
THE ECONOMICS OF BIODIVERSITY LOSS*

STEFANO GIGLIO† THERESA KUCHLER‡ JOHANNES STROEBEL§ OLIVIER WANG¶

Abstract

We explore the economic effects of biodiversity loss by developing an ecologically-founded model

of how different species interact to deliver the ecosystem services that contribute to economic pro-

duction. Ecosystem services are produced by combining several complementary ecosystem functions

such as pollination and water filtration, which are each provided by several substitutable species.

It follows that economic output is an increasing but concave function of species richness, and the

economic cost of losing a species depends on: (i) how many redundant species remain within its

ecosystem function, and (ii) how critical the affected function is for ecosystem productivity. We de-

rive an expression for the fragility of ecosystems and economic output to further biodiversity loss,

and show that it increases with both mean species losses as well as the imbalance of species losses

across ecosystem functions. Consistent with the model, we illustrate that empirical measures of these

components of ecosystem fragility are reflected in market assessments of risk in the cross-section of

countries, which we extract from the prices of sovereign credit default swaps. We conclude by embed-

ding our model of ecosystem services production in an intertemporal planning problem and study

optimal land use when allocating land to production raises output at the cost of reducing biodiversity.
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In 2019, the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES)
sounded the alarm. In its Global Assessment, the independent body tasked with providing policymakers
with scientific assessments about the state of nature concluded that biodiversity was declining faster
than at any time in human history. Reviewing a vast academic literature, it found that the global rate of
species extinction was at least 10–100 times larger than the base rate over the past 10 million years, with
the pace further accelerating, leaving about a quarter of animal and plant species groups threatened.
The IPBES concluded that “the great majority of indicators of ecosystems and biodiversity show rapid decline”
and that this decline “threatens a good quality of life.”

In the years since this Global Assessment, biodiversity loss has increasingly attracted the attention
of policymakers worried about its implications for the economy and financial stability. For example, in
June 2023, Frank Elderson, Vice-Chair of the Supervisory Board of the European Central Bank (ECB),
wrote that “destroying nature means destroying the economy,” adding that the ECB would “address the cas-
cading effects of nature degradation and climate change on the economy and financial stability.” In an interview
with the Financial Times (2023), he expanded on this view, noting that “biodiversity belongs in that list of
things that affect the economy,” and arguing that “this is not some kind of a flower power, tree-hugging exer-
cise... this is core economics.” Similarly, recent research by the World Bank has concluded that biodiversity
losses in just three ecosystem functions—pollination, fisheries, and timber—would cost about 2.3% of
global GDP (about $2.7 trillion) annually by 2030 (Johnson et al., 2021).

Given this increasing concern that nature loss—and, in particular, biodiversity and species loss1—
might significantly disrupt economic activity, most mainstream macroeconomic models are surprisingly
silent on the relationship between the two.2 While an important strand of the literature has studied na-
ture’s contribution to economic activity and growth, this is often done by considering a monolithic stock
of “natural capital” that either directly enters the production function, or that affects the productivity
of other factors of production or the R&D process (Dasgupta and Heal, 1974; Stiglitz, 1974; Solow and
Wan, 1976; Barbier and Markandya, 1990; Goeschl and Swanson, 2002; Lanz, Dietz and Swanson, 2018;
Zhu, Smulders and de Zeeuw, 2019). While making substantial progress in highlighting various ways
in which the economy might be ‘embedded’ in nature (using the language of Dasgupta, 2021), these
approaches are generally silent on how to aggregate the totality of species into such measures of nat-
ural capital (Fenichel, Dean and Schmitz, 2024). Indeed, by abstracting from the potential interactions
between different species, these models have no direct role for biodiversity, and provide no framework
for exploring whether species vary in terms of their economic importance; whether the economic con-
tribution of a given species is the same across different ecosystems; and which economies are most at
risk from additional species loss.3

1While the term biodiversity can capture variation across different ’biotic scales’—from genetic variation within species to the
global distribution of biomes—we follow the common use of the term to refer to the number of species (Hooper et al., 2005).

2This is in contrast to the more advanced work that integrates models of climate change and economic and financial activity
(Nordhaus, 1991; Nordhaus and Boyer, 2003; Giglio, Kelly and Stroebel, 2021; Giglio et al., 2021; Barnett, Brock and Hansen,
2022; Barro, 2015; Weitzman, 2009). Similarly, work on the financial economics of biodiversity loss is only just emerging
(Karolyi and Tobin-de la Puente, 2023; Giglio et al., 2023; Fenichel and Dean, 2024; Flammer, Giroux and Heal, 2025).

3Some researchers have considered different types of natural capital, for example within the context of specific small-scale eco-
logical settings (e.g., multi-species fisheries, as in Yun et al., 2017). Also, the literature on sustainable development (Hartwick,
1978; Hamilton and Clemens, 1999; Arrow et al., 2012) has considered the interaction of different types of natural resources,
and Dasgupta (2021) includes a separate role for provisioning and supporting ecosystem services in an aggregate production
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In this paper, we fill this gap by developing a novel model of how species loss affects aggregate eco-
nomic activity. Our framework explicitly specifies how different species interact to generate aggregate
ecosystem services that enter more familiar economic production functions (see Daily, 1997; Daily et al.,
2000; Chichilnisky and Heal, 1998; Heal, 2000, 2016; Dasgupta, Kinzig and Perrings, 2013). These ecosys-
tem services include provisioning services such as food, fuel, timber, and raw materials for pharmaceu-
tical R&D, as well as regulating services such as pollination, the provision of clean air and water, carbon
sequestration, and pest and natural hazard regulation. Our production function for aggregate ecosys-
tem services is grounded in insights from the ecology literature but remains sufficiently tractable to be
incorporated into more general economic models. It allows us to characterize the marginal economic
values of different species and the fragility of ecosystem service provision, and thus helps understand
the sources of economic risks from biodiversity loss.

We model the production of aggregate ecosystem services in a hierarchical way, based on guidance
from the ecology literature on how different species interact to contribute to a productive ecosystem (see
Diaz and Cabido, 2001; Cardinale et al., 2012, and Section 1.1 for a review of this literature). Figure 1
presents a simple schematic of the model. As in prior work, aggregate ecosystem services E enter the
economic production function together with other factors of production X. The production function for
ecosystem services has two layers. The top layer describes how the outputs from different complemen-
tary ecosystem functions, Eg, contribute to the production of aggregate ecosystem services. The bottom
layer describes how the output in each ecosystem function is produced by the interaction of multiple
substitutable species, with ni,g capturing the abundance of species i contributing to function g.

Figure 1: Ecosystem Service Production

Y = F(X, E)

Ecosystem 
Function EgE1 EG

Species ni,gn1,g

…. ….

…. …. nSg,g

Note: Figure sketches our hierarchical model for the production of ecosystem services, E, as a function of the abundances of
different species ni,g across functional groups g. The model is formally described and specified in Section 1.2.

At the top level, we capture the idea that the aggregate output from a healthy ecosystem depends on the
often complex interactions of many different ecosystem functions, including those referred to as ‘regu-
lating’ and ‘supporting’ functions: pollination, nutrient recycling, water purification, pest control, and
many more. We model the combination of these functions into an aggregate ecosystem service flow via a
constant-elasticity-of-substitution (CES) aggregator familiar to economists (Arrow et al., 1961; Dixit and

function. Nevertheless, these papers remain silent on how the different species contribute to the provision of the various
ecosystem services, or how they interact due to their joint dependence on each other and a healthy ecosystem.
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Stiglitz, 1977). Consistent with insights from the ecology literature, different functions are complements
in the production of aggregate ecosystem services (i.e., they have an elasticity of substitution σ < 1),
capturing the idea that healthy and productive ecosystems are hard to sustain when key functions are
missing and that a decline in the availability of one function cannot easily be compensated for by the
growth of other functions (Sekercioglu, 2010; Fenichel, Dean and Schmitz, 2024; Potts et al., 2016).

At the bottom level, we model how different species interact to produce each ecosystem function.
Here, we capture the idea that there are usually multiple species playing similar functional roles (e.g.,
many insect species provide pollination services). After assigning each species to an ecosystem func-
tion, we model the total output of a function as another CES aggregator across the number of individual
members from each species. Within this function-level aggregator, different species are highly substi-
tutable, but not perfectly so (i.e., the elasticity of substitution is 1 < ϵ < ∞). This approach implies that
a function with two species of 50 members each has a bigger output than a function with 100 members
of a single species and is consistent with the “biodiversity-productivity” relationship documented in the
ecology literature, which has found function-level output to be an increasing function of species richness
(Hooper et al., 2005; Tilman, Isbell and Cowles, 2014). This relationship results from niche differentiation,
whereby different species in the same function vary on dimensions that ensure they inhibit other species
less than members of their own species, or that allow them to perform the function in different ways:
for example, since different pollinator species operate at different times of the day and at different tem-
peratures, overall pollination service production rises with the number of pollinator species.

Our model captures both the increasing and the concave natures of the within-function “biodiversity-
productivity” relationship: while increases in biodiversity have positive effects on the output of an
ecosystem function, the marginal benefits decline as more species are present. As a result, the loss
of a species will have less severe consequences in a species-rich ecosystem relative to a biodiversity-
degraded one, since the presence of many species performing similar functions in a species-rich ecosys-
tem represents a form of diversification against the risk of species extinction. This concavity also implies
that species losses have increasingly larger negative effects on both ecosystem service production and
the resilience of the ecosystem to further species losses. In the extreme case, when biodiversity is suffi-
ciently deteriorated, remaining species may become “keystone species”: species whose extinction will
lead to large negative effects on ecosystem output and economic activity (Frank and Sudarshan, 2024).

The concavity that arises from the interaction of species within each function in the bottom layer
gets amplified through the interactions across the various complementary functions in the top layer.
Even when species loss in a given function has become large enough to meaningful reduce the output
of that function, this will only affect the production of aggregate ecosystem services when the function
has sufficiently deteriorated to become a bottleneck in the ecosystem.4 Therefore, through the combi-
nation of the two hierarchical layers, each introducing a different source of concavity, our model can
generate substantial nonlinearities that have been discussed in the ecology and biodiversity literature
(e.g., Svartzman et al., 2021; Fenichel, Gopalakrishnan and Bayasgalan, 2015).

4The intuition for this is clearest in the case of extreme complementarity, where the CES aggregator collapses to a Leontief
function in which the overall level of ecosystem service provision is given by the output of the least productive function. In
such a setting, biodiversity loss in a given function only reduces aggregate ecosystem output when that function has become
the least productive, with zero effects from biodiversity loss in other functions.
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Having specified the hierarchical structure of our production function of ecosystem services, we
characterize the aggregate impact of species losses across multiple functions. Specifically, we derive a
decomposition inspired by the literature on the economic effects of input misallocation across firms and
sectors (Hsieh and Klenow, 2009; Baqaee and Farhi, 2019b). The decomposition allows us to distinguish
three effects of species losses on the production of ecosystem services: (i) a direct effect of abundance
loss, as members of the lost species no longer participate in the production of ecosystem services; (ii)
a loss in function-level productivity conditional on abundance, coming from declines in niche differ-
entiation; and (iii) an additional effect when losses are asymmetric across functions: because functions
are complementary in the production of ecosystem services, species losses that are concentrated in a
few functions are more problematic than the same total losses spread out uniformly across all functions.
One contribution of our paper is thus to show how general insights from the literature on disaggregated
models of the macroeconomy can be combined with parameter restrictions implied by the ecology liter-
ature to study the aggregate economic consequences of biodiversity loss.

In addition to the general decomposition of the response to an arbitrary biodiversity shock, we
also derive a singular tractable measure of the fragility of ecosystem services. Fragility is defined as the
vulnerability of aggregate ecosystem services to species losses that are uniform across functions, and
combines information about the average state of biodiversity and the existing imbalances within and
across functions. Since fragility captures the vulnerability of an ecosystem to future shocks, it represents
a notion of biodiversity risk that can be brought to the data

The next step in integrating biodiversity into an economic model is to capture the role of ecosystem
services in the aggregate economic production function, the F at the very top of Figure 1. We propose an
economic production function that combines ecosystem services with other factors of production, such
as land and capital. The relationship between biodiversity loss and economic output inherits many of
the properties of the relationship between biodiversity loss and the production of aggregate ecosystem
services. If ecosystem services and other factors of production are complements (as proposed by Cohen,
Hepburn and Teytelboym, 2019; Dasgupta, 2021), the concavity of the relationship between biodiver-
sity and ecosystem services is further amplified: losses of aggregate ecosystem services in response to
biodiversity loss will only reduce aggregate economic output if those ecosystem services—and not, for
example, the availability of physical capital—are the primary constraint on aggregate output.

We then provide empirical evidence on the effects of biodiversity loss on economic activity. First,
to provide concrete examples of such economic effects, we review several well-identified case studies
of the loss of keystone species that had meaningful economic and social effects. We also discuss several
instances of collapses of local ecosystems—such as the Aral Sea ecosystem collapse, and the Dust Bowls
in the United States and China—that led to large-scale economic and social costs.

We also go beyond these case studies by systematically examining the aggregate effects of biodiver-
sity loss in a cross-country setting.5 Any study of the macroeconomic effects of biodiversity loss is com-
plicated by two factors. First, these effects often unfold over long horizons and at low frequencies. And
second, as long as biodiversity is not yet too degraded, our model suggests that biodiversity loss should

5Aggregate biodiversity loss will percolate through the various sectors and firms in the economy. At that level of disaggrega-
tion, both physical biodiversity risks and regulatory (transition) risks will become relevant. We do not study these firm- and
industry-level effects in this paper, but refer the interested reader to Giglio et al. (2023, 2025a).
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largely increase the risks from future biodiversity losses (by raising ecosystem fragility) without hav-
ing large effects on current macroeconomic aggregates. For these reasons, we analyze forward-looking
measures of country-level risk that allow us to capture countries’ exposures to future biodiversity loss,
are available at high frequency, and that map to the model through the concept of fragility.

Specifically, we study the prices of sovereign credit default swaps (CDS), which reflect investors’
perceived probability that a country will default on its debt. In our weekly panel of 79 countries for 21
years, we show that CDS spreads tend to increase when investors receive negative news about aggregate
biodiversity loss, as measured by Giglio et al. (2023). While this average effect is consistent with the fact
that negative biodiversity news makes the global economy riskier, it is modest in magnitude and not
statistically significant, in part because biodiversity risk might not be substantial in many countries and
in part because many other macroeconomic events affect average global CDS spreads.

We then exploit the cross-sectional variation in biodiversity risk exposures across countries to provide
evidence for several key predictions from our model. We find that negative biodiversity news induces
significant increases in CDS spreads specifically for those countries with more depleted ecosystems as
captured by several distinct indicators of average ecosystem health. To explore whether imbalances in
past biodiversity losses across functions additionally increase a country’s biodiversity risk exposure, we
join data from the Map of Life project (Jetz, McPherson and Guralnick, 2012), which collects species-level
proxies for biodiversity losses, with taxonomic classification from the TetrapodTraits data (Moura et al.,
2024), which maps each species into proxies for their ecosystem functions. Our analysis suggests that,
indeed, countries with a larger dispersion in species losses across functions experience larger increases in
CDS spreads in response to negative biodiversity news.

In the final part of the paper, we consider the interactions between economic activity and biodiver-
sity loss and their implications for the optimal use of natural resources. Since land-use changes are the
key driver of global biodiversity loss (IPBES, 2019), we solve for the optimal land use trading off the
immediate gains in economic output against the long-term economic costs of biodiversity loss. Our in-
tertemporal model highlights ecosystem fragility as a crucial driver of optimal land use, or equivalently
land conservation. Land conservation policies should be particularly strong in countries that have al-
ready suffered large and dispersed species losses, and, if ecosystem services and physical capital are
complements in production, in capital-rich economies where ecosystem services are more likely to be
the constraining factor of production.

Implications. Our integrated model of nature, biodiversity, and the economy presents several implica-
tions for researchers and policy makers hoping to better understand the economic effects of biodiversity
loss. Most directly, it highlights the weakness of one of the most common attempts to dismiss the poten-
tial importance of biodiversity loss for economic activity: that the large biodiversity losses in the past
century have not seemingly led to significant declines in current economic output. As the model shows,
the non-linear relationship between species richness and economic output implies that current losses
might have limited economic impact even while they increase the risk of future losses, as biodiversity is
depleted within functions and species and functions become critical (keystone). In fact, our empirical
analysis shows that precisely those risks are already reflected in forward-looking asset markets.

Our modeling approach also emphasizes that different species are differentially important for over-
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all ecosystem service production, and thus economic activity. The relative importance of each species
is context dependent and varies with the presence of other species in the same ecosystem function as
well as the marginal importance of the particular function within its ecosystem. Our modeling frame-
work generates simple expressions for the relative marginal importance of each species that can be used
for several policy purposes. First, it can inform the design of Pigouvian taxes on economic activities
that might lead to local extinctions of species. Second, it provides a tool to think about the prioritiza-
tion of conservation efforts in a world where society’s willingness to pay for nature protection is finite.
Third, it can be helpful to determine appropriate ‘exchange rates’ across different species in the design
of biodiversity offsets in which firms aim to compensate for specific negative biodiversity effects of their
activities through conservation efforts that protect other dimensions of biodiversity.

1 The Production of Ecosystem Services
In the following sections, we develop a tractable model to explore the effects of biodiversity loss on
aggregate economic activity. We begin by considering a representative firm with production function:

Y = F(X, E). (1)

The variable E denotes ecosystem services that contribute to the aggregate economic production process.
These include provisioning services (e.g., food, fuel, and raw materials) and regulating services such as
the provision of clean air and water, carbon sequestration, and pest regulation (Millennium Ecosystem
Assessment, 2005; OECD, 2023). The vector X denotes other factors of production such as physical
capital and labor. For simplicity, we focus on a single final economic good Y that is produced using a
single flow of aggregate ecosystem services E. In addition, while ecosystem services and production can
vary by geography, we model the production without explicitly specifying location—with the idea that
different locations will face different environments but similar structures for the production function.6

We next review insights from the ecology literature on important implications of biodiversity for
ecological outcomes. A key contribution of our work is to then propose a tractable approach to modeling
the aggregation of the contributions of various species to the production of E in a way that allows the
integration of these insights into standard economic frameworks.

1.1 Ecosystem Service Production: Insights from the Ecology Literature

Ecosystems are commonly defined as the collection of the living things in an area (e.g., plants, animals,
and organisms) and their interactions with each other and non-living parts of nature such as water and
soil. These interactions jointly produce the ecosystem services that enter economic production.

6Our ecologically founded mechanism for the economic benefits of biodiversity is distinct from work by Polasky, Solow and
Broadus (1993) and Polasky and Solow (1995), who focus on the option value of different species in providing possible future
benefits, for example in the pharmaceutical R&D process. In our model, we focus on the immediate benefits of biodiversity in
terms of facilitating more productive and less fragile ecosystems. In later sections, we allow species to provide another direct
benefit to humans through the provision of “cultural ecosystem services”, which capture, for example, recreational or other
benefits that nature—and in particular “cute” or emotive species—provide to humans. Those benefits will be modeled by
allowing utility to directly depend on E. Overall, our approach therefore takes an anthropocentric perspective that considers
how species are useful to humans—whether directly or through increasing economic output—though it can be extended
easily to also allow a valuation of species existence per se.
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Motivated by the “growing consensus [. . . ] that functional diversity, or the value and range of species traits,
rather than species numbers per se, strongly determines ecosystem functioning” (Diaz and Cabido, 2001), ecol-
ogists studying the contributions of various species to ecosystem productivity often characterize species
as members of “functional groups” that include different species fulfilling similar primary ecosystem
functions (Tilman, 2001; Hooper et al., 2005; Oliver et al., 2015). Based on this classification, researchers
then frequently analyze the interaction between species within functional groups separately from the
interaction of different functional groups to maintain overall ecosystem health.

Complementarity Across Ecosystem Functions. Healthy ecosystems are based on complex interactions
between species in different functional groups. Following Hannon (1973), researchers have described
these interactions and interdependencies using “ecosystem networks” similar to input-output networks
in economics. Important conclusions from this literature are that: (i) healthy ecosystems are hard to
sustain when a key ecosystem function is missing (Szyrmer and Ulanowicz, 1987; Rapport, Costanza
and McMichael, 1998; Williams et al., 2002; Felipe-Lucia, Comín and Bennett, 2014); (ii) there are pos-
itive interaction effects between different ecosystem functions, whereby “the loss or decline in any single
ecosystem service [. . . ] is likely to reduce the productivity of other ecosystem services.” (OECD, 2023; Fridley,
2002; Lundin et al., 2013; Garibaldi et al., 2018; Chen et al., 2022; Martínez-Salinas et al., 2022); and (iii)
in a given ecosystem, changes in less abundant resources or functions have the largest effects on overall
ecosystem productivity (Sperfeld, Martin-Creuzburg and Wacker, 2012; Garibaldi et al., 2018; Fijen et al.,
2020). Below, we show that all of these insights can be captured through modeling a low elasticity of
substitution between functional groups in the production of aggregate ecosystem services.

Niche Differentiation within Ecosystem Functions. A first key finding regarding the effects of species
richness within functional groups is that more diverse functions have higher output, with smaller out-
put gains from increases in the number of species at higher levels of biodiversity. In other words, the
output of an ecosystem function is an increasing and concave function of biodiversity. Discussing the
evidence for this relationship, which the ecology literature calls the “biodiversity-productivity relation-
ship,”7 Tilman, Isbell and Cowles (2014) conclude that “by 2006, the preponderance of evidence from more
than 100 biodiversity experiments had shown that species diversity had a repeatable and consistent effect on pro-
ductivity.” For example, experimental studies found that total plant biomass on a fixed plot of land was
increasing with plant diversity, with smaller marginal effects at higher levels of diversity (Naeem et al.,
1995; Tilman, Wedin and Knops, 1996; Hector et al., 1999). Similarly, Liang et al. (2016) conclude that
“using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes,
we reveal a globally consistent positive concave-down biodiversity-productivity relationship.”

The observed positive relationship between species richness and function-level output is driven by
“niche differentiation,” which captures that different species within a function extract resources and
perform services in somewhat different ways—they focus on different “niches.” This feature leads to
two channels through which such niche differentiation contributes to higher function-level output.

7While this terminology refers to productivity—which economists often use mean output per unit of input—the ecology lit-
erature sometimes uses this term to refer to the fact that overall functional output (e.g., total biomass or biomass growth) is
increasing in biodiversity. As we describe in the next paragraphs, empirical evidence shows that biodiversity can affect the
overall output in a function both by increasing the total number of organisms and by increasing the output per organism.
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The first channel through which niche differentiation contributes to a positive relationship between
biodiversity and function-level output is by allowing more diverse functions to sustain a larger com-
munity abundance, that is, to support more individuals across all species in the function. Hooper et al.
(2005) explain the underlying mechanism as follows: “If species use different resources, or the same resources
but at different times or different points in space, more of the total available resources are expected to be used
by the community.” In other words, since “each species inhibits itself more than it inhibits the other species,”
more diverse functions allow for more efficient resource extraction and thus larger community abun-
dance (Tilman, Isbell and Cowles, 2014). For example, when ecosystems contain plants with different
root lengths, more of the available nutrients can be extracted than when there are fewer species with
roots of similar lengths competing for the same resources (Loreau, 1998). Similarly, more diverse forests
with tree crowns at varying heights can use the available light more effectively, allowing for higher
abundance (Williams et al., 2017). Direct support for this “niche differentiation in resource extraction”
mechanism comes from experimental work that highlights that more diverse plant ecosystems drew soil
nitrate levels down to lower levels of concentration (Tilman, Isbell and Cowles, 2014).

The second channel through which niche differentiation affects overall productivity by raising func-
tional productivity conditional on abundance: that is, even if the total number of individuals is the same,
having different species perform the same function can yield more ecosystem services. For example,
Hoehn et al. (2008) showed that when different pollinator species are active at different times of the day,
or when they visit flowers of different heights, this “niche differentiation in service provision” can cause
overall crop yields to rise with species diversity even holding fixed total pollinator abundance.

In addition to the biodiversity-productivity relationship, a second key finding in ecology is that the
output of more diverse ecosystem functions varies less over time in response to environmental fluctua-
tions and species loss. The ecological mechanism for such a “biodiversity-stability relationship” is func-
tional redundancy—having multiple species within a group performing a similar function—combined
with compensatory growth, the “widely observed process in which one species within a functional group in-
creases in response to the reduction or loss of another in the same functional group” (Naeem and Li, 1997).
Hooper et al. (2005) describe the mechanism as follows: “As some species do worse, others do better because
of different environmental tolerances or competitive release. [. . . ] In this sense, redundancy of functional effect
traits [. . . ] act as insurance in carrying out ecological processes.” Evidence for this positive biodiversity-
stability relationship has been found in many experimental and observational studies (e.g., Naeem and
Li, 1997; McGrady-Steed, Harris and Morin, 1997; Gross et al., 2014; Bai et al., 2004).8

8The insight that more diverse systems are more resilient and productive—and, in fact, are more productive than the most
productive monoculture (Hooper et al., 2005; Tilman, Isbell and Cowles, 2014)—might, at first sight, appear to conflict with
the observation that modern agriculture often uses monocultures, the planting of vast areas with a single crop. However,
monoculture agriculture is driven by technological reasons rather than biological ones, and practical considerations related
to the ease of planting, managing, and harvesting monocultures have led to their proliferation despite the negative effects on
long-run productivity, which include degraded soil health and increased vulnerability to pests and diseases (CSANR, 2023;
Decker et al., 2022). Increasingly popular practices like intercropping—the practice of growing two or more spatially inter-
mingled crops—allow farmers to benefit from the positive biodiversity-productivity relationship to increase overall yields
and profitability, in particular in countries with labor-intensive agricultural production (Li et al., 2021). Similarly, the practice
of crop rotation, which varies the monoculture grown between years, attempt to mitigate some of the biological weaknesses
of monoculture agriculture while maintaining the productivity advantages of mechanized harvesting (Wang et al., 2023).
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1.2 Modeling Approach

Based on these insights, we model the production of aggregate ecosystem services E in a hierarchical
way, which we sketch in Figure 1. We assume that each species belongs to an ecosystem function indexed
by g = 1, . . . , G, where the number of functions G is fixed. These functions include groups of species pro-
viding the same primary ecosystem services Eg, such as soil fertilization, pollination, water purification,
the production of energy for others through photosynthesis, or carbon sequestration—functions that, as
described above, are complementary in the production of aggregate ecosystem services. Within each
function, there are Sg unique species, indexed by i = 1, . . . , Sg, with a population ni,g of each species.
We start with the description of ecosystem service production within each function, Eg, before turning
to the aggregation of the various functional groups to produce aggregate ecosystem services, E.9

1.2.1 Imperfect Substitutability of Species Within Each Function

The species in each function interact to produce a flow of function-specific ecosystem services Eg. As
discussed in the prior section, the key force driving the relation between biodiversity and functional
productivity is niche differentiation, which operates through two channels: by raising community abun-
dance and by increasing productivity for a given abundance. We model both channels in a tractable way.

Ecosystem services in function g are produced through a constant elasticity of substitution (CES)
aggregator across the abundances of all species i in function g, given by ni,g:10

Eg =

[
Sg

∑
i=1

n
ϵg−1

ϵg
i,g

] ϵg
ϵg−1

. (2)

Consistent with the ecological evidence, we assume that, within each function, species are highly, but
not perfectly, substitutable in the production process, with elasticity of substitution ϵg such that:

1 < ϵg < ∞.

In the absence of niche differentiation in service provision, species would be perfect substitutes (ϵg →
∞), and equation (2) would be the sum of populations across species: Eg = ∑

Sg
i=1 ni,g. In that case, two

species with abundance of 50 each would have the same output as one species with abundance 100. Our
modeling of a finite substitutability captures the ecological evidence that, due to niche differentiation
in service provision, species are imperfect substitutes in terms of ecosystem services production: the
output of two species with abundance 50 each is higher than the output of one species with abundance
100. These gains from differentiation across species are analogous to the “love of variety” effects arising
from firm specialization (Dixit and Stiglitz, 1977), which play a key role in models of international trade
and endogenous growth (Krugman, 1980; Romer, 1987; Matsuyama, 1995).

We next model the effect of niche differentiation in resource extraction on the relationship between
9Since we will allow for arbitrary correlations between species loss shocks across functions, nothing prevents a species from
belonging to multiple ecosystem functions. Concretely, imagine a species contributing to two functions. We would model this
species separately as a member of each function, but assuming a correlation between extinction shocks to the two functions.

10The CES functional form, assumed for tractability, implies symmetry in the interactions of species. In reality, interactions
across species within a function are not symmetric (see, for example, Groom and Fontes, 2021), and a less tractable but richer
model could explicitly incorporate these considerations.
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biodiversity and community abundance in a function. As reviewed in Section 1.1, while different species
in a function tend to compete for similar resources, niche differentiation in resource absorption suggests
that the introduction of a new species will only partially crowd out existing species, allowing community
abundance to increase with biodiversity. Conversely, when a species in a function goes extinct—or when
it gets extirpated from the local ecosystem—resources are freed up for the remaining species, which can
grow their abundances to partially compensate for the population decline from the lost species. Since
this compensatory growth is weaker when species are competing less for the same resources, species
loss will lead to a larger decline in community abundance in functions with more niche differentiation
in resource extraction.

In principle, these dynamics could be modeled using Lotka-Volterra models, which describe full dy-
namic systems governing the evolution of abundances in response to changes in the number of species
(Hofbauer and Sigmund, 1998). Instead of solving for the dynamic path of such models, we focus on
their rest points and capture the strength of compensatory growth due to imperfect niche differentiation
in resource extraction with a parameter αg ∈ [0, 1]. We denote as S̄g > 1 the initial number of species
in functional group g, and let sg = Sg/S̄g. When Sg falls below S̄g, surviving species in group g grow
in response to the reduced competition for common resources. For simplicity, we impose symmetry
among the species in a function, so that ni,g = ng for each i = 1, . . . , Sg.11 We define as n̄g the maximal
per-species abundance that can be supported when Sg = S̄g. Species abundance is modeled as:

ng = n̄g

(
Sg

S̄g

)αg−1

= n̄gsαg−1
g . (3)

The equation describes how individual abundance ng changes as Sg falls below S̄g. Consider two polar
cases. The case αg = 1 implies that ng = n̄g irrespective of Sg, and therefore captures the case of “perfect”
niche differentiation in resource extraction: because species were not competing for resources in the first
place, removing one species does not induce compensatory growth among the remaining species.

The other polar case, αg = 0, implies the other species experience substantial compensatory growth
when a species disappears, so much so that total abundance Sgng remains at the maximum: Sgng = S̄gn̄g,
because the surviving species expand to fully offset any species loss in terms of community abundance
within a function. This substantial compensatory growth corresponds to an environment where compe-

11When there is within-function variation in populations across species, it is more difficult to summarize biodiversity using a
single number such as species richness Sg. In Appendix C.1, we show how to expand this exposition to incorporate within-
function variation in populations via Hill (1973) numbers that measure the “effective number of species” that all coincide
with Sg in the symmetric case. That said, Fenichel, Dean and Schmitz (2024) correctly highlight that in the non-symmetric
case, such indices are by themselves of limited use to capture the value of biodiversity if their parametrization (e.g., the
weights assigned to each species and the order q of the Hill number) does not depend on the (endogenous) value of the
species. By proposing a way to explicitly model the dependence of human welfare onto ecosystem services production and
in turn onto the various species, and thereby endogenously modeling the economic value of each species, our framework
can help overcome these limitations of standard measures of biodiversity. In this sense, our model answers the call from
Fenichel, Dean and Schmitz (2024): “There is a clear path forward for measuring the value of changes in biodiversity. First, recognize
that biodiversity is not something that can be rolled up into an arbitrary index; rather it is shorthand for the assembly of life in a
well-defined geography that accounts for ecological and human interactions. The best way to measure biodiversity is to measure the
marginal value of specific species, or groups of species belonging to a community, and condition valuation on ecological interactions
and interactions with people. Measured species can be added to balance sheets as nonfinancial, nonproduced assets. Then changes in
biodiversity are changes in the wealth contribution of those species.”
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tition for common resources is so intense that each member of a species in a function one-for-one crowds
out another species member in that function. This would represent the case of no niche differentiation
in resource extraction.

In practice, values of αg between 0 and 1 are most consistent with the empirical evidence for partial
niche differentiation in resource extraction discussed in Section 1.1. Plugging ng in equation (3) into the
within-function aggregator given by equation (2), ecosystem services from function g equal:

Eg =
(
S̄gn̄g

)
sαg

g︸ ︷︷ ︸
Community Abundance Ng

× (S̄gsg)
1

ϵg−1︸ ︷︷ ︸
Gains from Biodiversity Conditional on Abundance

. (4)

The variables αg and ϵg thus allow for separate parameterizations of the two forces through which niche
differentiation drives a positive relationship between species richness and Eg: (i) the ability to sustain
a more abundant community, with larger effects when there is less competition for common resources
(high αg); and (ii) an increase in productivity for a fixed community abundance due to temporal and
other variation in performing the ecosystem service, with larger effects when species are more differen-
tiated in their productive activities (low ϵg). Ultimately, ecosystem service production Eg becomes:

Eg = Ēgsϕg
g , (5)

where the exponent ϕg captures how substitutable species are and how much crowding out there is:

ϕg =
1

ϵg − 1
+ αg > 0, (6)

and Ēg = n̄gS̄
ϵg/ϵg−1
g is the maximum level of ecosystem services attained absent species loss (sg = 1).

To capture not just the positive nature of the biodiversity-productivity relationship (ϕ > 0), but
also its empirically-established concavity (see Liang et al., 2016, and the other references in Section 1.1),
we impose ϕg < 1.12 This limits the strength of the total niche differentiation effects through the two
channels—resource extraction and service provision—since stronger niche differentiation effects would
push ϵg down while pushing αg up, both of which would contribute towards a larger ϕg.13 Figure 2
shows how Eg varies with sg for different values of ϕg. A value ϕg = 0.3 is consistent with estimates
from Liang et al. (2016) and the meta-analysis in O’Connor et al. (2017). As discussed above, lower
values of ϕg imply more concavity in the relation between ecosystem services and biodiversity.

12The concavity of Eg with respect to sg is also consistent with the previously discussed evidence for a positive biodiversity-
stability relationship within a function. Specifically, while often treated as separate observations, the concave biodiversity-
productivity relationship immediately delivers the biodiversity-stability relationship: when a function is at the species-rich
flat part where additional diversity has only small positive effects on output, the loss of a particular species has equivalently
small negative effects on output, and so functional output is more stable in response to external disturbances.

13In principle, extreme niche differentiation could even lead to a convex relationship between biodiversity and productivity.
Take the case of extreme niche differentiation in resource extraction (αg = 1), when total abundance increases linearly in the
number of species, because there is no crowding out due to competition for common resources. In that case, any small effects
of biodiversity on functional productivity conditional on abundance—any niche differentiation in service provision— will
lead to an overall convex relationship. While many of our empirical results only rely on a positive biodiversity-productivity
relationship, whether convex or concave, the strong empirical support for a concave relationship motivates our choice to
focus our analysis on the empirically relevant case ϕg < 1.
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Figure 2: Ecosystem Service Production and Biodiversity, Within Group
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Note: Figure shows output of function g, Eg, as the remaining number of species sg varies, for different values of ϕg, relative to
its maximum value Ēg (which also varies with ϕg).

1.2.2 Complementarity Across Functions

Overall ecosystem services are modeled as aggregating the different ecosystem functions Eg through
another CES aggregator, where each function is weighted equally to simplify notation:14

E =

[
G

∑
g=1

E
σ−1

σ
g

] σ
σ−1

where σ < 1. (7)

While substitutability across species is high within functions, higher-level ecosystem functions are com-
plements in the production of aggregate ecosystem services: the elasticity of substitution across func-
tions satisfies σ < 1.15 Consistent with the empirical ecology literature, this restriction on σ ensures that
E goes to zero when any one function is missing entirely.

It is possible to further calibrate σ by comparing the effect of individual and joint increases in the
availability of different ecosystem functions on overall ecosystem output. Through the lens of equation
(7), the lower the sum of individual marginal effects relative to the joint effect, the lower the elasticity
of substitution σ must be. For example, Sutter and Albrecht (2016) studied the joint influence of pest
control and pollination on ecosystem functioning, finding “strong synergistic effects of insect pollination
and simulated pest control on yield quantity and quality. Their joint effect increased yield by 23% [. . . ], while
their single contributions were 7% and 6%, respectively.” These estimates imply a very low elasticity of sub-
stitution between pollination and pest control: calibrating our CES specification to match these reported
effects suggests σ ≈ 0.1 (see Appendix C.2 for details on this calculation).

14While it would be possible to formally model an input-output network linking the various ecosystem functions, the CES
aggregator allows us to capture the key insight from those networks—namely that ecosystem functions are complements,
and that well-functioning ecosystems depend on the health of each function—in a tractable way.

15An extreme version of this idea is attributed to von Liebig (1855). His “law of the minimum” is described by Gleeson and
Tilman (1992) as follows: “Because the environment is unlikely to provide resources in the precise proportions required, at any given
site a plant should be limited by the single resource in lowest supply relative to need. A plant should increase growth in response to
addition of its one limiting resource until it becomes limited by some other resource.” This proposal suggests an extremely low
elasticity of substitution between functions, such that equation (7) would be E = min{E1, . . . , EG}.
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Connection to Weitzman (1998)’s Noah’s Ark. In Appendix C.3, we provide an explicit mapping be-
tween our framework and the value of biodiversity in Weitzman (1998)’s seminal study on how to pri-
oritize species when preservation is costly. While Weitzman (1998) values species by the expected dis-
tinctiveness of their genetic content and a reduced-form “utility value” exogenously associated to each
species (closely related to Weitzman, 1992; Polasky, Solow and Broadus, 1993), our ecologically-founded
framework explicitly focuses on species’ heterogeneous contributions to ecosystem services, and derives
their value endogenously, consistent with arguments in Brock and Xepapadeas (2003) that the economic
value of a species need not be related to its contribution to genetic diversity. Our framework allows for
more tractable aggregation and can be mapped directly to standard economic objects measuring substi-
tutability and complementarity between species and functions. As a result, it demonstrates clearly how
different species’ ecological and economic values across ecosystems depend on key parameters such as
the distribution of species richness across functions and the elasticities of substitution σ and ϵg.

2 Biodiversity and Ecosystem Functioning
Our goal is to study how biodiversity, defined as the number of species in each function Sg, affects the
productivity of the overall ecosystem as well as economic output. In this section, we start by examining
how E depends on biodiversity, before turning to output effects in Section 3.

2.1 The Effect of Species Loss on Aggregate Ecosystem Services

Combining equations (5) and (7), the production of aggregate ecosystem services is:

E =

[
G

∑
g=1

Ē
σ−1

σ
g sϕg

σ−1
σ

g

] σ
σ−1

, (8)

which is increasing in each Sg, with marginal effects given by:

∂E
∂Sg

= ϕg
E
Sg

(
Eg

E

) σ−1
σ

. (9)

Proposition 1 further characterizes this marginal effect of species loss on aggregate ecosystem services,
taking into account that E and Eg in equation (9) also depend on Sg. As described previously, we con-
tinue to assume that σ < 1 and ϕg < 1.

Proposition 1. The marginal effect of a species shock dSg on ecosystem service production is decreasing in Sg, so
that aggregate ecosystem service provision E is concave in Sg.

Abundant Functions. A species shock dSg does not affect the aggregate provision of ecosystem services if:

(i) Function g is abundantly provided, i.e., Eg → ∞; or

(ii) Holding Eg fixed, the number of species providing function g is large, i.e., Sg → ∞.

Critical Functions. The effect of a species shock dSg becomes infinitely large as sg = Sg/S̄g → 0:

lim
sg→0

∂E
∂Sg

= ∞. (10)
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Discussion. Proposition 1 highlights the concavity of E with respect to Sg, which reflects the compound-
ing of the concavity of the within-function and across-function relationships described in the previous
section. The effect of species loss in a function on ecosystem output becomes more negative at lower
levels of biodiversity both because the marginal effects of Sg on Eg get bigger, and because Eg becomes
more constraining for overall ecosystem output. Conversely, when species loss occurs in a function
with a high stock of biodiversity, or in a function that is not constraining the production of aggregate
ecosystem services, this loss has only small effects on total ecosystem service production.

Figure 3 shows an example of the function-level concavity (gray dashed line, similar to Figure 2 with
ϕg = 0.3) as well as the additional concavity in the relationship between aggregate ecosystem services
E and Sg (dotted and solid lines, corresponding to different values for σ). In this example, the original
number of species in all functions is S̄ = 100, but all functions other than g have already suffered species
loss, bringing S−g to 30 (where S−g refers to all j ̸= g). Even after species loss in function g has started to
reduce Eg, this only affects overall ecosystem productivity E to the extent function g limits the ecosystem
as a whole. This intuition is most transparent when considering the case of extreme complementarity
(σ → 0), which corresponds to a Leontief aggregator E = min {E1, ..., EG}, shown as the solid red line. In
that case, the production of aggregate ecosystem services becomes entirely determined by the function
with the smallest number of species. Consequently, biodiversity-loss-induced changes in Eg have no
impact on E until g becomes the limiting function, which happens once Sg falls below S−g = 30.

Figure 3: Ecosystem Service Production and Biodiversity
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Note: Figure shows Eg as functions of Sg, as well as E as a function of Sg for two values of σ, with ϕg = 0.3, S−g = 30,
normalizing E = 1 when Sg = S−g = S̄ = 100.

A first implication of the concavity of E with respect to Sg is that we cannot extrapolate any observed
small effects of past initial species losses on ecosystem service provision (and economic output) to un-
derstand what will happen as Sg continues to decline. Instead, the concavity highlights that a key
consequence of past biodiversity losses is that they make future damages from biodiversity losses more
severe, and that a small economic impact today can hide an increasing exposure to further losses. In-
deed, Figure 3 shows that our ecologically-founded modeling approach generates the presence of non-
linearities in the relationship between biodiversity and ecosystem service production. The absence of

14



such nonlinearities from existing models has been lamented by researchers studying the economic ef-
fects of biodiversity loss (e.g., Svartzman et al., 2021); the need to explicitly model these nonlinearities
when valuing biodiversity has also been recently highlighted by Fenichel, Dean and Schmitz (2024).16

A second implication of the concavity of E with respect to Sg is that the marginal effect of species loss
on the productivity of the overall ecosystem becomes high (or even infinite) as sg → 0. In other words,
as the number of species in a function declines, the remaining species are likely to become keystone
species, defined as “species whose impact on its community or ecosystem is large, and disproportionately large
relative to its abundance” (Power et al., 1996). This is because few other species remain to fulfill the same
function, combined with the difficulty of substituting across functions in the production of aggregate
ecosystem services.17 This conclusion is consistent with empirical evidence that past losses of keystone
species have had meaningful ecological and economic effects (see Appendix A). For example, Frank and
Sudarshan (2024) find large costs from the collapse of the vulture population in India, which led, among
other things, to a 4% increase in human mortality due to a decline in sanitation services. The authors
emphasize that vultures were without a “good functional replacement in the ecosystem.”

More generally, the relative impact of species loss in two functions g and h on ecosystem services
can be formally captured by their marginal rate of substitution (MRS):

MRSg,h =
∂E/∂Sg

∂E/∂Sh
= MRSg,h

s
−[1+ϕg( 1

σ−1)]
g

s
−[1+ϕh( 1

σ−1)]
h

, (11)

The MRS between different species helps guide which conservation activities should be required to off-
set a certain ecosystem loss. Such biodiversity offsets, defined by Carbon Brief as “conservation activities
intended to compensate for the lasting impacts of development on species and ecosystems,” are a key component
of environmental regulation in many jurisdictions, including in Great Britain, the European Union, and
the United States. One principle of biodiversity offsets is that they should lead to a “no net loss” out-
come (McKenney and Kiesecker, 2010; Aronoff and Rafey, 2023). Our findings highlight the importance
of specifying the exact metric for “no net loss” given that “no net loss of species” does not generally
translate into “no net loss for ecosystem functioning.” The MRS between species can also help impact
investors choose between sustainability-linked bonds that link coupon payments to the achievement of
various biodiversity objectives, such as Klabin’s $500m bond for which payments depend on the suc-
cessful reintroduction of extinct species into ecosystems (Aleszczyk, Loumioti and Serafeim, 2022).

2.2 Biodiversity Shocks and the Fragility of Ecosystem Services

Proposition 1 above highlights the highly non-linear effects of species loss on the production of ecosys-
tem services, focusing on species loss in a single function g. We now extend this analysis to characterize

16The nonlinearity stemming from this concavity helps us describe situations where the effects of biodiversity loss progres-
sively worsen as the ecosystem experiences a sequence of stressors or shocks. This type of nonlinearity is conceptually
different from the notion of “tipping points" due to non-convexities or discontinuities described in Brock and Starrett (2003),
de Zeeuw (2014), and Li, Crépin and Lindahl (2024). Our model could potentially be extended to account for tipping points
by modeling population dynamics as reviewed in, e.g., Li, Crépin and Lindahl (2024).

17Our framework can also accommodate slightly different notions of keystone species, for instance species that contribute to
several ecosystem functions, or species that form their own ecosystem function with an especially low elasticity of substitu-
tion with other functions.
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how the aggregate impact of an arbitrary distribution of species losses across multiple functions depends
on the current state of biodiversity captured by the vector s = {sg}g=1,...,G. Throughout this section, we
simplify expressions by assuming that n̄g and S̄g are the same across all functions.

We consider a loss of biodiversity in several functions, given by the vector ds = {dsg}g; in the
Appendix, we extend this result to additionally allow for shocks to species abundances holding the
number of species fixed. We consider the impact of additive species shocks dsg (and not, say, multi-
plicative shocks d log sg), consistent with the idea that extinction risk is at the species level and does not
scale with the number of species left. In other words, the relevant incremental shock in an ecosystem
function reduced to only 3 species remains the loss of a whole species, and not a small fractional loss
(e.g., 0.3 species). Proposition 2 decomposes the effect of such an additive shock to biodiversity ds into
three conceptually distinct parts.

Proposition 2. Given the state of biodiversity s =
{

sg
}

g=1,...,G, the effect of shocks to species ds =
{

dsg
}

g=1,...,G
on aggregate ecosystem service provision E is given by:

d log E =
G

∑
g=1

ωgαg

sg
dsg︸ ︷︷ ︸

∆ Community abundance

+
G

∑
g=1

ωg

sg(ϵg − 1)
dsg︸ ︷︷ ︸

∆ Within-function productivity

+ Cov
[

γg,
ϕg

sg
dsg

]
︸ ︷︷ ︸

∆ Across-function imbalances in biodiversity

, (12)

where we denote:

ωg =
Ng

∑G
j=1 Nj

(abundance weights),

µg =
∂ log E
∂ log Eg

=
sϕg

σ−1
σ

g

∑G
j=1 s

ϕj
σ−1

σ

j

(criticality weights),

γg = µg − ωg (criticality-abundance gap).

In the special case of a common species loss shock dsg = ds, ∀g, the impact is:

d log E = F (s)ds, (13)

where the fragility of ecosystem services, or simply fragility, is denoted by

F (s) =
G

∑
g=1

µg
ϕg

sg
=

G

∑
g=1

ωgαg

sg
+

G

∑
g=1

ωg

sg(ϵg − 1)
+ Cov

[
γg,

ϕg

sg

]
.

Before providing intuition for Proposition 2, we describe some of the elements that appear in it. The
abundance weights ωg are the population shares of each function in the overall ecosystem, and thus sum
to 1. Abundance weights do not depend on elasticities of substitution (σ or ϵg), and, all else equal,
function g’s population share increases with sg, since more species implies more biomass.
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The criticality weights µg = ∂ log E/∂ log Eg measure the marginal contribution of each function, ex-
pressed in terms of biodiversity {sg}. These weights also sum to 1, mirroring factor shares in standard
growth accounting.18 In the Cobb-Douglas limit σ → 1, all the µg would be equal to 1/N, just like factor
shares are constant with Cobb-Douglas production functions. With σ strictly below 1, as we assume, the
marginal contribution shares depend on the distribution of biodiversity {sg}. A function g’s criticality
weight µg is decreasing in its own function’s biodiversity sg: functions become more critical when bio-
diversity is degraded. For two functions g, h sharing the same exponent ϕ, function g is more critical
if and only if it has suffered larger past species losses (sg < sh). For two functions with the same past
biodiversity losses (sg = sh), the function with the higher ϕ is more critical. Higher complementarity
across functions (lower σ) also magnifies differences in criticality due to variations in biodiversity sg.

Finally, the criticality-abundance gap γg = µg − ωg captures the difference between function g’s
marginal contribution to the production of aggregate ecosystem services and its population share. It
is positive if function g contributes more productively to aggregate ecosystem services at the margin
than its population share. A positive gap can happen, for example, if biodiversity sg in that function is
particularly low. By construction, the gaps γg always sum to 0, and, in general, some are positive and
some negative, with a lower σ amplifying the absolute magnitudes of both positive and negative gaps.

Decomposing the Effects of Biodiversity Loss. Proposition 2 shows that the total effect of species loss
on ecosystem service production can be decomposed into three distinct channels. The first channel
comes from a fall in community abundance captured by the first term in equation (12): ∑G

g=1
(ωgαg)/sgdsg.

Species loss leads to a decline in the total mass of “producers,” thereby reducing total ecosystem service
production. The magnitude of the community-abundance effect depends on the extent of compensatory
growth of remaining species. The more intense the within-function competition for resources (lower
αg), the more the extinction of some species benefits the surviving ones. In the extreme case of no
niche differentiation in resource absorption and thus full compensatory growth (αg = 0), community
abundance is unaffected by species loss. Crucially, this first effect would operate even if all species
across all functions were perfectly substitutable at performing ecosystem services (i.e., if ϵg = σ = ∞).19

The second term, ∑G
g=1

ωg/sg(ϵg−1)dsg, captures that due to niche differentiation in service provision,
functional groups with fewer species have lower output Eg, even holding community abundance in the
function fixed. When biodiversity in a function has been depleted more (low sg), further biodiversity
losses in that function have larger negative effects on the productivity of the function and therefore
lead to bigger losses in aggregate ecosystem service provision. These effects are stronger in functions
with less substitutability across species (low ϵg, corresponding to more niche differentiation in service
provision) and disappear if ϵg → ∞ for all g, that is, if species in a function are perfect substitutes.

The final term, Cov
[
γg, ϕg/sgdsg

]
, captures how imbalances in biodiversity across functions are affected

by shocks to biodiversity. This covariance term is equal to zero if species losses occur around a symmet-
ric initial allocation of species across functions (sg = s), in which case γg = 0. If instead there are
pre-existing imbalances in sg, the covariance term can be non-zero.

18For instance, with a production function Y(L, . . . ) where L is labor priced at a competitive wage w = ∂Y/∂L, the labor share
is equal to wL/Y = ∂ log Y/∂ log L, and factor shares sum to 1 when Y is homogeneous of degree 1 as in the CES case.

19As we discuss in the Appendix, this term also corresponds to the loss in ecosystem service production that would occur if
all species saw a proportional reduction in abundance and there was no species loss.
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This last term is reminiscent of the literature on the aggregate implications of misallocation of in-
puts across firms and sectors. While the underlying nested-CES framework relates to models of the
economy that consider firms and industries—and we can therefore apply some of the insights from the
seminal work of, e.g., Hsieh and Klenow (2009), Baqaee and Farhi (2019a,b)—the ‘shocks’ we consider
in our setting are fundamentally different, as species loss (which could be induced by land-use, as in
Section 4) directly affects the mass of species and the abundance of surviving species via compensatory
growth effects. Another important distinction between firms and species is that unlike firms’ production
choices, species loss is not the outcome of multiple profit-maximization problems coordinated by a price
system. The initial allocation of species can therefore be highly ‘inefficient,’ in the sense that E might
be increased by ’reallocating’ species from less critical functions to more critical ones. As a result, the
change in imbalances appears as a first-order effect as in Baqaee and Farhi (2019b) and Bigio and La’O
(2020), which contrasts with the case of ‘efficient’ production networks, in which Hulten’s theorem ap-
plies and changes in allocative efficiency are only relevant at the second order (Baqaee and Farhi, 2019a).
New biodiversity losses have stronger effects when they disproportionately hit functions with a higher
abundance-criticality gap (Cov

[
γg, ϕg/sgdsg

]
< 0), and smaller effects if they occur in functions that are

less critical relative to their abundance (Cov
[
γg, ϕg/sgdsg

]
> 0). Crucially, even in the latter case of a pos-

itive Cov
[
γg, ϕg/sgdsg

]
, the net effect of species losses on aggregate ecosystem production is still weakly

negative when summing up the three terms in equation (12); however, a simple abundance-based mea-
sure that considers only the first term—or even a more sophisticated measure that also accounts for
additional niche differentiation effects in the performance of ecosystem services captured by the second
term—would overestimate the reduction in ecosystem services.

Once again, the intuition for the across-function effects driving the third term is clearest in the limit
of no substitution between functions (σ → 0). In that case, if species loss occurs in any function except
the most critical one, aggregate ecosystem services E remain unchanged in spite of the fall in total abun-
dance and the decline in function-level productivity conditional on abundance. In that case, the third
term in our decomposition in equation (12) is positive and exactly offsets the first two negative terms
capturing abundance loss and decreased niche differentiation in the performance of ecosystem services
(also see Figure 3). More generally, the covariance term Cov

[
γg, ϕg/sgdsg

]
is larger in absolute value

when functions are highly complementary (small σ), in which case the same differences in biodiversity
loss across species lead to larger absolute differences in criticality.

Effects of Biodiversity Loss — Numerical Example. Figure 4 provides graphical intuition for the de-
composition in equation (12). The horizontal axis s1 captures species loss in one function g = 1 starting
from s1 = 1, holding other functions fixed. Panel A shows the cumulative reduction in ecosystem ser-
vices relative to the initial condition s1 = 1 due to the first two terms in equation (12), that is, ignoring
any effect of cross-functional imbalances (e.g., if all ecosystem functions were perfectly substitutable,
σ → ∞). The blue region labeled “Abundance” captures the reduction in ecosystem services due to the
effect of lower community abundance. The purple region labeled “Productivity” captures the additional
productivity loss due to decreased niche differentiation in the performance of the ecosystem function.

Panel B shows the cumulative reduction in ecosystem services taking into account all three channels
in equation (12). We hold the abundance and productivity effects fixed, hence the dotted purple line is
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Figure 4: Decomposing the Effect of Species Loss
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Note: Panel A shows the cumulated first two terms in equation (12) for s1 between 0 and 1. The blue region (“Abundance”)
corresponds to the first term due to changes in community abundance and the purple region (“Productivity”) to the second
term due to changes in function-level productivity conditional on abundance. Panel B shows the cumulated total change,
holding the first two terms constant. The solid black line (“Low s2”) holds biodiversity in other functions s2 fixed at a low
value of 0.4, and the solid red line (“High s2”) holds s2 fixed at 1. In this numerical example, we set σ = 0.1, ϕg = 0.3, with
αg = 0.15 and ϵg such that the gains from variety within function g = 1 are also equal to 1/(ϵg − 1) = 0.15 (i.e., ϵg ≈ 7.7).

the same as in Panel A. We highlight the role of cross-functional imbalances by showing how E declines
under two scenarios: one where biodiversity in unaffected functions is high, fixed at s2 = 1 (solid red
line labeled “High s2”), and one where it is already low initially, fixed at s2 = 0.4 (solid black line labeled
“Low s2”). In both cases, we show the change relative to a baseline level when s1 = 1, but the absolute
baseline level is itself lower when other functions are already depleted (low s2).

When s2 is high, there are no pre-existing imbalances in biodiversity across functions. As we move
along the horizontal axis, species loss always affects the most depleted function g = 1. As a result,
the third term in equation (12) is always negative, and overall ecosystem services decline by more than
implied by the within-function niche differentiation effects on abundance and productivity. In the Fig-
ure, the gap between the solid red line and the dotted purple line captures the cumulative third term in
equation (12) due to increased imbalances between functions as more species are lost in function g = 1.

When s2 is low, there are pre-existing imbalances in biodiversity in the sense that function g = 1 is
initially relatively abundant. Therefore, starting from high values of s1, the actual reduction in E due
to species loss in function g = 1, depicted by the solid black line, is much smaller than implied by
within-function niche differentiation effects: while species loss reduces the abundance and productivity
in function g = 1, that function does not meaningfully constrain the ecosystem, and thus total losses
of ecosystem service production will be small. In this case, naive abundance- and productivity-based
measures—the first two terms in equation (12)—would overestimate the impact on ecosystem services
because the covariance term Cov

[
γg, ϕg/sgdsg

]
is actually positive. However, once species loss in func-

tion 1 is so large that function g = 1 becomes depleted relative to the other functions, the black line
crosses the dotted purple line, which means that naive abundance-based measures now underestimate
the actual reduction in ecosystem services, as the covariance term turns negative and thus reinforces the
within-function loss in abundance and productivity, as in the “High s2” case.
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The Fragility of Ecosystem Services. The second half of Proposition 2 considers the effects of biodiver-
sity losses from a shock that affects species in all functions equally (so dsg = ds for all g). This special
case allows us to introduce the notion of fragility of ecosystem services F (s), which captures the decline
in the production of aggregate ecosystem services following such a common shock. Moreover, if that
common shock ds is stochastic, fragility captures a notion of the ecosystem’s exposure to biodiversity risk.

Fragility is also determined by the three forces identified in Proposition 2 and thus depends on
the asymmetry in past species losses across ecosystem functions. To illustrate the importance of this
asymmetry, consider as a minimal example the case of two functions (G = 2), with ϕ1 = ϕ2 = ϕ and
potentially different initial levels of biodiversity, say s1 ≤ s2. To focus on cross-functional effects in
this example, we abstract from within-function niche differentiation in the performance of ecosystem
services and let ϵg → ∞, which drops the second of the three terms in equation (12). Then fragility can
be expressed as:

F (s) = ϕ

[
µ1

s1
+

1 − µ1

s2

]
= ϕ

[
ω1

s1
+

1 − ω1

s2

]
︸ ︷︷ ︸

∆ Community abundance

+ ϕγ1

[
1
s1

− 1
s2

]
.︸ ︷︷ ︸

∆ Across-Function Imbalances

Both terms are always positive, with the second term equal to zero if and only if initial conditions are
symmetric, s1 = s2: imbalances always increase ecosystem fragility and thus add to overall loss of
ecosystem services in response to a common shock (this contrasts with the case of asymmetric species
loss which might “even things out” by disproportionately hurting less depleted functions).

Figure 5 shows F as a function of s1 (holding s2 fixed at 0.5) for different values of σ. More comple-
mentarity across functions (lower σ) amplifies the fragility of ecosystem services for any value of s1 ̸= s2

through the imbalances term, because a lower σ raises the criticality of the less abundant function and
thus increases the criticality-abundance gap, γ1. Species losses in function g = 1 reduce abundances in
that function and through this channel always raise fragility. When we lose species, the contribution of
changes in the second term to changes in fragility can be positive or negative. In particular, in the region
s1 > s2, losses in function g = 1 reduce dispersion in s and thus the term due to imbalances. However,
despite these two opposing forces when s1 > s2, the net effect is still that a lower s1 always (weakly)
increases fragility. In the limit case of no substitutability between functions (σ → 0), fragility is entirely
determined by the most critical function: F (s) → ϕ

ming sg
. In that case, Figure 5 has a kink at s1 = s2 = 0.5

with F constant and equal to ϕ/s2 for s1 > 0.5.
Over time, as natural and human-made shocks affect the stock of biodiversity s, the fragility of

the ecosystem—and, thus, the ecological and economic risks from further species losses—varies. In
Appendix C.4, we show that the accumulation of random species losses over time tends to produce
an increase in ecosystem fragility, because each additional shock to biodiversity tends to increase the
imbalance in biodiversity degradation across functions. Naturally, if species loss over time tends to
cluster in a subset of functions, this leads to additional increases in fragility over time.

Fragility of Ecosystem Services: Approximation. To allow us to eventually measure the fragility of
different ecosystems—something we attempt to do below—we also derive a first-order approximation
to express fragility as a function of two ecosystem properties that can be observed in the data (see Ap-
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Figure 5: The Fragility of Ecosystem Services.
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Note: Figure shows F as a function of s1, fixing s2 = 0.5 and ϕ = 0.3 for g = 1, 2. Lines correspond to different values of σ.

pendix C.9 for details on the approximation): the average and dispersion of species losses across different
functions. To simplify expressions, suppose that the only heterogeneity between functions is the extent
of past losses, and thus the parameters αg, ϵg, and ϕg are the same across functions. Denote s̄ = E[sg]

the average share of surviving species and let sg = s̄(1+ δg), so that δg is function g’s deviation from the
average. Fragility can then be approximated as:

F (s) ≈ ϕ

s̄
×
{

1 +
[
1 − ϕ +

ϕ

σ

]
Var(δg)

}
, (14)

where Var(δg) = ∑g δ2
g. The term ϕ/s̄ is the only source of fragility if losses are symmetric across func-

tions (i.e., if sg = s̄ for all g). However, the term in brackets illustrates that, conditional on average
species loss s̄, dispersion in species loss across functions captured by Var(δg) increases fragility. Disper-
sion has a stronger impact if σ is lower, that is, if different ecosystem functions are less substitutable.

3 Biodiversity Loss, Fragility, and Economic Activity
The theory developed so far has modeled the dependence of ecosystem services on biodiversity. We
now embed this representation into the aggregate production function, the next step to obtaining an in-
tegrated model of the economy and nature. From this representation, we derive testable predictions that
link an economy’s exposure to biodiversity loss—summarized by the concept of ecosystem fragility—to
its economic consequences, and show how these predictions can be evaluated in the data. In Section 4,
we then build on this integrated model to study optimal policy.

3.1 Integrating Biodiversity into Economic Production

For now, we focus on capital K as the only factor of production beyond ecosystem services. We denote
total factor productivity (TFP) as A, and write equation (1) as:

Y = A F(K, E(s)) (15)

where the term E(s) reflects the dependence of ecosystem services on biodiversity s.
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For many of the results derived in this paper, the exact functional form of F is not essential: often, the
results depend only on the elasticities of output to capital and ecosystem services, ηK = ∂ log F/∂ log K
and ηE = ∂ log F/∂ log E, which, for our purposes, can be left unspecified. In some cases, however, it is
useful to pick a specific analytical form for F. A useful one is the standard CES function, which could of
course be expanded to include additional factors of production such as land and labor:

F(K, E) =
(

K
ξ−1

ξ + aEE
ξ−1

ξ

) ξ
ξ−1

. (16)

The advantage of this functional form is that it allows us to study how economic outcomes vary with
the degree of substitutability or complementarity between ecosystem services and capital, captured by ξ.
The ease with which capital can replace ecosystem services is central to valuing nature’s role in produc-
tion: intuitively, conservation becomes more important the harder and costlier it is to substitute capital
for the economic functions provided by nature. A long literature including Pearce and Atkinson (1993),
Ekins et al. (2003), Dietz and Neumayer (2007), and Ayres (2007) has empirically investigated whether ξ

is above or below one. Researchers typically distinguish between the “strong sustainability” hypothesis
(ξ < 1, limited substitutability between capital and nature) and the “weak sustainability” hypothesis
(ξ > 1, greater substitutability). The strong sustainability view was central to the influential Dasgupta
(2021) review, which concluded that there is “little-to-no substitution possibilities between key forms of natu-
ral capital and produced capital, or for that matter any other form of capital.” In what follows, unless otherwise
specified, we remain agnostic about whether ξ is above or below one, since our qualitative results do
not hinge on this distinction (though the quantitative implications of a calibrated model would).

3.2 Testable model predictions

The theory developed so far links biodiversity s, ecosystem services E(s), and output F(K, E(s)). In this
section, we derive testable implications of the model and take them to the data. To begin, we return to
the general specification in equation (15), specializing it to countries ℓ:

Yℓ = AℓFℓ(Kℓ, E(sℓ)). (17)

This specification implies that biodiversity loss in country ℓ reduces output Yℓ. Yet, as previously dis-
cussed, the direct effect of ecosystem damage on economic activity may take time to materialize, making
it difficult to directly link the two. Moreover, biodiversity loss can increase ecosystem fragility well be-
fore measurable economic damages occur. For this reason, we focus on model implications that relate
countries’ exposure to biodiversity loss to the risks facing future economic activity—two quantities that,
as we argue below, can be measured in the data.

Specifically, we assume that country ℓ defaults on its outstanding government debt if output falls
sufficiently. In our model with capital and nature, this output loss can be due to a combination of a
negative TFP shock and/or a species loss shock dsℓ. The probability of default can be written as:

Pr [d log Yℓ ≤ zℓ] = Pr
[
ηE
ℓ F (sℓ)dsℓ + d log Aℓ ≤ zℓ

]
, (18)
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where the default threshold zℓ depends on country characteristics such as the level of government debt,
tax rates, and interest rates. As before, ηE

ℓ = ∂ log Fℓ
∂ log Eℓ

denotes the elasticity of output to ecosystem services.
Suppose that each country faces log-normal TFP shocks, d log Aℓ ∼ N(µ, σ2), as well as independent

species loss shocks distributed according to an exponential distribution with rate 1/θ. The expected
species loss is thus dsℓ = −θ. We can then ask the following question: what happens when there is an
exogenous increase in the probability of biodiversity loss? In this framework, such negative news about
biodiversity risk would correspond to an increase in the parameter θ indexing the distribution of species
loss shocks. Then, to first-order in fragility F (sℓ), we have

Pr [d log Yℓ ≤ zℓ] ≈ Φ
(

zℓ − µ

σ

)
+ θ ηE

ℓ F (sℓ) σ−1ϕ

(
zℓ − µ

σ

)
, (19)

where Φ and ϕ are the c.d.f. and p.d.f. of a standard normal distribution, respectively. A key predic-
tion is that a negative biodiversity news shock will increase the overall country default probability by an
amount that is proportional to the ecosystem fragility of that country. Equation (19) therefore links news
about biodiversity loss (θ) to default risk (the left-hand side probability) via biodiversity exposure (the
fragility term).20 It also shows that even an increase in mean species loss that is common across coun-
tries will generally lead to heterogeneous effects across countries: credit risk responds more strongly to
negative biodiversity news in countries with higher fragility F (sℓ) or higher importance of ecosystem
services in production ηE

ℓ . In the next section, we empirically explore this cross-country link between
country default risk, news about biodiversity loss, and the two main components of fragility: average
biodiversity degradation and dispersion across functions, as highlighted in equation (14).

3.3 Biodiversity Loss, Fragility, and Economic Activity: Empirical Evidence

There are many well-identified cases studies documenting how biodiversity loss can having meaning-
ful negative economic effects, especially when the losses affected functions with little functional redun-
dancy (e.g., Frank, 2024; Frank et al., 2024); we describe several of these studies in detail in Appendix
A. There, we also review the economic implications from past instances of local ecosystem collapse, in-
cluding the collapse of the Aral Sea ecosystem, and the ecosystem collapses associated with both the
American Dust Bowl in the 20th century as well as the present-day Chinese Dust Bowl. While these case
studies exemplify the potential economic consequences of biodiversity loss, in this section we present a
more systematic empirical assessment of some of the key implications of the model that relate biodiver-
sity loss and ecosystem fragility to economic risk (see Section 3.2).

In particular, we argue that asset prices provide invaluable inputs in testing these relationships. Fo-
cusing on asset prices rather than measures of economic output has two advantages. First, asset prices
are forward-looking, and reflect expectations about long-term cash flows and risks—even those that
have not yet affected current economic activity. Second, while economic activity and biodiversity loss
move slowly, news about (and attention to) current and future biodiversity loss can vary more more

20Above, we illustrated this point using specific shock distributions. More generally, if TFP shocks d log Aℓ are distributed
according to a c.d.f. GA, and independent species loss shocks dsℓ are distributed according to a c.d.f. Gs(·|θ) that depends
on a parameter θ, then the default probability is Pr [d log Yℓ ≤ zℓ|θ] ≈ GA(zℓ) + ηE

ℓ F (sℓ)G′
A(zℓ)E[−dsℓ|θ]. The first term is

the baseline default probability absent nature shocks. The second term is the increase in default risk due to nature shocks.
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frequently, and asset prices should reflect such changes immediately. As a result, researchers have more
empirical variation to detect possible relationships in the data.

At a high level, our test of the model proceeds as follow. First, we use asset prices to obtain a
high-frequency measure of forward-looking economic risks at the country level. Specifically, we mea-
sure country-level risk by studying sovereign credit default swaps (CDS), which are financial contracts
with a payoff that depends on an underlying country defaulting on its debt obligation.21 The prices of
CDS (referred to as "spreads") reflect the evolution of the country’s expected default probability, corre-
sponding to the left hand side of equation (19). We also measure high-frequency negative news about
biodiversity loss from newspapers, which can be interpreted as reflecting shocks to θ. Finally, using dis-
aggregated data on species loss, we measure the two main components of fragility at the country level:
the average biodiversity loss and the dispersion in biodiversity loss across functions. We then use the
objects to test the economic mechanism of equation (19): bad news about biodiversity loss should lead
to increases in country risks if market participants believe that such biodiversity loss will have nega-
tive consequences for countries’ economic prospects and thus lead to higher default probabilities. Our
model specifically predicts that news about biodiversity losses should increase economic risks more for
countries with biodiversity that is more degraded on average (Proposition 1) and more for countries
where the degradation of biodiversity is more uneven across ecosystem functions (Proposition 2).

3.3.1 Data Description

CDS Spreads. We use CDS pricing information from Markit and include data on all available sovereign
CDS of maturities 1, 5, 10, 15, 20 and 30 years. We focus on USD-denominated and EUR-denominated
CDS. Our main object of interest is the CDS spread, which is the annual fee to purchase protection
against a negative credit event, usually quoted as a fraction of notional amount insured (typically in
basis points per year; we use the “par spread” measure throughout our analysis). After merging this
CDS data with the measures of biodiversity loss described below, we obtain a sample of about 865,169
weekly changes in CDS spreads for 99 distinct countries between 2001 and 2023 (some countries are
only observed in some years). Since the level of CDS spreads varies substantially across countries with
different credit risk, we measure changes in CDS spreads in percent relative to the prior week (instead
of studying absolute changes). At the 5th percentile of the distribution, CDS spreads fell by 12.4 percent
in a week; at the 95th percentile, they increased by 15.3 percent. The 5-year tenor is the most common at
18.8% of the sample, while long maturities of 30 years are the least common at 14.9% of the sample.

Negative Biodiversity News. To measure aggregate news about biodiversity loss, as well as attention
to such loss, we build on the empirical work of Giglio et al. (2023), who produce a daily index of news
coverage of biodiversity loss in the New York Times. Appendix Figure B.1 shows a monthly version of this
index to illustrate broader trends, with positive values corresponding to periods with more bad news

21Alternatively, one could study different countries’ yields spreads (obtained from the prices of their government bonds).
In practice, CDS spreads and bond yields spreads are tightly related via a no-arbitrage condition, so that, barring liquidity-
related frictions, they contain the same information. CDS spreads, however, tend to be more liquid and standardized, making
them better suited for studying credit risk (Longstaff, Mithal and Neis, 2005). One could also study equity markets (e.g., via
indices like the S&P 500 for the U.S.), but the breadth and liquidity of equity markets is significantly smaller in develop-
ing countries, making them much less informative about the country’s economic prospects than in developed markets. In
contrast, CDS spreads for all countries are usually traded and cleared in clearinghouses in the U.S., Europe, and Japan.

24



about biodiversity loss (corresponding to increases in θ in equation 19). To isolate the unanticipated
component of negative biodiversity news, we aggregate this index to the weekly level and construct
AR(1) residuals, similar to the approach in Engle et al. (2020) and Alekseev et al. (2025).

Biodiversity Destruction. To measure the state of biodiversity in a country, we work with informa-
tion from the Environmental Performance Index (EPI) published by the Yale Center for Environmental
Law & Policy (Wolf et al., 2022). The EPI provides measures of a country’s performance on several
environmental aspects. We construct our main measure, BiodiversityDestructionScore, by aggregating
several indicators related to biodiversity and ecosystem vitality (see Appendix B for details): (i) a mea-
sure of changes in biological diversity; (ii) a measure of the amount of suitable habitat remaining for each
species; and (iii) measures of tree cover loss, grassland loss, wetland loss, and fisheries loss. Since higher
values in the EPI indicators represent better environmental outcomes, we reverse the sign so that larger
values correspond to greater biodiversity degradation. Since the BiodiversityDestructionScore measures
biodiversity destruction relative to a baseline in a given country (instead of comparing absolute biodi-
versity richness across countries), it aligns well with the metric of biodiversity loss used in the model,
sg = Sg/S̄g, which also captures biodiversity loss relative to the initial number of species present.22

The EPI is available as of the year 2022, but also includes a baseline version of the indicator “derived
from applying the same methodology to data from approximately 10 years prior to current measure-
ments.” In our baseline analysis, we use this value as of 2012, which aligns roughly with the mid-point
of our CDS data series, though we show robustness of the results to using the 2022 data and the aver-
age across measures at both points in time. Appendix Table A.1 shows the BiodiversityDestructionScore
by country in 2012, highlighting substantial variation within and across regions. Worldwide, some of
the lowest scores (corresponding to the least biodiversity destruction) are observed in the Middle East;
this reflect the fact that large swaths of their desert landscapes are still relatively un-eroded and en-
demic species are in comparatively good shape even though they tend to have lower absolute values of
species density than other habitats such as rainforests. Countries with the highest scores (corresponding
to the most biodiversity destruction) span a wide geographic range, with Uruguay, Portugal, Panama,
Trinidad and Tobago, and Indonesia ranking at the top. There is also substantial local variation be-
tween countries with similar natural habitats. For instance, Jordan has one of the lowest biodiversity
destruction scores while nearby Lebanon has seen substantially more biodiversity destruction.

Dispersion of Habitat Loss. Measuring the dispersion of species loss across ecosystem functions—the
second key object driving ecosystem fragility—requires combining several data sets.

To measure the population health of different species, we work with the Map of Life database in-
troduced by Jetz, McPherson and Guralnick (2012). This data provides country-level “area scores” cal-
culated annually between 2001 and 2021, for a large number of species of terrestrial vertebrates (see
Appendix B for details). These area scores measure a species’ habitat-suitable range in the country as
a percentage of that range in 2001, and serve as good proxies for changes in species abundance, since
habitat loss generally reduces species abundance and increases extinction risk (Newbold et al., 2015;

22We prefer the BiodiversityDestructionScore to the average habitat loss from the Map of Life data described below as our
baseline measure of average biodiversity loss in a country. This is because the EPI data incorporates many more species and
ecosystems than the Map of Life data, which only includes information on terrestrial vertebrates.
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Figure 6: Area Score by Family for Selected Countries in 2021
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Note: Figure shows a boxplot of average 2021 family-level area scores for Nicaragua, Guatemala, Cambodia, and Mexico. Area
scores measure a species’ habitat-suitable range as a percentage of its range in 2001. An area score of 100 represents no change
between 2001 and 2021. Family-level data represents unweighted means across reported species in that family. The whiskers
indicate the 5th and 95th percentiles, while the dots mark the highest and lowest 3 data points for family-level area scores.

Powers and Jetz, 2019; Andre, Groom and Venmans, 2025). While this data allows us to measure habi-
tat loss for terrestrial vertebrates—which include birds, amphibians, mammals and reptiles—we do not
observe species health for marine life, invertebrates, and plants.

To group species by ecosystem function, we obtain taxonomic classifications from the TetrapodTraits
data of Moura et al. (2024). We observe the order, suborder, and family of each species, which correspond
to progressively finer taxonomic ranks based on both evolutionary relationships and conventionally-
defined groupings of functional and genetic similarity. Species within the same taxonomic group of-
ten perform similar ecosystem functions, as these factors—evolutionary, functional, and genetic—are
closely intertwined in shaping species’ ecological roles (Webb et al., 2002; Safi et al., 2011).

Combining these datasets yields population health proxies and functional classifications for over 2
million species-country-years covering 221 countries and territories. In 2012, we observe 446 species in
the average country, distributed across an average of 82 families, 33 suborders, and 27 orders.

Figure 6 shows the distribution of 2021 family-level average area scores across countries with dif-
ferent levels of average habitat loss. In Mexico and Cambodia, the habitat range of an average species
family in 2021 was only 2–4% smaller than in 2001, while in Guatemala and Nicaragua the average
family had lost 6–8% of its range. Even among countries with similar average loss, the variation across
families differs widely: at the 10th percentile, family-level ranges had declined by 26% in Nicaragua
compared to 18% in Guatemala. One Nicaraguan family that has suffered particularly severe habi-
tat loss is the Atelidae, whose range shrank by 36% between 2001 and 2021. This family includes the
endangered Nicaraguan Spider Monkey, whose decline—driven largely by habitat loss (Cortes-Ortìz
et al., 2020)—threatens seed dispersal processes essential for plant population dynamics and ecosystem
health. Conversely, conservation programs such as reforestation along the Pacific Slope have expanded
the Felidae family’s habitat by 0.9%, supporting species like the Ocelot.
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Similarly, while Cambodia and Mexico experienced comparable overall habitat loss, Cambodia
shows much greater variation across families. At the 10th percentile, family-level habitat declined by
13% in Cambodia versus 6% in Mexico. One Cambodian family with especially severe losses is the Hy-
lobatidae, whose habitat contracted by 35% between 2001 and 2021. This family includes the Northern
Yellow-Cheeked Gibbon, endangered largely due to this loss (IUCN, 2020). Like the Atelidae, they play
a crucial role in seed dispersal, and their decline undermines forest stability. In contrast, targeted efforts
for the near-extinct Hog Deer have increased the Cervidae family’s habitat by 8%.

We obtain our AcrossSuborderHabitatLossDispersion measure by taking the standard deviation of
the average habitat loss across families in a country. In our baseline analysis, we focus on the dispersion
in the year 2012, which is approximately in the middle of the our CDS sample, and aligned with the time
at which we measure the BiodiversityDestructionScore. Appendix Table A.3 shows the across-family
dispersion of habitat destruction by country in 2012.

3.3.2 Empirical Analysis

Empirical Specification. To explore the effect of negative news about biodiversity loss on CDS spreads,
and to assess whether this sensitivity varies with country characteristics such as the current state of
biodiversity, we estimate the following regression:

∆CDS_Spreadi,m,c,t = α + β1BiodiversityNewst

+ β2BiodiversityNewst × BiodiversityDestructionScorei

+ β3BiodiversityNewst × AcrossSuborderHabitatLossDispersioni

+ ξi,m,c,year + ϵi,m,c,t.

(20)

∆CDS_Spreadi,m,c,t is the percentage change in the CDS spread for country i, at maturity m, in currency c,
in week t. We winsorize ∆CDS_Spreadi,m,c,t at the 1% level for each country to ensure our results are not
driven by outliers. BiodiversityNewst is the unanticipated component of news about biodiversity loss as
described above, with higher values representing more bad news (or more attention to bad news). We
standardize BiodiversityNewst to have mean 0 and standard deviation 1 over the sample weeks. The
variables BiodiversityDestructionScore and AcrossSuborderHabitatLossDispersion are also standardized
to have mean 0 and standard deviation 1 across countries in our sample, which facilitates comparisons
of effect sizes across regressors.23 In our baseline regression, we include country × year × maturity ×
currency fixed effects. We also double cluster standard errors by month and country to account for the
fact that all CDS for a given country over time and all CDS in a given month across countries might be
affected by common factors.

Results. Table 1 presents estimates of regression (20). In column 1, we only include the biodiversity news
index as a regressor. This specification identifies the average effect of negative biodiversity news across
CDS spreads for all countries. Directionally, a one standard deviation increase in adverse biodiversity
news is associated with an average increase in CDS spreads of 0.20 percent, but this estimate of the
average effect is not statistically significant. The lack of statistical significance and the modest size of

23Since the ranking of countries on each measure is highly correlated across different years, we only focus on values at one
measurement point. In the Appendix, we assess robustness to alternative measurement dates.
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the average effect is perhaps not surprising given that, in the time series, many other forces drive CDS
spreads, combined with the fact that biodiversity loss might not be a first-order economic concern for
many countries in our sample.

Table 1: CDS Spreads and Biodiversity News

(1) (2) (3) (4) (5) (6)

Biodiversity News 0.195 0.189 0.189 0.190 0.192 0.188
(0.140) (0.138) (0.138) (0.138) (0.140) (0.141)

Biodiversity News × 0.072∗∗ 0.072∗∗ 0.068∗∗ 0.043∗∗∗ 0.069∗∗∗

Measure of Mean Biodiversity Destruction (0.029) (0.028) (0.027) (0.016) (0.023)

Biodiversity News × 0.052∗∗ 0.040∗∗ 0.050∗∗ 0.053∗∗∗ 0.047∗∗∗

Dispersion of Biodiversity Losses Across Taxonomic Groups (0.020) (0.018) (0.021) (0.016) (0.015)

Country × Year × Tenor × Currency FE x x x x x x
Taxonomic Group for Dispersion Measure Suborder Order Family Suborder Suborder
Biodiversity Destruction Measure EPI EPI EPI EPI No ESS EVI
Observations 865,169 865,169 865,169 865,169 865,169 846,805

Note: Column 1 shows coefficients of regressing percent changes in CDS spreads on AR(1) innovations of the Biodiversity News
index by Giglio et al. (2023). To ensure our results are not driven by outliers, we winsorize the weekly percentage changes in
CDS spreads within each country at the 1% level. All regressions include country-year-tenor-currency fixed effects. Column 2
adds interactions of innovations in biodiversity news and our baseline measures: the Biodiversity Destruction Score, an aggregate
measure of physical indicators of biodiversity destruction in 2012; and the Across Suborder Habitat Loss Dispersion, the standard
deviation of area scores across suborders of within-suborder average area scores in 2012. Columns 3 and 4 replace the across-
suborder dispersion with the standard deviation of area scores across orders and across families, respectively. Columns 5 and
6 replace the aggregate measure of physical indicators with two alternative measures: an version of the EPI that excludes
fisheries and Ecosystem Services (ESS), and the Environmental Vulnerability Index (EVI) devised by the South Pacific Applied
Geoscience Commission (SOPAC) to gauge a country’s vulnerability to environmental hazards. For all measures, higher scores
indicate greater mean and dispersion of biodiversity degradation. Standard errors are in parentheses and are double clustered
at both the country and at the month levels. Significance levels: * (p<0.10), ** (p<0.05), *** (p<0.01).

Column 2 introduces interactions between biodiversity news and two determinants of countries’
biodiversity risk exposures: the biodiversity destruction score and the across-suborder dispersion of
habitat destruction in 2012. The estimated coefficient on the interaction with the biodiversity destruction
score, β2, suggests that CDS spreads are more sensitive to negative news about biodiversity loss for
countries with higher levels of biodiversity destruction, consistent with the predictions from Proposition
1. In terms of magnitudes, a one standard deviation increase in prior biodiversity destruction in a
country raises the impact of a one standard deviation higher level of (negative) biodiversity news on
CDS spread changes by 0.072 percentage points. Put differently, a one standard deviation increase in
negative biodiversity news leads to a 0.3 percent larger increase in CDS spreads in a country at the 95th
percentile compared to a country at the 5th percentile of BiodiversityDestructionScore. Relative to an
average CDS spread in our sample of 212 basis points, this corresponds to a very modest differential
increase in CDS spreads of about 1 basis point.

The estimated coefficient on the interaction with across-suborder dispersion of habitat destruction,
β3, suggests that CDS spreads respond more strongly to negative news in countries where biodiversity
loss is more unevenly distributed across ecosystem functions, holding the average destruction fixed.
This suggests that habitat destruction that is more concentrated in a few functions increases ecosystem
fragility, consistent with Proposition 2. A one standard deviation increase in habitat destruction disper-
sion raises the effect of negative biodiversity news on CDS spread changes by 0.052 percentage points.
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Columns 3 and 4 replace AcrossSuborderHabitatLossDispersion with measures of the across-order
and across-family dispersion of habitat destruction, respectively. The results are robust to these alter-
native measures of the dispersion of biodiversity losses across taxonomic groups. Column 5 replaces
BiodiversityDestructionScore with a version of the EPI that excludes ecosystem services and fisheries.
Column 6 instead uses the Environmental Vulnerability Index (EVI), which assesses a country’s vulner-
ability to environmental hazards (see Kaly, Pratt and Mitchell, 2004). Estimates are similar with these
alternative measures of average biodiversity loss, both of which are further described in Appendix B.

Robustness. In Appendix B, we show that our results are robust to adjustments in the data construction
choices. For example, we use several alternative measures of across-suborder imbalances in biodiversity:
using the 10th percentile or the minimum value of area scores across suborders, and using 2021 values
for our dispersion measure instead of 2012 values. The results are similar regardless of the measure
of imbalance in habitat loss. Similarly, we show that the results are robust to using alternative periods
for mean biodiversity destruction. Finally, we show that the results are unchanged when we apply a
different winsorization threshold and when we restrict our sample to USD-denominated CDS only.

Discussion. Our results are consistent with the predictions from the model: while negative biodiversity
news does not have a statistically significant effect on CDS spreads for the average country, it leads to
significant increases in CDS spreads in countries with higher ecosystem fragility. While the magnitudes
of the effect sizes are small, the evidence suggests that our ecologically founded measures of ecosystem
fragility capture key aspects of the ways in which biodiversity loss affects economic risk. It is important
to note that these findings need not imply that analysts trading CDS explicitly consider our two exposure
indicators. Instead, the observed relationships more likely result from the fact that in countries with
larger and more dispersed past losses of biodiversity, those past biodiversity losses are already putting
substantial strain on ecosystem services production and thus economic output. To the extent that such
economic losses are already more salient in those countries, analysts focusing on these countries would
naturally pay more attention to news about biodiversity loss.

Consider Malaysia, the country with the fifth-highest across-family dispersion of biodiversity losses.
A recent World Bank and Bank Negara Malaysia (2022) report highlights that “high levels of economic
growth in the last two decades [. . . ] have amplified key drivers of nature and biodiversity loss in Malaysia.
These include habitat loss and fragmentation, pollution, unsustainable resource extraction and usage, and climate
change” and concludes that there are meaningful economic risks from such losses. A pressing example
of these risks is the increasing frequency and severity of floods. The report notes that “nature also plays
an important role for flood and storm protection, on which more than 5 percent of commercial lending in Malaysia
depends,” yet ongoing environmental degradation and climate change have already led to “the frequency
and extremity of flood events [increasing] in Malaysia.” Reflecting the economic impact of these trends, Bank
Negara Malaysia (2023) estimates that “economic losses from floods amounted to 0.13% of annual gross do-
mestic product on average” in Malaysia between 2008 and 2022, with projections suggesting that “Malaysia
is predicted to lose up to 4.1% of GDP in 2030 based on the impact of a theoretical 1-in-20 year flood.”

Similarly, consider Portugal, the country with the second-highest value of the BiodiversityDestruc-
tionScore. Cantarino (2022) highlights how Portugal’s worsening drought conditions, driven in part by
inefficiencies in agriculture, have contributed to severe biodiversity losses, with one striking example
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being the collapse of bee populations, where around “200,000 of the more than 700,000 hives” were lost
in recent years. Allianz (2023) estimates the loss of pollination services in Portugal will result in a 6.5%
decrease in agricultural output and a reduction of the country’s GDP by about 0.4%.

In other words, in countries like Portugal and Malaysia, where biodiversity degradation already
disrupts key industries, the economic effects of biodiversity loss are already meaningful. This makes
biodiversity risk more salient to the analysts tracking these countries, and increases the probability that
they will incorporate biodiversity-related risks in their financial assessments.

4 Optimal Conservation Policies
The final section examines the economic rationale for biodiversity conservation, focusing on the optimal
allocation of land when greater land use raises current output but diminishes biodiversity.

Setup. We consider a simple two-period model that features both standard investment in physical cap-
ital and land use u. Equivalently, the share 1 − u of land that is not used for production can be viewed
as an investment in the conservation of natural capital. Given initial capital, K0, a vector of the initial
number of species per function s0, and a vector of the initial abundances in each function, n̄0, at time 0
the country’s planner chooses land use u and investment into future capital K1 to maximize:

log(C0) + β log(C1),

where C0 = F(K0, uL, E0)− K1 and C1 = F(K1, ūL, E1(u)). For simplicity, we assume full depreciation
of the initial capital stock K0, and take long-run (date-1) land use ū as given.

Land Use and Ecosystem Services. Land use u increases present-day production, but at a cost to future
ecosystem services E1. This cost comes from two channels mirroring the findings from Liang, Rudik and
Zou (2021), who document that “shocks in economic production [. . . ] led to a significant reduction in species
abundance, diversity, and stability.”

Channel (i): First, there is a direct impact of land use on overall abundance. For instance, deforestation
reduces the maximal abundance of each species, even holding biodiversity (i.e., the number of species)
fixed. We capture this by assuming that each species’ abundance is multiplied by a factor 1 − u, that is:

n̄g,1(u) = (1 − u)n̄g,0. (21)

Channel (ii): Second, land use negatively affects biodiversity in function g according to the following
reduced-form specification (see, for example, Rosenzweig, 1995; IPBES, 2019; Johnson et al., 2021):

sg,1(u) = sg,0 − δu. (22)

Specifically. land use u induces biodiversity loss δu, with δ > 0. One interpretation is that, as the
abundance of each species declines due to land use, the risk of extinction increases, consistent with
the ecology finding that “the smaller the population size of a particular species, the more likely it is to go
extinct locally, due to random–stochastic–fluctuations” (Cleland, 2011).24 In turn, as discussed in Section
24It is straightforward to extend the results to a more general loss function L(sg,0, u), so that sg,1(u) = sg,0 −L(sg,0, u), which
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2, species loss affects ecosystem service production through three distinct forces that are all captured
in equation (23). The parameter ϕ determines (i) the net abundance loss above and beyond the one
captured by equation (21) that comes from a reduction in niche differentiation in resource absorption,
and (ii) the reduction in function-level productivity that results from a decline niche differentiation in
service performance. In addition, the parameter σ captures the third force, the additional output-effects
from imbalances in biodiversity across the complementary ecosystem functions.

Combining with equations (7) and (8), future ecosystem services are as follows, where land use u
appears twice in equation (23) to reflect the two channels through which it affects ecosystems:

E1 =

{
∑
g

[
Ēg,0(1 − u)

[
sg,0 − δu

]ϕg
] σ−1

σ

} σ
σ−1

. (23)

Model Solution. We denote by ηX,t = ∂ log Yt
∂ log Xt

the elasticity of date-t output to any factor Xt (except in
the Cobb-Douglas case, ηX,t is endogenous and needs to be determined as part of the optimal solution).
The optimal investment in physical capital can be expressed as an optimal savings rate:

ρ∗ =
K∗

1
Y0

=
βηK,1

1 + βηK,1
.

Optimal savings in physical capital increase with patience β and with the elasticity ηK,1 of date-1 output
to capital K1 (note that here the intertemporal elasticity of substitution is 1).

The most intuitive way to write the optimality condition with respect to land use is to express it
as an optimal land conservation rate 1 − u∗, which is the counterpart of the savings rate ρ∗ but for
natural capital. Effectively, the country can invest in two assets to shift consumption between periods:
physical capital and natural capital. The planning problem thus combines a standard consumption-
saving tradeoff with a portfolio choice between the two assets. At the optimum, equalizing the marginal
returns on these two forms of capital implies that optimal conservation must satisfy

1 − u∗ = Λ
d log E1

d log(1 − u)
, (24)

where
Λ =

βηE,1

ηL,0 (1 + βηK,1)
(25)

is the marginal rate of substitution between future ecosystem services and current land use. A higher
elasticity of date-1 output to ecosystem services, ηE,1, increases Λ and thus the optimal conservation
level. Similarly, a higher elasticity of date-0 output to land use will lead to lower optimal land conser-
vation. Of course, except in the Cobb-Douglas case (ξ → 1), Λ itself is determined in equilibrium, and
Appendix C.5 fully characterizes it. Besides Λ, the key object in the optimality condition in equation

could incorporate additional non-linearities and state-dependencies through the cross-derivative ∂2L/∂u∂sg,0. A negative cross-
derivative means that land use becomes more destructive for the remaining biodiversity as species losses accumulate over
time, whereas a positive cross-derivative would capture a situation where remaining species are more robust to land use, for
instance through selection effects where the most fragile species disappear first. L(sg,0, u) could also capture forces that may
increase, rather than decrease, biodiversity. Since the time scales for increases in biodiversity tend to be significantly longer
than the fast pace at which biodiversity is destroyed due to human activity, we do not account for them here.
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(24) is the elasticity of ecosystem services to land conservation (which is also an equilibrium object that
depends on u∗). Combining equations (23) and (24), we can express the optimal conservation 1 − u∗ as:

1 − u∗ = Λ ×
{

1︸︷︷︸
Channel (i)

+ δ(1 − u∗)F (s1)︸ ︷︷ ︸
Channel (ii)

}
, (26)

featuring the two channels by which land use affects ecosystem services. This gives the following result:

Proposition 3. The optimal conservation of natural capital satisfies

1 − u∗ = min
{

1,
Λ

1 − ΛδF (s1)

}
, (27)

where s1 = s0 − δu∗1 and 1 is the unit vector in RG.

Comparative statics: The optimal conservation 1 − u∗ decreases with initial biodiversity s0 and the substi-
tutability between functions σ, and increases with patience β, the weight on ecosystem services in production aE,
and the magnitude of species loss induced by land use δ. It is independent of the initial capital stock K0 if ξ = 1,
and increases with K0 if ξ < 1.

Discussion. Equation (27) provides a characterization of the optimal conservation of nature 1 − u∗.
When land use only affects abundance, with no impact on species loss (i.e., δ = 0), our framework
corresponds to a standard exhaustible resource problem (see Hotelling, 1931; Dasgupta and Heal, 1974).

In the presence of biodiversity loss from land use, δ > 0, the optimal conservation problem is richer,
but the solution can be mapped to the notion of fragility. Effectively, biodiversity loss implies a marginal
cost of depleting natural capital that increases sharply with past species loss and thus past land use. The
strength of the effect depends on how functions interact to produce ecosystem services (through the
parameter σ), and on the within-function gains from biodiversity, captured by the parameter ϕg.

Equation (27) is not a closed-form solution because u∗ also affects the right-hand side F (s1) =

F (s0 − δu∗1), but it is sufficient to derive the comparative statics in Proposition 3.25 As shown in Section
2.2, a lower substitutability σ between functions raises fragility and therefore optimal conservation.
Optimal conservation decreases with initial biodiversity s0, as a more biodiverse economy has more
room to deplete its natural capital before suffering harmful economic effects. Optimal conservation also
increases with the importance of ecosystem services in production aE and with patience β.

Finally, the parameter ξ, that determines the degree of complementarity between physical and natu-
ral capital (see section 3), has direct implications for how optimal policy varies with the stock of capital.
For example, the case of “strong sustainability” (ξ < 1) implies that capital-rich countries, with a higher
K0, should invest more in biodiversity preservation. The reason is that capital-rich countries are able to
save more out of their current output, and thus reach a higher future physical capital K1. As a result,
in the future (at t = 1), natural capital will be the relatively scarcer factor of production in those richer
countries, which implies that conservation of natural capital has a higher return. That said, the general
formulation of optimal land use of Proposition 3 is valid regardless of the specific value of ξ.
25In Appendix C.6 we provide analytical solutions for optimal conservation in two tractable cases: the no-substitution limit

(σ → 0); and the case when initial biodiversity is symmetric across functions (sg,0 = s0 for all g).
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Extension 1: Targeted Land Use. A key challenge specific to biodiversity relative to the extraction of
other exhaustible resources is that the complexity of ecosystem systems makes it difficult to fine-tune
land use to preserve the most critical ecosystem functions. In Appendix C.7, we contrast our baseline
results with an idealized setting in which the social planner can target conservation activities to specific
functional groups. Intuitively, the economic gains from corrective policies can then be maximized by
targeting conservation efforts towards species loss in those functions with little remaining redundancy,
as well as those functions whose current output is binding for overall ecosystem productivity.

Extension 2: Nature in the utility function. In order to highlight the tradeoffs between land use and
biodiversity loss from an economic perspective, our baseline model abstracts from the broader ethical
question of whether the value of nature is best approached from the anthropogenic perspective of the
loss of ecosystem services that are useful to humans, or whether species existence is valuable per se. We
also do not consider how biodiversity loss might affect nature’s provision of ’cultural ecosystem ser-
vices’ such as recreational opportunities, which can enter households’ utility functions directly without
affecting output. Our framework can easily be expanded to incorporate such additional considerations
through non-pecuniary benefits from nature conservation. In Appendix C.8, we extend the model to
allow for an additional date-1 utility ν log E1 capturing direct benefits of nature conservation above and
beyond the effect of ecosystem services on economic production. Our results are identical up to a redef-
inition of the term Λ, which becomes Λ =

β(ηE,1+ν)
ηL,0(1+βηK,1)

to account for the utility benefits of conservation.

Other potential extensions. The goal of this section is to provide a simple illustrative case of how our
model can be integrated in an intertemporal framework to guide optimal policy. There are however
many additional dimensions of the problem that have not been included in our analysis and would be
natural extensions of the model. For example, this section only considers a single ecosystem; adding a
geographic dimension to the model would enable the study of the implications for externalities across
geographical boundaries, the role of institutions in managing those externalities, as well as the effect of
trade across locations on the joint evolution of biodiversity and the economy. There is also an important
role for intertemporal externalities (e.g., the divergence between the private and social discount factors),
which would naturally lead to the study of optimal taxation of activities that deplete biodiversity.

5 Conclusion
This paper advances our understanding of the economic effects of biodiversity loss by developing a
tractable framework, grounded in ecological research, that models how species interact within and
across ecosystem functions to generate the ecosystem services that enter economic production func-
tions. The model highlights the non-linear relationship between species loss and economic activity, and
yields several important implications.

First, the framework shows that the absence of large economic losses from past biodiversity declines
does not mean future losses will be limited. On the contrary, past extinctions have increased ecosystem
fragility, making additional species losses increasingly costly for the economy. Consistent with this
prediction, we find that components of a country’s biodiversity risk exposure are already reflected in
asset prices today. Policymakers should therefore weigh the intertemporal trade-offs of biodiversity
loss, even when short-run impacts appear modest.
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Second, the model underscores that not all species are equally important for economic activity. Con-
servation efforts aimed at minimizing the economic costs of further biodiversity loss should prioritize
species in ecosystem functions with little remaining redundancy and those functions whose output
currently constrains overall ecosystem productivity. Our framework provides a way to quantify the
marginal economic value of different species, which can help guide policy decisions around Pigouvian
taxes, conservation efforts, the design of biodiversity offsets, and the design and valuation of financial
contracts such as debt-for-nature swaps and blue bonds.

Our analysis represents only a first step in modeling and measuring aggregate biodiversity risk
and its relationship with the economy, and there remain important avenues for extending our analyses.
First, the model could feature a richer specification of the input-output relationships across ecosystem
functions, which would allow researchers to capture asymmetries across functions in terms of their
importance to overall ecosystem functioning. Second, the model could be expanded to feature multiple
industries with heterogeneous exposures to different ecosystem services, which would allow a specifica-
tion of different degrees of substitutability between physical capital and various ecosystem services (e.g.,
perhaps fertilization can be more easily substituted through physical capital than pollination). Third, as
briefly mentioned in the last section, the model could be expanded to better incorporate the geographic
nature of ecosystems. For example, we could allow the production of ecosystem services in a location to
depend on the level of biodiversity in other locations. In addition, some of the ecosystem services can be
traded across locations (e.g., timber and food), and this could be explicitly studied in the model. Fourth,
understanding the interactions between climate change and biodiversity loss—especially how carbon
sinks, climate change, and species loss feed back into one another—also represents a promising avenue
of theoretical and empirical study (see Drupp and Hänsel, 2021; Giglio et al., 2025b, for first steps).

In addition to potential modeling enhancements, further progress on the measurement side is es-
sential. The expanding availability of species-level biodiversity data holds great promise for estimating
and calibrating models like the one we develop—an important step on the path to deriving concrete
policy implications—though substantial empirical work is still needed to bring such models fully to the
data.
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A Biodiversity Loss and Economic Activity - Case Studies
In this Appendix, we discuss several specific examples in which biodiversity loss has been shown to
have large-scale economic and social costs. We first summarize well-identified evidence that shows that
losses of individual keystone species can have meaningful negative effects across a range of metrics. We
then explore several examples of local ecosystem collapse, and highlight the large negative effects of
these events on the affected societies and economies.

Loss of Keystone Species. As discussed in Section 2.1, the concavity of ecosystem service production
with respect to the number of species in a function gives rise to keystone species, the last remaining species
performing a key ecosystem function. The loss of such species can result in significant social and eco-
nomic costs. Beyond the loss of vultures in India discussed above, other examples further highlight the
broad impacts of keystone species losses. For instance, Frank et al. (2024) examines the consequences
of the large-scale eradication of sparrows during China’s “Four Pests Campaign” (FPC) in 1958, which
attempted to improve agricultural productivity by eliminating flies, mosquitoes, rats, and sparrows.
Within two years, the FPC led to the local extinction of sparrows in China. However, sparrows served
as a natural form of pest control, helping to regulate locust populations that threatened crops. In their
absence, pest numbers soared, crippling crop yields. Frank et al. (2024) conclude that ‘back of the envelope
calculation suggests that sparrow killing can account for 19.6% of the national crop yield reduction during the
Great Famine,” which, in turn, exacerbated mortality rates. Another example comes from the impact of
white-nose syndrome on insect-eating bats in the United States. As documented in Frank (2024), the av-
erage mortality rate in bat colonies affected by this disease has exceeded 70% since its emergence in 2006.
The rapid decline in bat populations weakened the ecosystem’s natural pest control function, leading
farmers in impacted areas to “increase their insecticide use by 31.1%, on average,” causing a 7.9% increase in
infant mortality rates. These cases illustrate how the loss of keystone species can have profound effects
on both ecosystems and human populations.

Local Ecosystem Collapse. In extreme cases, local losses of key ecosystem functions can lead to the
collapse of entire ecosystems. A prominent example of such an ecological collapse is the decline of the
Aral Sea ecosystem. Once one of the world’s largest inland bodies of water, the Aral Sea experienced a
dramatic decline in water levels due to large-scale irrigation projects in the 1960s that diverted its pri-
mary water sources. This disruption led to the near-complete desiccation of the sea, as well as increased
salinity in its remnants, creating “an environment that is unsuited to native plant and animal species”. The
local extinction of tigers and Bukhara deer, the imminent disappearance of ten bird types in the south
part of the Aral region, and the vanishing of 12 out of 28 fish types are all linked to this initial shock
(Janobiddinov, 2024). Micklin (2007) shows how this ecosystem collapse led to the destruction of the
substantial Aral fishing industries and the unemployment of tens of thousands of people. He also high-
lights how “strong winds blow sand, salt, and dust from the dried bottom of the Aral Sea”, so “salts [. . . ] settle
on natural vegetation and crops,” such that “plants are killed outright [or] more commonly, their growth (and for
crops, yields) is substantially reduced.” Additionally, “the population living in the so-called ecological disaster
zone around the sea suffers acute health problems,” including “respiratory and digestive afflictions and possibly
cancer from inhalation and ingestion of blowing salt and dust.” Ultimately, the collapse of the Aral ecosystem
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resulted in a dramatic population declines in towns like Muynak, once the largest city on the Aral Sea
with a population of close to 30,000, but now with only approximately 13,500 inhabitants (Hanks, 2021).

Another ecological disaster with large-scale economic consequences was the American Dust Bowl,
which devastated vast areas of the Great Plains. The region’s ecological resilience was initially weak-
ened by the widespread extermination of the plains bison, which had played a vital role in maintaining
prairie ecosystems, in particular by helping native grasses develop deep root systems that stabilized
the soil and retained moisture (Ratajczak et al., 2022). Without these grazers, the ecosystem became
less resilient, and combined with decades of unsustainable farming practices such as deep plowing and
monoculture cultivation, the region’s native grasses were lost, leaving the soil exposed and vulnerable
to erosion. When a severe drought struck in the 1930s, strong winds swept up the dry, bare soil, forming
massive dust storms that occurred throughout the decade. According to Hornbeck (2012), “farmland was
left severely eroded,” and “more-eroded counties experienced large and permanent relative declines in agricultural
land values: the per acre value of farmland declined by 30 percent in high-erosion counties [. . . ] relative to changes
in low-erosion counties.” This led to a “Dust Bowl exodus”, where in the 1930s, “total population declined
between 3% and 8% in the five central Plains states,” with high-erosion counties experiencing a 12% decline
in population relative to low-erosion counties. Noghanibehambari and Fletcher (2024) additionally find
that the effects of the Dust Bowl extended into long-term health and economic outcomes, where “in-
dividuals born in high-erosion counties after the 1930s lived 0.85 fewer months,” and “experienced large and
significant reductions in adulthood income.”

Moreover, the ongoing Chinese Dust Bowl serves as a stark reminder that such ecological disasters
are not confined to the past. The root causes of the Chinese Dust Bowl echo those of the American
Dust Bowl, with “cultivation, grazing, destruction or harvesting of herbaceous vegetation and logging forests to
produce firewood and rural construction materials” being the dominant cause of widespread desertification
(Feng et al., 2015). By 2010, over 57% of the land in Ningxia Hui Autonomous Region, covering 2.97
million hectares, had been degraded. This left dunes exposed and prone to shifting, resulting in over
3 million people suffering from frequent sandstorms and hazardous dust pollution (World Bank, 2021).
The economic effects of such desertification in China are profound, with Lu and Wang (2003) estimating
direct economic losses of 7.7 billion USD annually. As Rechtschaffen (2017) documents, China “lost 6.2%
of its farmland between 1997 and 2008, exacerbating the country’s food security crisis. Furthermore, “as
towns get swallowed by deserts, so do their economies,” with desertification forcing the large-scale resettle-
ment of populations. Between 2003 and 2008, “650,000 people living in China’s Inner Mongolia province
were forcibly resettled,” with immediate and large-scale costs to local economic activity.

All three case studies—the Aral ecosystem collapse, and the Dust Bowls in the United States and
China—highlight how ecosystem collapse, often facilitated by the degradation of biodiversity due to
human interventions, can cause large social and economic costs.
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B Empirical Analysis - Further Details
In this Appendix, we provide further details on the data source and data construction steps behind the
results presented in Section 3.3 of the main paper. We also present additional results that highlight the
robustness of our baseline findings to variations in the empirical specification.

B.1 Details on Data Sources and Sample Construction

Map of Life Data. To proxy species abundance in each country over time, we use the Map of Life
database compiled by Jetz, McPherson and Guralnick (2012). The Map of Life aggregates 532 species
range datasets, including both direct observations and expert predictions, to provide comprehensive
spatial data on habitat boundaries, size, and suitability for terrestrial vertebrates. This spatial data is
used to calculate area scores at the species-country-year levels from 2001 to 2021. Here, area scores
are defined as the product of habitat suitability scores (ranging continuously from 0 to 1) and habitat
size scores. A species’ area score in a given country and year represents its habitat-suitable area as a
percentage of its 2001 area, with a value of 100 corresponding to a habitat-suitable area equal to that of
2001, and a value of less than 100 corresponding to a decline in habitat-suitable area.

We additionally use this data to calculate habitat scores at the species and country levels from 2001
to 2021. The habitat score is the average of a species’ area score (as defined above) and its connectivity
score. Here, connectivity is defined as the average distance from any point within a suitable habitat
to the nearest boundary, and a species’ connectivity score in a given country-year represents its habitat
connectivity as a percentage of its 2001 connectivity, with a value of 100 corresponding to a habitat con-
nectivity equal to that of 2001, and a value of less than 100 corresponding to a decline in connectivity.
To assess the extent to which habitat scores capture similar variation as area scores, we report the corre-
lation between across-suborder dispersion in 2012 for the two measures in Table A.10. The correlation
is 26%, suggesting that habitat scores capture distinct information relative to area scores.

TetrapodTraits. To obtain categorizations of species into functional groups, we use the TetrapodTraits
resource created by Moura et al. (2024). TetrapodTraits provides taxonomic data for 33,281 tetrapod
species, including their order, suborder, and family. These progressively finer taxonomic ranks reflect
evolutionary relationships, as well as subjective groupings based on functional and genetic similarities.
Each of these criteria is associated with a higher likelihood that species within the same taxonomic
group will perform similar ecosystem functions. As evolutionary relationships become closer, genetic
similarity increases, which often leads to the development of similar functional traits (Webb et al., 2002;
Safi et al., 2011). Thus, we use these taxonomic ranks as proxies for ecosystem functional groups.

We merge this data with the Map of Life data—for some species in the Map of Life data that are not
in the TetrapodTraits data, we are able to infer their taxonomic classification by matching the genus (the
first word of its scientific name) with the genera present in the TetrapodTraits data, thereby obtaining
the order, suborder and family information. From there, we can calculate unweighted average area
scores across all species for different definitions of functional groups. We then calculate the unweighted
across-group standard deviations (and mean) of habitat loss in each country in 2012. In Table A.3, we
report summary statistics by country. For example, for Argentina we have data on 1,119 unique species
belonging to 132 families, 48 suborders, and 40 orders. Across these species, the 2012 area scores have
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a standard deviation of 4.58; the within-suborder average area scores have a standard deviation of 1.47
across suborders. In Figures B.2 and B.4, we map the across-suborder and across-family means and
standard deviations of area scores in 2012 for countries in our regression sample. In Table A.4, we report
the count, across-group mean, and across-group standard deviation of area scores in 2012 for countries
outside our sample.

Our baseline measure for the across-function dispersion of biodiversity losses is the across-suborder
standard deviation of the area score in 2012, as it aligns with roughly the midpoint of our CDS data. We
also compute analogous dispersion measures for 2021, which we use in robustness checks and in the
construction of current BiodiversityRiskExposure. Table A.5 presents 2021 summary statistics by coun-
try, and Figures B.3 and B.5 show the maps of across-suborder and across-family means and standard
deviations. Summary statistics in 2021 for countries outside the sample are shown in Table A.6. To
assess the robustness to different choices, we calculate the correlation and Spearman rank correlations
with 12 combinations of the following specifications: three score types (SD, p10, and min area), two
taxonomic levels (suborder and suborder), and two time points (2012 and 2021). These correlations pre-
sented in Tables A.7 and A.8 reveal large positive relationships between our final measure and each of
the alternative measures.

Environmental Performance Index. To measure the state of biodiversity in each country, we use in-
formation provided by the 2022 Environmental Performance Index (EPI) published by the Yale Center
for Environmental Law & Policy (Wolf et al., 2022). The EPI provides measures of many aspects of a
country’s environmental performance for a large set of countries. As outlined in Section 3.3, we focus
on a subset of indicators related to biodiversity and ecoysystem services. Our main measure includes
two indicators in the EPI’s “Biodiversity & Habitat” category measuring the physical state of nature: the
“Species Habitat Index” and the “Biodiversity Habitat Index”.26 The “Species Habitat Index” (SHI) is
derived from the Map of Life data discussed above, where a country’s annual SHI value is the average
habitat score of all species occurring in that country in that year, weighted by the proportion of their
global range found within that country. This index captures the extent “of suitable habitat within a country
that remains intact for each species in that country.” Since habitat loss is one of the key drivers of extinc-
tion, it captures the “potential population losses ... and ...extinction risks of individual species.” (Wolf et al.,
2022, p111). The “Biodiversity Habitat Index” (BHI) is obtained by analyzing remotely-sensed forest
change and land-cover change datasets using the PREDICTS model (Newbold et al., 2015) to predict
habitat conditions. This index captures the “change in biological diversity within a country due to habitat
loss, degradation, and fragmentation across that country” (Wolf et al., 2022, p102).

In addition to these two indicators from the “Biodiversity & Habitat” category, our measure also
includes the indicators in the “Ecosystem Services” and “Fisheries” category. The “Ecosystem Services”
category encompasses three indicators: Tree cover loss, which measures “the percent reduction in a coun-
try’s tree cover in forested areas ... from the reference year 2000”, and grassland and wetland loss, which
are defined analogously but measured relative to 1992 as the reference year (Wolf et al., 2022, p122).
“Fisheries” includes three indicators: the “Fish Stock Status” measures “the percentage of a country’s total

26We exclude measures of regulatory protection since they are on average negatively correlated with the physical state of
biodiversity, suggesting that regulatory protection is often a response to deteriorating physical conditions.
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catch that comes from overexploited or collapsed fish stocks”.; the “Marine Trophic Index” (MTI) captures the
“ecological pressures on fish stocks” by analyzing which trophic level or food web levels a country’s fish-
ing industry is targeting; and the “Fish Caught by Trawling and Dredging” measures the share of fish
caught by these techniques with are particularly harmful to marine ecosystems (Wolf et al., 2022, p114).

To derive our final EPI-based measure of biodiversity destruction, we use the original relative
weights for the indicators from the EPI calculation, rescaling them to sum to 100%. The scores are
then reversed (calculated as 100 minus the original score) so that higher values indicate greater biodi-
versity degradation, while maintaining the 0 to 100 range. Table A.1 shows our EPI-based measure of
biodiversity for each country in our sample. The rank of each country within our sample is shown in
parentheses, with better ranks corresponding to lower biodiversity destruction scores. The indicators
comprising the EPI are available as of 2022, but there are also versions of the indicators “derived from
applying the same methodology to data from approximately 10 years prior to current measurements” (Wolf et al.,
2022, p24). In our main analysis we use this value as of 2012, which roughly aligns with the midpoint of
our CDS data series. Table A.9 shows that the EPI-based measure of biodiversity obtained at the baseline
is very similar to the measure based on 2022 data. Table A.10 further shows that the baseline measure
is correlated at 71% with its 2022 value, and at 91% with the average of the 2012 and 2022 values. Our
robustness check in Table A.11 also shows that our results are similar when using the 2022 value, and
using the average of the baseline and 2022 values.

Environmental Vulnerability Index. We use the Environmental Vulnerability Index (EVI) as an alter-
native measure for how degraded biodiversity is in a given country. Developed in 2004 by the South
Pacific Applied Geoscience Commission (SOPAC) in collaboration with the UN Environment Program
and their partners (Kaly, Pratt and Mitchell, 2004), the EVI combines 50 indicators of a country’s vulner-
ability to environmental hazards. These indicators span various categories, including natural disasters
(e.g., frequency of earthquakes, tsunamis and landslides) and extreme weather events (e.g., abnormally
high winds, excessive rainfall or extreme heat). While the EVI also includes indicators related to biodi-
versity loss—such as the number of endangered species, habitat fragmentation, and loss of vegetative
cover—it does not focus exclusively on them. Higher EVI values indicate greater vulnerability.

Correlation Across Measures. Table A.10 shows the correlation between our different country level
measures. Our main measure of average biodiversity loss, Biodiversity Destruction Score-2012, is essen-
tially uncorrelated with the Across-Suborder Dispersion of Area Scores in 2012. This suggests that our 2
measures capture completely different concepts. Our EPI-based measure captures how much biodiver-
sity has degraded in a given country relative to its original state, while our Map of Life-based measure
captures the dispersion of this biodiversity degradation in a given country relative to its original state.

Table A.10 also shows the correlation between alternative measures for a country’s state of biodi-
versity. The Biodiversity Destruction Score-2022 measure uses information from 2022 only, and has a 71%
correlation with 2012 values, while Biodiversity Destruction Score–Avg, which averages the 2012 and 2022
values, has a 91% correlation with 2012 and a 94% correlation with 2022. Using only the EPI indicators
from the Biodiversity & Habitat category (excluding those from the ecosystem category) yields a corre-
lation of 43%, suggesting that ecosystem services and fisheries capture different aspects of a country’s
natural resources. The Environmental Vulnerability Index is barely correlated with our baseline measure.
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The correlation is higher at 46% when only biodiversity indicators of the EPI are included. The Across-
Suborder Dispersion of Area Scores has an 91% correlation with the Across-Family Dispersion of Area Scores,
suggesting that dispersion patterns remain consistent over different taxonomic levels. However, the
Across-Suborder Dispersion of Habitat Scores only show a 26% correlation with the previous two measures,
indicating that habitat connectivity does not fully align with habitat size. These measures of dispersion
remain mostly uncorrelated with the Biodiversity Destruction Score measures. Overall, the correlations
suggests that our different measures for a country’s state of biodiversity capture some common aspects
but also each capture different aspects not captured by the others.

Biodiversity News. To measure news coverage of biodiversity losses, we use the NYT Biodiversity
News Series produced by Giglio et al. (2023), which is from 2000 to 2023. Giglio et al. (2023) identify
articles related to biodiversity loss in the New York Times using a dictionary approach of biodiversity
related terms, and classify the sentiment of these articles using Bidirectional Encoder Representations
from Transformers, or BERT, a standard model from the natural language processing literature. We
show the news index aggregated to the monthly level in Figure B.1, with important events labelled. In
our empirical specification, we use the news series aggregated to the weekly level using Friday observa-
tions, to align the timing of news measurement with the beginning of the trading week. We then follow
Giglio et al. (2023), as well as prior work by Engle et al. (2020) and Alekseev et al. (2025), and use resid-
uals from an AR(1) process fitted to the news series as our measure of the unanticipated component of
news.

Figure B.1: Time Series of NYT Biodiversity News Series from 2001–2022
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Note: The figure shows the monthly NYT Biodiversity News Series from 2001 to 2022 by Giglio et al. (2023), annotated with
biodiversity-relevant events that have potential effects on financial markets.

CDS Data. We obtain sovereign CDS data from Markit and include all CDS on sovereign debt contained
in the database, identified by matching CDS tickers to countries. We focus on the most liquid tenors (5,
10 and 1 years) as well as some less liquid tenors that span longer maturities (15, 20, and 30 years).
We select CDS on the senior unsecured debt as it is more liquid, and keep the CDS with CR clause if
available, but otherwise use MM, MR, and XR clauses (in this sequence); therefore, if available, we focus
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on CDS where the clause includes restructuring in the definition of the default event. We focus on CDS
denominated in USD and EUR, and perform our analysis using the par spread. The par spread is the
annualized cost of protection against a credit event through a CDS, and it corresponds to the way CDSs
were quoted before 2009. After 2009 (in the so-called “big bang”), quoting conventions changed, with
a fixed spread (100bps or 500bps) and a variable upfront payment (points upfront). Markit converts
the quotes into par spread for the post-2009 period, so that it can be compared to the pre-2009 period,
allowing us to use the par spread for the entire sample period. Similarly to the news index, we aggregate
CDS data at a weekly frequency using Friday observations.

B.2 Robustness Tests

Table A.11 explores the robustness of our results to adjustments in data construction choices. The first
column modifies the specification in column 2 of Table 1 by using the Biodiversity News index directly,
rather than its AR(1) innovations. Column 2 adjusts the winsorization threshold for percent changes
in CDS spreads to the 2nd and 98th percentiles. Column 3 restricts the sample to USD-denominated
CDS contracts. In column 4, the dispersion measure is updated to reflect 2021 values rather than 2012.
Columns 5 and 6 replace the standard deviation of area scores across suborders with alternative statis-
tics: the 10th percentile and minimum value of area scores across suborders, respectively. These mea-
sures are recoded so that lower scores, which indicate worse outcomes, correspond to higher values in
the regression. Column 7 updates the Biodiversity Destruction Score to use 2022 data, while column 8 uses
the average of the 2012 and 2022 values. The results are broadly consistent across specifications.
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Table A.1: Biodiversity Destruction Score By Country in 2012

Biodiversity Destruction Score

Score Global Rank Score Global Rank

Africa 67.08 Ukraine 73.15 (29)
Ghana 77.39 (10) Poland 72.86 (31)
Kenya 74.51 (20) Hungary 72.30 (34)
South Africa 74.12 (24) North Macedonia 71.83 (36)
Nigeria 73.21 (28) Belarus 71.75 (37)
Rwanda 69.14 (49) Greece 71.31 (39)
Cameroon 68.13 (54) Sweden 71.28 (40)
Tunisia 67.54 (60) Russia 71.26 (41)
Zambia 65.29 (68) Italy 71.21 (42)
Angola 64.09 (70) Lithuania 70.63 (45)
Morocco 63.02 (73) Austria 69.47 (47)
Algeria 62.82 (74) Croatia 69.08 (50)
Egypt 57.65 (85) Czechia 68.43 (53)
Côte d’Ivoire 55.06 (88) Germany 68.05 (55)
Asia 58.67 Montenegro 67.15 (62)
Indonesia 80.29 (5) Bulgaria 66.51 (64)
Malaysia 77.52 (9) Slovakia 65.71 (66)
Thailand 74.64 (19) Finland 63.79 (71)
Turkey 73.01 (30) Serbia 62.78 (75)
Lebanon 72.55 (32) Latvia 62.73 (76)
Korea 70.35 (46) Slovenia 61.44 (80)
Vietnam 69.20 (48) Estonia 60.34 (82)
Cyprus 68.70 (52) Norway 60.18 (83)
China 67.82 (56) Switzerland 56.12 (87)
Japan 67.70 (58) Romania 52.05 (90)
Taiwan 67.65 (59) Iceland 31.77 (97)
Philippines 65.69 (67) North America 74.81
Mongolia 62.40 (77) Panama 80.76 (3)
Israel 61.80 (78) Trinidad and Tobago 80.30 (4)
Sri Lanka 61.70 (79) El Salvador 79.62 (6)
India 61.09 (81) U.S.A. 78.19 (7)
Pakistan 59.75 (84) Guatemala 76.98 (11)
Oman 56.62 (86) Costa Rica 75.61 (14)
Kazakhstan 54.83 (89) Canada 74.41 (22)
Iraq 51.42 (91) Barbados 73.45 (27)
Azerbaijan 49.29 (92) Jamaica 72.20 (35)
Singapore 48.39 (93) Mexico 71.17 (43)
Qatar 35.34 (94) Belize 67.76 (57)
Bahrain 33.17 (95) Dominican Republic 67.31 (61)
Jordan 32.18 (96) Oceania 71.33
Saudi Arabia 30.95 (98) New Zealand 74.95 (17)
United Arab Emirates 30.16 (99) Australia 72.51 (33)
Europe 68.18 Fiji 66.54 (63)
Portugal 82.85 (2) South America 71.09
Spain 77.53 (8) Uruguay 82.86 (1)
Belgium 75.66 (13) Argentina 76.18 (12)
Malta 75.60 (15) Chile 74.42 (21)
United Kingdom 75.07 (16) Colombia 71.51 (38)
Netherlands 74.81 (18) Ecuador 71.03 (44)
Ireland 74.33 (23) Brazil 68.96 (51)
Denmark 73.84 (25) Venezuela 66.39 (65)
France 73.50 (26) Bolivia 64.91 (69)

Peru 63.56 (72)

Note: The table shows the “Biodiversity Destruction Score” by country in 2012. Global rank within the sample is
shown in parentheses (higher scores and higher ranks correspond to more biodiversity destruction). The score in-
cludes indicators for the change in biological diversity that has occurred in a country and for the amount of suitable
habitat remaining for each species from the biodiversity and habitat category, as well as indicators on ecosystem ser-
vices (loss in tree cover, grassland and wetlands) and fisheries.
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Table A.2: Biodiversity Destruction Score By Country in 2022

Biodiversity Destruction Score

Score Global Rank Score Global Rank

Africa 72.14 France 75.42 (32)
Ghana 83.61 (5) United Kingdom 75.00 (35)
Nigeria 79.63 (14) Germany 74.99 (36)
Kenya 78.53 (17) Belarus 74.97 (37)
Cameroon 77.84 (19) Czechia 74.57 (40)
Rwanda 75.94 (28) Slovakia 74.42 (41)
South Africa 75.06 (34) Italy 74.41 (42)
Morocco 74.87 (38) Ukraine 73.86 (43)
Algeria 72.53 (49) Greece 73.47 (46)
Zambia 70.26 (57) Latvia 71.52 (51)
Tunisia 69.52 (60) North Macedonia 71.23 (52)
Angola 67.12 (71) Sweden 70.88 (54)
Egypt 57.50 (85) Estonia 70.78 (55)
Côte d’Ivoire 55.45 (87) Hungary 69.39 (61)
Asia 63.28 Montenegro 68.89 (66)
Qatar 89.43 (1) Finland 67.01 (72)
Malaysia 88.86 (2) Austria 66.76 (74)
Vietnam 82.35 (6) Croatia 66.67 (75)
Thailand 82.02 (7) Bulgaria 65.88 (76)
Indonesia 80.59 (11) Switzerland 64.50 (77)
Korea 79.51 (15) Slovenia 62.29 (80)
Turkey 78.47 (18) Norway 60.21 (83)
Cyprus 77.05 (22) Serbia 59.29 (84)
China 75.80 (30) Romania 53.21 (90)
Lebanon 74.71 (39) Iceland 41.59 (93)
Japan 73.79 (44) Malta 23.10 (99)
India 72.58 (48) North America 71.56
Taiwan 70.37 (56) Guatemala 80.72 (10)
Philippines 69.15 (64) U.S.A. 76.12 (27)
Sri Lanka 67.14 (70) Costa Rica 75.39 (33)
Mongolia 62.47 (79) Jamaica 72.62 (47)
Israel 61.79 (81) Belize 71.01 (53)
Kazakhstan 55.72 (86) Trinidad and Tobago 70.16 (58)
Singapore 54.68 (88) Panama 69.76 (59)
Oman 53.54 (89) Mexico 69.28 (62)
Pakistan 52.61 (91) Canada 69.27 (63)
Azerbaijan 44.34 (92) El Salvador 69.09 (65)
Jordan 36.69 (94) Dominican Republic 67.84 (67)
Bahrain 33.17 (95) Barbados 67.46 (69)
Iraq 31.35 (96) Oceania 73.17
Saudi Arabia 31.12 (97) New Zealand 76.72 (24)
United Arab Emirates 29.15 (98) Australia 75.86 (29)
Europe 69.65 Fiji 66.94 (73)
Portugal 84.58 (3) South America 72.99
Spain 81.10 (8) Uruguay 84.41 (4)
Denmark 81.06 (9) Argentina 79.16 (16)
Poland 80.11 (12) Bolivia 77.20 (21)
Belgium 79.94 (13) Brazil 76.50 (26)
Ireland 77.40 (20) Colombia 73.60 (45)
Netherlands 77.03 (23) Ecuador 72.40 (50)
Lithuania 76.71 (25) Chile 67.69 (68)
Russia 75.51 (31) Venezuela 64.19 (78)

Peru 61.73 (82)

Note: The table shows the “Biodiversity Destruction Score” by country in 2022. Global rank within the sample is
shown in parentheses (higher scores and higher ranks correspond to more biodiversity destruction). The score in-
cludes indicators for the change in biological diversity that has occurred in a country and for the amount of suitable
habitat remaining for each species from the biodiversity and habitat category, as well as indicators on ecosystem ser-
vices (loss in tree cover, grassland and wetlands) and fisheries.
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Table A.3: 2012 Area Score by Taxonomic Classification and Country, In-Sample

Species Family Suborder Order

Country Count Mean SD Count Mean SD Count Mean SD Count Mean SD
Algeria 266 102.51 4.29 83 102.50 3.50 37 102.89 3.13 31 103.21 3.14
Angola 1079 99.88 2.03 145 99.83 0.89 53 99.90 0.61 44 99.81 0.57
Argentina 1119 98.29 4.58 132 98.14 3.17 48 98.66 1.47 40 98.66 1.51
Australia 1080 99.58 1.55 120 99.66 0.84 42 99.70 0.56 35 99.78 0.51
Austria 250 99.50 1.86 70 99.59 1.01 32 99.57 0.82 28 99.61 0.85
Azerbaijan 313 99.96 0.94 80 99.91 0.50 36 99.91 0.42 29 99.96 0.39
Bahrain 29 96.81 7.44 20 97.20 7.27 12 96.29 5.15 10 96.78 5.49
Barbados 32 99.28 4.34 23 99.11 4.19 15 99.34 5.00 10 99.77 3.67
Belarus 218 99.60 0.87 67 99.62 0.53 30 99.65 0.48 26 99.63 0.43
Belgium 196 98.27 2.45 64 98.33 1.84 30 98.17 1.95 26 98.21 2.01
Belize 556 98.60 3.70 107 98.59 2.44 42 98.58 2.20 34 98.70 2.05
Bolivia 1690 99.18 2.71 143 99.24 1.95 47 99.54 1.88 38 99.70 2.01
Brazil 2463 98.19 3.54 155 98.35 1.62 47 98.66 1.19 38 98.66 1.24
Bulgaria 296 99.73 1.24 78 99.72 0.87 35 99.72 0.77 29 99.74 0.76
Cameroon 1038 99.56 2.79 144 99.12 5.34 50 99.35 2.03 41 99.60 1.08
Canada 409 99.53 2.08 86 99.57 1.17 33 99.46 0.99 28 99.55 0.95
Chile 306 99.59 2.31 75 99.49 1.75 33 99.31 2.35 28 99.69 0.81
China 1756 98.90 4.13 156 98.81 3.95 48 98.09 5.33 39 99.07 1.62
Colombia 2462 98.83 2.45 159 98.96 1.53 50 99.17 1.34 41 99.22 1.33
Costa Rica 1061 99.15 2.72 127 99.54 1.72 44 99.59 1.40 36 99.79 1.39
Croatia 292 99.59 0.86 82 99.63 0.53 36 99.63 0.41 30 99.67 0.40
Cyprus 112 99.34 1.91 50 99.09 1.70 28 98.98 1.77 22 99.25 1.54
Czech Republic 219 99.24 1.08 68 99.24 0.70 31 99.11 0.60 27 99.09 0.60
Côte d’Ivoire 717 98.00 7.05 131 98.13 3.56 48 98.41 2.82 40 98.33 2.94
Denmark 175 99.64 0.79 64 99.64 0.45 29 99.59 0.40 25 99.62 0.39
Dominican Republic 208 100.14 2.21 66 99.99 1.68 31 100.09 1.37 26 100.09 1.45
Ecuador 1929 98.89 2.59 149 98.69 2.22 50 98.61 2.27 41 98.72 2.25
Egypt 241 100.51 2.68 81 100.64 2.50 36 100.94 3.04 30 101.12 3.28
El Salvador 521 99.48 1.83 104 99.49 1.17 42 99.50 0.95 34 99.43 0.99
Estonia 191 100.13 3.12 64 100.30 2.47 30 100.36 2.44 26 100.53 2.57
Fiji 34 100.01 0.77 19 100.16 0.86 11 100.34 1.10 9 100.42 1.21
Finland 179 100.51 3.81 61 100.66 1.94 28 100.43 2.01 25 100.50 2.12
France 336 99.52 1.11 93 99.62 0.81 38 99.60 0.62 32 99.53 0.51
Germany 264 99.17 1.19 76 99.20 0.80 33 99.11 0.80 29 99.12 0.80
Ghana 704 100.46 2.84 134 100.53 1.64 47 100.68 1.24 39 100.64 1.18
Greece 326 99.82 0.69 84 99.88 0.49 37 99.87 0.38 30 99.84 0.40
Guatemala 878 96.62 6.62 118 97.02 3.93 43 97.16 3.18 35 96.97 3.36
Hungary 242 99.53 1.70 69 99.48 1.13 33 99.47 1.38 28 99.50 1.46
Iceland 29 100.00 0.00 15 100.00 0.00 8 100.00 0.00 8 100.00 0.00
India 1455 99.67 2.47 151 99.68 1.01 48 99.52 1.06 40 99.62 0.79
Indonesia 2216 98.14 6.64 171 99.05 6.12 56 98.45 2.96 45 98.52 3.21
Iraq 301 100.23 1.23 82 100.27 0.85 34 100.12 0.63 28 100.19 0.66
Ireland 94 100.53 1.25 44 100.35 0.93 22 100.18 0.81 22 100.18 0.81
Israel 258 99.66 1.66 82 99.56 1.27 33 99.62 1.30 27 99.72 1.41
Italy 331 99.57 1.34 89 99.62 0.90 37 99.57 0.65 31 99.60 0.63
Jamaica 143 98.99 1.92 54 99.23 1.74 25 99.07 0.61 22 99.10 0.60
Japan 325 99.12 1.60 93 99.20 1.27 36 99.12 1.04 30 99.13 0.99
Jordan 241 99.51 1.42 76 99.43 1.15 30 99.33 1.02 24 99.47 0.92
Kazakhstan 397 100.92 1.80 91 100.84 1.50 36 100.95 1.03 29 101.15 0.80
Kenya 1182 100.02 1.31 154 100.07 0.56 53 100.07 0.44 44 100.05 0.43
Latvia 197 99.76 3.19 65 100.11 2.32 30 100.14 2.40 26 100.24 2.57
Lebanon 212 99.89 1.13 78 99.78 0.97 32 99.75 1.13 26 99.76 1.24
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Table A.3: 2012 Area Score by Taxonomic Classification and Country, In-Sample

Species Family Suborder Order

Country Count Mean SD Count Mean SD Count Mean SD Count Mean SD

Lithuania 194 99.72 1.10 65 99.80 0.53 30 99.78 0.59 26 99.77 0.63
Macedonia 260 99.48 1.69 75 99.55 1.13 35 99.56 0.93 29 99.58 0.95
Malaysia 1075 96.94 7.64 132 98.61 6.41 46 98.05 4.07 37 98.47 4.31
Malta 23 99.12 2.50 17 99.19 2.17 13 99.43 1.95 10 99.62 1.60
Mexico 1593 98.70 3.09 145 98.94 1.52 50 98.94 1.26 41 98.89 1.33
Mongolia 289 100.68 2.85 68 100.49 1.97 30 100.78 1.20 27 100.85 1.24
Montenegro 251 98.83 1.97 74 99.01 1.26 35 98.98 1.26 29 99.09 1.07
Morocco 294 100.48 2.57 94 100.55 1.62 39 100.91 1.84 33 101.02 1.84
Netherlands 195 98.72 2.10 66 98.68 1.46 30 98.49 1.39 26 98.47 1.41
New Zealand 105 99.49 2.28 40 99.46 1.46 24 99.56 1.19 22 99.54 1.22
Nigeria 933 99.70 2.77 145 99.50 2.25 53 99.52 1.94 44 99.49 1.96
Norway 177 100.64 2.26 62 100.64 1.92 29 100.47 2.22 26 100.57 2.31
Oman 146 100.10 0.62 60 100.14 0.50 26 100.11 0.28 22 100.15 0.27
Pakistan 576 99.97 3.32 115 100.15 1.69 39 99.90 1.60 32 100.08 1.47
Panama 1155 98.88 2.68 134 99.12 1.48 43 99.05 1.18 36 99.14 1.20
Peru 2048 99.12 2.56 155 99.37 1.04 50 99.58 0.60 41 99.59 0.64
Philippines 803 98.98 3.13 113 99.25 1.45 40 99.29 0.90 32 99.35 0.84
Poland 240 99.58 0.80 69 99.58 0.48 30 99.53 0.44 26 99.50 0.44
Portugal 264 99.32 1.62 86 99.47 1.54 38 99.36 1.56 31 99.55 1.60
Qatar 46 100.35 2.33 28 100.65 2.71 17 101.18 3.33 13 101.60 3.73
Romania 288 99.46 1.24 79 99.41 0.99 35 99.44 0.92 30 99.37 0.94
Russia 644 99.96 2.34 110 99.92 1.18 39 100.11 1.35 32 99.91 0.61
Rwanda 764 99.96 0.86 124 100.02 0.60 46 99.95 0.21 38 99.96 0.21
Saudi Arabia 239 100.46 2.79 80 100.16 1.26 32 100.38 1.26 26 100.49 1.38
Serbia 272 99.68 1.46 74 99.69 0.93 33 99.71 0.79 28 99.69 0.81
Singapore 393 88.95 13.23 98 88.79 10.30 38 88.70 8.84 31 87.67 8.83
Slovakia 230 99.43 1.41 69 99.39 0.71 31 99.27 0.69 26 99.23 0.72
Slovenia 260 99.56 1.12 74 99.61 0.90 34 99.54 0.85 29 99.43 0.60
South Africa 952 99.64 1.65 145 99.66 1.03 53 99.82 1.13 43 99.69 0.40
South Korea 189 99.29 2.80 74 99.39 2.54 31 99.40 2.32 26 99.21 2.35
Spain 353 99.60 1.19 97 99.59 0.89 42 99.52 0.89 35 99.66 0.76
Sri Lanka 399 99.82 1.56 104 99.95 0.89 42 99.81 0.75 35 99.92 0.70
Sweden 193 100.41 3.85 65 100.65 2.24 29 100.58 2.46 25 100.73 2.62
Switzerland 230 98.91 1.45 64 99.03 1.05 30 98.90 0.83 26 98.92 0.83
Taiwan 373 98.88 1.45 97 98.85 1.21 34 98.73 0.90 28 98.72 0.91
Thailand 1254 98.16 5.02 140 98.66 2.49 47 98.40 1.91 39 98.67 1.82
Trinidad and Tobago 432 98.70 1.74 103 98.68 1.26 41 98.80 0.73 33 98.78 0.70
Tunisia 230 102.44 5.01 80 102.32 3.69 35 102.25 3.17 29 102.29 3.25
Turkey 453 99.48 2.75 97 99.55 0.75 39 99.52 0.67 32 99.50 0.71
Ukraine 299 99.41 1.60 79 99.38 1.15 36 99.36 1.04 30 99.30 1.11
United Arab Emirates 104 99.99 0.28 52 99.99 0.19 22 100.01 0.14 18 100.02 0.15
United Kingdom 170 99.42 1.11 59 99.46 0.68 29 99.40 0.53 26 99.42 0.53
United States 1037 99.14 4.19 131 99.31 2.47 45 99.57 1.34 37 99.61 1.45
Uruguay 370 99.63 2.92 90 99.85 1.92 39 99.87 1.23 32 99.82 1.15
Venezuela 1677 99.51 1.41 143 99.59 0.96 45 99.76 0.62 37 99.77 0.60
Vietnam 1137 98.39 3.54 137 98.82 2.26 47 97.82 2.39 38 98.15 2.33
Zambia 829 99.98 1.12 139 99.93 0.70 50 100.06 0.54 41 100.14 0.45

Note: The table shows the count, as well as the mean and standard deviation of area scores across species, families, suborders and
orders in 2012 for each country in our final regression sample.
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Table A.4: 2012 Area Score by Taxonomic Classification and Country, Out-of-Sample

Species Family Suborder Order

Country Count Mean SD Count Mean SD Count Mean SD Count Mean SD

Afghanistan 368 100.22 3.06 91 100.25 1.04 32 100.34 1.09 26 100.42 0.92
Akrotiri and Dhekelia 48 99.00 2.21 30 98.76 1.91 18 98.62 1.64 13 98.74 1.86
Albania 265 99.42 1.05 78 99.50 0.67 35 99.47 0.71 29 99.49 0.75
Andorra 99 99.84 0.38 44 99.82 0.32 20 99.78 0.40 16 99.76 0.44
Anguilla 21 100.75 1.02 15 100.88 1.09 10 101.04 1.00 7 100.90 0.95
Antigua and Barbuda 36 101.90 2.45 23 101.68 2.38 14 101.54 2.28 13 101.43 2.33
Armenia 277 99.71 0.49 77 99.70 0.38 35 99.67 0.38 29 99.70 0.29
Aruba 28 99.63 1.39 21 99.47 1.48 14 99.56 1.67 12 99.56 1.79
Bahamas 114 101.48 1.73 47 101.39 1.49 26 101.37 1.65 23 101.22 1.65
Bangladesh 588 99.62 1.57 116 99.62 0.99 40 99.41 1.16 33 99.38 1.22
Benin 587 99.98 2.76 121 99.95 3.37 47 100.16 1.54 39 100.18 1.56
Bhutan 612 100.12 1.45 116 100.22 0.84 39 100.11 0.74 31 100.03 0.71
Bonaire, Sint Eustatius & Saba 51 100.37 2.17 33 100.42 2.06 17 100.36 1.09 13 100.32 1.01
Bosnia and Herzegovina 274 99.26 2.07 79 99.13 3.03 35 99.14 2.99 29 99.64 0.64
Botswana 643 100.32 1.44 131 100.22 0.93 49 100.36 0.65 40 100.40 0.61
British Virgin Islands 40 97.94 3.97 26 98.27 3.38 14 98.06 2.66 12 98.42 2.03
Brunei 616 99.22 1.83 108 99.38 0.78 40 99.11 0.71 32 99.04 0.75
Burkina Faso 472 100.01 3.02 117 100.13 2.16 44 99.96 2.03 37 99.71 1.81
Burundi 713 99.72 1.36 127 99.71 0.92 47 99.72 0.74 39 99.75 0.77
Cambodia 713 97.68 6.61 122 98.57 4.45 44 97.70 3.79 36 97.89 4.09
Cape Verde 15 100.04 0.89 10 100.04 0.67 7 100.04 0.75 7 100.04 0.75
Cayman Islands 48 99.79 2.90 24 99.79 2.08 14 100.16 2.66 11 99.75 1.88
Central African Republic 814 99.89 1.58 135 99.94 0.71 50 99.95 0.55 41 99.99 0.55
Chad 540 100.08 1.58 119 100.16 1.21 45 100.18 0.98 39 100.19 1.03
Comoros 56 99.99 1.16 28 99.99 1.01 13 100.09 0.71 10 99.94 0.50
Cuba 215 99.63 2.24 62 99.92 1.25 31 99.76 0.49 25 99.77 0.48
Curaçao 41 98.92 5.73 29 98.69 6.04 16 99.18 5.07 13 99.10 5.57
Dem. Rep. of the Congo 1376 99.78 2.92 148 100.01 1.39 55 99.97 1.20 46 100.09 1.25
Djibouti 226 98.66 2.37 90 98.63 2.01 37 98.75 1.46 32 98.72 1.56
Dominica 61 99.90 0.30 35 99.91 0.24 16 99.92 0.12 12 99.91 0.14
Equatorial Guinea 531 100.68 8.68 119 101.39 9.98 46 101.73 6.58 37 102.08 7.22
Eritrea 452 100.26 0.86 118 100.23 0.74 46 100.27 0.59 40 100.33 0.60
Ethiopia 872 100.18 0.96 137 100.17 0.58 47 100.21 0.40 39 100.21 0.36
Falkland Islands 32 99.53 0.43 24 99.61 0.43 13 99.62 0.42 12 99.59 0.42
French Guiana 829 100.05 3.29 120 100.06 1.88 43 100.12 1.10 35 100.05 0.83
French Polynesia 22 100.00 0.00 10 100.00 0.00 7 100.00 0.00 7 100.00 0.00
Gabon 630 100.10 1.39 128 100.06 0.70 47 100.08 0.64 38 100.11 0.69
Gambia 424 100.22 1.63 113 100.31 1.19 43 100.52 1.05 36 100.54 1.06
Georgia 297 99.75 0.43 80 99.71 0.35 38 99.66 0.42 31 99.70 0.34
Greenland 28 100.00 0.00 15 100.00 0.00 7 100.00 0.00 7 100.00 0.00
Grenada 56 99.28 2.85 32 99.07 3.21 16 99.67 1.18 13 99.60 1.30
Guadeloupe 66 99.42 2.01 38 99.33 1.92 18 99.34 1.15 14 99.51 0.79
Guernsey 20 97.50 3.78 17 97.39 3.59 12 97.17 3.98 12 97.17 3.98
Guinea 724 99.57 2.63 134 99.42 2.81 48 99.67 0.85 40 99.65 0.89
Guinea-Bissau 442 100.20 2.52 112 100.12 1.80 44 99.94 1.56 37 100.01 1.61
Guyana 1019 99.94 1.38 127 100.02 0.85 44 100.09 0.74 36 100.13 0.80
Haiti 204 98.80 1.86 65 98.89 1.24 31 98.82 0.94 26 98.92 0.96
Honduras 920 97.56 5.02 123 97.78 3.23 44 98.12 1.96 36 98.05 1.99
Hong Kong 276 98.80 3.67 86 98.48 3.11 36 98.98 3.12 28 98.60 2.85
Iran 506 100.73 2.16 100 100.84 1.53 37 100.98 1.49 31 101.18 1.51
Isle of Man 27 99.71 1.07 23 99.74 1.12 13 99.89 1.35 13 99.89 1.35
Jersey 36 99.04 2.90 23 98.62 2.01 14 98.54 1.95 14 98.54 1.95
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Table A.4: 2012 Area Score by Taxonomic Classification and Country, Out-of-Sample

Species Family Suborder Order

Country Count Mean SD Count Mean SD Count Mean SD Count Mean SD

Kosovo 244 99.62 0.81 72 99.63 0.57 34 99.59 0.63 28 99.62 0.52
Kuwait 71 100.37 3.13 37 100.45 3.53 19 100.91 4.61 14 101.37 5.34
Kyrgyzstan 237 100.13 1.05 74 100.08 0.76 34 99.99 0.64 29 100.01 0.69
Laos 970 98.34 4.73 126 99.13 3.25 44 98.17 3.02 35 98.79 2.51
Lesotho 370 99.75 1.05 109 99.76 0.73 44 99.72 0.63 35 99.85 0.41
Liberia 544 99.28 3.85 121 99.65 5.73 45 99.30 1.94 37 99.32 2.02
Libya 157 99.87 0.64 63 99.88 0.32 29 99.90 0.25 24 99.93 0.22
Liechtenstein 74 97.73 4.21 36 97.05 3.58 19 97.50 2.90 16 97.71 2.88
Luxembourg 157 98.67 1.45 57 98.66 1.10 29 98.70 0.98 25 98.73 1.01
Madagascar 464 96.73 6.62 78 98.62 3.47 35 97.80 3.18 30 97.80 3.38
Malawi 718 100.00 1.44 133 99.97 0.63 48 100.07 0.49 39 100.12 0.47
Mali 537 100.40 1.56 120 100.47 1.16 46 100.57 0.92 39 100.61 0.91
Martinique 75 99.35 1.14 43 99.32 1.29 22 99.17 1.59 17 99.11 1.81
Mauritania 374 100.38 1.94 110 100.52 1.62 45 100.42 1.74 39 100.55 1.80
Mauritius 17 99.02 1.85 14 98.98 1.67 8 99.11 1.78 7 99.31 1.25
Mayotte 31 100.36 1.00 20 100.33 0.97 12 100.13 0.93 9 100.07 0.99
Micronesia 26 99.98 0.05 14 99.97 0.06 9 99.97 0.07 8 99.96 0.07
Moldova 226 99.24 2.74 67 99.25 2.42 31 99.00 1.25 27 98.90 1.25
Montserrat 25 99.24 1.88 17 99.12 2.04 10 99.74 0.58 7 99.66 0.58
Mozambique 831 99.84 2.06 143 99.84 1.06 51 99.87 1.18 42 99.92 1.27
Myanmar 1294 98.61 5.09 143 98.79 3.20 48 98.59 2.63 40 98.77 2.73
Namibia 716 101.16 3.11 135 101.15 1.50 51 101.15 1.22 42 101.11 1.20
Nepal 713 99.94 0.41 119 99.95 0.30 41 99.95 0.37 33 99.89 0.16
New Caledonia 83 100.59 2.40 28 99.86 2.69 15 99.30 3.35 14 99.18 3.44
Nicaragua 848 96.49 7.72 124 97.04 4.44 44 97.35 3.58 36 97.51 3.40
Niger 445 99.68 1.55 112 99.68 1.07 43 99.66 0.56 37 99.69 0.57
North Korea 242 99.84 1.44 79 99.74 1.49 33 99.74 1.23 29 99.74 1.29
Northern Cyprus 103 99.14 1.69 50 99.11 1.45 27 99.03 1.36 21 99.16 1.46
Northern Mariana Islands 16 100.00 0.00 13 100.00 0.00 8 100.00 0.00 6 100.00 0.00
Palau 32 99.82 0.56 21 99.87 0.34 12 99.90 0.27 9 99.86 0.31
Palestina 207 98.86 2.56 78 98.83 1.83 33 98.59 2.38 27 98.71 2.47
Papua New Guinea 839 99.98 1.62 99 99.98 1.00 37 99.86 1.06 30 99.79 1.17
Paraguay 818 96.58 8.78 116 96.07 6.36 44 96.85 3.76 36 96.87 4.09
Puerto Rico 145 98.81 4.48 56 98.80 4.37 29 98.52 4.17 23 98.32 4.64
Republic of Congo 747 100.05 4.29 131 100.04 2.21 47 100.24 1.80 38 100.12 1.61
Reunion 17 99.39 1.29 13 99.22 1.09 7 98.96 1.13 7 98.96 1.13
Saint Kitts and Nevis 40 100.07 0.56 22 100.13 0.47 12 100.05 0.36 9 100.04 0.39
Saint Lucia 49 99.83 0.46 29 99.80 0.45 13 99.85 0.22 9 99.86 0.13
Saint-Barthelèmy 19 100.13 0.26 13 100.08 0.20 9 100.09 0.17 6 100.08 0.18
Saint-Martin 23 99.87 1.87 16 99.68 1.56 11 99.55 1.45 7 100.10 1.32
Samoa 16 100.00 0.00 13 100.00 0.00 7 100.00 0.00 7 100.00 0.00
San Marino 45 99.56 2.93 26 99.46 2.37 14 98.86 2.79 10 99.19 2.50
Senegal 534 100.20 1.19 121 100.20 0.83 46 100.23 0.68 39 100.21 0.66
Seychelles 31 100.20 0.24 19 100.16 0.25 12 100.18 0.27 10 100.20 0.29
Sierra Leone 596 99.57 2.15 124 99.57 1.35 46 99.53 0.80 38 99.48 0.85
Sint Maarten 24 98.64 4.20 16 98.23 3.96 11 97.59 3.10 7 98.59 2.62
Solomon Islands 172 99.49 1.54 50 99.72 0.63 25 99.75 0.45 20 99.70 0.48
Somalia 633 99.81 1.18 133 99.85 0.68 47 99.84 0.64 40 99.85 0.68
South Sudan 893 101.07 2.63 138 101.06 1.51 49 100.83 1.01 40 101.03 0.91
St. Vincent & the Grenadines 50 99.85 0.28 30 99.89 0.19 15 99.90 0.14 11 99.89 0.14
Sudan 598 100.32 2.24 124 100.28 1.06 45 100.21 0.89 39 100.29 0.82
Suriname 855 100.00 2.53 123 99.81 2.11 44 99.76 1.62 36 99.69 1.74
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Table A.4: 2012 Area Score by Taxonomic Classification and Country, Out-of-Sample

Species Family Suborder Order

Country Count Mean SD Count Mean SD Count Mean SD Count Mean SD

Svalbard and Jan Mayen 15 100.00 0.00 8 100.00 0.00 4 100.00 0.00 4 100.00 0.00
Swaziland 611 99.24 2.92 130 98.96 2.04 47 98.70 1.96 37 98.83 2.11
Syria 285 99.96 1.07 88 99.83 0.90 36 99.78 1.21 30 99.74 1.33
São Tomé and Príncipe 50 99.87 1.48 33 100.03 0.30 16 100.00 0.21 14 99.99 0.22
Tajikistan 240 99.96 0.95 73 99.98 0.66 31 99.90 0.55 26 99.92 0.59
Tanzania 1228 99.85 1.59 150 99.81 0.57 53 99.81 0.38 44 99.78 0.38
Timor-Leste 175 99.68 2.81 68 99.75 2.20 31 99.44 3.19 27 99.35 3.41
Togo 610 100.04 3.03 122 100.11 2.08 45 100.24 1.50 37 100.20 1.39
Turkmenistan 255 100.62 2.21 74 100.60 1.33 32 100.58 0.94 27 100.68 0.94
Turks and Caicos Islands 52 99.85 0.25 29 99.92 0.25 17 99.94 0.20 13 99.95 0.20
Uganda 1122 99.93 1.42 141 99.84 1.20 50 99.93 0.50 42 99.98 0.37
Uzbekistan 260 99.10 5.92 78 99.08 3.75 33 99.49 2.22 28 99.49 2.41
Vanuatu 53 103.48 12.73 24 101.32 14.47 15 98.52 16.90 14 98.35 17.52
Virgin Islands, U.S. 58 97.86 4.39 33 97.77 4.21 23 97.67 3.99 19 97.82 3.14
Western Sahara 78 100.00 0.02 35 100.00 0.01 19 100.00 0.01 14 100.00 0.01
Yemen 230 99.84 3.05 76 100.01 0.95 30 99.95 0.70 25 100.00 0.60
Zimbabwe 739 99.73 1.12 138 99.74 0.65 50 99.72 0.59 41 99.77 0.60
Åland 55 100.37 1.54 31 100.35 0.89 17 100.27 0.97 15 100.24 1.01

Note: The table shows the group count, as well as the mean and standard deviation of area scores across species, families, suborders
and orders in 2012 for each country excluded from the final regression sample.

Table A.5: 2021 Area Score by Taxonomic Classification and Country, In-Sample

Species Family Suborder Order

Country Count Mean SD Count Mean SD Count Mean SD Count Mean SD
Algeria 266 102.36 4.34 83 102.35 3.51 37 102.80 3.15 31 103.13 3.17
Angola 1076 99.45 3.45 145 99.42 1.79 53 99.73 1.01 44 99.66 1.04
Argentina 1119 96.87 8.09 132 96.71 5.80 48 97.89 2.22 40 97.80 2.31
Australia 1089 98.94 5.94 120 99.26 2.96 42 99.58 2.28 35 99.82 2.34
Austria 250 99.46 2.85 70 99.69 1.79 32 99.75 1.68 28 99.86 1.75
Azerbaijan 313 99.85 1.30 80 99.78 0.75 36 99.75 0.76 29 99.81 0.76
Bahrain 29 93.50 13.86 20 94.03 13.69 12 92.38 10.72 10 93.03 11.64
Barbados 32 99.08 5.56 23 98.91 5.27 15 99.29 6.24 10 99.74 4.98
Belarus 218 99.48 2.00 67 99.63 1.27 30 99.68 1.42 26 99.61 1.38
Belgium 196 98.32 2.90 64 98.40 2.11 30 98.22 2.44 26 98.27 2.54
Belize 556 96.59 8.19 107 96.64 5.59 42 96.52 5.29 34 96.76 5.02
Bolivia 1690 98.30 5.04 143 98.35 3.44 47 98.86 2.99 38 99.00 3.22
Brazil 2463 96.69 6.22 155 97.08 3.13 47 97.75 2.06 38 97.76 2.10
Bulgaria 295 99.55 1.74 78 99.55 1.19 35 99.59 1.02 29 99.61 1.04
Cameroon 1039 98.51 4.53 144 98.37 4.57 50 98.62 2.31 41 98.94 1.83
Canada 413 98.97 3.97 86 99.09 2.24 33 98.91 2.00 28 99.02 2.02
Chile 309 98.98 4.53 75 99.15 3.30 33 98.77 4.27 28 99.45 1.58
China 1768 98.34 6.13 156 98.15 5.51 48 97.05 7.59 39 98.44 2.27
Colombia 2468 97.40 5.53 159 97.70 3.25 50 98.25 2.55 41 98.35 2.47
Costa Rica 1061 97.98 5.08 127 98.62 3.05 44 98.70 2.52 36 99.12 2.34
Croatia 292 99.40 1.24 82 99.45 0.68 36 99.44 0.55 30 99.49 0.55
Cyprus 114 99.15 2.55 50 98.81 2.25 28 98.64 2.27 22 98.98 2.08
Czech Republic 219 99.02 2.80 68 99.30 1.44 31 99.13 1.82 27 99.15 1.94
Côte d’Ivoire 717 97.64 11.54 131 97.82 6.37 48 98.35 4.24 40 98.16 4.16
Denmark 175 99.57 1.32 64 99.61 0.71 29 99.57 0.72 25 99.60 0.75
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Table A.5: 2021 Area Score by Taxonomic Classification and Country, In-Sample

Species Family Suborder Order

Country Count Mean SD Count Mean SD Count Mean SD Count Mean SD

Dominican Republic 208 99.86 2.83 66 99.87 1.72 31 99.91 1.30 26 99.99 1.29
Ecuador 1935 98.10 4.27 149 98.01 3.34 50 98.08 2.82 41 98.22 2.68
Egypt 240 100.53 3.67 81 100.73 3.17 36 101.08 3.46 30 101.31 3.71
El Salvador 525 98.76 3.21 104 98.77 2.29 42 98.85 1.70 34 98.73 1.85
Estonia 191 99.92 5.99 64 100.43 3.79 30 100.42 4.21 26 100.62 4.49
Fiji 34 99.84 1.97 19 100.22 1.93 11 100.68 2.32 9 101.02 2.42
Finland 179 100.39 8.99 61 100.83 4.69 28 100.55 5.23 25 100.68 5.53
France 336 99.49 1.71 93 99.68 1.25 38 99.71 1.24 32 99.52 0.76
Germany 264 99.08 1.65 76 99.18 1.06 33 99.11 1.20 29 99.13 1.24
Ghana 700 100.44 5.22 134 100.58 3.01 47 100.97 1.94 39 100.88 1.84
Greece 326 99.71 1.09 84 99.79 0.72 37 99.77 0.64 30 99.73 0.69
Guatemala 882 93.05 14.00 118 93.98 8.55 43 94.30 6.52 35 93.93 6.90
Hungary 242 99.58 2.49 69 99.57 1.30 33 99.51 1.54 28 99.55 1.64
Iceland 29 100.00 0.00 15 100.00 0.00 8 100.00 0.00 8 100.00 0.00
India 1470 98.98 5.15 151 99.04 2.23 48 98.69 2.62 40 98.93 1.76
Indonesia 2218 96.16 12.21 171 97.61 11.89 56 96.82 4.96 45 97.00 5.37
Iraq 301 100.25 1.95 82 100.32 1.26 34 100.23 1.02 28 100.37 1.03
Ireland 94 100.85 1.68 44 100.62 1.25 22 100.35 1.01 22 100.35 1.01
Israel 258 99.02 2.79 82 98.86 2.16 33 98.97 2.12 27 99.15 2.30
Italy 331 99.41 1.89 89 99.52 1.02 37 99.45 0.87 31 99.48 0.90
Jamaica 143 98.26 3.52 54 98.75 2.87 25 98.60 1.59 22 98.68 1.64
Japan 325 98.64 2.43 93 98.77 1.86 36 98.63 1.54 30 98.62 1.47
Jordan 241 99.19 2.11 76 99.07 1.54 30 98.95 1.31 24 99.16 1.16
Kazakhstan 397 101.63 3.37 91 101.66 3.65 36 101.50 1.76 29 101.87 1.53
Kenya 1181 100.22 2.36 153 100.31 1.62 53 100.33 0.90 44 100.24 0.91
Latvia 197 99.41 5.91 65 100.09 3.20 30 99.99 3.79 26 100.08 4.07
Lebanon 212 99.48 1.83 78 99.31 1.45 32 99.34 1.49 26 99.40 1.61
Lithuania 194 99.38 3.00 65 99.64 1.52 30 99.61 1.72 26 99.56 1.83
Macedonia 260 99.21 2.58 75 99.25 1.85 35 99.16 1.76 29 99.19 1.79
Malaysia 1080 93.00 15.96 132 96.61 14.28 46 95.32 8.65 37 96.39 8.99
Malta 23 98.87 3.55 17 98.96 3.07 13 99.31 2.75 10 99.57 2.31
Mexico 1600 97.00 7.32 146 97.65 3.70 50 97.63 3.13 41 97.49 3.32
Mongolia 289 101.53 4.42 68 101.12 3.03 30 101.53 1.93 27 101.68 1.97
Montenegro 251 98.33 2.63 74 98.55 1.75 35 98.60 1.61 29 98.74 1.46
Morocco 294 100.47 2.89 94 100.53 1.82 39 100.95 2.11 33 101.06 2.12
Netherlands 195 98.48 2.38 66 98.47 1.61 30 98.29 1.56 26 98.27 1.61
New Zealand 105 99.22 4.27 40 99.26 2.75 24 99.39 2.34 22 99.39 2.42
Nigeria 932 99.23 4.01 145 99.06 2.91 53 99.29 2.30 44 99.38 2.22
Norway 177 100.59 4.52 62 100.79 3.38 29 100.46 4.15 26 100.62 4.34
Oman 150 99.58 2.45 60 100.02 1.40 26 99.94 1.09 22 100.08 0.74
Pakistan 576 99.85 3.54 115 100.06 1.94 39 99.78 1.68 32 99.95 1.49
Panama 1155 97.47 5.22 134 97.94 2.97 43 97.83 2.57 36 98.09 2.51
Peru 2054 97.90 4.91 155 98.53 2.06 50 99.01 1.27 41 99.02 1.32
Philippines 806 97.21 7.32 113 97.89 3.73 40 98.02 2.28 32 98.25 2.13
Poland 240 99.41 1.74 69 99.51 0.90 30 99.39 1.12 26 99.33 1.18
Portugal 262 99.33 2.29 86 99.60 2.53 38 99.42 2.16 31 99.67 2.23
Qatar 46 100.82 5.40 28 101.54 6.26 17 102.76 7.70 13 103.74 8.62
Romania 288 99.23 1.43 79 99.18 1.04 35 99.19 1.03 30 99.14 1.06
Russia 643 99.75 2.90 110 99.77 1.51 39 100.00 1.71 32 99.79 1.18
Rwanda 762 100.75 3.37 124 101.04 2.43 46 100.80 2.07 38 101.07 1.77
Saudi Arabia 239 100.55 3.62 80 100.37 1.92 32 100.48 1.93 26 100.65 2.09
Serbia 272 99.45 1.56 74 99.45 0.99 33 99.42 0.98 28 99.42 1.02
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Table A.5: 2021 Area Score by Taxonomic Classification and Country, In-Sample

Species Family Suborder Order

Country Count Mean SD Count Mean SD Count Mean SD Count Mean SD

Singapore 391 84.01 19.05 98 83.69 15.29 38 83.50 13.05 31 82.13 13.12
Slovakia 229 99.37 2.31 69 99.38 1.05 31 99.21 1.12 26 99.19 1.21
Slovenia 260 99.59 2.02 74 99.68 1.57 34 99.60 1.49 29 99.45 1.12
South Africa 952 99.31 3.00 145 99.34 1.96 53 99.66 1.61 43 99.49 0.77
South Korea 189 99.05 3.27 74 99.21 2.95 31 99.08 2.50 26 98.88 2.59
Spain 353 99.33 1.97 97 99.35 1.26 42 99.22 1.35 35 99.38 1.28
Sri Lanka 399 99.28 2.93 104 99.59 1.61 42 99.35 1.37 35 99.54 1.30
Sweden 194 100.07 8.28 65 100.84 5.39 29 100.78 5.85 25 101.07 6.26
Switzerland 230 98.59 1.77 64 98.79 1.31 30 98.75 0.99 26 98.81 1.02
Taiwan 378 97.89 2.55 97 97.79 2.19 34 97.67 1.63 28 97.62 1.62
Thailand 1258 96.67 8.69 140 97.37 5.05 47 97.04 3.42 39 97.53 3.29
Trinidad and Tobago 435 98.36 2.91 103 98.08 2.82 41 98.32 1.31 33 98.28 1.37
Tunisia 230 102.48 5.30 80 102.35 3.89 35 102.33 3.43 29 102.40 3.52
Turkey 453 99.13 3.01 97 99.25 1.04 39 99.20 0.97 32 99.16 1.03
Ukraine 299 99.27 2.24 79 99.28 1.33 36 99.19 1.45 30 99.14 1.57
United Arab Emirates 104 100.10 1.89 52 100.06 1.54 22 100.16 1.04 18 100.27 1.11
United Kingdom 170 99.32 1.61 59 99.40 0.85 29 99.29 0.82 26 99.29 0.85
United States 1045 98.05 7.39 131 98.54 5.05 45 99.07 2.22 37 99.12 2.35
Uruguay 370 99.65 3.93 90 99.91 2.64 39 100.14 1.84 32 100.18 1.88
Venezuela 1681 98.90 2.83 143 99.08 1.57 45 99.35 1.10 37 99.39 1.13
Vietnam 1140 96.90 6.90 137 97.59 5.09 47 95.48 5.34 38 96.22 5.22
Zambia 829 99.79 2.12 139 99.66 1.64 50 99.86 1.18 41 100.05 0.62

Note: The table shows the count, as well as the mean and standard deviation of area scores across species, families, suborders and
orders in 2021 for each country in our final regression sample.

Table A.6: 2021 Area Score by Taxonomic Classification and Country, Out-of-Sample

Species Family Suborder Order

Country Count Mean SD Count Mean SD Count Mean SD Count Mean SD

Afghanistan 368 100.13 3.21 91 100.18 1.38 32 100.23 1.18 26 100.31 0.98
Akrotiri and Dhekelia 48 98.88 2.46 30 98.62 2.13 18 98.52 1.80 13 98.62 2.05
Albania 264 99.08 2.31 77 99.19 1.58 34 99.19 1.61 28 99.28 1.67
Andorra 99 99.51 0.55 44 99.49 0.51 20 99.54 0.59 16 99.56 0.66
Anguilla 21 100.91 1.22 15 101.02 1.17 10 101.19 1.05 7 101.10 1.06
Antigua and Barbuda 35 97.80 3.76 23 97.90 3.22 14 97.89 3.25 13 97.79 3.32
Armenia 277 99.24 1.29 77 99.19 1.00 35 99.12 1.02 29 99.18 1.02
Aruba 26 95.95 12.16 19 94.40 12.83 14 95.14 13.81 12 94.90 14.91
Bahamas 114 101.33 1.99 47 101.37 1.72 26 101.49 1.99 23 101.36 2.04
Bangladesh 586 98.95 6.21 116 99.05 2.57 40 98.65 2.62 33 98.73 2.51
Benin 587 100.37 5.11 121 100.41 5.89 47 101.14 2.71 39 101.12 2.55
Bhutan 612 99.89 1.70 116 100.00 1.20 39 99.92 0.79 31 99.85 0.74
Bonaire, Sint Eustatius & Saba 50 100.13 3.15 32 99.96 3.04 17 99.98 2.02 13 99.92 2.08
Bosnia and Herzegovina 274 99.04 2.33 79 98.93 3.18 35 98.93 3.10 29 99.44 0.71
Botswana 642 100.59 2.25 131 100.47 1.17 49 100.62 0.92 40 100.69 0.91
British Virgin Islands 40 97.26 6.97 26 97.90 6.15 14 97.63 5.07 12 98.13 4.52
Brunei 615 98.48 2.87 108 98.80 1.27 40 98.50 0.78 32 98.47 0.80
Burkina Faso 472 100.44 4.27 117 100.55 2.85 44 100.39 2.59 37 100.02 2.15
Burundi 713 100.03 2.15 127 100.06 1.43 47 99.97 1.30 39 100.15 0.98
Cambodia 713 95.01 12.12 122 96.35 8.75 44 94.58 7.89 36 95.30 7.79
Cape Verde 15 99.97 0.93 10 99.99 0.72 7 100.02 0.80 7 100.02 0.80
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Table A.6: 2021 Area Score by Taxonomic Classification and Country, Out-of-Sample

Species Family Suborder Order

Country Count Mean SD Count Mean SD Count Mean SD Count Mean SD

Cayman Islands 48 99.60 5.00 24 99.61 3.56 14 100.25 4.56 11 99.62 3.12
Central African Republic 815 99.48 2.32 135 99.60 1.31 50 99.61 1.01 41 99.70 0.94
Chad 539 99.93 3.20 119 100.03 2.12 45 100.12 1.59 39 100.13 1.66
Comoros 56 99.20 3.18 28 99.34 1.94 13 99.44 2.24 10 99.23 2.48
Cuba 215 99.08 3.89 62 99.68 1.62 31 99.52 1.03 25 99.49 1.09
Curaçao 39 97.71 10.21 28 97.24 10.81 16 97.98 8.99 13 97.88 9.94
Dem. Rep. of the Congo 1374 98.89 7.25 148 99.18 5.75 55 99.65 2.81 46 99.97 2.86
Djibouti 226 101.11 4.87 90 101.19 3.68 37 101.49 2.29 32 101.59 2.37
Dominica 61 96.00 14.08 35 96.52 11.05 16 97.48 5.72 12 96.72 6.47
Equatorial Guinea 535 101.37 22.10 119 103.40 25.35 46 104.16 16.49 37 105.12 18.12
Eritrea 452 100.42 1.51 118 100.38 1.17 46 100.49 0.96 40 100.56 0.90
Ethiopia 875 100.32 2.50 137 100.36 1.18 47 100.38 0.82 39 100.35 0.84
Falkland Islands 32 99.36 0.57 24 99.46 0.58 13 99.47 0.53 12 99.43 0.54
French Guiana 829 99.96 3.65 120 100.01 2.08 43 100.09 1.20 35 100.02 0.88
French Polynesia 22 100.00 0.00 10 100.00 0.00 7 100.00 0.00 7 100.00 0.00
Gabon 630 100.35 4.38 128 100.35 1.77 47 100.38 1.54 38 100.49 1.68
Gambia 424 100.46 3.41 113 100.66 2.46 43 100.98 2.21 36 101.12 2.10
Georgia 297 99.52 1.00 80 99.39 0.85 38 99.27 0.89 31 99.35 0.76
Greenland 28 100.00 0.00 15 100.00 0.00 7 100.00 0.00 7 100.00 0.00
Grenada 56 99.07 3.73 32 98.78 4.25 16 99.59 1.54 13 99.50 1.71
Guadeloupe 64 98.08 11.83 36 98.46 9.56 18 97.34 4.85 14 97.64 5.26
Guernsey 20 97.49 3.81 17 97.37 3.63 12 97.15 4.03 12 97.15 4.03
Guinea 723 99.04 8.60 134 98.72 6.36 48 99.25 3.04 40 99.16 3.21
Guinea-Bissau 441 100.52 7.10 112 100.34 4.83 44 99.92 3.14 37 100.20 3.08
Guyana 1019 99.72 2.16 127 99.86 1.03 44 99.97 0.81 36 100.02 0.86
Haiti 204 98.25 2.40 65 98.38 1.85 31 98.20 1.76 26 98.33 1.86
Honduras 924 92.65 14.56 123 93.59 9.50 44 94.58 5.91 36 94.35 6.01
Hong Kong 279 97.82 4.34 85 97.38 3.86 36 97.98 3.56 28 97.63 3.55
Iran 506 100.91 4.01 100 101.05 2.10 37 101.25 1.97 31 101.53 1.96
Isle of Man 27 99.52 1.10 23 99.53 1.16 13 99.72 1.35 13 99.72 1.35
Jersey 36 99.00 2.95 23 98.56 2.01 14 98.49 1.97 14 98.49 1.97
Kosovo 244 99.31 1.78 72 99.32 1.44 34 99.14 1.62 28 99.17 1.60
Kuwait 71 100.64 4.98 37 100.76 5.53 19 101.49 7.20 14 102.26 8.32
Kyrgyzstan 237 100.03 1.52 74 100.00 1.11 34 99.77 0.80 29 99.85 0.75
Laos 976 95.85 12.53 126 97.52 8.49 44 94.91 8.40 35 96.69 6.11
Lesotho 370 99.50 1.53 109 99.54 1.03 44 99.46 1.16 35 99.70 0.83
Liberia 544 99.23 22.52 121 102.29 45.27 45 98.61 3.26 37 98.59 3.47
Libya 157 99.70 1.01 63 99.74 0.59 29 99.80 0.45 24 99.85 0.40
Liechtenstein 73 96.59 4.89 36 95.98 3.78 19 96.39 3.33 16 96.46 3.42
Luxembourg 156 98.77 1.82 57 98.74 1.21 29 98.74 1.10 25 98.77 1.14
Madagascar 464 91.32 16.02 78 95.57 9.48 35 93.76 11.08 30 93.74 11.87
Malawi 717 100.72 3.22 132 100.72 1.79 48 100.88 1.75 39 101.07 1.42
Mali 538 100.67 4.30 120 100.90 4.80 46 101.08 2.18 39 100.94 1.91
Martinique 75 99.27 2.38 43 99.31 2.48 22 99.48 2.81 17 99.71 3.17
Mauritania 374 99.82 2.65 110 99.94 1.58 45 99.87 1.55 39 99.98 1.50
Mauritius 17 96.86 6.56 14 96.78 6.38 8 97.72 6.43 7 98.48 4.84
Mayotte 31 99.36 4.85 20 99.88 1.81 12 99.47 2.16 9 99.30 2.49
Micronesia 26 99.98 0.05 14 99.97 0.06 9 99.97 0.07 8 99.96 0.07
Moldova 226 99.31 2.88 67 99.35 2.55 31 99.12 1.39 27 98.97 1.33
Montserrat 25 99.47 3.91 17 99.16 4.63 10 100.68 2.32 7 100.78 2.72
Mozambique 831 99.74 3.53 143 99.74 1.91 51 99.88 1.73 42 99.94 1.79
Myanmar 1298 97.34 7.86 143 97.87 4.46 48 97.41 4.29 40 97.83 4.19
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Table A.6: 2021 Area Score by Taxonomic Classification and Country, Out-of-Sample

Species Family Suborder Order

Country Count Mean SD Count Mean SD Count Mean SD Count Mean SD

Namibia 716 101.21 3.40 135 101.20 1.56 51 101.21 1.28 42 101.18 1.27
Nepal 713 99.98 1.20 119 99.90 0.63 41 99.83 0.84 33 99.86 0.60
New Caledonia 83 100.28 1.97 28 99.79 2.12 15 99.30 2.59 14 99.22 2.66
Nicaragua 851 90.94 18.76 124 91.98 11.77 44 93.08 8.75 36 93.63 8.14
Niger 445 99.21 2.34 112 99.20 1.55 43 99.14 0.88 37 99.14 0.91
North Korea 242 99.52 2.47 79 99.52 2.19 33 99.44 1.95 29 99.50 2.01
Northern Cyprus 103 98.52 2.84 50 98.46 2.44 27 98.32 2.31 21 98.56 2.47
Northern Mariana Islands 16 100.00 0.00 13 100.00 0.00 8 100.00 0.00 6 100.00 0.00
Palau 32 98.95 4.34 21 99.02 4.92 12 100.05 5.88 9 100.75 6.62
Palestina 206 97.75 4.13 78 97.70 3.20 33 97.39 3.90 27 97.62 4.09
Papua New Guinea 839 99.04 3.21 99 99.37 1.60 37 99.08 1.34 30 98.99 1.43
Paraguay 818 94.69 13.74 116 94.11 9.40 44 95.35 5.53 36 95.30 6.00
Puerto Rico 144 96.46 9.98 56 97.34 5.40 29 96.96 4.90 23 96.88 5.48
Republic of Congo 747 100.17 7.24 131 100.28 3.74 47 100.57 3.14 38 100.44 2.78
Reunion 17 98.97 7.50 13 98.88 6.58 7 97.88 6.00 7 97.88 6.00
Saint Kitts and Nevis 40 98.89 2.30 22 99.14 2.70 12 99.22 2.94 9 99.43 3.33
Saint Lucia 49 99.66 0.98 29 99.61 0.93 13 99.61 0.42 9 99.64 0.32
Saint-Barthelèmy 19 97.19 3.10 13 96.66 2.48 9 96.66 1.86 6 97.03 1.56
Saint-Martin 23 101.30 7.55 16 100.53 6.57 11 99.74 5.29 7 101.04 5.72
Samoa 16 100.00 0.00 13 100.00 0.00 7 100.00 0.00 7 100.00 0.00
San Marino 45 99.38 3.33 26 99.25 2.66 14 98.57 3.10 10 98.93 2.81
Senegal 534 100.12 3.57 121 100.20 1.77 46 100.24 1.71 39 100.17 1.80
Seychelles 31 100.34 0.52 19 100.28 0.43 12 100.33 0.51 10 100.36 0.55
Sierra Leone 587 101.79 28.23 124 101.50 18.25 46 99.79 5.53 38 99.81 6.03
Sint Maarten 23 98.02 11.69 16 96.74 10.28 11 95.30 7.96 7 97.42 7.79
Solomon Islands 172 98.07 4.76 50 98.71 2.55 25 98.70 2.32 20 98.50 2.50
Somalia 633 100.10 2.42 133 100.23 2.15 47 100.24 1.37 40 100.27 1.47
South Sudan 893 101.13 3.53 138 101.18 1.99 49 101.04 1.55 40 101.16 1.07
St. Vincent & the Grenadines 50 99.74 0.44 30 99.82 0.36 15 99.79 0.24 11 99.75 0.24
Sudan 598 100.52 3.05 124 100.52 2.01 45 100.42 1.34 39 100.56 1.17
Suriname 855 99.79 2.88 123 99.63 2.32 44 99.63 1.71 36 99.57 1.83
Svalbard and Jan Mayen 15 100.00 0.00 8 100.00 0.00 4 100.00 0.00 4 100.00 0.00
Swaziland 611 99.12 3.60 130 98.81 2.40 47 98.50 2.25 37 98.76 2.25
Syria 286 99.76 1.70 88 99.67 1.42 36 99.57 1.31 30 99.59 1.42
São Tomé and Príncipe 50 99.82 1.43 33 99.95 0.32 16 99.92 0.22 14 99.91 0.22
Tajikistan 240 99.86 1.68 73 99.86 0.99 31 99.76 0.92 26 99.70 0.87
Tanzania 1228 100.22 4.60 150 100.02 1.39 53 100.16 1.11 44 100.03 0.65
Timor-Leste 174 99.80 1.75 68 99.94 0.84 31 99.87 0.79 27 99.86 0.82
Togo 609 100.16 6.05 122 100.36 3.92 45 100.98 2.83 37 100.91 2.91
Turkmenistan 255 100.82 2.89 74 100.80 1.80 32 100.71 1.25 27 100.83 1.27
Turks and Caicos Islands 52 99.43 1.09 29 99.68 1.08 17 99.61 0.63 13 99.61 0.42
Uganda 1122 99.87 3.51 141 99.75 2.24 50 99.95 1.28 42 100.09 1.10
Uzbekistan 260 98.80 6.21 78 98.83 3.63 33 99.27 2.14 28 99.28 2.31
Vanuatu 53 103.36 12.70 24 101.12 14.53 15 98.29 16.99 14 98.10 17.61
Virgin Islands, U.S. 58 96.93 5.17 33 96.94 4.95 23 96.84 4.52 19 97.06 3.70
Western Sahara 78 100.00 0.03 35 99.99 0.02 19 99.99 0.02 14 100.00 0.01
Yemen 236 99.43 5.02 76 99.69 2.15 30 99.71 1.22 25 99.80 1.09
Zimbabwe 739 99.84 1.92 138 99.88 1.00 50 99.99 0.75 41 100.04 0.75
Åland 55 101.00 6.53 31 101.21 4.33 17 101.55 5.58 15 101.68 5.94

Note: The table shows the group count, as well as the mean and standard deviation of area scores across species, families, suborders
and orders in 2021 for each country excluded from the final regression sample.
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Figure B.2: 2012 Across Suborder Mean and Standard Deviation by Country

2012 Across Suborder Mean
85 95 97 98 99 100 101 102 103

Data source: Map of Life (Jetz, McPherson and Guralnick, 2012)

2012 Across Suborder SD
0 1 2 3 4 7 10 15

Data source: Map of Life (Jetz, McPherson and Guralnick, 2012)

Note: This map shows the across-order mean and standard deviation of area scores in 2012 for each country in our final
regression sample.
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Figure B.3: 2021 Across Suborder Mean and Standard Deviation by Country

2021 Across Suborder Mean
85 95 97 98 99 100 101 102 103

Data source: Map of Life (Jetz, McPherson and Guralnick, 2012)

2021 Across Suborder SD
0 1 2 3 4 7 10 15

Data source: Map of Life (Jetz, McPherson and Guralnick, 2012)

Note: This map shows the across-order mean and standard deviation of area scores in 2021 for each country in our final
regression sample.
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Figure B.4: 2012 Across Family Mean and Standard Deviation by Country

2012 Across Family Mean
85 90 95 97 98 99 100 101 102 103

Data source: Map of Life (Jetz, McPherson and Guralnick, 2012)

2012 Across Family SD
0 1 2 3 4 5 6 7.5 10 15

Data source: Map of Life (Jetz, McPherson and Guralnick, 2012)

Note: This map shows the across-family mean and standard deviation of area scores in 2012 for each country in our final
regression sample.
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Figure B.5: 2021 Across Family Mean and Standard Deviation by Country

2021 Across Family Mean
85 90 95 97 98 99 100 101 102 103

Data source: Map of Life (Jetz, McPherson and Guralnick, 2012)

2021 Across Family SD
0 1 2 3 4 5 6 7.5 10 15

Data source: Map of Life (Jetz, McPherson and Guralnick, 2012)

Note: This map shows the across-family mean and standard deviation of area scores in 2021 for each country in our final
regression sample.
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Table A.7: Correlation between Measures of Imbalance in Habitat Destruction

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) Across-Suborder SD in 2012 1.00
(2) Across-Suborder p10 in 2012 0.85 1.00
(3) Across-Suborder Min in 2012 0.81 0.77 1.00
(4) Across-Suborder SD in 2021 0.80 0.66 0.60 1.00
(5) Across-Suborder p10 in 2021 0.73 0.86 0.69 0.80 1.00
(6) Across-Suborder Min in 2021 0.63 0.65 0.79 0.74 0.79 1.00
(7) Across-Family SD in 2012 0.92 0.78 0.74 0.79 0.71 0.63 1.00
(8) Across-Family p10 in 2012 0.64 0.80 0.65 0.60 0.80 0.64 0.70 1.00
(9) Across-Family Min in 2012 0.59 0.53 0.77 0.43 0.51 0.60 0.70 0.52 1.00
(10) Across-Family SD in 2021 0.51 0.42 0.37 0.70 0.55 0.51 0.68 0.46 0.37 1.00
(11) Across-Family p10 in 2021 0.52 0.65 0.56 0.71 0.87 0.73 0.62 0.88 0.48 0.55 1.00
(12) Across-Family Min in 2021 0.46 0.46 0.60 0.58 0.61 0.79 0.58 0.52 0.74 0.53 0.65 1.00

Note: The table presents correlations for all combinations of three score types—SD, p10, and min area (with p10 and min
reversed)—across two taxonomic levels (suborder and family) and two years (2012 and 2021). This yields a total of 12 cor-
relation values, between different measures of imbalance in habitat destruction aggregated from the Map of Life data (Jetz,
McPherson and Guralnick, 2012).

Table A.8: Spearman Rank Correlation between Measures of Imbalance in Habitat Destruction

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) Across-Suborder SD in 2012 1.00
(2) Across-Suborder p10 in 2012 0.68 1.00
(3) Across-Suborder Min in 2012 0.74 0.79 1.00
(4) Across-Suborder SD in 2021 0.79 0.61 0.61 1.00
(5) Across-Suborder p10 in 2021 0.58 0.85 0.68 0.72 1.00
(6) Across-Suborder Min in 2021 0.58 0.66 0.79 0.76 0.77 1.00
(7) Across-Family SD in 2012 0.93 0.67 0.73 0.78 0.58 0.60 1.00
(8) Across-Family p10 in 2012 0.69 0.96 0.79 0.62 0.81 0.67 0.70 1.00
(9) Across-Family Min in 2012 0.66 0.64 0.85 0.55 0.55 0.68 0.75 0.67 1.00
(10) Across-Family SD in 2021 0.73 0.58 0.59 0.94 0.69 0.73 0.81 0.60 0.63 1.00
(11) Across-Family p10 in 2021 0.58 0.83 0.68 0.74 0.96 0.77 0.62 0.85 0.60 0.74 1.00
(12) Across-Family Min in 2021 0.53 0.56 0.70 0.69 0.65 0.86 0.62 0.60 0.81 0.78 0.71 1.00

Note: The table presents Spearman rank correlations for all combinations of three score types—SD, p10, and min area (with
p10 and min reversed)—across two taxonomic levels (suborder and family) and two years (2012 and 2021). This yields a total
of 12 correlation values, between different measures of imbalance in habitat destruction aggregated from the Map of Life data
(Jetz, McPherson and Guralnick, 2012).
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Table A.9: Summary Statistics

Mean SD p5 p25 p50 p75 p95

Regression Sample (N=886,807)

CDS spread level (bps) 212.31 306.37 6.86 40.47 119.70 268.50 703.95

Absolute Change in CDS spread level (weekly, bps) 0.165 20.266 -23.156 -2.910 -0.000 2.319 23.776

% Change in CDS spread (weekly) 0.428 9.298 -12.423 -2.978 -0.000 2.593 15.274

Tenor

1Y (as % of sample) 17.8
5Y (as % of sample) 18.8
10Y (as % of sample) 18.1
15Y (as % of sample) 15.1
20Y (as % of sample) 15.4
30Y (as % of sample) 14.9

Biodiversity News (standardized) 0.013 1.027 -1.343 -0.794 0.020 0.547 1.801

Biodiversity Destruction Score in 2012 (standardized) 0.118 0.944 -2.760 -0.248 0.403 0.689 1.209

Across-Suborder Dispersion of Habitat Destruction in 2012 (standardized) -0.030 0.845 -0.850 -0.605 -0.253 0.316 1.416

Biodiversity - Country Level (N=99)
Biodiversity Destruction Score in 2012 66.61 11.33 33.17 62.78 69.08 73.84 80.29
Biodiversity Destruction Score in 2022 68.88 13.02 33.17 66.67 72.40 76.71 83.61
Biodiversity Destruction Score in 2012 (standardized) -0.000 1.000 -2.952 -0.338 0.219 0.638 1.207

Dispersion of Habitat Destruction - Country Level (N=79)
Across-Suborder Dispersion of Habitat Destruction in 2012 1.506 1.287 0.376 0.686 1.182 1.949 4.074
Across-Suborder Dispersion of Habitat Destruction in 2012 (standardized) 0.000 1.000 -0.878 -0.637 -0.253 0.344 1.995

Note: The table presents summary statistics of our regression sample. The top part shows summary statistics of our regression
sample of weekly changes in CDS spreads as described in section 3.3 and section B. “CDS spread level (bps)” is the absolute
CDS spread in basis points, winsorized at 1% at the top and bottom. “Change in CDS spread level (weekly)” is the change in
CDS spread from the prior week, expressed in basis points and winsorized at 1% at the top and bottom. “% Change in CDS
spread (weekly)” is the percentage change in the CDS spread from the prior week, winsorized at 1% at the top and bottom.
“Biodiversity News (standardized)” are the standardized AR(1) residuals of an index measuring coverage of biodiversity loss
in the New York Times, as produced by Giglio, Kelly and Stroebel (2021). “Biodiversity Destruction Score” includes the indi-
cators for the change in biological diversity that has occurred in a country and for the amount of suitable habitat remaining
for each species from the EPI’s biodiversity and habitat category. In addition, it includes indicators on ecosystem services (loss
in tree cover, grassland and wetlands) and fisheries. These indicators are available in 2012 and 2022. “Across-Suborder Dis-
persion of Habitat Destruction” is the across-suborder standard deviation of average habitat loss by suborder. We standardize
the “Biodiversity News”, “Biodiversity Destruction Score” and “Across-Suborder Dispersion of Habitat Destruction” to have
mean zero and standard deviation of 1 across all countries in our sample. However, in the regression sample, the observation
weighted mean and standard deviation differ slightly since the sample is unbalanced across maturities and time.
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Table A.10: Correlation Between Measures of Biodiversity Reliance and Degradation

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1) Biodiversity Destruction Score-2012 1.00
(2) Biodiversity Destruction Score-2022 0.71 1.00
(3) Biodiversity Destruction Score-Avg 0.91 0.94 1.00
(4) Biodiversity Destruction Score (No Ecosystem)-2012 0.43 0.31 0.40 1.00
(5) Environmental Vulnerability Index 0.14 -0.01 0.07 0.46 1.00
(6) Across-Suborder Dispersion of Area Scores in 2012 -0.12 0.00 -0.06 -0.25 0.14 1.00
(7) Across-Suborder Dispersion of Area Scores in 2021 -0.15 0.03 -0.06 -0.31 0.05 0.92 1.00
(8) Across-Family Dispersion of Area Scores in 2012 -0.07 0.02 -0.02 -0.24 0.07 0.91 0.87 1.00
(9) Across-Family Dispersion of Area Scores in 2021 -0.06 0.05 -0.00 -0.26 -0.01 0.82 0.90 0.93 1.00
(10) Across-Suborder Dispersion of Habitat Scores in 2012 -0.08 0.02 -0.03 -0.10 -0.17 0.26 0.18 0.26 0.21 1.00

Note: The table shows the correlation between our measures of biodiversity reliance and degradation. “Biodiversity Destruc-
tion Score” includes indicators for the change in biological diversity within a country and for the amount of suitable habitat
remaining for each species from the biodiversity and habitat category, as well as indicators on ecosystem services (loss in
tree cover, grassland and wetlands) and fisheries. This score is shown for 2012, 2022, and the average of these two values.
“Biodiversity Destruction Score (No Ecosystem)-2012” only includes the indicators for the change in biological diversity that
has occurred in a country and for the amount of suitable habitat remaining for each species from the biodiversity and habitat
category, in 2012. The “Environmental Vulnerability Index” was devised by the South Pacific Applied Geoscience Commis-
sion (SOPAC) with the UN Environment Program and their partners (Kaly, Pratt and Mitchell, 2004) to gauge a country’s
vulnerability to environmental hazards. The “Across-Suborder Dispersion of Area Scores” is the across-suborder standard
deviation of within-suborder average species area scores, provided by the Map of Life (Jetz, McPherson and Guralnick, 2012).
The “Across-Family Dispersion of Area Scores” uses the standard deviation across family instead, and values for these area
scores are shown for 2012 and 2021. The “Across-Suborder Dispersion of Habitat Scores” follows the same method but applies
habitat scores, also provided by the Map of Life, and is shown for 2012.

Table A.11: CDS Spreads Reaction to Biodiversity News - Robustness

(1) (2) (3) (4) (5) (6) (7) (8)

Biodiversity News 0.192 0.147 0.175 0.188 0.191 0.190 0.191 0.189
(0.137) (0.119) (0.129) (0.138) (0.138) (0.138) (0.138) (0.138)

Biodiversity News × 0.073∗∗ 0.065∗∗ 0.068∗∗ 0.072∗∗ 0.063∗∗ 0.060∗∗ 0.043∗ 0.062∗∗

Measure of Mean Biodiversity Destruction (0.029) (0.026) (0.029) (0.029) (0.027) (0.027) (0.026) (0.029)

Biodiversity News × 0.051∗∗ 0.041∗∗ 0.052∗∗ 0.035 0.069∗∗ 0.052∗∗∗ 0.039∗ 0.044∗∗

Vulnerable Group Habitat Destruction Metric (0.020) (0.019) (0.022) (0.022) (0.029) (0.008) (0.020) (0.021)

Country × Year × Tenor × Currency FE x x x x x x x x
Specification Variant No Inno Win 2% USD only
Dispersion Measure Variant 2021 p10 min
Mean Destruction Score Variant 2021 Avg
Observations 865,169 865,169 464,663 865,169 865,169 865,169 865,169 865,169

Note: This table presents robustness checks for Table 1. The baseline specification from column 2 of Table 1 regresses percent
changes in CDS spreads, winsorized at the 1st and 99th percentile, on AR(1) innovations of the Biodiversity News index by
Giglio et al. (2023), as well as the interactions of innovations in biodiversity news with two measures: our Biodiversity De-
struction Score and Across-Suborder Dispersion of Area Scores, in 2012. All regressions include country-year-tenor-currency fixed
effects. Regression (1) modifies the baseline specification by regressing on the Biodiversity News index directly. Regression
(2) winsorizes percent changes in CDS spreads at the 2nd and 98th percentile. Regression (3) restricts the sample to USD-
denominated CDS. Regression (4) uses 2021 value of the Across Suborder Dispersion of Area Scores, while Regression (5) replaces
the standard deviation of area scores across suborders with the 10th percentile value, and Regression (6) uses the minimum
value of area scores across families. Regression (7) uses the 2022 value of the Biodiversity Destruction Score, while Regression 8
uses the average of the 2012 and 2022 values. For all measures, higher scores indicate greater mean and dispersion of biodiver-
sity degradation. Standard errors are in parentheses and are double-clustered at the country-month level. Significance levels:
* (p<0.10), ** (p<0.05), *** (p<0.01).
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C Theoretical Appendix — Model Extensions and Relation to Existing Work
In this Appendix, we discuss extensions of the model and provide more detailed discussions of how our
modeling approach relates to prior work.

C.1 Extension to within-function asymmetry of abundance

While our expression for the production of each ecosystem function in equation (4) is derived under the
simplifying assumption of symmetry across the populations of species within the function, it generalizes
to considering within-function variation in populations via a measure of biodiversity introduced by Hill
(1973). Specifically, the Hill number of order q—also sometimes referred to as the “effective number of
species”—is defined as:

Dq(p) =

(
Sg

∑
i=1

pq
i,g

) 1
1−q

,

where pi,g = ni,g/(∑
Sg
i=1 ni,g) is the relative abundance of species i within its functional group.27 Empir-

ical work in ecology routinely uses Hill numbers to measure biodiversity (Ohlmann et al., 2019), while
theoretical work has provided axiomatic foundations for Hill numbers, showing that they are the only
class of diversity indices obeying a set of desirable properties (Leinster, 2021).

In the special case of symmetric relative abundances in our baseline model, pi,g = 1/Sg, the Hill
number coincides with the number of species, that is, Dq(p) = Sg for any order q. Our results consid-
ering variation in the number of species Sg can be extended to allow for heterogeneity of abundance
within functions. For instance, we can write a generalized version of equation (4) as:

Eg =

[
D ϵg−1

ϵg
(p)

] 1
ϵg−1

︸ ︷︷ ︸
Gains from Biodiversity

× Ng︸︷︷︸
Community Abundance

,

where the community abundance is Ng = ∑
Sg
i=1 ni,g. In this case, a change in the distribution of relative

abundances p can affect Eg even when holding Ng and the number of species Sg fixed. While such an
extension may be desirable for some use cases, we focus the paper on the special case where biodiversity
is fully captured by the number of species, and there is no asymmetry across species within functions.

C.2 Calibration of Elasticity of Substitution σ

We illustrate how to calibrate the elasticity of substitution σ between ecosystem functions, using the
empirical findings from Sutter and Albrecht (2016) as an example. They report that individual improve-
ments in pollination and pest control increased yield by approximately 6-7% each, while joint improve-
ments led to a 23% increase. We match these patterns using our CES specification from equation (7).
Specifically, starting from a baseline where all functions are at level Ē and considering improvements in
the first two functions E1 and E2, holding other functions g ̸= 1, 2 at Eg = Ē. Denote

27For example, the Hill number of order q = 2 is equal to the inverse Herfindahl-Hirschman index (inverse HHI), which is a
common measure of competition (or, conversely, lack of concentration) in the context of firms.
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E (E1, E2, σ) =

[
E

σ−1
σ

1 + E
σ−1

σ
2 + ∑

g ̸=1,2
Ē

σ−1
σ

] σ
σ−1

We can then define

Single effect 1 =
E(Ē(1 + ∆1), Ē, σ)− E(Ē, Ē, σ)

E(Ē, Ē, σ)
=

E(1 + ∆1, 1, σ)− E(1, 1, σ)

E(1, 1, σ)

Single effect 2 =
E(Ē, Ē(1 + ∆2), σ)− E(Ē, Ē, σ)

E(Ē, Ē, σ)
=

E(1, 1 + ∆2, σ)− E(1, 1, σ)

E(1, 1, σ)

Joint effect =
E(Ē(1 + ∆1), Ē(1 + ∆2), σ)− E(Ē, Ē, Ē)

E(Ē, Ē, σ)
=

E(1 + ∆1, 1 + ∆2, σ)− E(1, 1, σ)

E(1, 1, σ)

where the second equality in each line follows from the fact that the CES aggregator is homogeneous of
degree 1. In general, using estimates for these three effects allows us to solve a system of three equations
in three unknowns (∆1, ∆2, σ). Given how close the two estimated single effects are (6% and 7%), we
assume a symmetric improvement ∆1 = ∆2 = ∆ leading to a single effect equal to about 6.5% and a joint
effect of 23% increase in total ecosystem services. Therefore, in this example, σ is such that

E(1 + ∆, 1, σ)

E(1 + ∆, 1 + ∆, σ)
=

1.065
1.23

.

which corresponds to σ ≈ 0.1.

C.3 Connection to Weitzman (1998)’s Noah’s Ark

In one of the most prominent discussions of the economic value of biodiversity, Weitzman (1998) pro-
poses a framework to determine optimal conservation efforts of species under a budget constraint and
uncertain species loss. Specifically, the framework proposes to prioritize species i for conservation ac-
cording to a criterion Ri = Ui + Di that has two parts: a species’ direct utility Ui, defined for each species
i irrespectively of the expected distance to other surviving species j (in Weitzman’s analogy, species are
libraries that house collections of genes as books, and Ui “represents how much the library building itself
is liked irrespective of its book content"), and its distinctiveness Di that captures how unique it is expected
to be relative to other surviving species j ̸= i (see also Weitzman, 1992, 1993; Metrick and Weitzman,
1998). In Weitzman (1998), distinctiveness is inversely related to a species’ evolutionary overlap with
other species (see Solow, Polasky and Broadus, 1993, for a similar approach).

By contrast, in our framework we can define the value of any species i in function g as Ri,g =

log ∂E
∂Sg

(since we assume symmetry within functions, each of the Sg species has the same value). In our
framework, a species’s direct utility Ui,g is its value if all species were perfectly substitutable (ϵg, σ → ∞),

so that distinctiveness would go to zero. This yields a definition of direct utility Ui,g = log agαg Ēg

s
1−αg
g S̄g

and

allows us to decompose Ri,g = Ui,g + Di,g where distinctiveness is given by:

Di,g = log
(

1 +
1

αg(ϵg − 1)

)
+ αg

[
1

αg(ϵg − 1)

(
1
σ
− 1
)
+

1
σ

]
log
(

1
sg

)
− 1

σ
log Ēg,
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and we omit a term 1
σ log E that is common to all species. A lower σ increases distinctiveness because it

sharpens differences between functions that have experienced differential losses; for similar reasons, it
increases distinctiveness more for species in functions with low sg and low substitutability ϵg.

C.4 The Rise of Fragility and Biodiversity Risk over Time

Over time, as ecosystems are hit by species loss, the fragility of ecosystems increases, particularly if
species loss has created imbalances in biodiversity across functions. Indeed, even if at any point in time
the risk of species loss is uniformly distributed across functions, the expected dispersion in s grows
over time, thereby amplifying the fragility to future biodiversity shocks. To see this, suppose again that
ϕg = ϕ is the same across functions and consider the impact of a sequence of species losses, where every
period only one function is hit, with dsg = −Gδ < 0 and dsj = 0 for j ̸= g, with a uniform probability
1/G for each function.28

The expected effect of a date-t species loss shock on ecosystem service production, normalized by
−δ, is given by the expected fragility at date t, and is increasing over time:

−1
δ

E0 [d log E(t)] = E0 [F (s(t))] .

This trend in expected fragility is driven by the three forces described in equation (12): the average
number of species sg falls in all functions, which increases both ∑G

g=1 ωg
αg
sg

and ∑G
g=1 ωg

1
sg(ϵg−1) , and

imbalances in biodiversity are expected to rise simply because some functional groups will randomly
face larger species losses than others. Even though we assume that the shocks follow a stationary process
(i.e., the number of species lost in each period remains stable), the depletion of natural capital makes the
ecosystem more sensitive to the same shocks as time unfolds.

We can also define forward biodiversity risk, or simply biodiversity risk, as the expected standard
deviation of the response d log E(t) to a date-t species loss shock, normalized by δ:

BR(t) =
1
δ

√
E0 [Var(d log E(t))] (A.1)

=
√

E0 [Var(F (s(t)))] (A.2)

The increased fragility translates into an increasing expected range of potential effects on ecosystem ser-
vice provision from a given species loss, as measured by a larger expected dispersion in the response to
shocks d log E(t). Thus biodiversity risk, expressed in terms of the risk to ecosystem services production,
is expected to rise over time even when holding the process of species loss fixed. Intuitively, at any
point in time, the best case scenario happens if species loss is concentrated in functions with relatively
high biodiversity, as then the realized aggregate effect can be smaller than implied by the total loss in
biomass. Conversely, the worst case scenario is when a shock hits a function that already features low
biodiversity. As time unfolds, the difference between the best and worst outcomes following a given
shock are expected to increase. Note that BR(t) as defined in equation (A.2) is a measure of forward risk,
i.e., the expected dispersion of d log E(t), and not the expected dispersion in E(t) itself, which would

28In this specification, δ is the per-period average species loss expressed as a share of the maximal number of species S̄ (e.g., δ =
1/S̄ corresponds to losing one species per period). Community abundance declines deterministically as N(t) = N(0)− δt.
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Figure C.6: Fragility and Biodiversity Risk over Time.
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Note: Panel (A) shows the expected fragility F at date t. Panel (B) shows biodiversity risk BR at date t. In blue, “symmetric
s(0)” means s1(0) = s2(0) = 1/2. In red, “asymmetric s(0)” means s1(0) = 1/4, s2(0) = 3/4. Other parameters that are
common across panels: σ = 0.5, ϕ = 0.3, µ = 1/1000.

capture a cumulative risk that would rise over time even in a world without any role for biodiversity
(i.e., such that σ, ϵg → ∞), simply through the accumulation of shocks.

Figure C.6 considers an example with G = 2 functions and shows how fragility and biodiversity
risk are expected to increase over time, contrasting what happens when the ecosystem starts from a
symmetric initial point s1(0) = s2(0) = 1/2 versus when the ecosystem starts from an asymmetric
initial point s1(0) = 1/4 and s2(0) = 3/4. Therefore total past species losses are the same (starting
from a total number of species half of its maximal number 2S̄), but in the asymmetric case losses were
concentrated in function 1. In both cases, fragility and biodiversity risk grow over time, but when initial
conditions are asymmetric they both start from higher levels and grow much more quickly over time.

C.5 Closed-Form Expression for Λ

With our production function (16) we have

Λ =
aEX

1
ξ −1
0 + 1

1 − θ
·

βaEX
1
ξ −1
1

aEX
1
ξ −1
1 + 1 + βθ

where Xt = Kθ
t (utL)1−θ/Et.

C.6 Analytical Example of Optimal Conservation Policy

In the limit of no substitutability between functions σ → 0, optimal land conservation is

1 − u∗ =
[
sg,0 − δ (1 + Λ(1 + ϕ))

] √1 +
4Λδ(sg,0−δ)

[sg,0−δ(1+Λ(1+ϕ))]2 − 1

2δ
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where
sg,0 = min

g
sg,0

is the most critical ecosystem function.
Note that with perfect symmetry ϕg = ϕ for all g and initial biodiversity loss is symmetric across

functions (s0,g = s0 for all g), then we obtain the same analytical expression for optimal land conserva-
tion (using the notation s0 instead of sg,0 since all functions are symmetric) for general values of σ > 0

1 − u∗ = [s0 − δ (1 + Λ(1 + ϕ))]

√
1 + 4Λδ(s0−δ)

[s0−δ(1+Λ(1+ϕ))]2
− 1

2δ
. (A.3)

C.7 Targeted Land Use

A key challenge specific to biodiversity relative to the extraction of other exhaustible resources is that the
richness of ecosystem services and their interactions makes it difficult to fine-tune land use to preserve
the most critical ecosystem functions. In our baseline model, we focus on an extreme case where land
use is one-dimensional, so that it cannot be targeted at all. There may be settings, however, where it
is possible to at least partially target land use, for instance if we think of functions as also capturing
ecosystems in different locations.

Consider now the other polar case, where the planner can choose a different utilization rate ug for
each piece of land Lg associated with ecosystem function g. Total land is L = ∑g Lg and production is:

Y0 = F(K0, ∑
g

ugLg, E0).

This means that we assume that each piece of land is perfectly substitutable from the perspective of
economic production. Reality is likely to lie between the two extreme cases we study, with land use and
economic activity having multiple dimensions, without being sufficiently granular to avoid spillovers
on some critical ecosystem functions. The planning problem becomes

max
{ug},K1

log

(
F(K0, ∑

g
ugLg, E0)− K1

)
+ β log

(
F(K1, ūL, E1(

{
ug
}
))
)

,

with the following solution, which we assume to be interior for simplicity:

Proposition A.1. The vector of optimal conservation across functions satisfies

1

∑g
µg(s1)
1−ug

=
Λ

1 − ΛδF (s1)
. (A.4)

For any pair of functions g, h, the ratio of optimal conservation satisfies:

1 − ug

1 − uh
=

µg(s1)

µh(s1)
·

1 − Λ µh(s1)
Lh/L

ϕh
sh,1

δ

1 − Λ µg(s1)
Lg/L

ϕg
sg,1

δ
.
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Equation (A.4) is the counterpart of equation (27) in Proposition 3, but replacing the uniform land use
u with the harmonic weighted-average of optimal conservation levels across functions (∑g µg(s1)/(1 −
ug))−1, with weights equal to each function’s criticality µg (defined in Proposition 2).

Recalling that land use affects natural capital in two distinct ways, through abundance and species
loss, the first term captures the fact that even without impact on biodiversity (δ → 0), or with small
output effects (Λ → 0), the optimal ratio of conservation is given by the ratio of criticalities µ, i.e.,
the marginal rate of substitution between functions g and h. The second channel, working through
biodiversity loss (δ > 0), goes in the same direction: scarcer functions should be more preserved. The
design of Pigovian policies towards the conservation of natural capital should thus take into account
past biodiversity loss for two reasons: first, the relative impact of land use on abundance loss (holding
future biodiversity s1 fixed) depends on the criticality of each functions, and second, functions that are
already critical must be protected even more once we take into account how land use affects species loss.

Intuitively, the economic gains from corrective policies can be maximized by targeting taxes and
conservation efforts toward species loss in those functions with little remaining redundancy, as well as
those functions whose current output is binding for overall ecosystem productivity. Conservation efforts
aimed at minimizing the economic costs of biodiversity loss should aim to equalize the MRS between
all pairs of functions to 1. Similarly, our findings highlight that ecosystem-wide conservation efforts
should focus on locations with a higher ecosystem fragility. This identification of the economically most
meaningful conservation efforts requires a collaboration between economists and ecologists, and our
general organizing framework can guide those collaborations.

C.8 Optimal Conservation With Nature in the Utility

Suppose that the date-1 utility function is

log C1 + ν log E1.

The only change in the proof of Proposition 3 is that the optimality condition with respect to land use u
becomes

(1 − u)
LFL,0

Y0 − K1
=

[
β

Y1
FE,1 + β

ν

E1

]
∂E1

∂ log(1 − u)

⇒ (1 − u)
Y0

Y0 − K1
=

β(ηE,1 + ν)

ηL,0

∂ log E1

∂ log(1 − u)
.

Therefore Proposition 3 is exactly the same up to a redefinition of Λ as

Λ =
β(ηE,1 + ν)

ηL,0 (1 + βηK,1)
.

C.9 First-order approximation of fragility

Define
G

∑
g=1

sx
g = s̄x

G

∑
g=1

(1 + δg)
x,

G

∑
g=1

sx−1
g = s̄x−1

G

∑
g=1

(1 + δg)
x−1,
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where s̄ = 1
G ∑G

g=1 sg is the cross-functional average of sg, and

sg = s̄
(
1 + δg

)
,

G

∑
g=1

δg = 0.

Hence

F (s) =
ϕ

s̄

1
G ∑G

g=1(1 + δg)x−1

1
G ∑G

h=1(1 + δh)x
.

When δg = 0 for all g—that is, sg are perfectly uniform—we have (1 + δg)x = 1 and thus F (s) = ϕ
s̄ . We

now expand around small {δg} to obtain the leading-order effect of dispersion in {sg}. For each g, write

(1 + δg)
x ≈ 1 + xδg +

x(x−1)
2 δ2

g, (1 + δg)
x−1 ≈ 1 + (x − 1)δg +

(x−1)(x−2)
2 δ2

g.

Define Var(δ) = 1
G ∑g δ2

g. Then

A(δ) ≡ 1
G

G

∑
g=1

(1 + δg)
x ≈ 1 + x(x−1)

2 Var(δ),

B(δ) ≡ 1
G

G

∑
g=1

(1 + δg)
x−1 ≈ 1 + (x−1)(x−2)

2 Var(δ).

Hence
F (s) =

ϕ

s̄
B(δ)
A(δ)

≈ ϕ

s̄

[
1 +

(
(x − 1)(x − 2)

2
− x(x − 1)

2

)
Var(δ)

]
.

Substituting
(x − 1)(x − 2)

2
− x(x − 1)

2
= −(x − 1) = 1 − ϕ +

ϕ

σ

yields

F (s) ≈ ϕ

s̄

[
1 +

(
1 − ϕ +

ϕ

σ

)
Var(δ)

]
.
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D Theoretical Appendix - Proofs
In this Appendix, we provide details for the proofs for our key results in the main body of the paper.

Proof of Proposition 1. For each function g, denote

E−g =

(
∑
j ̸=g

E
σ−1

σ
j

) σ
σ−1

, (A.5)

so that

E =

[
E

σ−1
σ

g + E
σ−1

σ
−g

] σ
σ−1

. (A.6)

This notation is convenient because when we vary biodiversity in function g holding other functions j ̸=
g fixed, everything behaves as if aggregate ecosystem services E were produced by only two functions,
the function of interest g, and a fictitious function “−g” capturing all other functions. Denote Z−g =

Eσ−1/σ
−g = ∑j ̸=g Eσ−1/σ

j . We have:

∂E
∂Sg

= ϕg
Ē

σ−1
σ

g

S̄g
sϕg

σ−1
σ −1

g

[
Ē

σ−1
σ

g sϕg
σ−1

σ
g + E

σ−1
σ

−g

] 1
σ−1

(A.7)

∂2E
∂S2

g
= −

ĒgϕgZ
1
σ
−gsϕg

g

((
Ēgsϕg

g

) σ−1
σ

+ Z
σ−1

σ
−g

) σ
σ−1

σS2
g

(
ĒgZ

1
σ
−gsϕg

g + Z−g

(
Ēgsϕg

g

) 1
σ

)2

[
Ēgσ(1 − ϕg)Z

1
σ
−gsϕg

g + Z−g(σ(1 − ϕg) + ϕg)
(

Ēgsϕg
g

) 1
σ

]
(A.8)

Therefore, ∂2E
∂S2

g
is negative if the term in the bracket is positive, that is if

−σ(1 − ϕg) <
[
σ(1 − ϕg) + ϕg

] ( Ēgsϕg
g

Z−g

) 1
σ−1

,

which holds since ϕg < 1. Since σ < 1, the term sϕg
σ−1

σ
g goes to infinity as sg = Sg/S̄g → 0 and therefore,

holding other functions fixed, it dominates the term in the bracket in (A.7):

[
Ē

σ−1
σ

g sϕg
σ−1

σ
g +

G

∑
j ̸=g

Ē
σ−1

σ
j sϕg

σ−1
σ

j

] 1
σ−1

∼
[

Ē
σ−1

σ
g sϕg

σ−1
σ

g

] 1
σ−1

hence

∂E
∂Sg

∼ ϕg
Ē

σ−1
σ

g

S̄g
sϕg

σ−1
σ −1

g

[
Ē

σ−1
σ

g sϕg
σ−1

σ
g

] 1
σ−1

∼ ϕg
Ēg

S̄g
sϕg

σ−1
σ −1

g s
ϕg
σ

g ∼ ϕg
Ēg

S̄g
s−(1−ϕg)

g .

Since ϕg < 1 we obtain limSg/S̄g→0
∂E
∂Sg

= ∞.
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Proof of Proposition 2. We denote the covariance of two variables x =
{

xg
}

and y =
{

yg
}

across
functional groups by Cov(x, y) = ∑g(xg − 1

G ∑j xj)(yg − 1
G ∑j yj). Define for any s =

{
sg
}G

g=1 and

θ =
{

θg
}G

g=1 the function:

fg(s,θ) =
sθg

g

∑G
j=1 sθg

j

.

For any (s,θ) we have ∑g fg(s,θ) = 1.
As noted in Section 2, we focus on shocks ds in Proposition 2 but prove a more general result that

also allows for shocks to abundance holding biodiversity fixed, that is, shocks dn̄ = {dn̄g}g.
The sum of community abundances across functions is

N =
G

∑
g=1

n̄gS̄gsαg
g

hence

d log N =
G

∑
g=1

n̄gS̄gsαg
g

∑G
j=1 n̄jS̄js

αj
j

[
dn̄g

n̄g
+

αg

sg
dsg

]
.

Starting from n̄gS̄g = N̄/G, this simplifies to

d log N =
G

∑
g=1

fg(s,α)
[

dn̄g

n̄g
+

αg

sg
dsg

]
.

Defining the abundance weights as in the Proposition,

ωg = fg(s,α) =
sαg

g

∑G
j=1 s

αj
j

this rewrites

d log N =
G

∑
g=1

ωg

[
dn̄g

n̄g
+

αg

sg
dsg

]
.

We next turn to aggregate ecosystem services

E =

[
G

∑
g=1

(
S̄gn̄g

) σ−1
σ sϕg

σ−1
σ

g

]σ/σ−1

.

Define the criticality weights as in the Proposition

µg = fg

(
s,ϕ

σ − 1
σ

)
=

sϕg
σ−1

σ
g

∑G
j=1 s

ϕj
σ−1

σ

j
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and the criticality-abundance gaps
γg = µg − ωg.

Then the shocks ds and dn̄ have the following first-order effect on aggregate ecosystem services:

d log E =
G

∑
g=1

fg

(
s,ϕ

σ − 1
σ

) [
dn̄g

n̄g
+

ϕg

sg
dsg

]

=
G

∑
g=1

[
γg + ωg

] [dn̄g

n̄g
+

ϕg

sg
dsg

]

=
G

∑
g=1

ωg

[
dn̄g

n̄g
+
(
ϕg − αg + αg

) dsg

sg

]
+

G

∑
g=1

γg

[
dn̄g

n̄g
+

ϕg

sg
dsg

]

=
G

∑
g=1

ωg

[
dn̄g

n̄g
+

αg

sg
dsg

]
︸ ︷︷ ︸

d log N

+
G

∑
g=1

ωg

ϵg − 1
dsg

sg
+

G

∑
g=1

γg

[
dn̄g

n̄g
+

ϕg

sg
dsg

]

where we used ∑g γg = 0 and ϕg − αg = 1
ϵg−1 . This reduces to the simpler expression in Proposition 2 if

we set dn̄g = 0 for all g.

Common shocks and fragility. Consider a common shock to all functions dsg = ds, with no shock to n̄.
Then

d log N =
G

∑
g=1

ωgαg

sg
dsg

and

d log E =

[
G

∑
g=1

ωg
ϕg

sg

]
ds + Cov

[
γg,

ϕg

sg

]
ds

= F (s)ds

where we define fragility as

F (s) =

[
∑
g

µg
ϕg

sg

]
.

Proof of Proposition 3. The first-order optimality condition with respect to physical capital K1 is

1
Y0 − K1

=
β

Y1
FK,1

K1

Y0 − K1
= βηK,1

therefore the optimal savings rate in physical capital is

ρ∗ ≡ K∗
1

Y0
=

βηK,1

1 + βηK,1
.
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The first-order optimality condition with respect to u is

(1 − u)
LFL,0

Y0 − K1
=

β

Y1
FE,1

dE1

d log(1 − u)

(1 − u)
Y0

Y0 − K1
=

βηE,1

ηL,0

d log E1

d log(1 − u)
,

hence the optimal conservation satisfies

1 − u∗ =
Y0 − K∗

1
Y0

βηE,1

ηL,0

d log E1

d log(1 − u)
.

The optimality condition with respect to K1 implies

Y0 − K∗
1

Y0
=

1
1 + βηK,1

therefore
1 − u∗ = Λ

d log E1

d log(1 − u)

where
Λ =

βηE,1

ηL,0 (1 + βηK,1)
.

Differentiating

log E1 =
σ

σ − 1
log

(
∑
g

[
Ēg,0(1 − u)

[
sg,0 − δu

]ϕg
] σ−1

σ

)

= log(1 − u) +
σ

σ − 1
log

(
∑
g

[
Ēg,0

[
sg,0 − δu

]ϕg
] σ−1

σ

)

yields
d log E1

d log(1 − u)
= 1 + δ(1 − u)F (s1)

hence we obtain at any interior optimum

1 − u∗ =
Λ

1 − ΛδF (s0 − δu∗1)
. (A.9)

The comparative statics of the optimal conservation 1 − u∗ with respect to aE, β, δ, s0 follow from the
fact that the left-hand side of (A.9) is decreasing in u, and the right-hand side is decreasing in s0 (i.e., in
each sg,0) and increasing in u, δ, β and aE.
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To see the role of initial capital K0, we need to use the two equations in two unknowns (u, X1):[
X

1
ξ −1
1 + 1 + βθ

]
X

1
θ
1 =

βθ (ūL)
1−θ

θ

E1(u)
1
θ

F(K0, uL, s0) (A.10)

1 − u =
Λ(u, X1)

1 − Λ(u, X1)δF (s0 − δu1)
, (A.11)

where X1 =
Kθ

1(ūL)1−θ

E1
. The left-hand side of (A.10) is increasing in X1 (since ξ < 1) and the right-hand

side is increasing in u and K0. Therefore, we can invert (A.10) to get X1 increasing in u and K0. Then,
the right-hand side of the second equation (A.11) is decreasing in u and increasing in X1 and thus in K0,
while the left-hand side is increasing in u. Therefore, a higher K0 implies a lower optimal land use u.

Proof of Proposition A.1. The first-order optimality condition with respect to each ug is

Lg

L
(1 − ug) = Λ

∂ log E1

∂ log(1 − ug)
.

Taking the ratio of optimality conditions for two functions g and h yields

1 − ug

1 − uh
=

Lh

Lg

∂ log E1/∂ log(1 − ug)

∂ log E1/∂ log(1 − uh)
,

but now

E1 =

{
∑
g

[
Ēg,0(1 − ug)

[
sg,0 − hg(sg,0, ug)

]ϕg
] σ−1

σ

} σ
σ−1

∂ log E1

∂ log(1 − ug)
=

[
Ēg,0(1 − ug)sg,1(sg,0, ug)ϕg

] σ−1
σ

∑j

[
Ēj,0(1 − uj)

[
sj,1(sj,0, uj)

]ϕj
] σ−1

σ

{
1 + ϕg

∂ log sg,1

∂ log(1 − ug)

}
∂ log E1

∂ log(1 − ug)
= µg

{
1 + (1 − ug)

ϕg

sg,1
δ

}
.

Therefore, for each g

1 − ug = Λ
(

µg(s1)

Lg/L

){
1 + (1 − ug)

ϕg

sg,1
δ

}
,

which can be rewritten as

µg(s1)

1 − ug
=

Lg

L
1 − ΛδF (s1)

Λ
+ δ

[
Lg

L
F (s1)− ϕ

µg(s1)

sg,1

]
,

hence summing over g
1

∑g
µg(s1)
1−ug

=
Λ

1 − ΛδF (s1)
.
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