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A. Affine Representation of Structural Models

The affine-Q representation is typically associated with reduced-form models, as in Duffie, Pan and
Singleton (2000). However, many workhorse structural asset pricing models also feature affine Q
dynamics. In this section we briefly review the Q-dynamics of prevalent consumption-based models.

We begin with the long run risks models of Bansal and Yaron (2004), in which log consump-
tion growth and its volatility follow linear dynamics. The log pricing kernel is approximately linear
(the linearity is exact with unit EIS, and the linear approximation is extremely accurate, as shown
in Dew-Becker and Giglio (2013)). In this model the log price and the log price-dividend ratio of
all consumption or dividend strips are linear functions of the model’s state variables (the persistent
component of consumption growth xt and the conditional variance of consumption growth σ2t ). Prices
of consumption and dividend strips therefore follow an exponentially affine specification (with het-
eroskedasticity).

A related paper, Drechsler and Yaron (2011), extends the model to match the variance risk pre-
mium. Dew-Becker et al. (2015) solve for the term structure of variance swaps in that model. In that
model the Q−dynamics of variance are linear, and the log pricing kernel is linear (under the standard
approximation), and thus variance swaps also follow an affine structure. Note that in this paper the
distribution of the shocks is not normal under Q (due to the presence of jumps), but this is irrelevant
for the term structure of variance swaps because these are linear (not exponential) claims to future
variance.

Next, we consider two time-varying rare disaster models, Gabaix (2012) and Wachter (2013). In
Gabaix’s model, the use of linearity-generating processes (LGP) implies that the (level) price-dividend
ratio is linear for all dividend strips. While the LGP assumption buys tractability in modeling price-
dividend ratios, the term structure of claims does not follow linear dynamics; the model therefore is
not nested in the affine-Q class. In Wachter (2013), on the other hand, the prices and price-dividend
ratios for consumption and dividend strips are loglinear in the disaster probability λt, which itself
follows a (linear) square-root process. The model therefore follows in the category of exponential
affine-Q models with heteroskedasticity, like long run risks.

Finally, the habit formation model of Campbell and Cochrane (1999) does not map directly into
the affine specification, as discussed in Wachter (2005).

A number of papers have explored the relationship between learning and excess volatility, such
as Timmermann (1993); Barsky and De Long (1993); Veronesi (1999); Pástor and Veronesi (2003,
2009b,a). In some (but not all) cases, such as in Barsky and De Long (1993), adding learning to
the model preserves the affine-Q structure. In other cases, learning about model parameters induces
non-linearities, with which we deal directly in Section IV.C..

B. Exponential-affine Models

The linear claim structure of Equation (4) is well suited for modeling variance swaps, inflation swaps,
and related assets. It is less well suited to claims in other asset classes such as interest rates or credit
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default swaps, which are more naturally modeled as exponential-affine claims. In that case, prices are
exponential rather than linear functions of xt (itself linear in factors Ht as described by equation (5)):

The model restrictions and testing procedures we derived above also apply in the exponential-
affine setting under two additional assumptions regarding the Q distribution of factor innovations,
ΓεQt , in Equation (6). First, we require that εQt follows a Gaussian distribution. Second, ΓεQt must be
homoskedastic or, alternatively, it needs to be heteroskedastic but its conditional volatility needs to
be uncorrelated with the factors (as in unspanned volatility models).

In exponential-affine models, the price of a cumulative claim is:

pt,n = EQ
t [exp (xt+1 + ...+ xt+n)] .

Interest rate claims are the leading example in this class, where rt is the instantaneous interest rate
and xt = −rt. Prices are then related to factors according to43

(20) log pt,n = 1′
[
ρQ + (ρQ)2 + ...+ (ρQ)n

]
Ht + constant.

To see why, note that xt+1 + ...+ xt+n has a conditional normal distribution under Q, so that

log pt,n = logEQ
t [exp (xt+1 + ...+ xt+n)] = EQ

t [xt+1 + ...+ xt+n] +
1

2
V Q
t [xt+1 + ...+ xt+n]

Because of homoskedasticity, the variance term is constant, and therefore

log pt,n = EQ
t [xt+1 + ...+ xt+n] + constant

Other than a difference in the constant (which is irrelevant for variance tests), this is the same setup
as in the linear case once prices are transformed from levels into logs.44 We can therefore apply the
same estimation and testing methodology in the exponential-affine case that we described for the
benchmark affine case of the main text.

Throughout the paper we focus on the homoskedastic case for the following reasons. First, many
of the asset classes we analyze (such as variance and inflation swaps) are typically modeled as claims
to the level of xt, in which case heteroskedasticity does not affect pricing. Conditional variance enters
only in exponential models through the Jensen inequality term.

Second, conditional heteroskedasticity affects the loadings on the factors in exponential-affine mod-
els only to the extent that the factors themselves span the volatility of the errors. The term structure
literature finds evidence of a large unspanned volatility component in interest rates (see, for example,
Collin-Dufresne and Goldstein, 2002). So-called unspanned volatility models fix the loadings of bond
prices on volatility factors to be zero. In this case, the factor loadings for log prices follow the same
recursion as in standard homoskedastic models. For further discussion of the unspanned volatility
case, see Collin-Dufresne and Goldstein (2002), Dai and Singleton (2003), Joslin (2006), Bikbov and
Chernov (2009), and Creal and Wu (2015).

In the bond pricing literature, when the volatility of factor shocks is in fact spanned by prices,
the magnitude of the effect on factor loadings is shown to be small. Nonetheless, spanned volatility
models can potentially affect our variance ratio test and Appendix B.i. performs robustness tests that
directly account for heteroskedasticity. Our main conclusion from this check is that heteroskedasticity

43A minor adaptation for the case of bonds is that powers of ρQ range from 0 to n− 1 rather than from 1 to
n, though this is inconsequential for our variance ratio test.

44For some claims it is preferable to model individual forwards with an affine-exponential form, which results
in a similar relation under homoskedasticity and gaussianity: log ft,n = logEQ

t [exp (xt+n)] = 1′(ρQ)nHt +
constant..
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of factor innovations is not a central driver of our results.

B.i. Heteroskedasticity Adjustment in Exponential-affine Models

The exponential-affine model described in the previous section can be used to understand the effects of
stochastic volatility on the model-predicted factor loadings. Below we analyze a detailed exponential-
affine example applied to the variance swap market to demonstrate the robustness of our results to
accounting for heteroskedastic factors. For some parameter configurations, heteroskedasticity artifi-
cially slows down the decay of factor loadings as maturity increases. Correcting for this effect can
potentially reduce long maturity variance ratios. It is therefore important to quantify the magnitude
of this adjustment. We turn to this estimation problem now.

Heteroskedastic Model. We consider a heteroskedastic affine term structure model to price forward
claims on a cash flow exp{xt}, where xt is linear in some latent factors: xt = δ0 + 1′Ht. Assume that
P dynamics of factors follow:

Ht+1 = c+ ρPHt + Γtεt+1

Γt captures stochastic conditional volatility of the factors. Next, rather than directly assume Q
distributions, we derive prices through a one-period stochastic discount factor of the form:

Mt,t+1 = exp(−rt −
1

2
λ′tλt − λ′tεt+1)

where the vector λt captures time-varying prices of risk of the different shocks.
For any forward asset on a cash flow xt, with maturity n+ 1, we have the recursive equation:

ft,n+1 = Et[exp{−rt −
1

2
λ′tλt − λ′tεt+1}ft+1,n]

where the expectation Et is taken under the physical measure. Next, conjecture that the forward price
is an exponentially-affine function of the factors:

ft,n+1 = exp{an+1 + bn+1Ht}

Taking logs:

an+1 + bn+1Ht = logEt[exp{−rt −
1

2
λ′tλt − λ′tεt+1 + an + bnHt+1}]

= −rt −
1

2
λ′tλt + an + bn(c+ ρPHt) +

1

2
Vt((−λ′t + bnΓt)εt+1)

= −rt + an + bnc+ bnρ
PHt +

1

2
bnΓtΓtb

′
n − b′nΓtλt.

For the very first maturity forward price, ft,1, we have:

a1 + b1Ht = logEt exp{−rt −
1

2
λ′tλt − λ′tεt+1 + xt+1}}

= −rt + δ0 + 1′c+ 1′ρPHt +
1

2
1′ΓtΓ

′
t1− 1′Γtλt.

In expressions for both n = 1 and for n > 1, we have the terms ΓtΓ
′
t and Γλt that are functions

of time-t information. To find an exponentially-affine solution, these terms need to be linear in the
factors. Following the term structure literature, we assume that ΓtΓ

′
t is linear in Ht (which makes the
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term bnΓtΓtb
′
n also linear in Ht). In particular, we assume that:

Vt(Ht+1) = ΓtΓ
′
t = ΓΓ′σ2t and σ2t = a · f1,t

for some a > 0. This specification is easy to interpret in the empirical robustness test for the variance
swap market that we perform below. The conditional variance of the variance swap factors is assumed
to be proportional to the one-period swap price (essentially the VIX), capturing the intuition that as
VIX increases, fluctuations in future variance will be more pronounced.

In the discount factor, λt is assumed to follow λt = Γ−1t Γ(λ + ΛHt). This makes the term Σtλt
also linear in Ht. In addition, if the risk-free rate is rt = a0 + a1Ht, the term a1 would also enter
the recursion for bn. In what follows, we ignore risk-free rate variation as it plays a minor role in the
pricing of variance swaps.

We can rewrite the expressions under Q, using the same normalizations we have used in our main
analysis: ρQ ≡ ρP − ΓΛ (the VAR companion matrix under Q) is diagonal, and cQ ≡ c− λΓ = 0. We
can then rewrite earlier expressions as:

an+1 + bn+1Ht = an + bnρ
QHt +

1

2
bnΓΓb′nσ

2
t

a1 + b1Ht = δ0 + 1′ρQHt +
1

2
1′ΓΓ′1σ2t .

Because σ2t = a · f1,t = a1′ρQHt, these expressions then become:

an+1 + bn+1Ht = an + bnρ
QHt +

1

2
bnΓΓb′n(a1′ρQHt)

a1 + b1Ht = δ0 + 1′ρQHt +
1

2
1′ΓΓ′1(a1′ρQHt).

Finally, we can match coefficients on Ht, and obtain:

b1 = 1ρQ +
1

2
1′ΓΓ′1(a1′ρQ)

bn+1 = bnρ
Q +

1

2
b′nΓΓbn(a1′ρQ).

To learn about the magnitude of heteroskedasticity adjustments in the model coefficients, 1
21
′ΓΓ′1(a1′ρQ)

and 1
2b
′
nΓΓbn(a1′ρQ), we proceed as follows. First, note that the conditional variance of the log cash

flow in the model is (up to a constant):

Vt(xt+1) = 1′ΓΓ′1(a1′ρQHt) = 1′ΓΓ′1aft,1

Therefore, regressing Vt(xt+1) onto ft,1 would yield an estimate of the term 1′ΓΓ′1a. This would allow
us to estimate the heteroskedasticity adjustment for b1. Next, consider the conditional variance of the
first log price (from the left-hand side of the equations above):

Vt(ft+1,1) = b′1ΓtΓtb1 = b′1ΓΓb1aft,1

The regression coefficient of Vt(ft+1,1) onto ft,1 yields an estimate of b′1ΓΓb1a, which we can use to
adjust the coefficient b2 for the effects of conditional volatility. Continuing the recursion, this allows
us to compute the adjustment for all maturities.

Figure I reports the impact of heteroskedasticity adjustments on coefficient estimates in the vari-
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Figure I Variance Swap Loadings (Homoskedastic vs Heteroskedastic model)
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Note. The figure plots the loadings of prices of each maturity on the two factors (1-month and 2-month

price). Dashed lines indicate loadings in the unrestricted model, solid lines indicate loadings in the restricted

model. The thick line reports the coefficients under the homoskedasticity assumption, the thin line adjusts for

heteroskedasticity.

ance swap market when applying an exponential-affine model. The figure highlights a number of facts.
First, it looks very similar to Figure II, which is based on the affine model in levels, which demonstrates
a basic robustness of our results to level-affine versus exponential-affine specifications. Second, the
figure shows that adjusting for heteroskedasticity in the exponential-affine setting has a small effect
on loading estimates, indicating that heteroskedasticity is not capable of rationalizing a the variance
ratio of more than two at the 24-month maturity.

C. Risk-free Rate Variation

For many of the asset classes considered in this paper, time variation in the risk-free rate plays a
minor role in determining the volatility of prices along the term structure, and is typically ignored in
the literature (for example, Ait-Sahalia, Karaman and Mancini (2015) ignore risk-free rate variation
when pricing variance swaps).

For other asset classes, interest rate variation plays a more important role. Here we show that
in exponential-affine models where not only log cash flows xt but also short-term rates rt are linear
functions of the factors, our test is valid even in the presence of (unmodeled) stochastic interest rates.
Consider in particular a cumulative contract that pays all the cash flows at maturity, and has an
upfront payment of the price. Then, we can write the price as:

(21) pt,n = EQ
t

[
ext+1+...+xt+n

ert+...+rt+n−1

]
= EQ

t

[
eyt+1+...+yt+n

]
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where yt = xt − rt−1. If yt is a linear function of the factors (for example because xt and rt−1 are
driven by the same factors), we can simply see this price as a claim to risk-free-adjusted cash flows
yt. Finally, remember that none of our analysis requires us to actually observe the cash flow (in this
case yt): it is enough to know that the price is determined according to an exponential-affine model
in some cash flow yt.

The argument also holds when all payments are exchanged at maturity, since in that case

pt,n = EQ
t

[
EQ
t [ert+...+rt+n ]

ert+...+rt+n
ext+1+...+xt+n

]

which means that we can construct the price p̃t,n = pt,nδt,n, where δt,n is the price of a risk-free bond
with maturity n, and the adjusted price p̃t,n will have the same form as (21).

D. Example: Transformation of P Model to Q
Model

This appendix provides a brief affine example illustrating how the risk-neutral, or Q, measure repre-
sentation of a model accounts for factors that drive time variation in risk premia. First we analyze
a general two-factor affine specification. Then we specialize to the case where cash flows follow a
one-factor model under P, but due to time-varying risk premia, cash flows follow a two-factor model
under Q. For further details, we refer readers to Hamilton and Wu (2012).

Suppose that two factors given by vector Ht drive the physical dynamics of the economy (including
both cash flows and risk premia). Assume the P dynamics of the factors is

Ht+1 = c+ ρHt + Σut+1

where ut+1 is a two-dimensional vector of independent standard normals. The claim being priced
is an n-period pure discount asset that has cash flow at maturity of Xt+n (where Xt = exp(δ′Ht)).
Preferences are represented by the stochastic discount factor Mt+1, whose behavior depends on factor
shocks ut+1 and risk price λt = ΛHt according to

Mt+1 = exp

(
−1

2
λ
′
tλt − λ′tut+1

)
The claim price is a function of Ht and follows the price recursion

(22) Pt(Ht) = Et[Pt+1(Ht+1)Mt+1] =

ˆ
Pt+1(Ht+1)Mt+1φ(Ht+1;µt,ΣΣ′)dHt+1.

In this example, the physical measure (P) is described by the multivariate normal density function φ
having mean µt = EP

t [Ht+1] and covariance matrix ΣΣ′.
To derive the equivalent “risk-neutral” pricing measure (Q), we rewrite the price as

(23) Pt(Ht) = EQ
t [Pt+1(Ht+1)]

where Mt+1φ(Ht+1;µt,ΣΣ′) is a transformation of the original probability measure into the new mea-
sure Q. Like φ, Mt+1φ is a multivariate normal density. The mean of this density is µQt = µt − Σλt,
and its variance is the same as φ’s. Any claim whose price depends only on the factors Ht and can
be represented by equation (22), can equivalently be represented by equation (23) where there is no
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explicit SDF/risk premium adjustment but where the mean of the factors has been additively shifted
by an amount −Σλt.

Under the original measure P, the dynamics of Ht are linear, i.e.

µt = EtHt+1 = c+ ρHt.

Importantly, the dynamics of Ht under the new measure Q remain linear. Given the form assumed
for λt and the derived equation for µQt , we have

µQt = (c+ Σλ) + (ρ− ΣΛ)Ht.

Also note that the main persistence parameter relevant for term structure pricing is the Q-persistence,
which in this example is

(24) ρQ = ρ− ΣΛ.

D.i. Cash Flows with One Factor Under P, Two Factors Under Q
We now specialize from the preceding example to a case where cash flows follow a one-factor structure
under P, but a two-factor structure under Q. First, assume that the two factors evolve autonomously,
so that ρ is diagonal with elements ρ1 and ρ2, and also assume that the shocks to the two factors are
entirely uncorrelated, so that Σ12 = Σ21 = 0. Next, suppose that physical cash flows are driven only
by the first factor,

Xt = exp(H1,t)

while risk prices are driven only by the second factor,

λt = H2,t.

Now, the only role of H2,t is to describe time variation in the price of risk for the physical cash flow,
Xt—it does not affect Xt’s P-dynamics directly. To summarize,

δ =

[
1
0

]
, Λ =

[
0 1
0 0

]
, ρ =

[
ρ1 0
0 ρ2

]
, and Σ =

[
σ1 0
0 σ2

]
.

The dynamics of Ht under Q are immediate from (24), and the Q-persistence matrix is

ρQ =

[
ρ1 −σ1
0 ρ2

]
.

In other words, under P, cash flows are only driven by the first factor, and this evolves as an autonomous
AR(1) process. But, under Q, the evolution of the first factor is no longer autonomous (as seen from
ρQ) and instead follows a VAR(1). So cash flows are a one-factor model under P, but a two-factor
model under Q. The difference stems from the fact that the Q measure incorporates variation in risk
premia, which in this example is represented with an additional cash flow factor in the Q measure.
In our paper, we estimated the dynamics of the Q measure directly. In this way, the null models
throughout our analysis allow for any time variation in risk premia that is describable within the
affine framework.
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E. Model Testing

E.i. Bootstrap Inference for the Regression-based Test

We obtain bootstrap standard errors using the semiparametric bootstrap, and generate bootstrap
samples from a null model where the affine restrictions hold. That is, under the null the variance ratio
is one at all maturities.

Bootstrap standard errors are used to test the null hypothesis that the variance ratio at a given
maturity n > K is equal to one, or equivalently that the covariances of prices at maturity n > K are
consistent with the restricted (affine) model estimated from the vector of prices at maturities 1:K+ 1.

The bootstrap proceeds as follows. We first estimate the null (affine) model using the first K
maturities, i.e. we estimate the vector ρQ from the regression of pt,K+1 on Pt,1:K . We then generate
bootstrap samples from the affine model where ρQ determines the loadings of prices onto factors at all
maturities: this model by definition features a variance ratio of one at all maturities in population.
However, resampled measurement error is added to the prices in each bootstrap sample, so that in each
sample the variance ratio will not be exactly one. We count how often the variance ratios estimated in
each re-sample are as high as those we observe in the data. This provides a p-value for the one-sided
test of the affine null that the variance ratio is equal to one.

In particular, we construct our bootstrap estimator using the semiparametric bootstrap procedure
described in Davidson and MacKinnon (2004). First, we estimate the null model and construct fitted
prices under the null model for each time t and all maturities n, p̂t,n. By construction, if one were
to compute the variance ratio statistic using the panel of prices p̂t,n, one would find a variance ratio
of exactly one at all maturities. To account for estimation error, we construct the panel of errors for
each t and n, as:

ε̂t,n = pt,n − p̂t,n
Next, to account for the time-series correlation of the measurement errors ε̂t,n, we estimate an AR(1)
for the errors for each maturity:

ε̂t,n = γnε̂t−1,n + ût,n

Each bootstrap sample is then generated by jointly resampling the error innovations ût,n across
maturities (to take into account also the cross-sectional correlation of measurement errors). Denote
with tildes the quantities that are generated in each bootstrap sample; for example, the resampled
error innovations u are denoted ũt,n. Using the estimated persistence γ̂n for each maturity, together
with the resampled error innovations ũt,n, we generate a panel of resampled errors ε̃t,n, again jointly
across maturities. The panel of bootstrapped prices are then constructed as:

p̃t,n = p̂t,n + ε̃t,n

Using the resampled term structure of prices p̃t,n, we re-run our entire analysis in each bootstrap
sample. In particular, in each sample we run both restricted and unrestricted regressions, and obtain
a variance ratio statistic for that bootstrap sample. Importantly, we re-estimate the matrix ρQ in
the bootstrap sample (obtaining a different estimated matrix ρ̃Q in each bootstrap sample) to obtain
the variance ratio test statistic. Because we re-estimate ρQ in each bootstrap sample, our procedure
takes into account sampling uncertainty regarding the decay rate under Q. We conduct all bootstrap
inference using 1,000 bootstrap samples.

To sum up, the bootstrap samples add measurement error to a set of prices p̂t,n that always satisfies
the affine restrictions: in population, the variance ratio should be 1 at all maturities. The point of
the bootstrap is to understand how likely it is, if the true data were generated by an affine model,
we would observe variance ratios as high as we do in the data due only to the presence of estimation
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error in the regression coefficients of prices onto the short end prices Pt,1:K .
Note also that the semiparametric bootstrap does not need us to specify the P dynamics of the

short-term prices Pt,1:K , just those dynamics of the errors (which are assumed to follow an AR(1)
whose innovations are potentially cross-sectionally correlated).

We have also derived the analytical asymptotic distribution of the variance ratio statistic and com-
pared this with the finite sample bootstrap-based inference, and they behave similarly in moderately
sized samples. We find that bootstrap standard errors are more conservative in small samples and
thus base our main analysis on these. Details for the derivation of the asymptotic distribution and its
comparison with the bootstrap distribution are available upon request.

E.ii. Estimation and Inference for the Instrumented Regression-based Test

In this section we discuss estimation and testing for excess volatility using instrumental variables to
handle potential measurement error at maturities 1 to K. We work under assumptions 1-3, but we
replace Assumption 4REG with the following:
Assumption 4IV.

Prices obey:

(25) Pt,1:N = δ0[1 ... N ]′ + [IK βK+1 ... βN ]′Ht + νt

where Ht is a stationary process, and all variables satisfiy standard regularity conditions
for OLS and Wald test consistency. In addition, there exist a set of K instruments Zt for
which E[νt,j |Zt] = 0 for j = 1...K.

Under Assumption 4IV, the instruments Zt are exogenous to the short-maturity error νt, thus
we can recover the coefficients βK+1...βN using a standard IV regression. In particular, consider the
population IV estimator (ignoring constants for simplicity):

βj = E[ZtP
′
1:K,t]

−1E[Ztpj,t],

therefore

βj = E[ZtP
′
1:K,t]

−1E[Ztpj,t] = E[Zt(H
′
t + ν ′1:K,t)]

−1E[Zt(H
′
tβj + ν ′j,t)] = E[ZtH

′
t]
−1E[ZtH

′
t]βj = βj ,

which is the basis of the usual consistency argument for IV. That is, the IV regression consistently
estimates each βj . From here, our variance ratio test can be constructed in the same way as the OLS
regression-based test, and it is only a function of the βK+1, ..., βN estimates and the sample variances
of prices.

We construct bootstrap standard errors in the same way as the OLS-based regression test. In
particular, we estimate the model using the IV-based regression approach discussed above, obtaining
an estimate of ρQ. We then generate bootstrap samples from the affine model where ρQ determines
the loadings of prices onto factors at all maturities. As in the case of the OLS bootstrap, the short-end
prices stand in for factors, but now they are projected onto the instruments to remove measurement
error (corresponding to the first stage of the two-stage least square approach for IV). In this model,
therefore, the short-end factors are free of measurement error, and the variance ratio is one at all
maturities in population.

Like before, resampled measurement error is added to all prices in each bootstrap sample. Thus,
in each bootstrap data set the variance ratio differ from one due to sampling variation. We resampe
measurement error exactly as described for the OLS regression case. In each bootstrap sample, we
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Table I
Simulated Variance Ratio Tests Under Correct Specification

σ2
2/σ

2
1 = 0.25 σ2

2/σ
2
1 = 0.10 σ2

2/σ
2
1 = 0.05 σ2

2/σ
2
1 = 0.01

ρ2 5% 10% Std(V R)
BSE(V R) 5% 10% Std(V R)

BSE(V R) 5% 10% Std(V R)
BSE(V R) 5% 10% Std(V R)

BSE(V R)

0.9000 0.103 0.149 0.896 0.129 0.169 0.873 0.113 0.162 0.835 0.030 0.052 1.836
0.9500 0.043 0.097 0.876 0.078 0.123 0.871 0.094 0.130 0.862 0.136 0.167 0.786
0.9900 0.009 0.041 0.911 0.023 0.061 0.853 0.032 0.075 0.871 0.067 0.105 0.885
0.9990 0.019 0.037 1.182 0.024 0.054 1.052 0.033 0.069 0.951 0.071 0.116 0.942
0.9999 0.057 0.091 1.447 0.060 0.104 1.070 0.067 0.109 0.978 0.099 0.152 0.958

Note. Realized rejection rates across 5,000 simulations at 5% and 10% bootstrap critical values. Std(V R)
BSE(V R) is

the ratio of the standard deviation of 24-month variance ratio statistics to the median bootstrap standard error

across simulations.

perform our instrumented IV estimation and finally we count how often the bootstrap variance ratios
are as high as those we observe in the data. This delivers a p-value for the one-sided test of the affine
null that the variance ratio is equal to one.

E.iii. Finite Sample Simulations

Our approach to inference for variance ratios relies on factor persistences estimated from prices on the
short end of the term structure. A natural concern is that it may be hard to estimate the behavior
of a small but very persistent factor from the short end alone. In other words, even when the model
is correctly specified, one may be concerned that short end prices are not informative enough about
the Q-dynamics of low volatility/high persistence factors, and that this may lead to inappropriate
inference. In this appendix, we show that this is not the case. Short maturity prices are sufficiently
informative about low frequency Q-dynamics so that our variance ratio tests always retain correct size.
That is, when the null hypothesis is true, we reject the null approximately 5% of the time when we
use a 5% critical value, we reject the null approximately 10% of the time when we use a 10% critical
value, and so forth. In other words, our rejection of the affine model is not driven by our choice to
estimate model parameters using short end prices.

Our estimation and inference procedure is well behaved because our bootstrap distribution for
the variance ratio statistic takes into account sampling variation in the parameters estimated from
the short end. If there are some parameters that are hard to accurately estimate (for example, the
persistence parameter for a low variance factor), the variation in bootstrap samples fully accounts for
this.

To understand the performance of our inference approach we conduct simulations. We generate
term structures of prices with maturities up to 24 periods assuming a two-factor model. To keep the
setting simple, we assume that the P and Q measures are the same, thus risk premia are zero. The
first factor is the dominant factor and has variance σ21 = 1 and persistence ρ1 = 0.75. For the weaker
second factor, we consider a gradually decreasing range of variance (σ22/σ

2
1 → 0) and a gradually

increasing range of persistence (ρ2 → 1). We assume that measurement error is two percent of the
unconditional price volatility for maturities greater than two. Based on 1,000 periods of simulated
term structure prices, we estimate the model using the shortest maturities (1,2, and 3) and calculate
the variance ratio statistic, its standard error, and its p-value for the 24-month claim. We generate
5,000 such samples at each set of parameters, and report summary statistics across simulations. We
report the realized rejection rates based on 5% and 10% critical values of the test. We also report the
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ratio of the standard deviation of the variance ratio statistic to the median bootstrap standard error
across simulation; which should be near one if the test is behaving appropriately. Results are shown
in Table I.

Overall, finite sample inference behaves reasonably. The test seems to reject too infrequently, and
the realized standard deviation of the variance ratio statistic tends to be slightly smaller than the
asymptotic standard error. These facts indicate that the critical values that we use in our empirical
analysis are slightly conservative.

F. Data Details and Asset-specific Modeling

Considerations

In this section we show how each asset class considered maps into our linear or log-linear framework.

F.i. Variance Swaps and Related Variance Derivatives

As discussed in the text, the price of a variance swap follows:45

pt,n = EQ
t

 n∑
j=1

RVt+j


We then model RVt as a linear function of the factors, which immediately yields:

(26) pt,n = an + b′nHt

An attractive feature of the simple payoff structure of variance swaps is that dependence of prices
on factors, b′nHt, is robust to many modifications of the factor model. For example, because the swap
price is the expected value of the level of RVt, having both prices and payoffs linear in the factors no
longer requires Gaussianity. Any shock distribution with constant means implies the pricing structure
in (26).

One important consideration to keep in mind is that because variances are non-negative, a ho-
moskedastic linear Gaussian model is an imperfect description of RVt. Stochastic variance is a standard
feature in the bond and option pricing literatures, and a number of solutions exist that ensure positive
variances. The most common solution is to use a CIR volatility process. In these models, the model
innovations remain standard normal, but are multiplied by a volatility that scales with the factors
(and hence with the level of volatility). The modified model takes the general form46

Ht = ρHt−1 + Σt−1ut

where Σt−1 is a constant function of Ht−1. When the model is specified at a high enough frequency
(going to continuous time in the limit), and assuming appropriate Feller conditions for the model
parameters (see Dai and Singleton (2002)), the probability of variance going below zero tends to zero.

45We ignore risk-free rate variation, since its volatility and correlation with the variance swap payoff are small,
following Ait-Sahalia, Karaman and Mancini (2015), Egloff, Leippold and Wu (2010), Dew-Becker et al. (2015).

46For infinitesimal time intervals, the variance may be constructed to maintain strictly positive variance while
retaining the Gaussianity of factor innovations, ut. In discrete time, this heteroskedastic Gaussian process does
not perfectly rule out negative variances, but may be constructed to do so with probability arbitrarily close to
one.
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Figure II VIX term structure
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Note. See Figure I.

Note that this stochastic volatility case only affects the scale of the innovation ut. Therefore, the
expected level payoff in is unaffected, hence equation (26) is also unaffected. Different versions of
this model are applied by Ait-Sahalia, Karaman and Mancini (2015), Egloff, Leippold and Wu (2010),
Dew-Becker et al. (2015).

As discussed in the text, in some of our tests we take ATM implied variance as a proxy for the
risk-neutral expected variance. This is motivated by the theoretical result of Carr and Lee (2009) who
show that to a first-order approximation, ATM implied volatility corresponds to the price of a volatility
swap (a claim to realized volatility). Perhaps more importantly, our use of ATM is also motivated by
practical considerations. ATM volatility is more widely available, especially for long dated options,
because it only requires one ATM option price to construct. The synthetic variance swap price, VIX2,
can be calculated for all of our option term structures but is less stable than ATM implied volatility
due to its reliance on OTM option prices, of which fewer are available at long maturities.

Our analysis of the term structure of ATM implied variance uses the same model as for variance
swaps, but sets pt,n = IV n

t , where IV n
t is the n-maturity option-implied variance. To construct implied

variances at constant monthly maturities from observed options (whose maturities are fixed in calendar
time), we linearly interpolate the implied volatilities.

As a robustness check, we also construct the term structure of the VIX using option prices, following
the SVI fitting procedure described in Dew-Becker et al. (2015). Note that we need to both interpolate
and extrapolate the implied volatility curve (using the SVI model), and the relative scarcity of out-of-
the-money options at long maturities can result in noisy VIX estimates. Also, for some of our options
sample, there are not enough OTM options available to estimate the VIX at maturities above one
year. We report the results using sample dates where the entire term structure up to 18 months is
observed (for all contracts, we have between 1,000 and 2,000 days that can be used for estimation).
Figure II shows that the variance ratios for the term structure of the VIX behave very similarly to the
ones constructed for implied volatilities.

F.ii. Treasuries

Our development of the exponential-affine model for interest rates follows Hamilton and Wu (2012),
who study the class of Gaussian affine term structure models developed by Vasicek (1977), Duffie,
Kan et al. (1996), Dai and Singleton (2002), and Duffee (2002), and studied by many others.
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In the Gaussian affine term structure model, bonds are claims on short-term interest rates. One-
period log risk-free rate xt is a linear function of the factors with factor dynamics under the pricing
measure described by a VAR, just as in our main set-up. The price of a risk-free bond that pays $1
after n periods is

(27) Pt,n = EQ

exp

− n∑
j=1

xt+j

 .
We assume that factor shocks are homoskedastic, so that Σt = Σ, following Hamilton and Wu (2012),
which implies that the log bond price is

pt,n ≡ logPt,n = an + bnHt.

The factor loading depends only on the persistence of the factors:

(28) bn = 1′(I + ρQ + ...+ (ρQ)n−1).

The intercept is an inconsequential constant function of remaining model parameters, and drops out
from all variance calculations.

F.iii. Credit Default Swaps

To model CDS spreads, we apply the reduced-form modeling of Duffie and Singleton (1999), in which
the price of a defaultable bond is written in terms of a default intensity process λt and a process of
loss given default Lt. The precise relationship between the price of the bond at time t, Pt,n, and the
processes for λt and Lt does not directly map into our general framework of Section II..

However, Duffie and Singleton (1999) show that under the assumption of fractional recovery of
market value in case of default, the price of a defaultable zero-coupon bond can be written as:

Pt,n = EQ
t

[
exp(−

ˆ n

t
Rsds)

]
with

Rs = rs + λsLs

where λt is the default intensity and Lt the loss given default. The defaultable bond can be modeled
as a default-free bond with a default-adjusted interest rate. We assume that 1) rs and λsLs are linear
in the factors; 2) underlying factors are homoskedastic; and 3) coupons on the underlying defaultable
bonds are small enough (relative to the default-adjusted interest rate) so that the yield of an n-maturity
defaultable bond with coupon is close to an n-maturity zero-coupon defaultable bond. We can then
write:

pt,n = log(Pt,n) = −nynt = (anr + anλL) + (bnr + bnλL)Ht

while for the default-free bond with maturity n (with log yield ynF ) we have:

−nynF,t = anr + bnrHt.

To link the bond price to the observed CDS spread, we start from the approximate bond-CDS basis
relation, that states

Znt ' Y n
t − Y n

F,t
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i.e. the CDS spread Znt with maturity n is approximately equal to the yield of the bond Y n
t of that

maturity in excess of the corresponding risk-free rate Y n
F with the same maturity.

Given that both Y n
t and Y n

F,t are close to zero, we can write the yield spread to a first-order
approximation as:

Y n
t − Y n

F,t ' log(1 + Y n
t )− log(1 + Y n

F,t) = ynt − ynF,t
so that:

nZnt ' n(ynt − ynF,t) = −anλL − bnλLHt.

This representation allows us to focus on the cross-section of CDS spreads stripped of the risk-free
rate dynamics, which will highlight the factor structure in default risk.

F.iv. Inflation Swaps

Inflation swaps are claims to future inflation where the the buyer commits to pay a predetermined
amount (1 + pt,n)n− 1 and receives [I(t+n)/I(t)]− 1, where I(t) is the price level index. Risk-neutral
pricing implies:

(1 + pt,n)n − 1 = EQ
t

[
I(t+ n)

I(t)
− 1

]
.

Calling πt = ∆ log I(t), and moving to continuous time, we can write:

Pt,n = ept,nn = EQ
t

[
exp(

ˆ t+n

t
πsds)

]
.

Just as in the case of bonds, we will have that log cumulative prices n ·pt,n will be linear in the factors:

n · pt,n = an + bnHt.

F.v. Commodity Futures

Call Ft,n the price of a future with maturity n. As in Duffie (2010) and Casassus and Collin-Dufresne
(2005), if St is the value of the underlying at time t, we have:

Ft,n = EQt [St+n]

Now, if Xt = log(St), then we have:

Ft,n = EQt [exp{Xt+n}].

We can rewrite Xt as:

Xt+n = Xt +

n∑
s=1

xt+s

with xt = ∆Xt. We may model these growth rates as functions of latent factors, so that xt = δ′1Ht

and

Ft,n = EQt [exp{Xt +
n∑
s=1

xt+s}].

We can therefore rewrite:
Ft,n
St

= EQt [exp{
n∑
s=1

xt+s}]
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which has the standard exponential affine form. Note also that we can rewrite the expression for the
futures without reference to the underlying, rescaling each future by the price of the first-maturity
future:

Ft,1 = StE
Q
t [exp{xt+1}]

so that:
Ft,n
Ft,1

=
EQt [exp{

∑n
s=1 xt+s}]

EQt [exp{xt+1}]
' EQt [exp{

n∑
s=2

xt+s}]

This expression maps directly into our exponential-affine framework. Note finally that given the
futures have fixed calendar time expiration dates, we linearly interpolate log future prices to obtain
constant-maturity prices with monthly maturities.

F.vi. Quotes vs. Trades

In this paper we document excess volatility across a variety of asset classes, some of which are traded
over the counter (like variance swaps and CDS), and some on exchanges (like options). Since for some
of these markets we don’t observe transaction prices, but only quotes, one may be worried that the
excess volatility results may be driven by liquidity issues (stale prices, matrix prices, etc.) rather than
true fundamental excess volatility.

There are several reasons why we believe our results are not due to liquidity issues. First, for our
baseline term structure (variance swaps), the existing literature has already verified the accuracy of
the quotes in our dataset against trades obtained from the DTCC. In particular, Dew-Becker et al.
(2016) show that the median absolute pricing error is 1% of the transaction price. The variance swap
quotes are therefore extremely accurate.

Second, one of the reasons to include measurement error in modeling prices (see Section IV.D.)
is precisely to capture deviations from fundamentals due to liquidity (see Duffee, 2011). We allow
for measurement error to be correlated over time and across maturities, therefore capturing different
forms of liquidity effects on prices. In addition, we show that in several markets, measurement error
volatility as large as the bid-ask spread (and therefore directly motivated by liquidity concerns) cannot
explain the patterns of excess volatility we document.

Third, we have obtained transaction prices for 2013 from the DTCC. In addition to checking quotes
against these prices (as in Dew-Becker et al. 2016), we can use these transaction prices to perform
our variance ratio tests. Using transaction prices, we actually obtain a stronger variance ratio in the
variance swap market: 2.68 at the 24 month maturity (significant at the 1% level). We have also
performed a similar analysis using oil futures and options transaction prices from the CME, finding
a statistically significant variance ratio of 4.6 at the longest maturity (24 months), higher than the
value of 2.67 we found using quotes. Our transaction-based results therefore confirm our findings in
the variance swap and commodities futures markets.

G. Additional Empirical Results

In Table II we report regression-based variance ratio tests in which we add one extra factor to each
asset class and find broadly similar variance ratios to that in our baseline analysis. When adding extra
factors, panel R2s often reach above 99.9%. In order to add factors, we need to use more prices along
the term structure to estimate the model. In some cases, the “short end” of the curve becomes almost
the entire curve, as in the case of credit default swaps, and this reduces the tests power to detect
affine violations. That is, if there are genuine affine violations at intermediate and long maturities,
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and some of these are mistakenly included in the definition of the short end, the violations will not be
detected. We therefore expect the variance ratios to decline from adding factors. While we do see that
long maturity variance ratios decrease for several term structures, the vast majority of them remain
economically and statistically above one.

Table III describes summary statistics of estimated KF-MLE residuals from the alternative model
that does not impose affine pricing restrictions. The first two columns of the table report the estimated
parameters of the Σ matrix. The first parameter governs the ratio of residual standard deviation to
raw price standard deviation. The second parameter governs the cross-sectional correlation among
residuals. Columns 3 and 4 report the serial correlation of the measurement errors. For comparability
across asset classes with different maturity structures, we average serial correlations among the short
end of the curve (maturities 1 to K + 1) and the long end of the curve (maturities K + 2 and higher).
The last two columns report the model R2 at each maturity, again averaged between for the short end
and the long end of the curve.
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Table II
Variance Ratio Tests with additional factor

Baseline Extra factor
Asset K R2 K R2

Panel A: Equity Variance
6m 12m 24m 6m 12m 24m

Variance Swaps 2 99.7 1.00 1.22∗∗ 2.15∗∗ 3 99.94 1.00 1.21∗∗ 2.16∗∗

12m 18m 24m 12m 18m 24m
Apple IV 2 99.3 1.21∗∗ 1.56∗∗ 2.01∗∗ 3 99.88 1.00 1.05∗∗ 1.14∗∗

Citigroup IV 2 99.7 1.82∗∗ 3.17∗∗ 4.68∗∗ 3 99.93 1.00 1.01 0.99

STOXX 50 IV 2 99.4 1.22∗∗ 1.68∗∗ 2.27∗∗ 3 99.90 1.00 0.76 0.41
DAX IV 2 99.4 1.22∗∗ 1.68∗∗ 2.31∗∗ 3 99.75 1.00 1.11∗∗ 1.30∗∗

Panel B: Currency Variance
12m 18m 24m 12m 18m 24m

Euro IV 2 99.8 1.22∗∗ 1.65∗∗ 2.14∗∗ 3 99.93 1.00∗∗ 1.05∗∗ 1.11∗∗

Yen IV 2 98.5 1.67 2.85∗ 4.57∗ 3 99.39 1.00 3.34∗ 6.51∗

Panel C: Interest Rates
20y 25y 30y 20y 25y 30y

Treasuries 3 99.9 1.20∗∗ 1.39∗∗ 1.64∗∗ 4 99.98 1.15∗∗ 1.31∗∗ 1.52∗∗

Panel D: Inflation
20y 25y 30y 20y 25y 30y

US Infl. Swaps 4 99.4 3.37∗∗ 5.54∗∗ 7.47∗∗ 5 99.63 1.30 1.60 1.75
EU Infl. Swaps 4 99.1 1.74∗∗ 2.45∗∗ 2.89∗∗ 5 99.45 1.21∗∗ 1.58∗∗ 1.83∗∗

Panel E: Commodities
6m 12m 24m 6m 12m 24m

Crude Oil Fut. 2 99.6 1.01∗∗ 1.19∗∗ 1.63∗∗ 3 99.95 1.00 1.11∗∗ 1.43∗∗

Gold Fut. 2 99.5 1.04∗ 1.19∗∗ 1.53∗∗ 3 99.90 1.00 0.97 0.87

Panel F: Credit
5y 7y 10y 5y 7y 10y

Brazil CDS 2 99.8 1.19∗∗ 1.64∗∗ 3.08∗∗ 3 99.95 1.00 1.00 1.06
Russia CDS 2 99.8 1.14∗∗ 1.46∗∗ 2.18∗∗ 3 99.99 1.00 1.02 1.05

GE CDS 2 99.5 1.12∗∗ 1.13∗∗ 1.45∗∗ 3 99.69 1.00 0.90 1.02
BoA CDS 2 99.7 1.06∗∗ 1.14∗∗ 1.38∗∗ 3 99.94 1.00 0.98 1.02

Note. The table reports regression-based variance ratio tests using an additional factor. The left panel reports

the baseline results (as in table II), whereas the right panel adds one factor. Significance for the one-sided test

that the variance ratio is greater than 1 at the 1% level is denoted by ∗∗ and at the 5% levels by ∗. Monthly

maturities are denoted by “m” and annual maturities by “y.”
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Table III
Summary of Kalman Filter Residuals

Resid Vol./ Cross-sec Serial Correlation R2

Price Vol. Corr. Short End Long End Short End Long End
Variance Swaps 0.07 0.02 0.77 0.77 99.5 99.7
Apple IV 0.10 0.00 0.75 0.63 98.8 99.5
Citigroup IV 0.07 0.00 0.37 -0.07 99.7 99.7
STOXX 50 IV 0.09 0.00 0.73 0.55 99.1 99.7
DAX IV 0.10 0.00 0.65 0.37 99.2 99.4
Euro IV 0.05 0.00 0.37 0.27 99.8 99.9
Yen IV 0.15 0.16 0.62 0.30 98.3 98.0
Treasuries 0.04 0.20 0.93 0.68 99.8 99.9
US Infl. Swaps 0.10 0.31 0.43 0.53 99.3 98.4
EU Infl. Swaps 0.09 0.29 0.25 0.22 99.2 98.1
Crude Oil Fut. 0.07 0.00 0.78 0.93 99.6 99.5
Gold Fut. 0.08 0.00 0.85 0.91 99.3 99.5
Brazil CDS 0.08 0.05 0.87 0.76 99.6 99.6
Russia CDS 0.05 0.00 0.92 0.83 99.8 99.9
GE CDS 0.09 0.00 0.37 0.39 99.4 99.3
BoA CDS 0.07 0.00 0.76 0.74 99.7 99.7

Note. Summary statistics of KF-MLE residuals.
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Table IV
Simulations using KF-MLE measurement error

Data
Asset Actual data Affine + meas. err.

Panel A: Equity Variance
6m 12m 24m 6m 12m 24m

Variance Swaps 1.00 1.22∗∗ 2.15∗∗ 1.03 1.10∗∗ 1.18∗∗

12m 18m 24m 12m 18m 24m
Apple IV 1.21∗∗ 1.56∗∗ 2.01∗∗ 1.10∗∗ 1.19∗∗ 1.24∗∗

Citigroup IV 1.82∗∗ 3.17∗∗ 4.68∗∗ 1.00 0.99 0.99

STOXX 50 IV 1.22∗∗ 1.68∗∗ 2.27∗∗ 1.00 1.00 1.00
DAX IV 1.22∗∗ 1.68∗∗ 2.31∗∗ 1.00 1.00 1.00

Panel B: Currency Variance
12m 18m 24m 12m 18m 24m

Euro IV 1.22∗∗ 1.65∗∗ 2.14∗∗ 1.00 1.00 1.00
Yen IV 1.67 2.85∗ 4.57∗ 0.99 0.93 0.89

Panel C: Interest Rates
20y 25y 30y 20y 25y 30y

Treasuries 1.20∗∗ 1.39∗∗ 1.64∗∗ 0.20 0.07 0.02

Panel D: Inflation
20y 25y 30y 20y 25y 30y

US Infl. Swaps 3.37∗∗ 5.54∗∗ 7.47∗∗ 1.00 1.01 1.14∗∗

EU Infl. Swaps 1.74∗∗ 2.45∗∗ 2.89∗∗ 1.00 0.94 0.98

Panel E: Commodities
6m 12m 24m 6m 12m 24m

Crude Oil Fut. 1.01 1.19∗∗ 1.63∗∗ 1.00 1.00 1.00
Gold Fut. 1.04∗ 1.19∗∗ 1.53∗∗ 1.00 0.99 0.97

Panel F: Credit
5y 7y 10y 5y 7y 10y

Brazil CDS 1.19∗∗ 1.64∗∗ 3.08∗∗ 0.76 0.51 0.27
Russia CDS 1.14∗∗ 1.46∗∗ 2.18∗∗ 1.01 1.02 1.03

GE CDS 1.12∗∗ 1.13∗∗ 1.45∗∗ 0.99 0.97 0.93
BoA CDS 1.06∗∗ 1.14∗∗ 1.38∗∗ 1.01 0.99 0.98

Note. The left panel reports the results for our regression-based variance ratio tests estimated on the actual

data. The right panel reports the regression-based test estimated on simulated data. The simulated data is

obtained as the fitted data from the affine model estimated from the short end of the term structure (which

without measurement error would have variance ratio of 1 at all maturities), adding the measurement error

estimated using KF-MLE. The number of factors is the same in both panels and equal to the benchmark case.

Significance for the one-sided test that the variance ratio is greater than 1 at the 1% level is denoted by ∗∗ and

at the 5% levels by ∗. Monthly maturities are denoted by “m” and annual maturities by “y.”
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Table IV reports results from a counterfactual analysis in which hypothetical prices are generated
as follows. First, we estimate the Q dynamics from the short end of the curve exactly as in Section
IV.D., generating a term structure of prices that satisfies the affine restrictions at all maturities by con-
struction. Rather than adding simulated measurement error to the fitted prices, we add the estimated
measurement errors from the unrestricted KF-MLE estimation. Next, we re-estimate regression-based
variance ratios on the generated error-ridden prices. We find that estimated KF-MLE measurement
error is unlikely to produce variance ratios as high as those we observe in the actual data. For most
asset classes, variance ratios are just above or just below one. An interesting exception is the yield
curve, where the variance ratio approaches zero at the long end. This occurs because Q dynamics
estimated from the short end of the error-ridden hypothetical prices include an explosive root, hence
the long end of the curve appears insufficiently volatile relative to the restricted model estimate.

H. Additional Simulations of Non-affine Models

Figure III Multifractal Variance Model
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Note. Simulation of the multifractal volatility model as in Calvet and Fisher (2004), and variance ratio test

with 2 factors (left panel) or 3 factors (right panel). See also Figure I.

This appendix presents results obtained by applying our variance ratio tests to additional non-
affine term structures. Table V extends the analysis of non-linear logistic STAR model to allow for
heteroskedastic shocks. The specifications are identical to those in Table IV and the shocks share the
same unconditional shock variance. In Table V, however, the shocks follow a GARCH(1,1) process
with parameters of α = 0.05 and β = 0.90. The results and conclusions from Table IV are unaffected
by the presence of heteroskedasticity.47

Next, we analyze the behavior of the variance ratio test for models with more complicated Q-
dynamics. In particular, Table VI reports results for various processes that additively combine a
non-linear logistic STAR component (as in Section IV.C.) and an ARFIMA component (as in Section
IV.B.). Because these specifications involve richer driving processes that the individual STAR and
ARFIMA analyses in the main text, we allow the estimated affine model to have up to four factors.
Again, this extended analysis does not change our conclusions from the main text.

Finally, we simulate the multifractal model of Calvet and Fisher (2004) for variance, and study the
term structure of variance claims with up to 24 months maturity. We use the same parameterization
of the variance process as in Calvet and Fisher (2004). Figure III shows that a 2-factor affine model

47All simulations in this section are generated by setting P and Q distributions to be the equal.
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Table V
Non-linear Specification with Heteroskedasticity

ρ=0.01 ρ=0.10 ρ=0.25
γ K R2 V R12 V R24 R2 V R12 V R24 R2 V R12 V R24

0.1 1.0 100.0 1.00 1.00 100.0 1.00 1.00 100.0 1.00 1.00
0.1 2.0 100.0 1.00 1.00 100.0 1.00 1.00 100.0 1.00 1.00
0.1 3.0 100.0 1.00 1.00 100.0 1.00 1.00 100.0 1.00 1.00

0.5 1.0 99.0 1.10 1.21 99.8 1.03 1.04 100.0 1.00 1.00
0.5 2.0 100.0 0.97 0.94 100.0 1.00 1.00 100.0 1.00 1.00
0.5 3.0 100.0 0.99 0.99 100.0 1.01 1.01 100.0 1.00 1.00

1.0 1.0 99.8 1.02 1.05 99.7 1.05 1.07 99.9 1.00 1.00
1.0 2.0 100.0 1.00 1.01 100.0 0.99 0.98 100.0 1.00 1.00
1.0 3.0 100.0 0.99 0.98 100.0 0.99 0.99 100.0 1.00 1.00

5.0 1.0 99.9 1.01 1.01 99.9 1.01 1.02 100.0 1.00 1.00
5.0 2.0 100.0 1.00 1.00 100.0 0.99 0.98 100.0 1.00 1.00
5.0 3.0 100.0 0.99 0.97 100.0 0.99 0.98 100.0 1.00 1.00

Note. Variance ratios and R2 computed in simulations of a logistic STAR model with parameters γ and ρ.

Shocks are GARCH(1,1) with parameters α = 0.05 and β = 0.90, and with an unconditional standard deviation

of one. K is the number of factors used in the variance ratio test. V R12 is the variance ratio at 12 months

maturity, and V R24 is the test at 24 months.

generates a variance ratio of 1.7 at 24 months, and adding a third factor brings the variance ratio
down to 1.2.

I. Characterization of the Model Misspecification

In this section we propose a general characterization of the potential model misspecification. We start
by proposing a recursive representation of the affine model; we then use it to derive in a general way
the characteristics of the (non-affine) Q process that allow the model to perfectly fit the data.

I.i. A Convenient Recursive Representation

Under the assumptions of the affine model, it is easy to show that there exists a vector b such that:

(29) ft,K+1 = b′Ft,1:K .

where b = (b1, ..., bK)′ is the coefficient in a projection of ft,K+1 onto Ft,1:K . In this model, the
projection is exact so there is no residual. The vector b depends on the Q dynamics ρQ.

This equation only links maturities 1 through K + 1. We can derive a recursive relation that
links the entire price curve to the short end in a convenient way. In particular, any two blocks of K
consecutive forward prices with maturity shifted by one period (for example, Ft,1:K and Ft,2:K+1) are
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Table VI
Non-linear and Long Memory Mixture Models

AR(1)=0.25 AR(1)=0.50 AR(1)=0.75
d K R2 V R12 V R24 R2 V R12 V R24 R2 V R12 V R24

Panel A: Non-linear component ρ = 0.01, γ = 0.1
0.10 2 100.0 1.10 1.22 100.0 1.11 1.31 100.0 1.06 1.22
0.10 3 100.0 1.00 1.04 100.0 1.01 1.09 100.0 1.02 1.14
0.10 4 100.0 1.00 1.02 100.0 1.00 1.00 100.0 1.00 1.00

0.20 2 100.0 1.02 1.26 100.0 1.22 1.69 100.0 1.10 1.37
0.20 3 100.0 1.00 1.09 100.0 1.01 1.14 100.0 1.03 1.20
0.20 4 100.0 1.00 1.05 100.0 1.00 0.99 100.0 1.00 1.01

0.40 2 100.0 0.95 0.98 100.0 1.36 2.32 100.0 1.08 1.37
0.40 3 100.0 1.01 1.14 100.0 1.01 1.16 100.0 1.02 1.21
0.40 4 100.0 1.03 1.25 100.0 1.00 0.99 100.0 1.01 1.07

0.49 2 100.0 1.06 1.34 100.0 1.38 2.47 100.0 1.03 1.22
0.49 3 100.0 1.01 1.14 100.0 1.01 1.17 100.0 1.01 1.16
0.49 4 100.0 1.03 1.27 100.0 1.00 0.99 100.0 1.02 1.18

Panel B: Non-linear component ρ = 0.01, γ = 0.5
0.10 2 99.9 1.04 1.16 100.0 1.04 1.16 100.0 1.06 1.22
0.10 3 100.0 1.01 1.09 100.0 1.01 1.07 100.0 1.01 1.10
0.10 4 100.0 1.02 1.13 100.0 1.02 1.13 100.0 1.02 1.11

0.20 2 99.9 1.03 1.14 99.9 1.06 1.21 100.0 1.08 1.28
0.20 3 100.0 1.01 1.10 100.0 1.00 1.07 100.0 1.02 1.13
0.20 4 100.0 1.02 1.13 100.0 1.02 1.13 100.0 1.02 1.13

0.40 2 99.9 1.03 1.17 99.9 1.16 1.53 100.0 1.11 1.47
0.40 3 100.0 1.01 1.13 100.0 1.01 1.13 100.0 1.03 1.24
0.40 4 100.0 1.03 1.19 100.0 1.02 1.16 100.0 1.02 1.18

0.49 2 99.8 1.05 1.25 99.9 1.21 1.74 100.0 1.12 1.55
0.49 3 100.0 1.01 1.15 100.0 1.02 1.19 100.0 1.04 1.27
0.49 4 100.0 1.03 1.24 100.0 1.02 1.13 100.0 1.02 1.19

Panel C: Non-linear component ρ = 0.01, γ = 5.0
0.10 2 100.0 1.00 1.00 100.0 1.00 1.00 100.0 1.01 1.02
0.10 3 100.0 1.00 0.99 100.0 1.00 0.99 100.0 1.00 0.99
0.10 4 100.0 1.00 1.01 100.0 1.00 1.01 100.0 1.00 1.01

0.20 2 100.0 1.00 0.99 100.0 1.00 1.00 100.0 1.02 1.09
0.20 3 100.0 1.00 0.99 100.0 1.00 0.99 100.0 1.00 0.99
0.20 4 100.0 1.00 1.01 100.0 1.00 1.01 100.0 1.00 1.00

0.40 2 100.0 1.00 0.99 100.0 1.01 1.03 100.0 1.01 1.05
0.40 3 100.0 1.00 0.99 100.0 1.00 0.99 100.0 1.00 1.00
0.40 4 100.0 1.00 1.01 100.0 1.00 1.01 100.0 1.00 1.01

0.49 2 100.0 1.00 0.99 100.0 1.03 1.10 100.0 1.00 1.01
0.49 3 100.0 1.00 0.99 100.0 1.00 0.99 100.0 1.00 1.01
0.49 4 100.0 1.00 1.01 100.0 1.00 1.01 100.0 1.00 1.01

Note. Variance ratios and R2 computed in simulations of a mixture model that is the sum of ARFIMA(1,d,0)

and logistic STAR(ρ, γ) processes. K is the number of factors used in the variance ratio test. V R12 is the

variance ratio at 12 months maturity, and V R24 is the test at 24 months.
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linked by the equation:

(30) Ft,j+1:K+j = BFt,j:K+j−1, B =


0 1 0 ... 0
0 0 1 ... 0
... ...
0 0 0 ... 1
b1 b2 ... bK−1 bK

 .

By the definition of b in (29), the relationship in (30) holds for j = 1. It follows from the law of
iterated expectations that (30) holds for j = 2 because

EQ
t [Ft+1,2:K+1] = BEQ

t [Ft+1,1:K ]⇔ Ft,3:K+2 = BFt,2:K+1.

A recursive argument therefore establishes (30). It pins down the price of any forward on the term
structure with the prices at the K immediate neighboring maturities via the matrix B. Iteratively
substituting (30) into itself implies

(31) Ft,j+1:K+j = BFt,j:K+j−1 = B2Ft,j−1:K+j−2 = ... = BjFt,1:K .

The geometric recursion in (31) further shows that prices at any maturity are pinned down by any K
prices, even those at distant maturities. In particular, the equation links any price to the “short-end”
vector Ft,1:K , where the coefficients are entirely determined by the powers of B.

I.ii. Characterizing the Mispecification

We now use this algebra to propose a general characterization of our tests under model misspecification.
Our estimator assumes a K-factor affine-Q model of prices along the term structure. If this is not

the true data generating process, then the population projection in Equation (29) becomes

(32) ft,K+1 = b′Ft,1:K + ut

or, in analogy to the matrix recursion in (30),

(33) Ft,2:K+1 = BFt,1:K + Ut,

with B taking the same structure as earlier and Ut = (0, ..., 0, ut)
′. Equation (32) now contains a

residual that is solely due to specification error.
Under misspecification, the coefficient B in (33) is no longer fixed and instead becomes specific to

the maturities used in the projection. For other maturities, the projection coefficient generally takes
a different value. This reflects the fact that cross-equation restrictions of the affine model in (31) are
only satisfied when the model is correctly specified.

A key question is whether the violations of the cross-equation restrictions observed in the data
can tell us anything about the nature of the model misspecification. We arrived at the no-arbitrage
restrictions in (31) by iterating expectations in the price-on-price projection equation. Repeating this
using the representation of Equation (32) and imposing the no-arbitrage condition that EQ

t [ft+1,j ] =
ft,j+1, we find for all j > 1 that

(34) Ft,j+1:K+j = BjFt,1:K +

j∑
l=0

BlEQ
t [Ut+l].
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Equation (34) is an exact representation of prices at all maturities regardless of misspecification (as-
suming there is no arbitrage). The first term on the right-hand side captures the variation in Ft,j+1:K+j

that is consistent with the affine model restrictions given projection (32). The second term captures
the deviation from the model. We can decompose the behavior of this deviation by projecting it onto
Ft,1:K . All elements of the vector Ut+1 other than the first are zero, so we write this projection as

eK

j∑
l=0

BlEQ
t [ut+l] = γK+jFt,1:K + ζt,K+j ,

where γK+j is a K-vector and ζt,K+j is scalar. This decomposition allows us to write (34) as

(35) Ft,j+1:K+j = (Bj + γK+j)Ft,1:K + ζt,K+j

where the projection residual ζt,K+j is orthogonal to the first K prices, Ft,1:K . When testing model
restrictions, we estimate the unrestricted linear projection of Ft,j+1:K+j on to Ft,1:K in (35) and
compare the estimated projection coefficient, (Bj + γK+j), to the affine-model-restricted coefficient,
Bj .

The behavior of the unrestricted projection is informative about the nature of the misspecification.
Two stark empirical facts emerge uniformly from data in all asset classes. First, the unrestricted linear
factor model (35) provides an excellent fit of the data, with R2 approaching 100%. Second, variance
ratios are significantly greater than one.

Together, these facts provide insights about the behavior of the specification error term,
∑j

l=0B
lEQ

t [Ut+l].

High variance ratios tell us that the total variation of the specification error, V ar(
∑j

l=0B
lEQ

t [Ut+l]),
must be large. At the same time, an unrestricted R2 approaching 100% means that the portion of
the specification error that is uncorrelated with the short maturity prices, V ar(ζt,K+j), must be very
small. In other words, the specification error must be nearly perfectly correlated with the factors from
the short end. This is evidently the case, as high variance ratios are equivalent to the unrestricted
projection coefficients being significantly larger in magnitude than the model restriction allows—the
γK+j coefficients are far from zero (as found in Figure II).

J. Alternative Trading Strategy

In this section we propose an alternative trading strategy based on forward prices instead of cumulative
prices. We first discuss the implementation of the forward-based strategy, then show the relation
between the forward-based and cumulative-based trading strategies, and finally present the empirical
results.

We focus on a one month holding period, both for explaining the trading strategy and in comparing
with the cumulative claim strategy in the main text. Table VII describes two possible alternative
investments strategies using forward contracts.

Strategy A buys a forward with maturity N + 1 at price ft,N+1. Strategy B buys a portfolio
of forwards of maturities 2 to K, with weights γN , so that the cost of the portfolio is γ′NFt,2:K+1.
After a one-month holding period, the value of the two portfolios becomes ft+1,N and γ′NFt+1,1:K ,
respectively. Neither trading strategy pays any cash flows during the holding period, because no
forwards are actually held to maturity.

Under the null of the affine model, it is possible to choose γN such that

ft+1,N = γ′NFt+1,1:K
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Table VII
Forward-based trading strategy

Strategy A Strategy B
Date Value Cash Flows Value Cash Flows

t ft,N+1 0 γ′NFt,2:K+1 0

t+ 1 ft+1,N 0 γ′NFt+1,1:K 0

Note. Portfolio A buys the N + 1-maturity forward at a price of ft,N+1. Portfolio B replicates A under the

affine null model, buying all forward claims with maturities of 2, ...,K + 1 with the number of shares in each

claim given by the vector γN .

Table VIII
Cumulative-based trading strategy

Strategy A Strategy B
Date Ongoing Value Cash Flows Ongoing Value Cash Flows

t pt,N+1 0 β′NPt,2:K+1 + (1− β′N1)pt,1 0

t+ 1 pt+1,N xt+1 β′NPt+1,1:K xt+1

Note. Portfolio A buys the N + 1-maturity claim at a price of pt,N+1. Portfolio B replicates A under the affine

null model, buying all cumulative claims with maturities of 2, ...,K + 1 with the number of shares in each claim

given by the vector βN , and buying (1− β′N1) shares of an 1-period claim.

or, in other words, that the two trading strategies have the same value at time t + 1. A long-short
position will therefore always unwind at zero profit or loss under the affine null. If no-arbitrage holds,
the portfolio will not produce profits or loss at inception (at time t). Equivalently, if a trading strategy
that trades A against B routinely buys the cheaper and sells the dearer to consistently produce positive
profits, it represents a violation of no-arbitrage.

J.i. Forward Strategy Versus Cumulative Strategy

Here we show the relation between the forward-based strategy of Table VII and the cumulative-based
strategy discussed in Section IV.E. (Table V). When the holding period is one month, the cumulative-
based strategy simplifies to the one reported in table VIII.

First, βN is chosen so that
pt+1,N = β′NPt+1,1:K ,

which is guaranteed according to the affine model. Note that cumulative strategies produce a cash
flow xt+1, but that is the same across the two strategies A and B, so that any long-short position in
the two strategies will produce zero cash flow.

Next, we show that each of the two forwards-based strategies A and B is identical to the difference
between adjacent-maturity cumulative-based trading strategies. In particular, a long position in strat-
egy A for forward claims of maturity N is identical to a long position in Strategy A for cumulative
claims of maturity N plus a short position in Strategy A for cumulative claims with maturity N − 1.
The same holds for Strategy B.

Table IX shows the link formally for strategy A in the top panel and for strategy B in the bottom
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Table IX
Cumulative-based trading strategy

Strategy A, mat. N + 1 Strategy A, mat. N Difference

Date Value Cash Flow Value Cash Flow Value Cash flow

t pt,N+1 0 pt,N 0 ft,N+1 0

t+ 1 pt+1,N xt+1 pt+1,N−1 xt+1 ft+1,N 0

Strategy B, mat. N + 1 Strategy B, mat. N Difference

Date Value Cash Flow Value Cash Flow Value Cash flow

t β′NPt,2:K+1 β′N−1Pt,2:K+1

+(1− β′N1)pt,1 0 +(1− β′N−11)pt,1 0 γ′NFt,2:K+1 0

t+ 1 β′NPt+1,1:K xt+1 β′N−1Pt+1,1:K xt+1 γ′NFt+1,1:K 0

Note. For each strategy (A: top panel; B: bottom panel), the table reports the value and cash flows of long

position in the cumulative-based strategy with maturity N + 1 (left), long position in the cumulative-based

strategy with maturity N (middle), and the difference between the two (right), i.e. the value and cash flows of

a long-short portfolio.

panel. For both strategies, the difference between the values and payoffs of the two cumulative-
based strategies is equivalent to the corresponding forward-based strategy. The derivation proceeds as
follows. For strategy A, simply note that pN,t = f1,t + ...+ fN,t. For strategy B, note that the affine
model implies the following relation between cumulative prices and forwards at different maturities:
ft,K+j = e′1B

jFt,1:K , pt,K+j = e′1(R + B + ... + Bj)R−1Pt,1:K , for R upper-triangular, e1 a vector of
zeros with 1 in the first position, and B a matrix that depends on the Q dynamics. This also implies
that γN = e′1B

N−K and βN = e′1(R+B + ...+Bj)R−1.
Finally, we have Pt,1:K = R ·Ft,1:K and Pt,2:K = R ·Ft,2:K+1+ft,1. Therefore the difference between

the value of strategy B at maturity N + 1 and at maturity N is:

Diff. = β′NPt,2:K+1 + (1− β′N1)pt,1 − β′N−1Pt,2:K+1 + (1− β′N−11)pt,1

= β′N (R · Ft,2:K+1 + ft,1) + (1− β′N1)pt,1 − β′N−1(R · Ft,2:K+1 + ft,1) + (1− β′N−11)pt,1

= (β′N − β′N−1)R · Ft,2:K+1

=
[
e′1(R+B + ...+BN−K)R−1 − e′1(R+B + ...+BN−K−1)R−1

]
R · Ft,2:K+1

= e′1B
N−KFt,2:K+1.

This is precisely the same as γ′NFt,2:K+1, or the value of the forward-based portfolio of strategy B at
time t. The same holds at maturity t+ 1, thus showing that the forward-based strategy is equivalent
to a long-short position in the cumulative-based strategies with staggered maturities.

J.ii. Empirical results

Tables X and XI show the results of the forward-based trading strategies, both in-sample and out-of-
sample, using different mispricing thresholds for trading. The tables also report the fraction of trades
that yield a positive profit, separately by maturity.

The tables show several interesting results. First, the highest Sharpe ratios (and the highest
fractions of positive profits) are concentrated at higher maturities. For forwards of 22 to 24 months
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Table X
Forward-based trading strategy: in-sample results

Threshold: 0% Threshold: 50% Threshold: 90%
Maturity SR % pos. ret. SR % pos. ret. SR % pos. ret.

6 0.80 0.61 1.40 0.62 1.89 0.76
7 0.61 0.60 1.40 0.63 1.86 0.83
8 0.44 0.55 0.91 0.56 1.17 0.62
9 0.19 0.51 0.26 0.47 0.80 0.50
10 -0.05 0.45 -0.40 0.44 -0.02 0.46
11 -0.21 0.44 -0.27 0.48 0.08 0.52
12 -0.02 0.46 0.11 0.48 0.75 0.61
13 0.14 0.47 0.54 0.53 1.51 0.64
14 0.34 0.47 1.17 0.58 1.95 0.67
15 0.46 0.49 1.18 0.58 2.81 0.79
16 0.51 0.51 1.27 0.58 3.12 0.80
17 0.49 0.51 1.32 0.59 3.00 0.79
18 0.14 0.50 0.98 0.59 2.35 0.79
19 -0.22 0.46 0.51 0.54 1.99 0.78
20 0.10 0.48 0.14 0.52 0.30 0.50
21 0.90 0.58 0.93 0.61 1.88 0.75
22 1.54 0.65 1.87 0.74 2.95 0.93
23 1.72 0.70 2.58 0.84 3.40 0.92
24 1.79 0.73 2.92 0.91 3.14 0.92

Note. The table reports annualized Sharpe ratios for forward-based trading strategies that exploit mispricing

relative to the affine-Q model in the variance swap market. The model is estimated using the entire sample.

Each panel corresponds to a different level of mispricing (relative to the historical distribution) at which a trade

is executed. In each panel, the first column reports the annualized Sharpe ratio of the strategy, the second panel

reports the percentage of trades that produce a profit.

maturity, Sharpe ratios are above 1.5 even with a mispricing threshold for trading of 0% (that is, even
trading when the mispricing appears small). For these maturities, a large fraction (around 70%) of
the trades yield a positive profit. The results strengthen when the mispricing threshold is tightened
so that the trade is only made when mispricings are sufficiently large. For the highest threshold we
consider (right columns), more than 90% of the trades yield a positive profit for long-term forwards,
generating a Sharpe ratio above 3.0. Profits also seem concentrated at higher maturities, but do not
entirely disappear at shorter maturities.

Third, results are consistent when looking out-of-sample, highlighting the robustness of the trading
strategy results. In fact, the results are slightly stronger in that case, possibly because the model is re-
estimated each period using recent data, which may help capture some time variation in the coefficients
of the Q model.

Finally, while some of these maturity-specific forwards have low Sharpe ratios individually, the
cumulative-based trading strategies we presented in Section ?? look at the joint mispricing of portfolios
of forwards, and therefore represent an alternative test of affine model violations.
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Table XI
Forward-based trading strategy: out-of-sample results

Threshold: 0% Threshold: 50% Threshold: 90%
Maturity SR % pos. ret. SR % pos. ret. SR % pos. ret.

6 0.89 0.65 1.43 0.70 2.94 0.81
7 0.92 0.63 0.98 0.66 2.99 0.84
8 0.71 0.62 0.74 0.62 2.07 0.72
9 0.45 0.63 0.41 0.62 1.58 0.69
10 0.27 0.58 0.28 0.58 1.39 0.68
11 0.36 0.58 0.75 0.64 1.85 0.71
12 0.88 0.61 1.35 0.68 2.59 0.78
13 1.25 0.63 1.85 0.74 3.97 0.96
14 1.29 0.63 1.94 0.75 3.81 0.96
15 1.29 0.64 2.06 0.76 3.61 0.95
16 1.30 0.66 2.10 0.78 3.44 0.95
17 1.23 0.64 1.99 0.77 3.28 0.95
18 1.10 0.63 1.74 0.75 2.77 0.89
19 0.77 0.59 1.50 0.70 1.77 0.79
20 0.35 0.53 0.52 0.58 0.70 0.60
21 1.13 0.62 1.61 0.68 2.48 0.79
22 1.60 0.74 2.30 0.79 3.80 0.94
23 1.85 0.77 2.42 0.87 4.59 0.94
24 1.81 0.76 2.56 0.90 4.20 0.94

Note. The table reports annualized Sharpe ratios for forward-based trading strategies that exploit mispricing

relative to the affine-Q model in the variance swap market. All strategies are implemented using information

available to the investor at the time of the trade, and use a one month holding period (n = 1) for each trade.

Each panel corresponds to a different level of mispricing (relative to the historical distribution) at which a trade

is executed. In each panel, the first column reports the annualized Sharpe ratio of the strategy, the second panel

reports the percentage of trades that produce a profit.

K. Affine Example With Measurement Error

Consider a swap with underlying cash flow process (under P) defined as xt that is the sum of two
factors,

xt = H1,t +H2,t

where

Ht =

(
0.3 0
0 0.98

)
Ht−1 +

( √
1− .32 0

0 0.2
√

1− .982

)
εt

where εt is a bivariate standard normal. The form of the volatility matrix makes it easy to see that the
unconditional standard deviations are 1.0 and 0.2 for the two factors, respectively. These dynamics
include one factor that is highly volatile and has little persistence. The other has low volatility and
high persistence. Under P the factors are independent.

Next, let risk premia be summarized by a matrix λ that is a wedge between the P and Q dynamic
specifications. In particular,

λ =

(
0.46 0
0.1 0

)
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which transforms the factor dynamics under Q to

Ht =

(
0.76 0
0.1 0.98

)
Ht−1 +

( √
1− .32 0

0 0.2
√

1− .982

)
εt.

That is, risk premia depend on the factor with high volatility and low persistence. From here, true
affine prices are given by the formulas in Section II. with ρQ equal to the Q persistence matrix in the
equation above.

The final element of the model adds iid measurement error with standard deviation of 0.008 to
each forward swap price.

K.i. Simulation Analysis

Next, we conduct a simulation analysis of this example model. We generate 1,000 datasets from the
model each with T =5,000 observations and maturities up to 24 months. We then compute variance
ratios on the simulated sample using the three estimators that we apply to the data in our paper:

1. OLS regression assuming no measurement error in short maturity prices but allowing for long
maturity errors

2. KF-MLE, allowing for measurement error throughout the term structure

3. IV regression allowing for measurement error throughout the term structure. We simulate in-
struments by adding iid noise with standard deviation 0.1 to the true short-end prices, mimicking
properties of the instruments we use for variance swaps in Section IV.D..

Below we show histograms of the 1,000 variance ratios estimated from each estimation technique at
the 24-month maturity. The left panel reports regression-based variance ratios, middle shows KF-MLE,
and right shows IV-based variance ratios. The regression-based test is biased due to measurement error,
with an average variance ratio of 2.00 at 24 months with a standard error of 0.03 across simulations.
However, the KF-MLE tests have an average variance ratio of 1.05 (standard error across sims of 0.14)
and the IV-based average is 0.94 (standard error of 0.40). Thus, our tests that use alternatives to OLS
appear unbiased in this example (though noisy in the case of the IV test).

Figure IV Histograms of 24-month Variance Ratios
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