumptions in the online appendix. 

They include restrictions on the degree of dependence be- 

tween factors, idiosyncrasies, and quantile forecast errors 

in the factor model just outlined. They also impose regu- 

larity conditions on the quantile forecast error density and 

the distribution of factor loadings. 

In addition to PCQR and PQR, we consider an index that 

equals the simple mean of the available systemic risk mea- 

sures each period. This will not be a consistent estimator 

of a latent factor in our model, but it is a straightforward, 

albeit ad hoc, benchmark for comparison. 

4.2.1. Principal components quantile regression (PCQR) 

The first estimator is principal component quantile re- 

gression (PCQR). In this method, we extract common fac- 

tors from x t via principal components and then use them 

in an otherwise standard quantile regression (the algo- 

rithm is summarized in Table 5 ). 

PCQR produces consistent quantile forecasts when both 

the time series dimension and the number of predictors 

become large, as long as we extract as many principal 

components (PCs) as there are elements of F t = ( f t , g t 
′ ) ′ . 

Theorem 1 (Consistency of PCQR). Under Assumptions 1–

3, the principal components quantile regression predictor of 
21 Examples of instrumental variables approaches include Abadie, An- 

grist, and Imbens (2002) , Chernozhukov and Hansen (2008) , and 

Schennach (2008) . Examples of bias correction methods include He and 

Liang (20 0 0) , Chesher (20 01) , and Wei and Carroll (20 09) . 
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Table 5 

Estimators. 

The predictors x t are each time-series standardized. All quantile regres- 

sions and orthogonal quantile regressions are run for quantile τ . 

Principal components quantile regression (PCQR) 

Factor stage: Estimate ˆ F t by ( �′ �) −1 �′ 
x t for � the K 

eigenvectors associated with the K largest 

eigenvalues of 
∑ T 

t=1 x t x 
′ 
t 

Predictor stage: Time series quantile regression of y t+1 on a 

constant and ˆ F t 

Partial Quantile Regression (PQR) 

Factor stage: 1. Time series quantile regression of y t+1 on a 

constant and x it to get slope estimate ˆ φi 

2. Cross-section covariance of x it and ˆ φi for 

each t to get factor estimate ˆ f t 
Predictor stage: Time series quantile regression of y t+1 on a 

constant and ˆ f t 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22 In a preliminary step all predictors are standardized to have equal 

variance, as is typically done in other dimension reduction techniques 

such as principal components regression and partial least squares. 
Q τ (y t+1 |I t ) = α′ F t = α f t is given by ˆ α′ ˆ F t , where ˆ F rep-

resents the first K principal components of X 

′ X /( TN ), K =
dim ( f t , g t ) , and ˆ α is the quantile regression coefficient on

those components. For each t, the PCQR quantile forecast sat-

isfies 

ˆ α
′ ˆ F t − α′ f t 

p −−−−→ 

N,T →∞ 

0 . 

The theorem states that PCQR builds consistent fore-

casts for the conditional quantile of y t+1 . All proofs are

in the online appendix. Theorem 1 is implied by Bai and

Ng’s (2008a) alternative arguments for extremum estima-

tors using PCs, or could be deduced from Ando and Tsay

(2011) . 

4.2.2. Partial quantile regression (PQR) 

For simplicity, our factor model assumes that a scalar

f t comprises all information relevant for the conditional

quantile of interest. But PCQR and Theorem 1 use the vec-

tor ˆ F t because PCQR is only consistent if the entire factor

space ( f t , g t 
′ ) is estimated. This is analogous to the distinc-

tion between principal components least squares regres-

sion and partial least squares. The former produces a con-

sistent forecast when the entire factor space is spanned,

whereas the latter is consistent as long as the subspace of

relevant factors is spanned (see Kelly and Pruitt, 2015 ). 

Our second estimator is called partial quantile regres-

sion (PQR) and extends the method of partial least squares

to the quantile regression setting. PQR condenses the cross

section of predictors according to their quantile covariation

with the forecast target, in contrast to PCQR which con-

denses the cross section according to covariance within the

predictors. By weighting predictors based on their predic-

tive strength, PQR chooses a linear combination that is a

consistent quantile forecast. 

PQR forecasts are constructed in three stages as follows

(the algorithm is summarized in Table 5 ). In the first pass

we calculate the quantile slope coefficient of y t+1 on each

individual predictor x ( i = 1 , ..., N) using univariate quan-
i 
tile regression (denote these estimates as ˆ γi ). 
22 The second

pass consists of T covariance estimates. In each period t ,

we calculate the cross-sectional covariance of x it with i ’s

first-stage slope estimate. This covariance estimate is de-

noted 

ˆ f t . These serve as estimates of the latent factor re-

alizations, f t , by forming a weighted average of individual

predictors with weights determined by first-stage slopes.

The third and final pass estimates a predictive quantile re-

gression of y t+1 on the time series of second-stage cross

section factor estimates. Denote this final stage quantile re-

gression coefficient as ˆ α. 

PQR uses quantile regression in the factor estimation

stage. Similar to Kelly and Pruitt ’s (2015) argument for par-

tial least squares, this is done to extract only the relevant

information f t from cross section x t , while omitting the

irrelevant factor g t . Factor latency produces an errors-in-

variables problem in the first-stage quantile regression, and

the resulting bias introduces an additional layer of com-

plexity in establishing PQR’s consistency. To overcome this,

we require the additional Assumption 4. This assumption

includes finiteness of higher moments for the factors and

measurement errors f t , g t , and ε it , and symmetric distribu-

tions for the target-irrelevant factor g t and its loadings, ψ i .

Importantly, we do not require additional assumptions on

the quantile forecast error, ηt+1 . 

Theorem 2 (Consistency of PQR). Under Assumptions 1–4,

the PQR predictor of Q τ (y t+1 |I t ) = α f t is given by ˆ α ˆ f t ,

where ˆ f t is the second-stage factor estimate and ˆ α is the

third-stage quantile regression coefficient. For each t, the PQR

quantile forecast satisfies 

ˆ α ˆ f t − α f t 
p −−−−→ 

N,T →∞ 

0 . 

Our proof build on arguments found in White (1994) ,

Bai (2003) , Engle and Manganelli (2004) , and Angrist,

Chernozhukov, and Fernandez-Val (2006) . Simulation evi-

dence in the online appendix demonstrates that our PCQR

and PQR consistency results are accurate approximations

of finite sample behavior. In the next section, we refer to

PCQR and PQR factor estimates as “systemic risk indexes”

and evaluate their forecast performance versus individual

systemic risk measures. 

4.3. Empirical evaluation of systemic risk indexes 

Table 2 shows that PQR provides positive out-of-sample

performance for the lower tail of future IP growth shocks

in every region and every sample split. The improvement

in R 2 over the historical quantile is 1–5% in the UK and

EU. In the US, the forecast improvement is 6–15%. 

Fig. 2 plots fitted quantiles for the sample beginning

in 1975. The thin dashed line is the in-sample historical

20th percentile. The actual shocks are plotted as black cir-

cles alongside their forecasted values based on informa-

tion three months earlier (i.e., the PQR data point plotted
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Fig. 2. IP growth shocks and predicted 20th percentiles. Fitted values for the 20th percentile of one-quarter-ahead shocks to IP growth. “Historical IS” (the 

thin dashed line) is the in-sample (1946–2011) 20th percentile of IP growth shocks that are shown as black circles. “PQR OOS” (the thick solid line) is the 

out-of-sample 20th percentile forecast based on PQR. Timing is aligned so that the one-quarter-ahead out-of-sample forecast is aligned with the realized 

quarterly shock. NBER recessions are shaded. 
for January 2008 is the forecast constructed using infor- 

mation known at the end of October 2007). NBER reces- 

sions are shown in the shaded regions. The PQR-predicted 

conditional quantile (the thick solid line) exhibits signifi- 

cant variation over the last four decades, but much more 

so prior to the 1990s. It is interesting to note that the 

PQR systemic risk index predicted a large downshift in the 

20th percentile of IP growth after the oil price shock of 

the 1970s and the recessions of the early 1980s. While the 

20 07–20 09 financial crisis led to a downward shift in the 

lower quantile of IP growth, this rise in downside risk is 

not without historical precedent. 

Table 3 Panel B shows that the PQR index also extracts 

positive forecasting power for the CFNAI and each subcom- 

ponent. For two of the series this forecast improvement is 

significant. 23 

Finally, we evaluate the ability of systemic risk indexes 

to forecast the central tendency of macro shocks. Table 4 

Panel B shows that either PCQR or PQR rarely provide sig- 

nificant out-of-sample information for the median of fu- 

ture IP shocks. 24 

In summary, the compendium of systemic risk mea- 

sures when taken together, especially in the PQR algo- 

rithm, demonstrates robust predictive power for the lower 

tail of macroeconomic shocks. This relation is significant 

when evaluated over the entire postwar period in the US, 
23 The online appendix shows that the PQR index successfully forecasts 

the 10 th percentile IP growth shocks out-of-sample—the R 2 starting in 

1976 is 16.5%. For the 10th percentile of CFNAI shocks, the PQR index 

demonstrates predictability that is statistically significant in four out of 

five series. The PQR forecast of the total CFNAI index achieves an R 2 of 

7%. 
24 The median shock is reasonably well forecasted by the historical sam- 

ple mean. 
as well as in more recent sample periods in the US, UK, 

and EU. And while systemic risk is strongly related to 

lower tail risk, it appears to have little effect on the center 

of the distribution. This fact highlights the value of quan- 

tile regression methods, which freely allow for an asym- 

metric impact of systemic risk on the distribution of future 

macroeconomic shocks. 25 

5. Stylized facts 

Our main question in this paper is whether systemic 

risk measures are informative about the future distribution 

of macroeconomic shocks. Three central facts emerge from 

our analysis. 

5.1. Systemic risk and downside macroeconomic risk 

First, systemic risk indexes are significantly related to 

macroeconomic lower tail risk, but not to the central ten- 

dency of macroeconomic variables. The preceding tables 

report significant predictability for the 20th percentile, but 

find little evidence of predictability for the median. 

In Table 6 we formally test the hypothesis that the 20 th 

percentile and median regression coefficients are equal. 26 

If the difference in coefficients (20th percentile minus 

median) is negative, then the variable predicts a down- 
ward shift in lower tail relative to the median. Of the 22 

25 We also analyze the upper tail (80th percentile forecasts) of macroe- 

conomic shocks in the online appendix and find less out-of-sample fore- 

casting power than for the lower tail. 
26 The t -statistics for differences in coefficients are calculated with a 

residual block bootstrap using block lengths of six months and 1,0 0 0 

replications. 
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Table 6 

Difference in coefficients, median versus 20th percentile. 

In the first two columns, the table reports quarterly quantile regression 

coefficients for IP growth shocks at the 50th and 20th percentiles. We 

sign each predictor so that it is increasing in systemic risk and normalize 

it to have unit variance. The third column is the difference between the 

20th and 50th percentile coefficients. The last column reports t -statistics 

for the difference in coefficients. Sample is the longest span for which the 

predictor is available. 

Median 20th pctl. Difference t 

Absorption −0 . 1936 −0 . 4686 −0 . 2750 −3 . 54 

AIM −0 . 0711 −0 . 0090 0.0622 0.75 

CoVaR −0 . 2076 −0 . 6946 −0 . 4870 −6 . 07 

�CoVaR −0 . 1509 −0 . 4963 −0 . 3454 −4 . 17 

MES −0 . 0980 −0 . 6326 −0 . 5346 −6 . 63 

MES-BE −0 . 0735 −0 . 3487 −0 . 2752 −3 . 37 

Book lvg. −0 . 0628 −0 . 1596 −0 . 0968 −1 . 20 

CatFin −0 . 5114 −0 . 7190 −0 . 2075 −2 . 65 

DCI −0 . 1775 −0 . 6132 −0 . 4357 −5 . 47 

Def. spr. −0 . 4237 −0 . 6438 −0 . 2202 −2 . 79 

�Absorption 0.0721 0.1110 0.0389 0.47 

Intl. spillover 0.0455 −0 . 3459 −0 . 3914 −4 . 81 

GZ −0 . 5586 −0 . 6910 −0 . 1325 −1 . 72 

Size conc. −0 . 1515 −0 . 3256 −0 . 1741 −2 . 13 

Mkt lvg. −0 . 4958 −0 . 6243 −0 . 1285 −1 . 75 

Volatility −0 . 3798 −0 . 6675 −0 . 2877 −3 . 54 

TED spr. −0 . 2139 −0 . 5470 −0 . 3332 −4 . 14 

Term spr. 0.1348 0.1372 0.0024 0.03 

Turbulence −0 . 5331 −0 . 9204 −0 . 3873 −4 . 96 

Mean −0 . 4119 −0 . 8830 −0 . 4710 −6 . 01 

PCQR1 −0 . 4721 −0 . 6533 −0 . 1812 −2 . 40 

PQR −0 . 3086 −0 . 6188 −0 . 3102 −3 . 87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

IP shock quantile forecasts: financial versus nonfinancial volatility. 

The table reports out-of-sample quantile forecast R 2 (in percentage) rela- 

tive to the historical quantile model. Statistical significance at the 10%, 5%, 

and 1% levels are denoted by ∗ , ∗∗ , and ∗∗∗ , respectively. Sample is 1946–

2011 and out-of-sample period begins in 1950. Rows use either financial 

or nonfinancial volatility (calculated as the average individual equity re- 

turn volatility for stocks in each sector) in a quantile forecasting regres- 

sion for IP growth shocks. 

80th percentile Median 20th percentile 

Financial volatility −1 . 58 2.86 ∗∗∗ 5.21 ∗∗∗

Nonfinancial volatility −1 . 61 0.95 −0 . 72

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28 The volatility variable studied in preceding quantile regressions is the 

average equity volatility across financial firms, an aggregation approach 

that is consistent with our aggregation of other firm-level measures of 

systemic risk. The variable described here is volatility of returns on a 

portfolio of stocks, which is directly comparable to the market volatility 

variable studied in Bloom (2009) . 
29 Schwert (2011) studies the association between stock volatility and 

unemployment in the recent crisis and notes that the extent of comove- 

ment between these two variables was weaker during the recent crisis 

than during the Great Depression. 
systemic risk measures and indexes in the table, 19 are

stronger predictors of downside risk than central tendency.

Of these, 16 are statistically significant at the 5% level.

These results support macroeconomic models of systemic

risk that feature an especially strong link between finan-

cial sector stress and the probability of a large negative

shock to the real economy, as opposed to a simple down-

ward shift in the distribution. 

5.2. Financial volatility measures and economic downturns 

The second stylized fact is that financial sector equity

return volatility variables are the most informative individ-

ual predictors of downside macroeconomic risk. 

The macroeconomic literature on uncertainty shocks,

most notably Bloom (2009) , argues that macroeconomic

“uncertainty” (often measured by aggregate equity mar-

ket volatility) is an important driver of the business cy-

cle. Bloom shows that rises in aggregate volatility predict

economic downturns. 27 Is our finding that financial sector

volatility predicts downside macroeconomic risks merely

picking up the macroeconomic uncertainty effects shown

in Bloom’s analysis of aggregate volatility? Or, instead, is

the volatility of the financial sector special for understand-

ing future macroeconomic conditions? 

To explore this question, we construct two volatility

variables. These are the standard deviation of daily value-

weighted equity portfolio returns within each month for
27 Recent papers such as Baker, Bloom, and Davis (2012) and Orlik and 

Veldkamp (2013) expand this line of research in a variety of dimensions. 
the set of either all financial institution stocks or all nonfi-

nancial stocks. 28 We then compare quantile forecasts of IP

growth shocks based on each volatility variable. 

Table 7 shows that nonfinancial volatility possesses no

significant out-of-sample predictive power for the tails or

median of future macroeconomic shocks. Financial volatil-

ity is a significant predictor of both central tendency and

lower tail risk, but is relatively more informative about the

lower tail. 

These findings are consistent with the view of Schwert

(1989) , who uses a present value model to argue

that the “rational expectations/efficient markets approach

implies that time-varying stock volatility (conditional

heteroskedasticity) provides important information about

future macroeconomic behavior.” His empirical analysis

highlights comovement among aggregate market volatility,

financial crises, and macroeconomic activity. Our empiri-

cal findings offer a refinement of these facts. First, they

indicate that volatility of the financial sector is especially

informative regarding macroeconomic outcomes compared

to volatility in nonfinancial sectors. Second, they suggest

that stock volatility has predictive power for macroeco-

nomic downside outcomes (recessions) in addition to cen-

tral tendency. 29 

Motivated by the result that financial volatility, and not

nonfinancial volatility, provides information about the fu-

ture central tendency of IP shocks, we consider an exten-

sion of Bloom ’s (2009) vector autoregression (VAR) anal-

ysis. We include financial volatility as an additional VAR

element and study the dynamic response of IP growth. 

We closely follow Bloom ’s (2009) original work, to

make sure that any difference in results is due entirely

to decomposing uncertainty into financial and nonfinan-

cial components. 30 In particular, we estimate a nine-
30 We follow the VAR specification shown in Bloom ’s (2009) Figure A1, 

where aggregate volatility is included in the VAR directly. IP and volatil- 

ity are Hodrick-Prescott (HP) detrended using a smoothing parameter of 

129,600. 
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Fig. 3. Impulse response function of IP: financial volatility before aggregate volatility. Impulse response functions from Bloom ’s (2009) VAR, with finan- 

cial volatility ordered before aggregate volatility. Orthogonal shocks identified by a Cholesky decomposition. Gray area is one-standard-error band from 

bootstrapping with 1,0 0 0 simulations. We use log IP, aggregate volatility, and financial volatility that have been Hodrick-Prescott (HP) detrended using 

smoothing parameter 129,600. Vertical axis is in log percent deviations from trend. 
variable VAR, adding financial volatility to Bloom’s orig- 

inal eight-variable specification (using exactly the same 

data for those eight variables, available from his website). 

Bloom uses a Cholesk y decomposition to identify structural 

shocks and their effects on IP log deviations from trend. 

We place financial volatility either immediately before or 

immediately after aggregate stock market volatility, and re- 

port results in both cases. 

In Fig. 3 , financial volatility is ordered ahead of aggre- 

gate volatility. We plot the impulse response of IP to a fi- 

nancial volatility shock and to the orthogonalized aggre- 
gate volatility shock. The latter is essentially a shock to 

nonfinancial volatility that moves aggregate volatility but 

keeps financial volatility constant. As seen in the figure, we 

find that the financial volatility shock drives out any signif- 

icant negative effect of the aggregate volatility shock. 

In Fig. 4 , we instead order aggregate volatility first. 

Here, we find that financial volatility still has a signif- 

icantly negative effect on IP, even after first controlling 

for shocks to aggregate volatility. Note that in this version 

we are effectively studying a shock to the composition of 

volatility: The total level of volatility is held constant, but 
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Fig. 4. Impulse response function of IP: aggregate volatility before financial volatility. Impulse response functions from Bloom ’s (2009) VAR, with aggre- 

gate volatility ordered before financial volatility. Orthogonal shocks identified by a Cholesky decomposition. Gray area is a one-standard-error band from 

bootstrapping with 1,0 0 0 simulations. We use log IP, aggregate volatility, and financial volatility that have been Hodrick-Prescott (HP) detrended using 

smoothing parameter 129,600. Vertical axis is in log percent deviations from trend. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the composition is shifted from nonfinancial firms toward

financial firms. 

In both cases, we find that the response of IP to a finan-

cial volatility shock remains negative for years afterwards.

This contrasts with the shock to aggregate volatility that

leads to a “volatility overshoot” where IP is above trend

for 1.5–3 years after the shock. 

The take-away from our predictive quantile and VAR

evidence is that financial volatility plays a special role

in predicting future macroeconomic activity. There are

many possible explanations for why this is the case. One
possibility, suggested in part by the VAR analysis, is that

nonfinancial volatility can reflect good news about the fu-

ture macroeconomy (as during the tech boom of the late

1990s), whereas financial volatility is predominantly bad

news and reflects a weakening in the financial system’s

ability to efficiently match capital with projects. 

5.3. Federal funds policy and systemic risk 

The third stylized fact we identify is that systemic risk

indicators predict an increased probability of monetary
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Table 8 

Federal funds rate shock forecasts. 

The table reports out-of-sample quantile forecast R 2 (in percentage) rela- 

tive to the historical quantile model. 

Statistical significance at the 10%, 5%, and 1% levels are denoted by ∗ , 
∗∗ , and ∗∗∗ , respectively. Sample is 1960–2011. Out-of-sample begins 1965. 

Rows “Volatility” and “Turbulence” report univariate quantile forecast re- 

gressions on quarterly shocks to the Federal Funds rate. Row “PQR” uses 

a single factor estimated from all systemic risk measures. Row “Bond fac- 

tors” uses three factors extracted from Fama-Bliss bond series. 

Median 20th pctl. 

Volatility 1.00 3.98 ∗

Turbulence 1.34 ∗∗ 3.06 ∗

PQR 0.15 8.86 ∗∗∗

Bond factors −1 . 12 −4 . 01
policy easing. To show this, we examine how the Federal 

Reserve responds to fluctuations in various systemic risk 

measures. Historically, monetary policy was the primary 

tool at the disposal of policy-makers for regulating finan- 

cial sector stress. To explore whether policy responds to 

systemic risk indicators, we therefore test whether the in- 

dicators predict changes in the Federal Funds rate. As in 

our earlier analysis, we use quantile regression to fore- 

cast the median and 20th percentile of rate changes. For 

brevity, we restrict our analysis to three predictor vari- 

ables: financial sector volatility, turbulence, and the PQR 

index of all systemic risk measures. 

Results reported in Table 8 show that all three mea- 

sures have significant out-of-sample predictive power for 

the 20th percentile of rate changes. Furthermore, the out- 

of-sample 20th percentile predictive coefficient is signifi- 

cantly larger than the median coefficient, indicating that 

these predictors are especially powerful for forecasting 

large policy moves. 

Is there any information in asset prices themselves that 

could predict these sharp movements in the Federal Funds 

rate? To explore this question, we test if the Treasury yield 

curve possesses predictive power for the quantiles of the 

federal funds rate. The term structure contains forward- 

looking information about the future path of interest rates. 

Thus, level, slope, and curvature of the yield curve might 

reflect investor beliefs regarding policy responses to the 

current level of systemic risk. 

The last row of Table 8 reports that the yield curve 

does not contain predictive information about the condi- 

tional distribution of shocks to the Fed Funds rate. A po- 

tential explanation for this finding is that crises develop 

more rapidly than non-crisis recessions, and policy-makers 

scramble to respond quickly, making it difficult for in- 

vestors’ crisis policy expectations to show up in the stan- 

dard (slow-moving) term structure factors. 31 While this 

test is obviously not conclusive, it highlights the usefulness 

of “tail risk” measures, as opposed to standard economic 
31 Because of this, it would be particularly interesting to study the 

prices of short maturity interest rate derivatives, such as swaptions, which 

would allow researchers to hone in on short-term policy expectations im- 

mediately after crisis fears begin to surface. Unfortunately, these data are 

traded over-the-counter, thus limited information is available, but it re- 

mains a valuable question for future research. 
indicators like interest rates, for understanding the distri- 

bution of future macroeconomic shocks. 

If Federal Funds rate reductions are effective in diffus- 

ing systemically risky conditions before they affect the real 

economy, then we would fail to detect a relation between 

systemic risk measures and downside macroeconomic risk. 

But our earlier analysis shows that the lower tail of fu- 

ture macroeconomic shocks shifts downward amid high 

systemic risk. This implies that monetary policy response 

is insufficient to stave off adverse macroeconomic conse- 

quences, at least in the most severe episodes. 

6. Conclusion 

In this paper we quantitatively examine a large collec- 

tion of systemic risk measures proposed in the literature. 

We argue that systemic risk measures should be demon- 

strably associated with real macroeconomic outcomes if 

they are to be relied upon for regulation and policy deci- 

sions. We evaluate the importance of each candidate mea- 

sure by testing its ability to predict quantiles of future 

macroeconomic shocks. This approach is motivated by a 

desire to flexibly model the way distributions of economic 

outcomes respond to shifts in systemic risk. We find that 

only a few individual measures capture shifts in macroe- 

conomic downside risk, but none of them do so robustly 

across specifications. 

We then propose two procedures for aggregating infor- 

mation in the cross section of systemic risk measures. We 

motivate this approach with a factor model for the condi- 

tional quantiles of macroeconomic activity. We prove that 

PCQR and PQR produce consistent forecasts for the true 

conditional quantiles of a macroeconomic target variable. 

Our results lead to a positive conclusion regarding the em- 

pirical systemic risk literature. When appropriately aggre- 

gated, these measures contain robust predictive power for 

the distribution of macroeconomic shocks. 

We present three new stylized facts. First, systemic risk 

measures have an especially strong association with the 

downside risk, as opposed to central tendency, of future 

macroeconomic shocks. The second is that financial sec- 

tor equity volatility is particularly informative about future 

real activity, much more so than nonfinancial volatility. The 

third is that financial market distress tends to precede a 

strong monetary policy response, though this response is 

insufficient to fully dispel increased downside macroeco- 

nomic risk. These empirical findings can potentially serve 

as guideposts for macroeconomic models of systemic risk 

going forward. 

Supplementary material 

Supplementary material associated with this article can 

be found, in the online version, at 10.1016/j.jfineco.2016.01. 

010 . 
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