EXCESS VOLATILITY: BEYOND DISCOUNT RATES"

STEFANO GIGLIO AND BRYAN KELLY

We document a form of excess volatility that is difficult to reconcile with
standard models of prices, even after accounting for variation in discount rates.
We compare prices of claims on the same cash flow stream but with different
maturities. Standard models impose precise internal consistency conditions on the
joint behavior of long- and short-maturity claims and these are strongly rejected
in the data. In particular, long-maturity prices are significantly more variable
than justified by the behavior at short maturities. We reject internal consistency
conditions in all term structures that we study, including equity options, currency
options, credit default swaps, commodity futures, variance swaps, and inflation
swaps. JEL Codes: G12, G40.

I. INTRODUCTION

Term structure analysis is a powerful setting for evaluating a
model’s ability to describe asset price data for two reasons. First,
any model that satisfies a minimal requirement—that it rules
out arbitrage opportunities—imposes strict testable restrictions
on the joint behavior of prices along the term structure. Specif-
ically, no-arbitrage prices must obey the law of iterated values,
as the prices of long-maturity claims must reflect investors’ ex-
pectations about the future value of short-maturity claims.! This
places tight bounds on the extent of covariation between prices at
different maturities that is admissible within a given model. Too
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1. For seminal work on the role of cross-equation restrictions and the law
of iterated values in rational models, see Samuelson (1965), Hansen and Sar-
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Hansen and Scheinkman (2009), and Hansen (2012).
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much (or too little) covariation between long- and short-maturity
claim prices can rule out a model as a viable descriptor of the
economy. Second, term structure data are unique in economics
in how accurately they are described with parsimonious models?
and are thus ideal proving grounds for discriminating between
alternative models.

In this article, we document a form of excess volatility in
prices along the term structure that is difficult to reconcile with
“standard” asset-pricing models. Our central finding is that price
fluctuations at different points in the term structure are inter-
nally inconsistent with each other—prices on the long end of the
term structure are far more variable than justified by the behavior
of short-end prices—given usual modeling assumptions. The con-
sistency violations are highly significant statistically and econom-
ically. Perhaps most interesting, excess volatility of long-maturity
prices is evident in a large number of asset classes, including
claims to equity and currency volatility, sovereign and corporate
credit risk, Treasury yields, commodities, and inflation.

We define as “standard” any model in which cash flows and
asset prices are linear functions of common factors. This type of
model is pervasive in financial economics because of its conve-
nience in delivering closed-form pricing solutions in a wide range
of valuation problems. This encompasses many leading asset-
pricing paradigms, from structural equilibrium models? with long-
run risks (Bansal and Yaron 2004) or variable rare disasters
(Wachter 2013) to reduced-form models ubiquitous in fixed income
and derivatives pricing (Duffie, Pan, and Singleton 2000).

We refer to this class of models as “affine-Q” following ter-
minology in the asset-pricing literature. In the canonical model,
an asset’s “physical,” or “P,” distribution of payoffs is determined
by factors with linear time series dynamics. Investor preferences
can be represented as a subjective adjustment to the payoff dis-
tribution. This preference-adjusted payoff distribution is known
variously as the “pricing,” “risk-neutral,” or “Q” measure. It has
the special property that prices are equal to Q-expectations of
cash flows discounted at the risk-free rate. Furthermore, any risk
adjustment that investors apply when valuing a stream of cash
flows operates through the Q measure. Affine-Q models choose

2. For example, a linear three-factor model explains the panel of Treasury
yields for maturities of 1 year up to 30 years with an R2 in excess of 99%.
3. We discuss affine structural models in Online Appendix A.
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preferences so that payoffs retain their linearity in factors un-
der Q, and in turn equilibrium prices are also linear in the
factors.

There is an important advantage in working directly with the
Qrepresentation of asset prices when studying the term structure.
Because it integrates investor risk preferences into its description
of the economy, a model’s Q representation summarizes any vari-
ation in discount rates that may influence asset price behavior.*
Therefore, any inferences regarding price volatility that are based
on a model’s Q representation take investors’ discount-rate behav-
ior into account.

This contrasts with the notion of excess volatility famously
documented by Shiller (1979, 1981) in which price fluctuations are
deemed excessive relative to predictions from a specific model—
one with constant discount rates. A potential resolution of the
Shiller puzzle is to recognize that discount rates are variable,
an insight at the foundation of leading frameworks in modern
finance.” By benchmarking against the Q representation of mod-
els, any excessive volatility we document must arise from sources
other than discount rate variation. In short, we analyze the affine-
Q class as a null model for our analysis because it explicitly ac-
counts for what has become the de facto explanation for excess
volatility, time-varying discount rates.

LA. A One-Factor Example

Our main empirical finding is that in every asset class that
we analyze, long-maturity prices overreact to short-maturity price
fluctuations relative to the predictions of an affine-Q model. A
simple example illustrates the nature of this overreaction.

Consider a term structure of claims to the one-factor cash flow
process x;. For concreteness, think of x; as the realized variance of
the aggregate stock market return during period ¢, and consider
valuing a derivative contract whose payoff is determined by x;.

4. More specifically, the Q measure incorporates variation in risk premia,
which is the primary driver of total discount rate variation. Throughout we refer
to discount rates and risk premia interchangeably.

5. See, for example, Campbell and Shiller (1987, 1988a,b, 1991), Fama and
Bliss (1987), Campbell (1987, 1991, 1995), Cochrane (1992, 2008, 2011), and
Cochrane and Piazzesi (2009).
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Under the pricing measure Q, cash flows evolve according to®
x = p%1 + €.

We abstract from constants and risk-free rate adjustments in this
example in the interest of simplicity. The price of a n-maturity
forward claim on these cash flows is

(1) fin = E2lx: ).

The term structure of forward prices at maturities 1, ..., N is
therefore given by

(2) fir=0%, fo=0D%% ..., fiv=0D"x.

The key cross-equation restrictions in this model require that the
term structure of prices obeys a strict one-factor structure, and
that the only admissible shape for the price curve is one in which
the factor loadings follow a geometric progression in p? (the pa-
rameter governing cash flow dynamics under Q). This restriction
is equivalently represented with prices of cumulative claims, de-
fined as p;, = E;Q [x;41 + ...+ x4,], in which case the term struc-
ture takes the form:

Pen =002+ D%+ + DYV,

Tests of the model’s restrictions hinge on an estimate of p©.
Fortunately, p? is easily estimated from regressions of prices onto
prices. For example, let the first maturity forward price, f; 1, stand
in for the latent factor x;. Let by denote the (population) slope
coefficient in a regression of the price at maturity two, f; 2, on f; 1.
According to equation (2), by exactly recovers p?. This regression
is intuitive. The relative valuation of the first two claims reveals
the cash flow persistence that investors perceive. If investors price
assets as though x; is very persistent, a rise in the short price
f2.1 will coincide with a rise in f; o of nearly the same magnitude,

6. Autoregressive models for variance are standard in the time series and
derivatives pricing literature. See for example Andersen et al. (2003) and our
discussion of variance swaps in Section III. The shock, et@ , is orthogonal to x;_1
and mean 0, but is otherwise general. For example, et@ may possess a conditional
distribution that ensures x; is nonnegative, as in standard stochastic volatility
models.
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which indicates that p? is near one under the investors’ subjective
pricing measure.

If we project prices for remaining maturities 3, ..., N onto
the short-maturity price f; 1, we recover a sequence of regression
coefficients denoted b3, ..., by that are unrestricted in the sense
that they are not forced to be jointly determined by p© as would
be implied by equation (2). At the same time, these regressions
can be recast in their “restricted” form, where the restriction in
equation (2) relates, for example, by to by by:

3) by = ().

We convert this restriction into a test of excess volatility by con-
structing a variance ratio statistic for each maturity N:

_ Var(nfi1)
© Var((be)VN-1f,1)

V Ry

The numerator, Var(byf: 1), is the explained variance in the unre-
stricted regression of long-end prices (f; 5) onto the short end (f; 1).
The denominator, Var((bs)N~'f; 1), is the explained variance of the
same regression under restriction (3).” Under the null model, the
restricted and unrestricted variances are the same and VRy = 1.
If the ratio statistic significantly exceeds 1, the price at maturity
N varies more than is justified by the behavior of the short end of
the term structure. The same variance ratio test can be applied to
cumulative claims as well.

This one-factor example is intentionally simplified to illus-
trate our approach for testing excess volatility along the term
structure. In Section II, we develop an estimation and inference
approach for VRy in general K-factor affine specifications that
is implementable with OLS regressions. We also develop an ap-
proach that uses the Kalman filter and maximum likelihood to
build variance ratio tests that are robust to measurement error in
term structure prices (for example, due to illiquidity).

I.B. A Representative Term Structure

Figure I illustrates the behavior of variance ratios in one of
our data sets—the term structure of variance swaps—which are

7. Note that VRy is simply the squared ratio of the unrestricted regression
coefficient to the restricted coefficient.
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FIGURE I
Variance Swap Tests

The figure plots the standard deviation of prices under the unrestricted factor
model (solid line) and under the restricted model (dashed line). The circles in
the unrestricted line represent the maturities we observe in the data. Numbers
adjacent to circles are the variance ratios at each maturity. The shaded area rep-
resents the 2.5th to 97.5th percentiles of the model-implied variance in bootstrap
simulations.

claims to the cumulative variance of the S&P 500 index over the
life of the contract.® An unrestricted linear two-factor model pro-
vides an excellent description of the term structure, delivering an
R? of 99.6% for the panel of prices. The solid black line plots the
explained swap price volatility from an unrestricted regression of
each long-maturity claim on the first two short-maturity claims.
The dashed line plots the explained variation from the regression
that imposes the model restrictions. The variance ratio statis-
tic for each maturity is printed above the unrestricted volatility
estimates and the shaded region represents the pointwise 95%
bootstrap confidence interval for price volatility in the restricted
model.

8. These data are described in detail in Section III.
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At 24 months, the variance ratio statistic reaches 2.15, mean-
ing that the variability in long-maturity prices is more than twice
as large as that allowed by the affine-model restriction and is
highly statistically significant. The high variance ratio can be
thought of in the following way. The concave shape of price volatil-
ity at the short end of the curve suggests that cash flows mean
revert fairly quickly under Q. But this appears inconsistent with
indications of much higher persistence implied from the long end.
As a result, unrestricted price volatility increases with maturity
at a much faster rate than the price volatility predicted by the
model. The high variance ratio indicates that prices at the long
end of the curve react to the short end much more strongly in the
data than affine-model dynamics allow.?

The excess volatility of long-maturity claims is not explained
by movements in discount rates. Discount rate variation that is
describable within the affine class is subsumed by our model. Nor
do high variance ratios merely reflect a poor fit from the factor
model. The R? from the unrestricted factor specification is nearly
100% in all of our term structures, meaning that an unconstrained
linear model does an excellent job describing the data. Instead, the
high variance ratio is a violation of the cross-equation restrictions
of the affine model. That is, the data are exceedingly well described
by a linear factor model, but with factor loadings that differ from
those implied by model restrictions.

Behavior of the variance swap term structure is representa-
tive of our broader empirical findings. All of the asset classes we
study exhibit excess volatility of long-maturity prices similar to
that in Figure 1.

I.C. Potential Explanations

Tests of excess volatility are fundamentally tests of market ef-
ficiency and are therefore subject to the joint-hypothesis problem
described by Fama (1970, 1991):

Market efficiency per se is not testable. It must be tested jointly with
some model of equilibrium, an asset-pricing model. ... As a result,
when we find anomalous evidence on the behavior of returns, the

9. We interpret high variance ratios as excess volatility at long maturities,
rather than a dearth of volatility at short maturities, because short-maturity prices
appear appropriately anchored to (with nearly identical volatility as) the under-
lying physical cash flow. For example, short-dated variance swaps and inflation
swaps closely track realized variance and CPI inflation, respectively.
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way it should be split between market inefficiency or a bad model
of market equilibrium is ambiguous.

In the last part of the article, we investigate how the sources of ex-
cess volatility should be “split between market inefficiency,” that
is, mispricing along the term structure, “or a bad model of mar-
ket equilibrium” in the form of model misspecification. While it
is impossible to draw unambiguous conclusions or to exhaust the
list of possible explanations, analyzing leading candidates helps
refine our basic facts. In Section IV, we examine five potential
explanations for our findings: omitted factors, nonlinear dynam-
ics, long-memory dynamics, measurement error, and temporary
mispricing of long-maturity claims.

First, if the true data-generating process is a K-factor affine
model but we use fewer than K factors in our analysis, the
variance ratio statistic is likely to diverge significantly from 1.
In robustness checks, we show that gradually increasing the
number of factors (thereby pushing the factor model R? even
closer to 100%) still produces variance ratios significantly in
excess of 1.

Second, we explore a wide range of long-memory models in the
stationary ARFIMA family. These models can exhibit persistence
that decays much more slowly than the autoregressive structure
assumed in affine-Q specifications. The vast majority of ARFIMA
specifications appear well approximated by simple affine models
and do not lead to high variance ratios. However, as the long-
memory parameter reaches the boundary of the nonstationary
range, we show that it is possible to generate variance ratios as
high as 3 at the 24-month maturity. But when we allow for an extra
factor, the variance ratios again shrink to 1, which is inconsistent
with the behavior we find in the data.

Third, we explore a large class of nonlinear dynamic spec-
ifications known as smooth-transitioning autoregressive (STAR)
models. In most parameterizations, STAR models are very closely
approximated by a low-dimension affine model and therefore do
not produce variance ratios above 1. For the most extreme non-
linear specifications it is possible to generate variance ratios that
statistically reject the affine restrictions, but even in these cases
the variance ratios are substantially smaller than those found in
the data.

Fourth, we evaluate the role of measurement error in our em-
pirical tests. We conduct a variety of robustness tests establishing
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that measurement error is a quantitatively unviable explanation
of our findings.

Finally, we explore the possibility of mispricing as a poten-
tial driver of excess volatility in two ways. First, we construct a
trading strategy to quantify the economic magnitude of the devia-
tion from the affine-Q specification. It trades long-maturity claims
when they are misvalued relative to the affine model and hedges
with an offsetting short-maturity position in the exact proportion
dictated by the estimated model. If violations of the affine model
are small or infrequent, then the trading strategy will perform
poorly in terms of risk-adjusted returns. But if the hypothesized
mispricing exists, then the strategy may appear profitable even
after adjusting for risk.!°

In the variance swap market, we find that the trading strat-
egy yields an annualized out-of-sample Sharpe ratio of 1.3 on
average. We show that this performance is not explained by expo-
sure to standard risk factors and discuss limits to arbitrage in the
swap market that can lead these mispricings to persist (Shleifer
and Vishny 1997). This is suggestive but not conclusive evidence
of mispricing, as high average returns may represent compensa-
tion for some risk that we have not considered. In this case, the
strategy’s performance quantifies the economic importance of risk
factors missed by affine-Q models.

Second, we explore theoretical underpinnings of excess
volatility. To do so, we present a model of investor extrapola-
tion in the natural expectations framework (Fuster, Laibson, and
Mendel 2010). This framework posits that investors price assets
by averaging two different expectations, one formed according to
the true cash flow-generating process and another based on mis-
specified, extrapolative beliefs. We then derive the model’s term
structure implications. We show that long-maturity excess volatil-
ity is an inherent prediction of the natural expectations model and
show that model averaging is the key mechanism for qualitatively
matching our empirical facts. Finally, we calibrate the model to
variance swap data and show that it provides a close quantitative
match to the data. The ability of natural expectations to fit term

10. The existence of profitable trading opportunities is not a necessary con-
dition for mispricing, in the sense that price is not equal to value. It is possible
that mispricings exist yet there is too much noise for arbitrage. Despite noise in
the data, we provide evidence of high compensation for trading on affine-model
violations that supports our excess-volatility interpretation of the facts.
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structure patterns is remarkable because the idea was originally
conceived to target time series patterns for macro aggregates, not
term structure prices.

I.D. Literature Review

Perhaps the most important predecessor of our article is the
seminal contribution of Stein (1989), who compares the volatility
of short- and long-maturity S&P 100 index options. He finds excess
volatility of one-year option prices and interprets it as evidence
of investor overreaction. Our article builds on Stein’s original in-
sight with a few key differences. First, he analyzes comovement of
long- and short-maturity prices relative to cash flow persistence
estimated from the P measure. In other words, the reference model
of Stein (1989) does not account for discount rate variation, nor
do the interest rate volatility tests of Shiller (1979) or the equity
volatility tests of Shiller (1981) and LeRoy and Porter (1981). Our
excess volatility test explicitly accounts for discount rate variation
by estimating cash flow dynamics under the Q measure. In addi-
tion, Stein (1989) uses a one-factor model for volatility, whereas
our approach allows for an arbitrary number of factors and ex-
tends to a wide range of asset classes. Our findings are also related
to Gurkaynak, Sack, and Swanson (2005), who show that the re-
sponsiveness of long-run Treasury bond yields to macroeconomic
announcements is excessive relative to established new Keyne-
sian DSGE models. More recently, Hanson and Stein (2015) study
overreaction at the long end of the Treasury yield curve focusing
on FOMC announcement days. An interesting aspect of our work
is that long-maturity excess volatility is even more pronounced in
other asset classes.!!

Our evidence further encourages efforts to reconcile mod-
els of investors’ expectation formation with financial market

11. The Treasury yield curve is the subject of a large literature that works
extensively with affine-Q specifications. For a review and recent contributions see,
for example, Dai and Singleton (2002), Duffee (2002), Ang and Piazzesi (2003), Le,
Singleton, and Dai (2010), Piazzesi (2010), and Joslin, Singleton, and Zhu (2011).
Our focus is on volatility of prices at different maturities. A distinct literature stud-
ies risk premia along various term structures. Backus, Boyarchenko, and Chernov
(2015) study a few of the term structures that we analyze. Van Binsbergen, Brandt,
and Koijen (2012) and van Binsbergen et al. (2013) analyze risk premia of dividend
strips. Giglio, Maggiori, and Stroebel (2015, 2016) study the term structure of risk
premia in housing markets. Dividend strip and housing data do not have maturity
structures rich enough for our analysis.
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fluctuations.'? Our trading strategy analysis in Section IV.E sug-
gests there are large costs borne by investors who overreact due
to extrapolative expectations or other belief distortions. Our anal-
ysis emphasizes that asset term structures, whose prices depend
on how investors form expectations over multiple horizons, offer
a fruitful setting for future behavioral research.

II. TERM STRUCTURE MODEL

In this section we develop and test the internal consistency
restrictions implied by affine term structure models.

Our focus is on the joint price behavior of claims to an un-
derlying cash flow process x; that have different maturities. For
most of our analysis, we focus on linear claims to the x; process.
We discuss the extension to linear exponential claims in Online
Appendix B.

II.A. Claims with Linear Payoff Structures

At time ¢, a linear n-maturity forward claim promises a one-
time stochastic cash flow of x;,, to be paid in period ¢+n. Under
the weak assumption that a model admits no arbitrage oppor-
tunities, there exists a pricing measure Q under which prices of
such claims are expectations of future cash flows discounted at the
risk-free interest rate. We assume such a measure exists, thus the
n-maturity forward price is representable as

S
4) ﬁn = E;@ |:xt+nS ! :| )
t+n

where S; is the value of a risk-free account that pays the short-
term rate. In our empirical analysis, risk-free rate variation is
negligible compared to risky asset price variation in almost all
asset classes.! To reduce notation in the remainder of this section,

12. Recent examples of research into expectation formation related to our
analysis include Cecchetti, Lam, and Mark (2000), Hansen (2014), Gennaioli,
Shleifer, and Vishny (2015), Bordalo, Gennaioli, and Shleifer (2015), Barberis
et al. (2015a,b), Glaeser and Nathanson (2015), and Hirshleifer, Li, and Yu (2015),
among others.

13. The obvious exception is the Treasury bond market, in which case we
account for risk-free rate variation explicitly using the standard model.
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we assume that S; is constant and equal to 1, and we provide a
detailed discussion of risk-free rate considerations and associated
robustness checks in Online Appendix C.

Prices of one-off forward claims aggregate into linear cu-
mulative claims that promise a sequence of cash flows through
maturity. The time-¢ price of an n-maturity cumulative claim is a
sum of forward prices,

DPtn = E;@ K1+ F Xl = i1+ o F fin

Under no arbitrage, the pricing measure possesses a martingale
property that binds prices together across time and maturity,

fin=Ellfirina]l and  prn=Eflprinal + fir,
which follows from the law of iterated expectations.

II.B. Affine-Q Model Setup

Our baseline model is defined by the following assumptions.

AssuMPTION 1. The cash flow process, x;, is a linear function of K
latent factors, H;,

(5) x; = 80 + 81 Hy,

where § is a scalar and §; is a K x 1 vector.

AssumMPTION 2. Under the Q measure, H; evolves as

(6) H, =c%+ pH, 1 +T¢;,

where ¢ is a vector of uncorrelated mean-zero shocks that is
orthogonal to the history of the system through ¢ — 1, and I'T”
is a positive-definite covariance matrix.

AssuMPTION 3. The matrix p? is diagonal, c? is 0, and §; is a vector
of ones.

Assumptions 1 and 2 ensure that the price of all cash flow
claims will be linear functions of H;, since prices are determined as
expectations of x; under Q. Assumption 2 emphasizes our article’s
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focus on the Q measure. In particular, our baseline model requires
linear factor dynamics under Q.

Because the H, factors are latent, the system specification
in Assumptions 1 and 2 is identified only up to a linear trans-
formation of the factors. Assumption 3 describes the parameter
normalization needed to achieve econometric identification. This
normalization imposes no economic restrictions but ensures that
the model we bring to the data has exactly as many parameters as
there are observables. For a detailed discussion of our normaliza-
tion choices, see Joslin, Singleton, and Zhu (2011) and Hamilton
and Wu (2012).

The price of a linear cumulative claim with maturity n is
given by

(7) Pin=180+1 %+ ...+ (©DVH, + vy p.

This equation follows from Assumptions 1-3. In addition, we fol-
low convention in the term structure literature and include a noise
term (v ,) to account for potential measurement error in prices un-
der the physical measure. Equation (7) constitutes a collection of
cross-equation restrictions implied by the affine model. Prices at
all maturities must obey a strict factor structure so that physical
comovement among prices is driven by H;. Furthermore, the load-
ings at each maturity are tightly restricted—they must follow a
geometric progression in p%—reflecting the fact that prices along
the term structure arise from investors’ iterated expectations un-
der the Q measure. Our empirical tests investigate the extent to
which observed term structures adhere to the model restrictions.

II.C. Tests of the Affine-Q Model

We propose two approaches to testing the internal consistency
of asset term structures in the affine-Q setting.

14. We report a simple example illustrating the link between P and Q mea-
sures in Online Appendix D. An attractive feature of our testing framework is that
we do not require a linearity assumption for the P model. In some asset classes
like variance swaps, models often include additional assumptions such as condi-
tional heteroskedasticity to ensure the x; process remains positive. For pricing of
linear claims, heteroskedasticity does not affect the pricing formula in equation
(1) because the error term remains conditionally mean 0. We abstract from het-
eroskedasticity in our main analysis, and find that our conclusions are unchanged
if we account for heteroskedasticity in residuals via GLS or GARCH regression.
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1. Regression-Based Tests. Our first set of excess volatility
tests require only OLS regressions of prices at long maturities on
prices at the short end of the term structure. Regression-based
tests have the virtue of simplicity, do not require assumptions
about detailed P dynamics, and do not require distributional as-
sumptions for model shocks. These tests do, however, require the
following additional assumption that prices are well behaved un-
der P and short-dated claims are free of measurement error.

AssumpPTION 4REG. Under the P measure, the term structure of
prices satisfies standard regularity conditions for OLS and

Wald test consistency.!® In addition, for a K-factor model,
vi,=0forn=1,..., K

To construct the regression-based excess volatility test, let
P, 1.x be the K x 1 vector of prices p;; through p;x. Denote the
loading of the jth maturity price on the latent factor as b; = (p© +

oot (,oQ)j )1. According to Assumption 4REG, we can represent
the K latent factors in terms of prices for the first K maturities:

(8) H, = B (P, 1.5 — 8ol1, ..., K],

where B1.x = [b1, ..., bgl’ is the K x K matrix of stacked factor
loadings for the short-end prices.

Because observed short-maturity prices P; 1.x stand in for la-
tent factors, we can recover an estimate of p© via OLS regression
of the K + 1 maturity price on the first K prices:

€)] Pt EK+1 = 0g+1 + ,3}(+1Pt,1:K + Ve K+1-

Under the affine-Q specification, the population slope coefficients
satisfy

(10) B,y =bj, (Brx) 1=1 (p@+. . .+p@K+1)

(s ])

15. See, for example, Hayashi (2000), Proposition 2.3. In particular, the term
structure must be stationary, have a nondegenerate covariance matrix, and have
residuals that satisfy a central limit theorem. These conditions, together with the
continuous-mapping theorem, ensure consistency of our regression-based variance
ratio tests, which are based on the same asymptotic principles as a Wald test.
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This is a system of K polynomial equations in the K unknown pa-
rameters of p©. We obtain the estimate g% by numerically invert-
ing system (10) given the OLS slope estimate S 1, as in Hamilton
and Wu (2012). We do not impose a priori that the Q dynamics are
stationary, though they are estimated to be stationary in all of our
asset classes.

This estimate of 52 forms the basis of our excess volatility
test. The test also requires, for any maturityj > K + 1, a regression
of p;; onto the short-maturity prices

(11) Dr.j =Otj+,3}Pt,1;K+vt,j.

We construct the variance ratio statistic at maturity j by compar-
ing the explained price variation from restricted and unrestricted
versions of regression (11).

The restricted version of the regression respects constraints
on the factor loadings implied by the affine model. In particular,
we denote the restricted regression slope estimate as ,3}?, and
calculate this by plugging A into the right side of equation (10)
(extended to maturities above K + 1). By evaluating equation (10)
at model parameters estimated from the short end, we impose
that the regression model for the j-maturity contract is exactly
consistent with behavior of the first K + 1 prices. The explained
price variation for maturity j in the restricted model is then given
by

(12) VE=pBEV(P1x)BE.

where V(P, 1.x) is the sample covariance estimate for short-end
prices under P.

Next, the unrestricted version of regression (11) ignores con-
straints that the affine model places on the factor loadings. In-
stead, it estimates the factor loading as the unrestricted OLS
slope estimate, denoted j JU . The explained price variation for ma-
turity j in the unrestricted model is then

(13) VY =B V(P.1x)B] .

Note that the V (P, 1.x) matrix enters the same way in both VJR
and VJ-U, so the test amounts to a comparison of the restricted
and unrestricted factor loadings. Also note that measurement er-
ror variance at long maturities does not directly enter into the
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model-explained variance expressions, which is why Assumption
4REG rules out measurement error only for short-maturity prices
and not at the long end.
Finally, the variance ratio statistic for maturity j is given by
1744

J
(14) VR = .
J

VR; calculates the fraction of price variation at maturity j that
is consistent with variation at other maturities according to the
model’s cross-equation restrictions. Under the null of a K-factor
affine model, VR; = 1. Any deviation from unity (above and beyond
that due to sampling variation) indicates a violation of the model’s
restrictions. Variance ratios that are significantly greater than
unity indicate that long-maturity prices overreact to movements
at the short end, relative to the affine model.

There are many potential ways to formulate tests of the affine
model’s restrictions, and many of these are asymptotically equiv-
alent. Our specific test construction has the attractive interpre-
tation as a measure of excess volatility relative to a benchmark
model. Our test choice is inspired by, and designed to remain com-
parable with, the rich history of excess-volatility tests studied by
Shiller (1981), Stein (1989), Campbell and Shiller (1988a), Camp-
bell (1991), Cochrane (1992), and others.

Under the null of an affine no-arbitrage model, the restricted
and unrestricted loading vectors BJU and Bf should be equal el-
ement by element. When there is more than one factor in the
model, it raises the question of how to best evaluate joint restric-
tions that apply to multiple loadings. An attractive feature of the
variance ratio test is that it offers a sensible aggregation of all
of the loading comparisons. The total explained variance in the
restricted and unrestricted models are

K K
Ej,kgj.l6k.l and Z Z Bj,kqugﬁk,l,
k=1 1=1 k=1 [=1

K K

where 63 is the (%, [) element of V(Pt‘lz k). Rather than comparing
loadings element-wise, the variance ratio sums loadings into a
scalar to compare alternative models. The weights assigned to
elements in the sum are based on the (co)variances of the short-
maturity prices. The prices that most strongly covary are also
the most informative about the dynamics of the model, and their
factor loadings receive the largest weights in our test.
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Equations (12) and (13) illustrate why the regression-based
test does not require specification of physical factor dynamics. The
test statistic requires only two inputs, coefficients in a contempo-
raneous regression (11) and the unconditional covariance matrix
of the factors (represented via the short-end prices). Both of these
elements can be estimated without consideration of physical price
dynamics other than requiring that the factor covariance matrix
is finite.

In Online Appendix E we describe a bootstrap procedure for
conducting inference in our regression-based variance ratio test.
Our bootstrap provides a p-value calculation to answer the ques-
tion, “How likely are we to observe a variance ratio as large as
the one we observe in the data, under the null of an affine model,
given the sampling error of model parameter estimates?” Online
Appendix E also reports simulations demonstrating the finite-
sample performance of our estimation and testing approach.

2. Maximum Likelihood Tests. The regression-based variance
ratio test has a number of benefits, but has the shortcoming of
requiring that short-end prices are observed without error. If this
assumption is violated, the estimate of p? suffers attenuation bias,
which in turn biases the variance ratio statistic.

If we relax Assumption 4REG to allow measurement error in
short-maturity prices, the factor space is no longer observable. Es-
timation of the model, then, requires latent factor techniques. The
system’s structure lends itself naturally to maximum likelihood
estimation via Kalman filtering, which is the estimation approach
we pursue (we refer to it in shorthand as KF-MLE).

In addition to Assumptions 1-3, to use KF-MLE we must
also specify the P-dynamics of factors and make a distributional
assumption for the errors.

AssumPTION 4MLE. Physical factor dynamics follow
(15) Hi =c+pH;_1+Te,
and prices obey
(16) Pyn=250[1... NI'+ Ik Bgy1 --- BNV H; + vy,
where ¢; ~ N(0, I) and is i.i.d. The vector of measurement

error across maturities is likewise i.i.d. and obeys v; ~ N(0,
).
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Under this assumption the model constitutes a linear Gaus-
sian state space system and is therefore efficiently estimated
with KF-MLE. In the state space setting we can construct long-
maturity variance ratio statistics that are exactly analogous to
the regression-based variance ratios described earlier.

In both the restricted and unrestricted models, the physical
state transition equation is the same and is given by equation
(15). The term structure of prices constitutes the system’s obser-
vation equations. Due to the presence of measurement error at all
maturities, we can no longer use the price representation of equa-
tion (11), and instead represent the price vector as equation (16).
There is an observation equation for every price in the term struc-
ture. The first block of the factor-loading matrix is fixed at Ix. This
identifies the system by anchoring the factors to the short-end
prices, and is the noisy price version of the factor representation
used in equation (8). Like Assumption 3, this ensures econometric
identification but imposes no further economic restrictions on the
model.

The specification of factor loadings (8x . 1, ..., Bn) depends
on whether affine restrictions are imposed on the system. In the
unrestricted model, we estimate separate unconstrained factor
loadings for each long-maturity price. On the other hand, factor
loadings in the restricted model are jointly determined by the
same K underlying parameters in p© (with the loadings’ specific
functional form described in equation (10)).

There are two further details of our state space specification.
First, our tests focus on restrictions among factor loadings and
leave the intercepts of the model free in both versions.'® Second,
because the variance of cumulative prices increases with maturity,
we specify the measurement error covariance matrix X such that
its diagonal elements are in fixed proportion to the unconditional
variance of prices. We allow measurement error to be correlated
across maturities according to a single correlation parameter.!”

16. In particular, we estimate a separate intercept d,, in each observation
equation, rather than restricting d,, = §on. This choice keeps our tests in the state
space setting conceptually identical to the regression-based tests.

17. More specifically, the measurement error covariance specification
is reduced to two parameters, o and ¢, where ¥ = DRD, with D=

diag(a\/V(pt.l), e a\/V(ptN)) and R=(1—¢)I +¢11’. In the interest of nota-
tional simplicity, we admit a slight abuse of notation as ¥ is in fact a function of
data.
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We estimate both the restricted and unrestricted model by
maximizing the conditional likelihood derived from the Kalman
filter. We refer to the unrestricted loading estimates as ﬁjU
(j=K+1,...,N), keeping the KF-MLE notation in line with
that of the regression-based analysis. Note that specification (16)
normalizes the latent factors so that estimated loadings are in-
terpreted as coefficients on the first K prices, after removing mea-
surement error.

Optimizing the likelihood of the restricted model produces an
estimate of the deeper persistence parameter, p2. We transform
this into a joint estimate of the restricted factor loadings ﬁJR by
plugging 5% into equation (10) for each j. With KF-MLE loading
estimates for both models in hand, the variance ratio is con-
structed identically to that in the regression-based test following
equations (12)—(14). In other words, the Kalman filter allows us
to estimate the regression equation (11) while allowing for mea-
surement error throughout the curve. As a result, the loading
estimates and resulting variance ratio statistics are unbiased by
the presence of measurement error. The KF-MLE test also has
the advantage that the model is estimated from all maturities
simultaneously, rather than from separate regressions for each
maturity.

Because variance ratios are continuous nonlinear functions
of the parameters estimated in the model, their asymptotic stan-
dard errors are easily obtained via the delta method. In addition,
because the restricted model is nested in the unrestricted specifi-
cation, we can also conduct a more powerful likelihood ratio test
of the restricted model versus the unrestricted model. Unlike the
variance ratio statistics which test for excess volatility maturity
by maturity, the likelihood ratio statistic allows us to jointly test
the affine-model restrictions using all maturities at once.

III. EMPIRICAL FINDINGS

This section presents our main empirical findings. We study
term structures of variance swaps, equity options, currency op-
tions, credit default swaps, commodity futures, inflation swaps,
and Treasury bonds. In each asset class, we describe details of the
term structure data and model specification, then report excess
volatility test results.
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Wherever possible, we take the number of factors K from
specification analysis in previous literature. For example, it is
standard practice to use three factors when describing the term
structure of Treasury yields and two factors for the variance swap
market. We then check that a K-principal-component model ex-
plains at least 99% of the variation in the panel of prices at all
available maturities. In asset classes where the literature pro-
vides no guidance on K, we set K to the number of principal com-
ponents necessary to explain at least 99% of the term structure
price variation.!8

We first report detailed analyses of one particular example,
variance swaps, then show that the same results hold in other
asset classes. Interested readers can find further details on data
and model specification for each asset class in Online Appendix F.

III.A. S&P 500 Variance Swaps

The variance swap market allows investors to trade direct
claims on the riskiness of equities. A long variance swap position
receives cash flows at maturity proportional to the sample vari-
ance of the S&P 500 over the life of the contract. Let RV; denote
the sum of squared daily log index returns during calendar month
t. The payoff of an n-maturity variance swap is Z?Zl RV, ;. Ig-
noring risk-free rate variation (as is typical in this literature), the
price of a variance swap corresponds to the Q-expectation of the
payoff:

Ptn= E;@ Z RV,
j=1

This structure maps directly into the simple affine framework of
Section II with x; = RV,. We model RV, using K = 2 latent factors,
as in Egloff, Leippold, and Wu (2010), Ait-Sahalia, Karaman, and
Mancini (2015), and Dew-Becker et al. (2015).

Variance swaps are traded in a liquid over-the-counter market
with a total outstanding notional of around $4 billion in “vega” at
the end of 2013, meaning that a movement of one point in volatil-
ity would result in $4 billion changing hands between counterpar-
ties. We obtained a sample of daily variance swap transactions

18. We discuss the robustness of our findings to inclusion of additional factors
in Section IV.A.
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TABLE I
TERM STRUCTURE LIQUIDITY

Asset class Liquidity measure Maturity
0-12 mo. 13-24 mo. 25-36 mo. 37-60 mo. >60 mo.
Variance swaps Vega (mil.) 10.0 7.2 4.2 0.5 0.1
0-6 mo. 7-12 mo. 13-18 mo. 19-24 mo. 25-36 mo.
Apple options Volume 390.2 51.3 56.3 35.7 29.5
Citigroup options  Volume 128.5 81.7 106.1 57.2 29.1
Euro options Volume 20.8 9.2 2.6 1.5 1.1
Yen options Volume 74 4.2 4.1 31 1.7
STOXX 50 options Volume 1,183.3 451.9 277.9 128.6 55.9
DAX options Volume 321.0 98.3 68.2 40.9 14.1
Gold futures Volume (thous.) 152.8 2.8 0.8 0.4 0.8
Crude oil futures ~ Volume (thous.) 504.3 48.1 17.2 8.4 9.1
0-5yr. 6-10yr. 11-20yr. 25 yr. 30 yr.
U.S. inflation swaps Bid-ask spread 1.7% 0.8% 0.8% 0.7% 0.8%
EU inflation swaps Bid-ask spread 3.2% 1.9% 2.1% 2.0% 1.9%
0-3 yr. 4-6yr. T-11yr. >1lyr
Treasuries Volume ($bil.) 165.2 124.5 116.8 29.0
0-2 yr. 3—4 yr. 5-6yr. 7-12yr
Brazil CDS Volume (% of tot.) 5.4 4.1 82.0 8.4
Russia CDS Volume (% of tot.) 22.6 7.0 58.8 11.5
GE CDS Volume (% of tot.) 39.5 23.7 21.1 15.8
BofA CDS Volume (% of tot.) 13.2 18.3 53.9 14.6

Notes. Volume and vega statistics are daily averages. Volumes are reported in number of contracts for

options and futures markets and in dollar volume for Treasuries. CDS averages are the fraction of trades
ask-bid

occurring in each maturity bin. Percentage bid-ask spreads are defined as 100 — .
E(ask-v»bld)

collected by DTCC between March 2013 and June 2014, and the
first row of Table I summarizes trading volume from this sam-
ple. Volumes are reported as the average daily vega (in millions)
transacted between counterparties; the table shows that swaps
are frequently traded at all maturities up to 24 months, and there
is even some volume at longer maturities. Bid-ask spreads for ma-
turities up to 24 months are relatively low at 1-2% of the claim
price.'® Our estimation uses daily price data for cumulative claims

19. In addition, the liquidity of the swap market is supported by option market
liquidity. Variance swaps are anchored to the prices of S&P 500 index options by
a no-arbitrage relationship because options can be used to synthetically replicate
the swap.
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at maturities 1, 2, 3, 6, 12, and 24 months during the period 1996—
2013.

Figure I presents variance ratios from the regression-based
test. The unrestricted price variance at 24 months more than
doubles the variance allowed under the affine-pricing model’s re-
striction. Comovement among prices at the short end of the curve
suggests that cash flows mean revert relatively quickly under
Q. But this is not borne out on the long end—model-restricted
volatilities increase with maturity at a much slower rate than
the unrestricted volatility. This long maturity overreaction is rel-
ative to the short end, and relative to the estimated affine model.
Table II, Panel A reports the variance ratio test using the KF-
MLE method. These results are economically and statistically the
same as the regression-based test results.

Plotting price variability in terms of standard deviation is
convenient for visualizing the degree of cash flow persistence
under the pricing measure. For example, in a one-factor model
with p¢ > 0, the model-based standard deviation of an n-maturity
claim is (Z;?:l(pQ)f)./Var(pt_l). If p¢ = 1, so that cash flows are
integrated under the pricing measure, then the standard devia-
tion is a linear function of maturity. On the other hand, if p© < 1,
then the standard deviation of price is a concave function of matu-
rity. For variance swaps (indeed, for all other term structures we
study), the unrestricted estimate of price volatility is concave in
maturity, suggesting stationarity of cash flows under the pricing
measure.

Three points warrant emphasis regarding these results. First,
the excess volatility of long-maturity claims cannot be explained
by discount-rate variation that is describable within the affine
class, as this is subsumed by the Q model. Second, the data
are exceedingly well described by a linear factor model (as ev-
ident from the unrestricted R?), but with factor loadings that
sharply differ from those implied by model restrictions. Figure
IT separately plots regression loadings of prices on each factor
for both the restricted and the unrestricted model.?° The figure
shows that long-maturity prices overreact because they load too
heavily on both factors, relative to the loadings predicted by the
null model. Third, the close similarity between likelihood-based
and regression-based variance ratios suggests that the excess

20. These plots look essentially identical in the KF-MLE approach.
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TABLE II

VARIANCE RATIO TESTS

93

Model Estimation method
Asset K R? Regression KF-MLE
Panel A: Equity variance
6 mo. 12 mo. 24 mo. 6 mo. 12 mo. 24 mo.
Variance swaps 2 99.7 1.00 1.22** 2.15** 1.03  1.31** 2.49**
12 mo. 18 mo. 24 mo. 12 mo. 18 mo. 24 mo.
Apple IV 2 99.3 1.21**  1.56** 2.01** 1.30** 1.80** 2.42%*
Citigroup IV 2 99.7 1.82** 3.17** 4.68** 1.33**  0.99 0.61
STOXX 501V 2 994 1.22%*  1.68** 2.27** 1.16** 1.50** 1.97**
DAX IV 2 994 1.22**  1.68** 2.31** 1.17** 1.56** 2.08**
Panel B: Currency variance
12 mo. 18 mo. 24 mo. 12 mo. 18 mo. 24 mo.
Euro IV 2 99.8 1.22%*  1.65** 2.14** 1.13* 1.38** 1.65**
Yen IV 2 98.5 1.67 2.85%* 457* 1.15 1.18 1.22
Panel C: Interest rates
20yr. 25yr. 30yr 20yr. 25yr. 30yr
Treasuries 3 99.9 1.20%* 1.39** 1.64** 1.43 1.92 2.04
Panel D: Inflation
20yr. 25yr. 30yr 20yr. 25yr. 30yr
U.S. infl. swaps 4 99.4 3.37**  B.54** 7.4T7** 2.10** 2.85** 3.91**
EU infl. swaps 4 99.1 1.74**  2.45%* 2.89** 2.65%* 5.48** 8.51**
Panel E: Commodities
6 mo. 12mo. 24 mo. 6 mo. 12 mo. 24 mo.
Crude oil fut. 2 99.6 1.01**  1.19** 1.63** 0.99 1.01 1.14
Gold fut. 2 99.5 1.04*  1.19** 1.53** 1.13*  2.46* 9.33
Panel F: Credit
5 yr. Tyr. 10yr. 5yr. Tyr. 10yr.
Brazil CDS 2 99.8 1.19** 1.64** 3.08** 1.28%* 1.71** 2.60**
Russia CDS 2 99.8 1.14** 1.46** 2.18** 1.19** 1.63** 2.71**
GE CDS 2 995 1.12**  1.13** 1.45** 1.33** 1.76** 3.50**
BoA CDS 2 99.7 1.06%* 1.14** 1.38** 1.03 1.00 1.02

Notes. The table reports long-maturity variance ratio test results. Regression-based estimates are reported
on the left side and likelihood-based estimates are on the right. Significance for the one-sided test that the
variance ratio is greater than one at the 1% level is denoted by ** and at the 5% levels by *.
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First factor

FiGUre 11
Variance Swaps: Individual Factor Loadings

The figure plots loadings of prices at each maturity on the two factors. Thick
lines indicate the unrestricted model and thin lines the restricted model. Dashed
lines are 95% confidence bands.
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FiGure 111
Estimates of p@ by Maturity

The figures plot estimates of persistence parameters in the two-factor variance
swap model from different points in the term structure. The left panel shows
loadings on the first factor, the right panel loadings on the second factor. Dashed
lines are 95% confidence bands.

volatility is a robust phenomenon and is not explained by mea-
surement error.

Figure IIT provides a different visualization of how the
data deviate from the affine model. In the regression test, we
estimate factor persistences by regressing the third-shortest-
maturity claim on the first two. Figure III shows estimated factor
persistences when we use data from different points along the
maturity curve. First, we estimate p? from a regression of matu-
rity 3 on maturities 1 and 2, then from a regression of 6 on 2 and
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3, then 12 on 3 and 6, and finally 24 on 12 and 6. Under the null
of the affine model, both sets of factor loading estimates should
be flat, as the implied factor persistence should be internally con-
sistent along the curve. Instead, the figure shows that estimated
persistence increases with maturity (for both factors). In other
words, it is as though investors treat factors as more persistent
when valuing longer maturity claims.

II1.B. Equity Implied Variance

We next turn to option markets. Like variance swaps, op-
tions allow investors to trade term structures of equity volatility.
But the options market is much richer in that claims are liquidly
traded for hundreds of underlyings beyond the S&P 500 index.
A relative drawback of the option market is that while variance
swaps fall neatly into the affine framework of Assumptions 1 and
2, options do not.

Fortunately, well-known results in the option-pricing litera-
ture establish that variance swaps and, closely related, volatil-
ity swaps, can be accurately approximated using options. Brit-
ten-Jones and Neuberger (2000) and Jiang and Tian (2005) show
how a portfolio of options with different strike prices replicates
a variance swap, while Carr and Lee (2009) show that at-the-
money Black-Scholes implied volatility approximates the price of
a volatility swap. Synthetic swaps constructed from options are
frequently encountered in practice. The most prominent example
is the VIX index maintained by the Chicago Board Options Ex-
change, whose squared value replicates the price of a variance
swap on the S&P 500 index.

Following the seminal work of Stein (1989) on excess volatil-
ity in the options market, and motivated by the synthetic swap
results referenced above, we treat implied variances as proxies
for the price of a claim to realized variance. That is, we conduct
our tests using at-the-money Black-Scholes implied variances as
the term structure of prices. We study option term structures
for two individual stocks, Apple and Citigroup, which are the
two most actively traded single-name term structures in Option-
Metrics by contract volume. These data are from the IVY DB US
file and are available from 1996 to 2014. We also study options
for the two most liquid international stock indexes, STOXX 50
and DAX, which are from the IVY DB Europe file covering 2002—
2013. Options for all underlyings are liquidly traded up to at least
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24 months to maturity, as shown in Table I. We set K = 2 follow-
ing the variance swap literature, and find that two factors explain
more than 99% of the panel variation in implied variances for each
of the option term structures we examine.

Table IT, Panel A reports excess volatility tests and shows that
equity option term structures possess the same excess volatility
pattern as S&P 500 variance swaps. Variance ratios at the longest
maturities range between 2.01 and 4.68, depending on the under-
lying and the estimation method, and are significantly different
than one at the 1% significance level or better. The exception is
Citigroup, for which the KF-MLE variance ratio drops below one
and the likelihood ratio test of joint restrictions fails to reject the
affine model.

II1.C. Currency Implied Variance

We next test the term structure of claims to exchange rate
volatility. To do so, we analyze the currency option market and
use the same model specification that we used for equity options.
Currency options are traded on the Chicago Mercantile Exchange
(CME), and the two most liquid term structures are for options on
the euro and yen versus the U.S. dollar. Our tests use options on
currency ETFs from OptionMetrics, whose data are more complete
and avoid recording errors that occasionally surface in the CME
data. Not coincidentally, the euro and yen (via the FXE and FXY
tickers of the Guggenheim CurrencyShares ETF family) are also
the most liquid currency ETF options. Table I shows that there
is daily volume for these contracts at maturities up to at least 24
months.?! Our sample runs from 2007 to 2014.

The currency patterns in Table II, Panel B are qualitatively
similar to those of equity variance claims. Regression-based vari-
ance ratios at 24 months are 2.14 and 4.57 for euro and yen,
respectively, and are significant at the 1% level and 5% level, re-
spectively. The KF-MLE variance ratio is 1.65 for the euro, again
highly significant. It drops to 1.22 for the yen and is insignifi-
cant. However, the yen likelihood ratio test rejects the joint affine
restrictions for all maturities with a p-value below 1%.

21. We have also verified that CME and OptionMetrics implied variances
share an extremely close correspondence on the subset of days for which reliable
CME data are available.
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II1.D. Interest Rates

U.S. government bond prices are among the most well-studied
data in all of economics. U.S. bond data comes from Gurkaynak,
Sack, and Wright (2006). Our tests use daily zero-coupon nominal
bond yields with maturities of 1 through 30 years for the period
1985-2014. The U.S. Treasury market is also among the most lig-
uid markets in the world. The Securities Industry and Financial
Markets Association (SIFMA) provides average daily dollar vol-
umes in coarse maturity bins for 2002-2014, which we report in
Table 1.

We estimate a standard homoskedastic exponential-affine
model for yields. We choose K = 3 factors based on broad consen-
sus in the interest rate literature. We discuss this specification in
detail in Online Appendix B and perform a robustness analysis
with respect to heteroskedasticity.

The variance ratio tests in Table II, Panel C show excess
volatility at long maturities in the Treasury curve. The variance
ratio reaches 1.64 at 30 years in the regression test and 2.04 with
KF-MLE. While the KF-MLE variance ratio is not statistically
significant, the magnitude of excess volatility is in line with the
regression test and our findings for other asset classes. Further-
more, the likelihood ratio test rejects the joint affine restrictions
using all maturities with a p-value below 1%.

IIL.E. Inflation Swaps

Inflation swaps are claims whose payoffs are proportional to
realized CPI inflation over the life of the contract. We obtain U.S.
and EU inflation swap price data from Bloomberg. This includes a
full term structure of maturities between 1 and 30 years observed
at the daily frequency and available for the period 2004-2014.
Our inflation swap data do not include volume. We do observe bid-
ask spreads, however, and report average spreads in Table I to
provide a sense of liquidity. Spreads are approximately 1% of the
U.S. inflation swap price, 2% for the EU data, and are somewhat
larger at short maturities. Our U.S. inflation swap data are also
studied in Fleckenstein, Longstaff, and Lustig (2013). The Federal
Reserve report of Fleming and Sporn (2013) notes that “The U.S.
inflation swap market is reasonably liquid and transparent. That
is, transaction prices for this market are quite close to widely
available end-of-day quoted prices, and realized bid-ask spreads
are modest.”
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The term structure model for inflation swaps falls within the
exponential-affine specification of Section II, as we describe in
Online Appendix F. We set K = 4, which is the number of factors
required to explain at least 99% of the variation in the panel
of swap prices. Table II, Panel D shows that 20-year regression-
based variance ratios are 3.37 in U.S. data and rise to 7.47 for
30 years. In EU data, the 20-year regression-based variance ratio
is 1.74 and the 30-year is 2.89. KF-MLE corroborates the excess
volatility assessed by the regression method.

III.F. Commodity Futures

We next analyze the term structure of commodity futures. We
study the most liquid energy commodity, crude oil, and the most
liquid metal, gold, based on volume data from CME Group. Con-
tracts for both commodities are heavily traded at both the short
end (1 month) and long end (24 months) of the term structure, as
shown in Table 1.

Commodity futures reflect Q-expectations of the future price
of the underlying, which is in turn linked to the current price of
the underlying and to the Q-expectation of the convenience yield.
One of the advantages of modeling only the Q measure is that we
do not have to explicitly model or estimate the physical process
for the convenience yield and can instead work solely with futures
prices. Online Appendix F describes how we map futures prices
into the exponential-affine setup. We apply our tests with K = 2
factors.

Table II, Panel E shows that the regression-based 24-month
variance ratio reaches 1.63 for oil and 1.53 for gold, both sig-
nificant at the 1% level. The KF-MLE analysis corroborates this
pattern, but with weaker statistical significance.

II1.G. Credit Default Swaps

Credit default swaps (CDS) are the primary security used to
trade and hedge default risk of sovereigns and corporations. As
of December 2014, the outstanding notional value of single-name
CDS was $10.8 trillion. Our CDS data are from MarkIt, which
reports maturities from 1 to 30 years.

We analyze CDS for the two most liquid sovereign names
(Brazil and Russia) and two most liquid corporate names (Bank
of America and General Electric) based on average daily notional
dollar volume reported by the DTCC and aggregated over all
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maturities. Using more detailed confidential DTCC data, Siriwar-
dane (2015) summarizes the distribution of daily contract volume
by maturity for the term structures we study from 2010-2014,
which we report in Table I. These show that while much of the
volume is concentrated near the five-year contract, there is sub-
stantial activity in maturities below three years and above seven
years. We study maturities of 1, 2, 3, 5, 7, and 10 years over the
2007-2014 sample.

In Online Appendix F we describe how we map CDS prices
into the framework of Section II. The link to the affine setup is
based on an exponential-affine specification for defaultable bonds
from Duffie and Singleton (1999), noting that the CDS spread
can be expressed as an approximate linear function of the yield
of a defaultable bond. Our CDS model sets K = 2 following a
literature using two-factor models to describe term structures of
credit spreads.??

Regression-based 10-year variance ratios for sovereign CDS
of Brazil and Russia are 3.08 and 2.18, respectively. They are 1.45
and 1.38 for General Electric and Bank of America, respectively.
In all four cases the regression-based statistics are significant at
the 1% level. The KF-MLE results are similar: they remain large
and significant for Russia, General Electric, and Brazil (but not
for Bank of America).

The general conclusion from Table II is that excess volatil-
ity of long-maturity claims is a pervasive phenomenon. The sim-
ple regression-based tests indicate that excess volatility is eco-
nomically large and highly significant in all asset classes. The
likelihood-based tests, which are robust to measurement error,
appear somewhat noisier but convey the same overall picture as
the regression analysis.

IV. POTENTIAL SOURCES OF VIOLATION

In this section we explore potential explanations for excess
price volatility relative to the affine-Q model. We classify possibil-
ities into two categories. The first category is model misspecifica-
tion, such as the rejection of Q restrictions being due to dynam-
ics that are not affine under Q. The section shows that a broad
range of nonaffine no-arbitrage models cannot explain the excess

22. See Madan and Unal (2000) and Christensen and Lopez (2008).
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FIGURE IV
Variance Swaps: Varying the Number of Factors

See Figure 1.

volatility patterns, mainly because affine models approximate
nonlinear models remarkably well.

The second category of explanations we explore is mispric-
ing arising from expectation errors. We analyze term structure
pricing predictions in a leading model of extrapolative expecta-
tions. The model produces long-maturity excess volatility closely
consistent with observed data patterns and offers insight into the
key modeling features that generate these patterns. We also show
that trading against excess volatility appears profitable above and
beyond the risk endured.

Our intention in this section is not to exhaustively explore
alternative explanations. Nor can we categorically rule out some
forms of misspecification. Instead, our aim is to provide the reader
with intuition for how various affine-model violations impact the
behavior of variance ratios.

IV.A. Missing Factors

Even if the true model were an affine-factor model, prices
might appear excessively volatile if the estimated model has too
few factors relative to the truth.

Figure IV shows variance swap tests when we increase the
number of factors in the null model from two to three. The two-
factor case is the main result reported in Figure I, which has an R?
0f 99.6% and a long-end variance ratio of 2.15. With three factors,
the R? exceeds 99.9%, and the regression-based test continues
to produce large economic and statistical rejections of the affine
model with essentially identical variance ratios (VRyy = 2.16).
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Similarly, with three factors in the KF-MLE specification, we find
VRy4 = 2.04 with a p-value below .001. We see this type of behavior

throughout the asset classes we study, and provide further details
in Table II of Online Appendix G.2?

IV.B. Long Memory

Excessive volatility of long-lived claims intuitively raises the
possibility that our findings are due to long-memory cash flow
dynamics that are poorly captured by the more rapid, geometric
mean reversion inherent in affine models.

Our data suggest that cash flows are stationary under Q in all
asset classes we study; this is for example evident from the con-
cave shape of price volatility versus maturity. However, it is pos-
sible that cash flows are stationary under Q yet they mean revert
more slowly than an autoregression would suggest. Granger and
Joyeux (1980) propose the broad class of fractionally integrated,
or ARFIMA, models to capture precisely this type of long-memory
behavior. An ARFIMA process is indexed by a parameter d that
determines its degree of long-range dependence. When d is in the
interval (0,0.5), it is positively fractionally integrated yet station-
ary (the special case of d = 0 corresponds to a standard ARMA
process).

We investigate the effect of estimating an affine (short-
memory) model when the data are in fact fractionally integrated.
No-arbitrage term structure prices become intractable to derive
analytically in the ARFIMA setting, but are easily evaluated
via simulation. We simulate term structure prices assuming an
ARFIMA(1,d,0) model using a grid of values for d € (0, 0.5) and val-
ues of the AR coefficient of 0.25, 0.50, or 0.75.2* Figure V demon-
strates the range of long-memory behavior that is embedded in
our simulated term structure. The extremely slow decay for the
case d = 0.49 illustrates how an ARFIMA process is difficult to

23. There is always a factor model that delivers variance ratios equal to 1—it
is a model with the number of factors equal to the number of observed maturities.
This extreme specification is a reminder that the modeler’s objective is to maximize
the variety of phenomena explained while minimizing the number of inputs and
parameters necessary to do so. Adding factors eats up valuable cross-equation
restrictions that give the model its economic and statistical content.

24. For these simulations as well as the simulations of Table VI, we generate
data assuming that the P distribution is the same as the Q distribution, thus
imposing that risk premia are 0.
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FIGURE V
Long-Memory Mean Reversion

ARFIMA(1,d,0) reversion from a one standard deviation shock to the process’s
mean value of 0 over 25 periods, assuming an AR(1) coefficient of 0.75 and d values
of 0, 0.10, 0.30, and 0.49.

distinguish from an integrated process as d approaches the upper
limit of the stationary range.

We calculate prices at maturities up to 24 periods and use
a time series sample size of 1,000 periods. Then we estimate
and construct variance ratio tests using the misspecified, short-
memory affine model with either one, two, or three factors. Results
reported in Table IIT show that it is uncommon to find a model
that produces an R? greater than 99% along with a variance ratio
above two. When this does occur, it is because the long-memory
behavior is close to nonstationary. In these cases, inclusion of
an “extra” factor brings variance ratios close to one. Evidently,
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TABLE III
EFFECTS OF LONG MEMORY

AR(1) = 0.25 AR(1) = 0.50 AR(1) = 0.75
d K R® VR VRuw R® VR VRy  R® VR VRy
010 1 968 20 29 991 13 17 999 1.0 11
010 2 1000 1.0 12 1000 1.0 10 1000 11 12
010 3 1000 1.0 10 1000 1.0 1.0 1000 10 10
020 1 971 24 41 989 15 22 999 09 09
020 2 1000 1.0 12 1000 10 1.0 1000 11 13
020 3 1000 1.0 10 1000 10 10 1000 10 10
030 1 977 25 48 99.1 15 24 999 0.7 06
030 2 1000 1.0 11 1000 12 14 1000 10 13
030 3 1000 1.0 10 1000 10 10 1000 10 1.1
040 1 983 24 50 994 13 22 999 05 03
040 2 1000 1.0 11 1000 15 28 1000 10 12
040 3 1000 1.0 10 1000 10 1.0 1000 1.0 1.1
049 1 987 23 49 996 11 18 999 04 0.1
049 2 1000 1.0 10 1000 14 27 1000 10 12
049 3 1000 1.0 11 1000 1.0 1.0 1000 10 12

Notes. Variance ratios and R? computed in simulations of an ARFIMA(1,d,0) model. d corresponds to the
order of integration; K is the number of factors used in the variance ratio test. VR19 and VRgy4 are the variance
ratios at 12- and 24-month maturities. AR(1) is the autoregressive coefficient in the ARFIMA model.

despite its incorrect specification, the affine model with two fac-
tors is an accurate enough approximation of the ARFIMA process
that the misspecification can go undetected.

IV.C. Nonlinearities

A third potential explanation of our findings is that cash flows
evolve nonlinearly. We explore the effects of estimating and testing
restrictions of a misspecified affine model when the true cash flow
process has nonlinear dynamics. To do so, we study a class of
processes known as STAR models.?> As emphasized by Granger
and Terésvirta (1993), STAR models encompass a broad variety
of nonlinear dynamics that have proven successful in modeling
economic time series. Although far from exhaustive, they allow us
to gain some insight into the role that nonlinearities play in our
empirical results.

25. See Terdsvirta (1994) for a detailed econometric treatment of STAR models.
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Nonlinear Cash Flow Dynamics

The figure shows how the conditional mean of a logistic STAR process depends
on the current value of the process x;. The lines and panels correspond to different
parameterization of the STAR process that vary y and p parameters.

We assume that cash flows evolve according to the one-factor
nonlinear process

a7 xr = pxy—1(1 — (1 + e 71791
+ (1= (14 e 7wl L

Equation (17) is the most commonly used variant in the STAR
class and is known as the logistic STAR model. It nests the
standard linear autoregression, but allows the process to tran-
sition between high and low serial correlation depending on the
state of the process.?® The degree of nonlinearity is governed by
two parameters, p and y.

Figure VI plots the model-implied relationship between x; and
E;@ [x11], illustrating the extent of nonlinearity accommodated by
STAR models. When p is close to either 0 or 1, the model exhibits
extreme state-dependence in cash flows, transitioning between
dynamics that are very persistent in some periods and nearly

26. By incorporating time variation in autocorrelation, the STAR model’s non-
linearities mimic parameter instability that may arise, for example, from investors
learning about p.
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TABLE IV
EFFECTS OF NONLINEARITY

p=0.01 p=0.10 p=0.25

y K R?2  VRyy VRy R?2 VR VRu R?2 VR VRu

0.1 1.0 100.0 1.00 1.00 100.0 1.00 1.00 100.0 1.00 1.00
0.1 2.0 100.0 1.00 1.00 100.0 1.00 1.00 100.0 1.00 1.00
0.1 3.0 100.0 1.00 1.00 100.0 1.00 1.00 100.0 1.00 1.00

0.5 1.0 98.6 122 1.49 99.9 1.04 1.04 100.0 1.00 1.00
05 2.0 100.0 1.04 1.16 100.0 1.01 1.02 100.0 1.00 1.00
0.5 3.0 100.0 1.01 1.09 100.0 1.00 1.00 100.0 1.00 1.00

1.0 1.0 99.8 1.02 1.04 99.7 1.05 1.07 100.0 1.01 1.01
1.0 2.0 100.0 1.01 1.01 100.0 1.01 1.01 100.0 1.00 1.00
1.0 3.0 100.0 1.00 0.98 100.0 0.99 0.99 100.0 1.00 1.00

5.0 1.0 999 1.00 1.01 999 1.01 1.02 100.0 1.00 1.00
5.0 2.0 100.0 1.00 1.00 100.0 1.00 1.00 100.0 1.00 1.00
5.0 3.0 100.0 1.00 0.99 100.0 1.00 0.99 100.0 1.00 1.00

Notes. Variance ratios and R% computed in simulations of a logistic STAR model with parameters y and p.
K is the number of factors used in the variance ratio test. VR19 is the variance ratio at 12 months maturity,
and VRyy is the test at 24 months.

i.i.d. in others. For a given value of p, higher y produces higher
curvature and can even mimic a kink when y is very large.

We simulate no-arbitrage prices in the STAR model at matu-
rities up to 24 periods and use a time series sample size of 1,000
periods. Then we estimate and construct variance ratio tests using
the misspecified affine model with up to three factors. The results
are reported in Table IV. In this large family of nonlinear models
(including rather extreme nonlinearities under certain parame-
terizations), the variance ratio does not rise far above one in any
specification. In other words, the affine specification is a very good
approximation to the true nonlinear Q-dynamics and the vari-
ance ratio does not detect significant violations of cross-equation
restrictions.

In Online Appendix H we explore more complex nonaffine
specifications, including heteroskedastic STAR models, mixture
STAR/long-memory models, and multifractal models. The behav-
ior of variance ratios in these simulated settings is similar to those
in Tables IIT and IV.

IV.D. Measurement Error

A fourth form of model misspecification that can lead to high
variance ratio estimates is measurement error in short-maturity

Downl oaded from https://acadeni c. oup. conf gje/article-abstract/133/1/71/4095200
by Yal e University user

on 12 February 2018


file:qje.oxfordjournals.org

106 QUARTERLY JOURNAL OF ECONOMICS

prices. The KF-MLE analysis of Section III suggests that our find-
ings persist after accounting for noise in prices. Here we expand
on this evidence in two ways.

First, we calibrate the magnitude of measurement error
needed to generate the excess-volatility patterns we see in the
data. To do so, we simulate data from an affine model and ask
how much error is needed on the short end of the curve to match
observed variance ratios. To simulate affine models that are as
close as possible to variance swaps and Treasuries, we estimate
the model from the short end of each curve and construct the new
data set using the fitted prices from the model. These artificial
prices satisfy affine-model restrictions at all maturities by con-
struction. Next, we add i.i.d. measurement error to this artificial
data set, reestimate the model, and calculate variance ratios. We
choose the size of the measurement error to match the variance
ratios from our regression-based tests at the longest available ma-
turity. For variance swaps, we find that measurement error must
have a standard deviation of more than two volatility points at
the short end of the curve to match long-maturity variance ratios.
This is five times larger than the average bid-ask spread of short-
dated variance swaps. For Treasuries, we need measurement er-
ror to have a standard deviation of at least 10 basis points, or
more than 10 times the average bid-ask spread of short-maturity
bonds. Thus, in both markets, we require unrealistically large
measurement error to produce variance ratios as high as those we
document.

We conduct a related calibration in which, rather than adding
simulated i.i.d. measurement error to fitted affine prices, we add
actual estimated measurement errors from the unrestricted KF-
MLE estimation. Regression-based variance ratios for these gen-
erated prices show that estimated KF-MLE measurement error is
likewise unable to produce variance ratios as high as we observe
in the actual data (results are reported in Table IV of Online
Appendix G). For example, counterfactual variance ratios reach
at most 1.18 for variance swaps, and are smaller in other asset
classes.?’

State space methods (KF-MLE) are one way to account for this
error and achieve unbiased estimates. Another way to overcome
errors in variables is by finding suitable instruments for latent
factors and using instrumental variables (IV) regression. We use

27. We are grateful to our referee for suggesting this.
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F1Gure VII
Instrumental Variables Adjustment for Measurement Error

This figure compares OLS regression-based variance ratios (left panel) to those
based on IV regression (right panel) for the term structure of variance swaps.

IV to construct a modified regression-based test that is robust to
measurement error and evaluate how close the resulting variance
ratio statistic is to the OLS method.?®

We conduct this test for the variance swap term structure,
and instrument the two latent factors using S&P 500 index return
realized variance and the VIX. Both variables are closely related to
variance swap prices, but are valid instruments because they have
no direct relationship with measurement error in the variance
swap prices. Realized variance depends only on the return of the
S&P 500, and VIX is calculated from exchange-traded options
while variance swaps are OTC.

Figure VII compares variance ratios from OLS and IV regres-
sion approaches. Test statistics based on the IV adjustment are
very similar to those in the baseline estimation, further indicat-
ing that measurement error does not explain the excess-volatility
patterns we find.

1. Cautionary Note on R?. Throughout our analysis we find
term structure panel R?’s above 99% using a small number of fac-
tors in our regression-based analysis. A high regression R? does
not rule out misspecification due to omitted factors or measure-
ment error that is unaccounted for. That is, the intuition that a
regression R? of 99% is almost the same as 100% is potentially
flawed.

28. See Online Appendix E for IV test construction details.
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To illustrate, Online Appendix K describes a two-factor affine-
pricing example. One factor is highly volatile and has little persis-
tence. The other has very low volatility but is highly persistent.
In addition, the model includes a small amount of measurement
error in prices. Measurement error volatility is less than 1% of the
total price volatility.?°

If we incorrectly specify this model to have a single factor, we
essentially identify the high-volatility factor and this is enough to
produce a panel R? of 99% in a regression on the first maturity
alone. If we correctly specify this model to have two factors, we
find that the regression R? exceeds 99.5%. In both cases, however,
we find long-maturity variance ratios that significantly exceed one
in regression-based tests. In the first case, this occurs primarily
because a factor has been omitted, and this omission would have
been hard to detect due to the high R2. This highlights the value
of robustness tests in Figure IV and Table II in which we consider
specifications that allow for additional factors.

In the second case, we see that comparatively small measure-
ment error in an otherwise correctly specified model can bias the
regression test toward a mistaken rejection of the affine null. This
case highlights the importance of our alternative testing schemes.
The KF-MLE likelihood function explicitly accounts for measure-
ment error on the short end of the curve. In doing so it produces
an unbiased variance ratio statistic and therefore does not re-
ject the affine model. When instruments for the latent factors
are available, IV estimation likewise does not reject the (correct)
affine null. We refer readers to Online Appendix K for additional
detail about this example, including a comparison of variance ra-
tio statistics from regression, KF-MLE, and IV tests.

IV.E. Excess Volatility and Mispricing

A fifth possibility for explaining variance ratios greater than
one is that some claims are subject to temporary mispricing. This
is another way of stating the joint hypothesis problem that arises
in any asset-pricing model test: is a rejection indicating that the
null model is incorrect, or that the model is right on average but
asset prices sometimes deviate from “true” value?

Two questions arise as we consider the possibility that prices
occasionally reflect mispricing. First, can we find evidence that

29. We are grateful to our referee for suggesting this example.
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favors this view over the alternative of an incorrect econometric
model with no mispricing? Second, what type of investor behavior
might lead to mispricing? We address these questions in turn.

1. Trading Strategy Evidence. An approach that begins to
address the joint hypothesis problem is to understand whether
model deviations appear profitable, above and beyond equilibrium
compensation for bearing risk. If there exists a strategy that ex-
ploits deviations from the null model to earn large trading profits
while taking on little risk, it may be evidence of mispricing as a
driver of excess volatility.

Under the null of a K-factor affine model, we can check at
any point whether a long-maturity claim is over- or underpriced
relative to the model by comparing traded prices against model-
fitted prices. Our evidence of long-maturity overreaction suggests
that large increases in short-maturity prices tend to drive long-
maturity prices above their model-predicted values. Similarly,
large drops in the short end tend to push long-end prices below
their predicted value. These amount to temporary mispricings of
long claims relative to the model.

The strategy presumes that the estimated affine model is cor-
rect on average, so that observed price deviations from the model
are temporary and expected to correct. Under this presumption,
an investor who detects that traded prices at some maturity have
deviated from those predicted by the model can exploit the devi-
ation and can hedge the underlying factor risk using claims at
other maturities.

To make the strategy concrete, consider taking a position at
time ¢ in a cumulative claim with maturity NV + n > K and holding
this position for n periods.>’ At ¢4+n, the maturity of the position
has shortened to NV, and is expected to have a correct price (based
on the model) of

(18) DPiinN = N + By Prini1k,

where ay and By are model-implied coefficients as in equations (9)
and (10). Over the n-period investment period, the claim has paid
out cash flows of x;,1, ..., Xpn.

30. In this section we focus on cumulative claims. Online Appendix J presents
an alternative trading strategy based on forwards, suggested by our referee.
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TABLE V
REPLICATION STRATEGY FOR TRADING
Strategy A Strategy B
Date  Ongoing value  Cash flows Ongoing value Cash flows
t Pt,N+n 0 /3],\]PL1+/1:K+IL + (1 - ﬂ]/vl)Pln 0
t+1  pPry1,Nen-1 X1 ﬁ]’va‘l+n—l:K+n—1 + (1 — /31’\;1) P, X1
t+n Ptin,N Xttn ﬂ}\/PlIK +0 Xttn

Notes. Portfolio A buys the N+n-maturity claim at a price of p; yy,,. Portfolio B replicates .A under the
affine null model, investing the present value of «j; in the n-maturity risk-free bond (we simplify with a
risk-free rate of 0), buying all claims with maturities of n + 1, ..., n + K with the number of shares in each

claim given by the vector 8y, and buying (1 - ﬁ}VI) shares of an n-maturity claim.

Construction of the strategy works backward from ¢ + n (when
the trade is unwound) to initiation of the trade at time ¢. In par-
ticular, we seek a trade that is expected to have zero liquidation
value at ¢ + n, but that generates a positive cash flow at initiation.
Equation (18) suggests comparing the prices of two portfolios at
time ¢. Portfolio A simply buys the (N + n)-maturity claim at a
price of p; ni,. After holding A for n periods, it has yielded cash
flows of 441, . . ., x¢4n and has ongoing value of p; ., .

Portfolio 5 is designed to replicate the right-hand side of equa-
tion (18). First, it invests the present value of @ in the n-maturity
risk-free bond (for simplicity let us assume that the risk-free rate
is 0). Next, it buys all claims with maturities ofn + 1, ..., n + K,
corresponding to the price vector Py, + 1.,,+x. The exact number of
shares purchased in each claim is given by the vector 8y. Third,
it buys (1 — ﬂ}vl) shares of an n maturity claim with price p; ,.

After n periods, the risk-free bond has matured with a value
of oy and the position g, P; .+ 1., x has ongoing value of 8, Py, 1.x.
The n-maturity claim has expired with no remaining value, but
has ensured that the intermediate cash flows generated over the
life of the trade are exactly x;.1, ..., xt1n. In short, portfolio B
exactly replicates the expected future value of portfolio A and
exactly matches all intermediate cash flows generated by A, as
described in Table V.

Because portfolio B is an exact hedge to portfolio A according
to the model, any difference in the time ¢ initiation prices of A
and B represents a mispricing. If the price of B exceeds that of A,
the strategy establishes a long position in A and a short position
in B, and vice versa. This strategy generates a strictly positive
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cash flow at time ¢, exactly offsets all intermediate cash flows,
and has zero liquidation value in expectation.?! Note that even
when the investor’s presumed affine model is correct on average
(so that the investor can accurately detect temporary deviations
from the model) this is not a pure arbitrage. It is rather a “good
deal on average,” as the investor faces uncertainty about when the
deviation will correct and whether it will widen before shrinking.

We implement the trading strategy in the variance swap mar-
ket. We compute the return to this strategy taking into account
realistic margin constraints.?> We also execute the strategy on a
purely out-of-sample basis. That is, when deciding on a trade at
time ¢, estimated model parameters and position choices only use
data that an investor would have access to in real time. We reesti-
mate the model each day using the most recent 250 trading days.
We only trade in periods when the initiation profit IT is sufficiently
large, which avoids trading on small mispricings that are indistin-
guishable from estimation noise. We consider trading thresholds
based on the historical distribution of IT. Therefore, at each date
t, the initial profit is being compared only with backward-looking
information and the trading choice preserves the out-of-sample
character of the trade.

The “Variance swaps” column in Table VI reports the annual-
ized Sharpe ratios of a trading strategy using month-end prices,
for a one-month holding period (n = 1), with various choices for
the maturity of the long-end claim being traded (N + n = 15, 18,
21, or 24 months), and with various thresholds for trade initiation

31. In practice, the liquidation equation (18) does not hold exactly. To minimize
the liquidation risk, ay and By are based on unrestricted regressions of N-maturity
prices on prices for maturities 1 through K. This minimizes the squared liquidation
error.

32. We assume that each trade must be fully collateralized on both the long
position and short position. That is, if the strategy is allocated C dollars of capital
to invest, the absolute value of costs for the buy and sell positions must not exceed
C. We denote g as the number of units we trade, which we solve for given the capital
requirement. Zg is the per unit cost of the short position, and Z;, the per unit cost
of the long position. We write Z;, = Zg — I1, where I > 0 is the immediate per unit
profit realized from the trade (no-arbitrage is equivalent to IT = 0). Therefore, the
number of units traded, ¢, must satisfy g < 3 Z;LH . This caps the number of units
that can be traded depending on capital and margin. Larger positions can be taken
when more capital is available and when haircuts are smaller. These constraints
also have the attractive feature that the size of the trade is increasing in the size
of the initial profit, I1, relative to a unit position in one leg of the trade, Zg. We
normalize trading capital C to one each period.
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TABLE VI
TRADING-STRATEGY SHARPE RATIOS

Longest
Mispricing maturity Variance Simulations
threshold traded swaps

Missing factor Long memory Nonlinear

50 15 0.73 —0.01 —0.01 0.00
50 18 1.17 —0.01 0.03 0.00
50 21 0.94 —0.01 0.00 0.01
50 24 0.56 —0.01 —0.02 0.01
75 15 1.43 0.00 0.00 0.01
75 18 1.68 0.00 0.00 0.01
75 21 1.37 0.00 —0.01 0.02
75 24 0.50 0.00 0.02 0.02
90 15 1.56 0.00 0.05 0.03
90 18 1.96 0.00 —0.02 0.03
90 21 1.91 0.00 —0.05 0.04
90 24 1.61 0.00 —0.05 0.05

Average 1.28 0.00 -0.01 0.02

Notes. The table reports annualized Sharpe ratios for trading strategies that exploit mispricing relative to
the affine-Q model. All strategies are implemented using information available to the investor at the time of
the trade, and use a one-month holding period (n = 1) for each trade. The first column reports at what level
of mispricing (relative to the historical distribution) a trade is executed. The second column reports which
maturity (N + n) the trading occurs on. The third column reports the trading strategy applied on actual
variance swap data, while the remaining columns implement the trading strategy on different simulated
data sets. Simulations are based on affine-Q models and therefore the investor operating the trading strategy
is using a misspecified model.

(equal to the 50th, 75th, or 90th historical percentile for I1).32 We
obtain consistently high Sharpe ratios in all cases, often above
1.5, and we find higher Sharpe ratios in cases where IT is required
to exceed a higher threshold (cases in which the model identifies
a large mispricing).

As highlighted earlier in this section, variance ratios above
one may arise due to model misspecification in the sense that ob-
served claims are never mispriced but the true model is not affine.
Trading based on a misspecified model, when in fact no mispric-
ings exist, should not produce trading profits. To confirm this in-
tuition, we also report results for our trading strategy applied in
simulated no-arbitrage models. We compare against three mod-
els in which long-maturity variance ratios are greater than one

33. The threshold maps approximately into the fraction of days traded, with
the 50th percentile trade triggered about half of the time and 90th percentile trade
initiated roughly 1 day in 10.
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because the estimated affine model is misspecified, but in which
the simulated claims are always correctly priced. These include

i. the two-factor affine model with p; = 0.9 and ps = 0.5, but
estimated assuming a one-factor structure;
ii. the long-memory ARFIMA model with d = 0.3 and AR(1)
coefficient 0.25;
iii. the nonlinear logistic STAR model with parameters
0 =0.01and y =0.5.

In each of these cases, we simulate a sample of 10,000 term struc-
ture observations and run the same trading strategy that we use
for the variance swap data. As expected, Sharpe ratios in these
cases are uniformly close to 0.

While the Sharpe ratios in the variance swap trade are on
average quite high, this is not evidence per se that long-maturity
claims are subject to mispricing. It is possible, for example, that a
trading strategy based on a misspecified model would yield high
average returns by inadvertently loading heavily on risk factors
that are not well captured by the affine model.

To test whether this is the case, we compute the alpha of
the trading strategy relative to various asset-pricing factors. We
focus on the 18-month maturity with a mispricing threshold of
50% and one-month holding period. We scale the trading strategy
to have a yearly standard deviation of 20%, comparable with the
market. The average annualized return of this strategy is 23%
and its Sharpe ratio is 1.26. The alpha relative to the Fama and
French (1993) three-factor model is 21% per annum and is highly
statistically significant, meaning almost none of the strategy’s
performance is captured by exposure to the Fama-French factors.
We obtain nearly identical results (alpha of 22%) when we add
two more factors representing shocks to the level and slope of the
variance swap curve.>* The Sharpe ratios associated with this
trading strategy thus do not seem explained by exposure to stan-
dard risk factors.

Figure VIII further details the performance of the trading
strategy. The upper left panel shows when the strategy calls for a

34. We construct variance swap term structure factors by first calculating
monthly returns to variance swaps at all maturities, then extracting the first two
principal components from this return panel. We construct alphas with respect to
a factor model that includes the Fama-French factors plus the two variance swap
factors. See Dew-Becker et al. (2015) for additional details.
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FiGure VIII
Variance Swap Trading-Strategy Performance

Behavior of one-month holding period returns when the trading strategy focuses
on long-end claims with 18 months to maturity and uses a backward-looking
mispricing threshold of 50% to determine whether a trade is initiated. The strategy
is scaled to have an annual standard deviation of 20%. Clockwise from the upper
left, we report the direction of trade in the long-maturity claim, time series of
monthly realized returns, rolling 60-month Sharpe ratio, and histogram of realized
returns.

buy or a sell position in the long maturity swap. The strategy fre-
quently changes the direction of the trade. In the average month,
the long-maturity claim is 26% likely to be traded in the opposite
direction from the previous month. This frequent sign switching
is the reason the strategy’s returns are essentially uncorrelated
with standard risk factors.

The upper right panel shows the time series of returns to the
strategy. It only trades when the signal is sufficiently strong (when
the deviation from the model price is greater than the median
historical mispricing). Returns during traded months are shown
by black circles, and returns in nontraded (weak signal) months
are shown in gray crosses. The histogram for returns in traded
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and nontraded months is shown in the lower left panel. Traded
returns are positively skewed. While some of the largest losses
occur during risky episodes, including a loss of 3.6% in August
1998 amid the Russian default and LTCM crisis and a loss of 3.1%
in January 2009, the overall Sharpe ratio during the financial
crisis is 0.49. The lower right panel shows subsample annualized
Sharpe ratios for the strategy calculated over a 60-month rolling
window. No one subsample appears to drive the strategy’s overall
performance, and the rolling Sharpe ratio never falls below 0.5.

Trading strategy results for variance swaps indicate that an
investor who treats the affine model as the true value process and
trades against deviations of actual prices from model predictions
earns high average returns, and these are not easily explained as
compensation for bearing risk. This supports the view that over-
reaction of long-maturity claims reflects temporary mispricing.
Yet it is by no means conclusive evidence of mispricing. It is al-
ways possible that high average returns represent compensation
for some risk that we have not accounted for in our model. In this
case, our trading strategy can be viewed as quantifying the eco-
nomic importance of risk factors and risk premia that are missed
by affine-Q models.

If the attractive performance of the excess volatility trading
strategy is due to mispricing, it is important to understand bar-
riers that prevent arbitrageurs from exploiting and eliminating
the anomaly (Shleifer and Vishny 1997). The most natural limits
to arbitrage to consider are transactions costs, which can be sub-
stantial in an OTC derivatives market such as that for variance
swaps. Industry sources suggest that variance swap transaction
costs are typically 1% to 2% of the value of a position, consis-
tent with the findings of Avellaneda and Cont (2011). We analyze
the strategy’s performance assuming trading costs of this mag-
nitude for all legs of the trade (long and short, at initiation and
liquidation). We assume that an investor takes these costs into
consideration and only initiates a trade when the mispricing is
sufficiently large after costs.

Table VII, Panel A reports Sharpe ratios and Panel B reports
the fraction of periods in which a trade is triggered for each version
of the strategy. Trading costs erode a substantial portion of the
strategy’s profits. A proportional cost of 2% entirely eliminates the
benefit of the one-month holding period strategy, indicating that
prices do not converge enough over one month to cover the cost
of trading. Convergence improves with longer holding periods of
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TABLE VII
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TRADING STRATEGY WITH TRANSACTION COSTS

Longest
Mispricing maturity
percentile traded 1 mo. 3 mo. 6 mo.

0% TC

1% TC

2% TC

1 mo. 3 mo. 6 mo.

1 mo. 3 mo. 6 mo.

Panel A: Sharpe ratio

50
50
50
50

75
75
75
75

90
90
90
90

Average

Panel B: Trading frequency

50
50
50
50

75
75
75
75

90
90
90
90

15
18
21
24

15
18
21
24

15
18
21
24

15
18
21
24

15
18
21
24

15
18
21
24

0.73
1.17
0.94
0.56

1.43
1.68
1.37
0.50

1.56
1.96
1.91
1.61

1.28

0.54
0.55
0.54
0.57

0.33
0.33
0.33
0.33

0.16
0.16
0.15
0.16

0.80
1.26
1.12
0.69

0.84
1.34
1.46
0.72

1.82
2.26
2.45
0.58

1.28

0.50
0.50
0.51
0.52

0.31
0.28
0.28
0.32

0.12
0.14
0.13
0.17

0.69
0.98
1.10
0.49

1.17
1.52
1.43
0.63

1.25
1.70
1.54
0.93

1.12

0.51
0.49
0.49
0.54

0.29
0.30
0.31
0.34

0.14
0.14
0.14
0.14

—-0.75
-0.11
-0.27
—0.88

—0.09
0.50
0.14

—0.70

—0.08
1.05
0.75
0.17

—0.02

0.47
0.47
0.49
0.50

0.30
0.28
0.30
0.27

0.14
0.14
0.14
0.15

0.30
0.77
0.69
0.22

0.49
0.99
0.97
0.23

1.07
2.28
2.18
0.23

0.87

0.44
0.45
0.43
0.44

0.25
0.26
0.25
0.29

0.10
0.10
0.09
0.13

0.56
0.84
0.80
0.16

0.86
1.13
1.02
0.51

1.02
1.59
1.20
0.60

0.86

0.39
0.43
0.45
0.45

0.24
0.24
0.28
0.27

0.11
0.12
0.13
0.11

—2.01
—-1.38
—-1.49

—0.23
0.40
0.31

0.16
0.52
0.34

-1.95 -0.24 —-0.13

-1.51
—0.87
-0.91
—1.47

-1.96
—0.69
—0.22
—1.46

-1.33

0.38
0.41
0.41
0.40

0.24
0.23
0.25
0.21

0.13
0.13
0.13
0.11

0.35
1.11
0.59
—0.22

0.55
1.69
1.49
0.50

0.53

0.34
0.39
0.37
0.38

0.21
0.23
0.22
0.21

0.09
0.09
0.08
0.12

0.35
0.73
0.72
0.18

1.33
1.19
1.04
0.54

0.58

0.32
0.35
0.38
0.35

0.18
0.22
0.22
0.21

0.06
0.09
0.11
0.10

Notes. Panel A reports annualized Sharpe ratios for variance swap trading strategies that exploit mispricing
relative to the affine-Q model assuming all positions pay a transactions costs (TC) of 0%, 1%, or 2% of the
value of the position. We consider holding periods of one month, three months, and six months. Panel B reports
the fraction of periods in which mispricings are sufficiently large to trigger a trade.

three or six months, in which cases the Sharpe ratio remains above
0.50 on average after costs. This represents more than a 50% de-
cline from the Sharpe ratio ignoring trading costs and requires
that arbitrageurs stomach convergence risk over longer intervals.
The table also suggests that, in response to trading costs, an ar-
bitrageur can boost Sharpe ratios by only trading on very large
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mispricings (such as those above the 90th percentile). Requiring
such a high threshold, however, reduces the number of tradable
periods to roughly 1 in 10. This is costly to arbitrageurs whose
undeployed capital idly awaits trading opportunities.

In summary, Table VII suggests that excess volatility of long-
maturity claims may be perpetuated by limits to arbitrage in the
form of transaction costs, infrequent profit opportunities, and long
holding periods.

2. A Model of Extrapolation. A number of recent models ex-
plore the usefulness of extrapolative expectations in matching
asset-pricing phenomena such as excess price volatility in equity
and credit markets.?> These models do not examine how expec-
tation formation varies with the horizon of the expectation, and
in particular have not explored the implications that extrapola-
tion may have for excess volatility of long- versus short-maturity
claims. Yet given that the affine model’s inconsistency stems from
long-maturity factor loadings appearing too high—so that the long
end of the price curve appears to overreact—extrapolation is a
natural candidate for a behavioral bias that might produce sys-
tematic mispricing along the term structure. Furthermore, asset
markets that have typically been modeled using extrapolation,
such as stocks, mortgages, and corporate bonds, are long-duration
assets. Excess volatility in these markets is likely to be a phe-
nomenon related to the long-maturity excess volatility that we
document in many other markets.

In this section we explore features of extrapolative models
that are useful for matching the empirical facts documented in
Section II1.36 We focus our analysis on the “natural expectations”
framework of Fuster, Laibson, and Mendel (2010), henceforth
FLM. Natural expectations are able to generate term structure
excess volatility that is both qualitatively and quantitatively con-
sistent with our findings. The ability of this model to fit term
structure patterns is remarkable because the natural expecta-
tions idea was not conceived with term structure pricing in mind.

35. See, for example, Barberis and Shleifer (2003), Greenwood and Shleifer
(2014), Barberis et al. (2015a,b), Bordalo, Gennaioli, and Shleifer (2015), and Gen-
naioli, Shleifer, and Ma (2015).

36. We also provide in Online Appendix I a more general characterization of
model misspecification.
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Our article therefore provides a test of this model along a previ-
ously unexplored dimension.

We first derive new term structure implications from the nat-
ural expectations framework, and then calibrate the model to
match the salient features of the variance swap term structure.
The framework posits that investors price assets using a model
that differs from the true data-generating process. Investors con-
struct expectations under both the true model (“rational” expecta-
tions) and a more parsimonious but misspecified model (“intuitive”
expectations). They then average the two expectations to arrive
at their final, “natural,” expectation.

We derive term structure prices from the same specification
studied in FLM. The true process for the cash flow x; is an AR(2):

(R) Xpg1 = 0% + Bas—1 + Npy1,

where « and B are such that x is a persistent but stationary pro-
cess. We label this equation (R) because it describes the model
used to build rational expectations.

The investor’s so-called intuitive model is:

Axpi1 = QAX + €41

This simplifies the truth by treating the persistence in x as a
random walk with an AR(1) adjustment term (i.e., it has one fewer
parameter).3” We can also represent the intuitive model, labeled
(I), in levels as an AR(2):

) X1 = (L4 Pl — pxp_1 + €441

The intuitive model of x thus has a unit root, while the true model
is stationary. As a result, the intuitive model embeds extrapola-
tive/overreactive beliefs. This is the first fundamental feature of
the natural expectations framework: investors treat cash flows as
more persistent than they truly are.

37. FLM impose an additional restriction on ¢ linked to a specific mechanism
through which the investors learn about ¢ from the data. The restriction links ¢
to a and B and therefore removes one further degree of freedom. Since our results
do not depend on ¢, we leave it free in our discussion.
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Next, natural expectations are formed as an average of the
true and intuitive models with weights given by A:

Nelwpys]l = AL [xegs] + (1 — M E (]

The notation we use here is the same as in FLM: N, is the nat-
ural expectation, I; is the expectation under the intuitive pro-
cess, and E; is the rational expectation under the true process.
N,[-] forms the basis for valuation—the price of a forward claim is
ﬁf,n =N, [xt+n]-

To conveniently analyze claims with different cash flow hori-
zons, we rewrite the AR(2) processes for models (I) and (R) in
vector form:

¥e = Gryi—1 + i and ¥e = Gryi—1 + &,

[« _[a 8 _[a+¢) —¢
L ) B ] B e |

From the vector form, it is easy to represent expectations as a

function of maturity, n:38

Eilx;n] = [101GRy: and  Llx;nl = [1 01GTy:,
so that forward prices are:
(19) fin =101 (AG} + (1 = VG}) y:.

This equation highlights the second fundamental feature of the
natural expectations framework. In affine models, expectations
are formed using a single model for the entire term structure. With
natural expectations, investors average expectations constructed
from models with contradictory persistences. This second feature
is the key mechanism that allows natural expectations to repli-
cate the internal inconsistency in short- and long-maturity prices
relative to the affine framework that we document in the data.
If investors formed expectations using only rational expectations

38. The reader may notice that the transition matrixes of the factors, Gz and
G, are not diagonal as in the representation we use in Section II. This is without
loss of generality. The model can be rotated into the diagonal representation we
use, as discussed in Joslin, Singleton and Zhu (2011).
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(R) or only using intuitive expectations (I), they would be using
an affine model and would satisfy standard consistency along the
term structure, because their forecasts adhere to the recursive
relations

Eilyiis] = GrE; [y 5-1] and Lyisl = GrLlys—1l.

So, when A = 0 or A = 1, variance ratios will be exactly one through-
out the entire term structure. When instead 0 < A < 1, the model
mixes two inconsistent sets of dynamics. The true cash flow dy-
namics will dominate the short end of the curve, and the (more
persistent) intuitive dynamics will dominate the long end of the
curve. Our variance ratio test, which compares the dynamics im-
plied from the short end to those implied by the long end, is de-
signed to identify this type of nonaffinity. In fact, long-maturity
variance ratios are always greater than one when 0 < A < 1in the
FLM model.

3. Model Calibration. We calibrate the model and then ask
how well it matches excess volatility observed in the variance
swap data. Parameters are chosen to minimize the distance be-
tween the factor loadings estimated in regression-based tests, and
the factor loadings implied by the natural expectations model.??
Estimates of the model’s four parameters are « = 0.90, 8 = —0.08,
¢ = 0.12, and 1 = 0.36. While derived in an entirely separate con-
text, our estimates are close to the parameter values chosen by
FLM.40

The left panel of Figure IX overlays variance ratios generated
from the calibrated natural expectations model (solid line) onto
those estimated in the regression-based tests of Figure I. That is,
we repeat the variance calculations of Figure I when the true data-
generating process is the calibrated natural expectations model.

39. As in the affine model, claims prices in the two-factor natural expecta-
tions model can be represented via equation (9), where each set of loadings g; is a
function of only natural expectations model parameters «, B, ¢, A, and the given
maturity, j. Parameters are then estimated via GMM, using OLS regression esti-
mates A ; throughout the variance swap term structure as moments and using an
identity weighting matrix. We estimate the four parameters using eight moment
conditions: the regression loadings of maturities 3, 6, 12, 24 onto each of the two
short-end prices (maturities 1 and 2).

40. In their analysis of macroeconomic data, FLM use parameters a = 1.16,
B =—-0.24, ¢ = 0.20, and 1 = 0.50.
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The left panel compares implied variance ratios from the calibrated natural
expectations model to the regression-based estimates from Figure I. The red lines
(“NE model”; color artwork available at the online version of this article) shows
the unrestricted and restricted variances and the variance ratio test obtained from
the calibrated natural expectations model, where the investor mixes rational and
intuitive expectations with weighting parameter A = 0.36. The right panel shows
the fitted 24-month variance ratio in the natural expectations model as a function
of 1, holding other parameters fixed at « = 0.90, 8 = —0.08, and ¢ = 0.12.

The model fits the unrestricted and restricted factor loadings very
closely, and therefore implies variance ratios similar to the ones
we estimate in the data at all maturities. In particular, the cal-
ibrated natural expectations model generates a variance ratio of
2.18 at 24 months, versus a ratio of 2.15 in the data. This plot
demonstrates that the natural expectations model can accurately
fit the empirical excess volatility patterns.

The key role of expectation mixing for producing high vari-
ance ratios is further illustrated in the right panel. We plot the
model-predicted 24-month variance ratio as a function of the mix-
ing parameter A. At A = 0 or 1, the natural expectations model
is indeed affine and the variance ratio is exactly one. In between,
affinity is violated due to model averaging, and extrapolative be-
liefs drive the variance ratio above one.

V. DISCUSSION AND CONCLUSIONS

We find that prices of long-maturity claims are far more
variable than justified by standard models. Our tests of excess
volatility exploit the strict overidentification restrictions from
term structure asset pricing, in which prices at all maturities
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are linked by the law of iterated values and the implied dynamics
of the factors driving cash flows. We use the short end of the term
structure to learn the implied cash flow dynamics perceived by
investors under the pricing measure, QQ, and reject the hypothesis
that estimated short-end behavior is consistent with prices at long
maturities.

Our findings suggest that the puzzle of excess volatility is a
pervasive phenomenon, manifesting in a wide variety of markets
including those for equity and currency volatility, sovereign and
corporate default risk, commodities, interest rates, and inflation.
Excess volatility relative to the affine model cannot be explained
by time variation in discount rates, as this is accounted for in our
estimation of risk-neutral model dynamics.

We show that all asset classes deviate from the model in the
same way, with long-maturity claims nearly perfectly correlated
with, but overreacting to, fluctuations in short-maturity prices.
We also investigate a number of well-studied nonaffine models,
none of which appear to capture the behavior of long-maturity
claims in the data. We show that trading against long-maturity
excess volatility appears profitable after adjusting for exposure to
standard risk factors.

We interpret these facts as violations of no-arbitrage restric-
tions in an affine model. Another potential interpretation of our
facts, however, is that apparent affine-model violations reflect the
presence of transient risk premia that differentially affect prices
along the maturity structure. In this case, the profits that accrue
to our trading strategy are can be viewed as evidence of such risk
premia.*!

Last, we study a model of investor extrapolation that is quan-
titatively consistent with the excess volatility patterns that we
document. Models in which expectations are distorted by extrapo-
lation are increasingly prominent in the literature. The exact form
that extrapolation takes, however, can vary widely across models.
There are differences in the kinds of processes that agents ex-
trapolate. In some cases agents extrapolate fundamentals such
as productivity, cash flows, and consumer demand (e.g., Fuster,
Hebert, and Laibson 2011; Alti and Tetlock 2014; Greenwood and
Hanson 2015; Hirshleifer, Li, and Yu 2015), in other cases they ex-
trapolate risk (e.g., Jin 2015), and in others investors directly ex-
trapolate prices and returns (e.g., Hong and Stein 1999; Barberis

41. We thank our referee for suggesting this interpretation of our findings.
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et al. 2015b). There are differences in the microfoundations of ex-
trapolation: some are founded on the representativeness heuristic
(e.g., Bordalo, Gennaioli, and Shleifer 2015; Gennaioli, Shleifer,
and Vishny 2015), others motivated by the availability heuristic
and recency bias (e.g., Lansing 2006), and some built on investors
using oversimplified models (e.g., Fuster, Laibson, and Mendel
2010).

That extrapolation models do not enforce the internal consis-
tency of rational expectations makes them prime candidates for
describing the patterns we document. However, these models are
not guaranteed to violate affine-model restrictions. For a model
to match the basic long-maturity excess-volatility facts, it must
produce a term structure of prices (i) that satisfies a linear fac-
tor structure and (ii) whose factor loadings at different maturities
diverge from the geometric progression that is the signature of
affine models. Many extrapolative models easily satisfy the first
requirement—a strict factor structure for term structure prices—
by virtue of linear dynamics in the models’ driving processes. How-
ever, these models also typically imply an affine term structure
because their factor loadings follow a geometric progression as
in equation (7). Although investors subjectively believe that cash
flows are more persistent than they truly are, they nonetheless
respect the law of iterated expectations and this implies that load-
ings are geometric. Greenwood and Hanson (2015) and Bordalo,
Gennaioli, and Shleifer (2015) are two examples in which, de-
spite deviating from rational expectations, investor beliefs imply
term structures that satisfy the internal consistency conditions of
equation (7) and thus do not explain the facts we document.

For a model to give a term structure that is linear in factors,
but with loadings that follow a nongeometric progression, the law
of iterated expectations must break down. The natural expecta-
tions model is one example in which the term structure follows
a linear factor model but at the same time violates the law of it-
erated expectations. It is the act of averaging forecasts from two
models with different degrees of persistence that breaks the affine
structure and generates an internal inconsistency along the term
structure.

It is especially interesting that this inconsistency is diffi-
cult to see when studying the behavior of a “single maturity”
asset such as the stock market. The effects of natural expecta-
tions become clearly evident once term structure implications are
drawn. Last, the main message from this analysis is not that the
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natural expectations framework is the only model that can match
the data but to point out a key ingredient—model averaging—that
allows investor expectations and thus model prices to match the
excess volatility patterns of the data.

Our exploration into the theoretical origins of excess volatility
only scratches the surface of what we believe is a promising future
research direction. In particular, our findings call for more inves-
tigation into how agents form expectations over multiple horizons
and the extent to which investor behavior is consistent with the
law of iterated values.

YALE UNIVERSITY AND NATIONAL BUREAU OF EcoNOMIC RESEARCH
UNIVERSITY OF CHICAGO AND NATIONAL BUREAU oF EcoNnomiCc RE-
SEARCH

SUPPLEMENTARY MATERIAL

An Online Appendix for this article can be found at The Quar-
terly Journal of Economics online. Data and code replicating the
tables and figures in this article can be found in Giglio and Kelly
(2017), in the Harvard Dataverse, doi:10.7910/DVN/JASCFG.
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