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Abstract

This appendix contains additional theoretical results and mathematical proofs, and a descrip-

tion of the data cleaning steps.
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A Asymptotic Theory

We present the formal asymptotic theory in this section. To begin with, we define the following

notation. Suppose A = (aij) is an n×m matrix. We use ψ1(A) ≥ ... ≥ ψK(A) to denote the first K

ordered singular values of a matrix A if K ≤ min{m,n}. We use ψmin(A) and ψmax(A) to denote its

minimum and maximum eigenvalues. Let ‖A‖ =
√
tr(A′A), which is also known as the “Frobenius

norm” for A. In particular, if A is a vector, then ‖A‖ equals its Euclidean norm. In addition, we

define ‖A‖∞ = maxi≤n
∑m

j=1 |aij |, and ‖A‖n denotes the matrix nuclear norm. Finally, we define

M1N = IN − 1N1′N/N , where 1N = (1, ..., 1)′ is a N × 1 vector of ones.

A.1 Technical Assumptions

We start by describing and discussing the technical assumptions used for our asymptototic theory.

We consider a general setting, where the DGP is given by (14), in which (ft, ut, αi : i ≤ N, t ≤ T )

are stochastic.

Assumption A.1. There are constants c, C > 0, such that the following statements hold:

(i) (pervasiveness) c < ψK( 1
N β
′
lβl) ≤ ... ≤ ψ1( 1

N β
′
lβl) < C.

(ii) (idiosyncrasy) ψ1(Cov(ut)) < C.

(iii) Let Ho = 1
T

∑T
t=1 vl,tv

′
o,t(

1
T

∑T
t=1 vo,tv

′
o,t)
−1. Then for all st ∈ {vl,t, vl,t −Hovo,t},

c < ψK(
1

T

T∑
t=1

sts
′
t) ≤ ... ≤ ψ1(

1

T

T∑
t=1

sts
′
t) < C.

In addition, for S = (s1, ..., sT ), the nonzero singular values of βlS are distinct.

Assumption A.1 is adopted by Stock and Watson (2002) and many other works on estimating

latent factors. This assumption ensures that the factors are asymptotically identified (up to a

rotation) and that Cov(rt) has K growing eigenvalues whose rate is O(N), while its remaining

N −K eigenvalues do not grow with the dimensionality. In particular, condition (iii) is with respect
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to both the latent factors st = vl,t and the “transformed latent factors” lt = vl,t −Hovo,t, which is

the essential latent factors in the case of both observed and latent factors are present. In this case,

the essential latent factors are obtained by subtracting the effect observed factors: Hovo,t.

Assumption A.2. The following statements hold:

(i) {ft, ut : t ≤ T} are independent and identically distributed, and E(ut|ft) = 0.

(ii) {αi : i ≤ N} are mutually independent, and also independent of {ft, ut : t ≤ T}.

(iii) (weak cross-sectional dependence) There is a constant C > 0 so that almost surely,

maxj≤N
∑N

i=1 |E(uitujt|ft)| < C, maxj≤N
∑N

i=1 1{|E(uitujt|ft)| ≥ (logN)−3} ≤ CN c for some

c > 0, and maxi,j≤N
∑N

k=1 |Cov(uitukt, ujtukt)| < C.

Assumption A.2 imposes restrictions on the dependence structure of the DGP. We maintain

serial independence to keep the technical tools relatively simple. Allowing for serially weakly de-

pendent data is possible, by imposing extra mixing conditions for the time series. Condition (iii)

requires cross-sectional weak correlations among the idiosyncratic components uit. This assumption

is reasonable in that the idiosyncratic components should capture the remaining shocks and possible

local factors after conditioning on the common risk factors.

Assumption A.3 (Moment bounds). There are C > c > 0, such that

(i) E‖ft‖4 + maxi≤N Eu8
it < C.

(ii) For any k, l ≤ dim(ft), we have

Emaxi,j,d≤N,t≤T ξ
4
i,j,d,k,l,t

maxi,j,d≤N,t≤T Eξ4
i,j,d,k,l,t

≤ (logN)2TC,

where ξi,j,d,k,l,t ∈ {uitujt, uit, uitwt, u2
itw

2
kt, uitfkt, u

2
itfkt, u

2
itfktflt, u

2
itujtudt} and wt = 1√

N
β′ut.

(iii) There is 0 < L < 1, and a sequence BNT > c satisfying B2
NT log(NT )7 ≤ TL, such that

E max
i≤N,t≤T

u4
it + E max

i≤N,t≤T
u4
it‖ft‖4 < B4

NT ,

where BNT may diverge.

(iv) ‖Σ−1
f ‖ < C and mini≤N Eu2

it(1− v′tΣ
−1
f λ)2 > c, E‖ 1√

N
β′ut‖4 < C.

(v) All eigenvalues of 1
N

∑N
j=1(βj − β̄)(βj − β̄)′ are bounded within [c, C].

Condition (ii) imposes that interchanging “max” with “E” on ξi,j,k,l,t imposes an additional

term no larger than O(T log2N). It is a technical condition for applying concentration inequalities

from Chernozhukov et al. (2013b) to establish

max
i,j,d≤N

| 1
T

∑
t

ξi,j,d,k,l,t − Eξi,j,d,k,l,t| = OP (

√
logN

T
),
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a key step to bound maxi≤N |α̂i − αi|. In addition, condition (iv) imposes that E‖ 1√
N
β′ut‖4 < C,

which is reasonable given the cross-sectional weak correlations among uit.

The above conditions allow for heavier tails than those of the sub-Gaussian distributions in the

DGP, as our results only require moment conditions. That said, it is possible to further extend our

assumptions to allow for even heavier tails, provided the use of Huber’s loss function ((Huber, 1964))

and more robust estimators, see, e.g., Fan et al. (2016).

Assumption A.4 (Growing number of positive alphas). There is a growing sequence LNT → ∞,

such that the true α satisfies
N∑
i=1

1{αi ≥ LNT

√
logN

T
} → ∞.

Assumption A.4 requires there should be a growing number of true alternatives. This is needed

to control the rate of false rejections and the same assumption is adopted by Liu and Shao (2014).

In a different context, Song and Zhao (2018) require the alphas of stock returns to be “sparse” in

the sense that many entries should be nearly zero. However, this is not the case for hedge funds; our

empirical studies indicate the presence of many nonzero alphas. For this reason, we do not require

such a sparse structure.

Below we present the required assumption for the missing data case. We adopt the same notation

as in Section 2.4.1. Let X be a general low rank matrix given by equation (16). Let (UX , U
c
X) be the

left singular-vectors of X, where columns of UX and U cX correspond to the nonzero and zero singular

values; let (VX , V
c
X) be the right singular-vectors of X similarly defined. In addition, for any N × T

matrix A, let

P(A) = U cXU
c′
XAV

c
XV

c′
X , M(A) = A− P(A).

Here M(·) can be regarded as the projection matrix onto the columns of UX and VX , and P(·) is

the projection onto its orthogonal space. Define the restricted low-rank set as, for some c > 0,

G(c1, c2) = {N × T matrix A : ‖P(A)‖n ≤ c‖M(A)‖n,
1

NT
‖A‖2F ≥

c2√
NT
}.

Assumption A.5 (missing data). Let Nt = {i : rit is observed}, Ti = {t : rit is observed}, and

ωit = 1{rit is observed}. We assume the following conditions hold:

(i) For any (c1, c2) > 0 there is a constant κc > 0 so that uniformly for all A = (Ait)N×T ∈
G(c1, c2),

N∑
i=1

T∑
t=1

ωitA
2
it ≥ κc

N∑
i=1

T∑
t=1

A2
it −OP (N + T ).

(ii) mini≤N |Ti| > c0T and mint≤T |Nt| > c0N for some c0 > 0.
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(iii) maxt≤T ‖ 1
|Nt|

∑
j∈Nt βjβ

′
j − 1

N

∑
j≤N βjβ

′
j‖ = o(1).

(iv) {(vt, αi, uit) : i ≤ N, t ≤ T} is independent of {ωit : i ≤ N, t ≤ T}, and Eωit does not vary

across both (i, t).

(v) mini ψmin( 1
T

∑T
t=1 ωitvtv

′
t) > c0.

(vi) 1
N

∑
ij |Cov(ωjt, ωit)| < C, maxit

1
N

∑
j,k |Cov(ujtuit, uktuit)| < C.

Condition (i) is the so-called “restricted strong convexity” condition, which is needed for matrix

completions. Additionally, for technical reasons, in the presence of latent factors, we require the

missing be both at random and homogeneous. Especially, the homogeneous missing substantially

simplifies the technical arguments for the effects of the nuclear-norm regularized estimations. The

inference for matrix completions using the penalized regression has been a challenging problem

because the nuclear-norm estimator is known to be biased. As a technical contribution to the

literature, in Algorithm 6 we provide a new inference procedure for debiasing the regularization,

and achieve asymptotically normal estimators for the latent factors and alphas in the context of

asset pricing. In proving the theoretical properties of these estimators, we apply an auxiliary leave-

one-out argument recently used in Chen et al. (2019), which crucially requires the assumption of

homogeneous missing. While we conjecture that the theoretical results might still hold in the presence

of heterogeneous missing, as evidenced by our simulation studies, we leave the theoretical treatment

for that case as an important open question.

A.1.1 When Observed Factors are Tradable

In this section, we consider cases when observed factors are all tradable. The observed factors’ risk

premia are equal to the factors’ time series expectations. As a result, a simpler algorithm can be

employed to estimate alphas. Consider the model

rit = αi + β′l,iλl + β′o,ifo,t + β′l,i(fl,t − Efl,t) + uit, (A.1)

where fo,t and fl,t respectively denote the observed and latent factors, and λl is the risk premia for

the latent factors. We assume fo,t are tradable so the risk premia for the observable factors satisfies

λo = Efo,t.

In this case we propose the following algorithm:

Algorithm A.1 (Estimating α with tradable observable factors).

S1. The same as S1 in Algorithm 6.

S2. Estimate the risk premia for latent factors.

λ̂l = (β̂′lM1N β̂l)
−1β̂′lM1N M̄, M̄ = (r̄i − β̂′o,if̄o,i)N×1.
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S3. Estimate and de-bias the estimates of α:

When there are latent factors

α̂i = r̄i − β̂′o,if̄o,i − β̂′l,iλ̂l + Âi, i = 1, ..., N,

where, writing ξ̂′i = e′i − β̂′l,i(β̂′lM1N β̂l)
−1β̂′lM1N , ĝi = 1

Ti

∑
t∈Ti v̂

′
l,tβ̂l,i,

Âi = β̂′l,i(Ĥo,i − Ĥo)f̄o,i − ξ̂′iĝ.

When there are no latent factors

α̂i = r̄i − β̂′o,if̄o,i, i = 1, ..., N.

Note that S2 is the key difference between Algorithm A.1 and Algorithm 6. Algorithm 6 S2

runs the cross-sectional regression on all the estimated betas (β̂o, β̂l) to estimate the risk premia for

both observed and latent factors. In contrast, when the observed factors are tradable, their risk

premia can be simply estimated by taking the factor time series averages. Hence in S2 of Algorithm

A.1, we only need to run cross-sectional OLS on the latent factor betas to estimate the risk premia

for the latent factors.

For completeness, the algorithm also includes the observed factors-only case. Fund-by-fund

time series regressions can be applied directly to estimate αi. However, when testing αi ≤ 0, the

problem of conservativeness associated with testing inequality nulls is still present. As such we shall

still apply the alpha-screening step for dimension reductions.

A.2 Main Theoretical Results

We now present the asymptotic distributions for estimated alphas. They arise from the following

five scenarios:

(i) observable factors only (Algorithm 3);

(ii) latent factors only (Algorithm 4);

(iii) mixture of observable and latent factors (Algorithm 5);

(iv) mixture of observable and latent factors with an additional condition that observable factors

are tradable (Algorithm A.1);

(v) observable factors only and they are all tradable.

Theorems A.1, A.3 and A.4 below apply to estimators that are obtained in any of these scenarios.
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A.2.1 Expansion of Estimated Alphas

Theorem A.1. Suppose T,N → ∞, (logN)c = o(T ), for some c > 7 and Assumptions A.1-A.3

hold. Then for any i ≤ N ,

σ−1
i,NT (α̂i − αi)

d−→ N (0, 1),

where σ2
i,NT = 1

T Var(uit(1 − vtΣ−1
f λ)) + 1

Nχi. In scenarios (i)-(iii), χi = 1
N Var(αi)β

′
iS
−1
β βi and

Sβ = 1
N β
′M1Nβ; in scenario (iv) that observable factors are tradable, χi = 1

N Var(αi)β
′
l,iS
−1
β,l βl,i, and

Sβ,l = 1
N β
′
lM1Nβl; in scenario (v) that only tradable observable factors are present, χi = 0.

Theorem A.1 is derived from a more general joint asymptotic expansion for the N × 1 vector

α̂, given in Proposition B.1: in scenarios (i)-(iv):

α̂− α ≈ 1

T

∑
t

ut(1− v′tΣ−1
f λ)− βηN , ηN :=

1

N
S−1
β β′M1Nα.

In the above expansion, the first term is OP (T−1/2), and the second term is OP (N−1/2). The presence

of the second term is the key reason of inconsistency α̂ in the low dimension setting, see detailed

discussion in Section A.3.3. This term vanishes as N → ∞. However, if N grows too slowly, it

could result in strong cross-sectional correlations among the estimated alphas due to the common

component ηN , which would adversely affect the FDR control.

For this reason, in what follows, we require T logN = o(N), so that the term, βηN , is negligible,

and that the asymptotic distribution of α̂ is characterized by 1
T

∑
t uit(1− v′tΣ

−1
f λ). The t-statistics

are therefore weakly correlated in the cross section.

A.2.2 Matrix Completion for Unbalanced Panel

In the presence of missing data, scenarios (ii)(iii)(iv) require estimating latent factors. Then a key

step for matrix completion is to solve the following regularized regression:

X̂ = arg min
M
‖(Z −X) ◦ Ω‖2 + λNT ‖X‖n, (A.2)

for a given Z and λNT . We begin by introducing the following singular value thresholding operator :

let Y = UDV ′ be the singular value decomposition of a given matrix Y . Define

Sν(Y ) := UDνV
′,

where Dν is defined by replacing the diagonal entry Dii of D by max{Dii− ν, 0}. Then as shown by

Ma et al. (2011), the Karush-Kuhn-Tucker condition for X̂ is: for any τ > 0,

X̂ = Sν(X̂ − τΩ ◦ (X̂ − Z)), ν = τλNT /2.

This fact suggests a simple iterative algorithm to solve for X̂.
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Algorithm A.2 (Solving the low-rank regularized problem for X̂).

S1. Fix the “step size” τ ∈ (0, 1). Let ν = τλNT /2. Initialize X0 and set k = 0.

S2. Let Xk+1 = Sν(Xk − τΩ ◦ (Xk − Z)). Set k to k + 1.

S3. Repeat S2 until convergence.

This algorithm requires two tuning parameters (τ, λNT ). As for λNT , let W be an N×T matrix

whose columns are generated as N (0,Σu) independently across (i, t), where Σu is an N ×N diagonal

matrix of estimated individual variances of uit. Let Q(‖Ω ◦W‖2; 1 − δ) be the 1 − δ th quantile of

‖Ω ◦W‖2, where ‖.‖2 denotes the matrix spectral norm. We follow the suggestion of Chernozhukov

et al. (2018) by choosing λNT = 2(1 + c)Q(‖Ω ◦W‖; 1− δ). In practice, we set τ = 0.9, c = 0.1, and

δ = 0.05.

Below we present the asymptotic results for the estimator given by all the five scenarios.

Theorem A.2. Consider the case of unbalanced panel and all the five scenarios of observing fac-

tors. Suppose conditions of Theorem A.1 hold. Also, in the presence of latent factors (Scenarios

(ii)(iii)(iv)), additionally assume Assumption A.5. Then uniformly in i ≤ N , when T logN = o(N)

(which can be relaxed for scenario (iv)), the following results hold:

α̂i − αi =
1

Ti

∑
t∈Ti

uit(1− v′tΣ−1
f λ) + oP (

1√
T logN

).

A.2.3 FDR/FDP Control

Given the asymptotic properties of the estimated alphas achieved in Theorems A.1 and A.2, we are

ready to establish the FDR/FDP control properties of the (alpha-screening) B-H procedure.

Theorem A.3. In addition to conditions in Theorem A.1, suppose T (logN) = o(N), and Assump-

tion A.4 holds. For the alpha estimators that arise from all five scenarios, the following results

hold:

(a) The B-H procedure satisfies:

FDRB−H ≤ τ + o(1), FDPB−H ≤ τ + oP (1).

As for the alpha-screening procedure, define σ2
i = Var(uit)E(1−v′tΣ−1

f λ)2 and ξNT = log log T
√

logN
T .

Additionally assume |{i : −ξNTσi(1 + ε) < αi ≤ 0}| ≤ |{i : αi > −ξNTσi(1−ε)}| for some ε > 0,

where |.| denotes the number of elements in the set. Then

FDR screening B-H ≤ τ + o(1), FDP screening B-H ≤ τ + oP (1).
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(b) Both the B-H and alpha-screening B-H procedures satisfy:

P(Hi
0 is correctly rejected, for all i ∈ H)→ 1.

In addition, as for the screening B-H procedure, we have:

(c) Suppose τ < 1
2 . Let GB-H and Gscreening B-H respectively be the numbers of correctly rejected

alternatives by the B-H and screening B-H. We have:

E
GB-H

N
≤ E
Gscreening B-H

N
.

In addition, define events:

AB-H = {all false Hi
0 are correctly rejected by B-H},

Ascreening B-H = {all false Hi
0 are correctly rejected by screening B-H}.

Asymptotically, we have

P(Ascreening B-H) ≥ P(AB-H).

(d) Recall that Î = {i ≤ N : ti > − log(log T )
√

logN}, we have

P(Hi
0 : αi ≤ 0 is true for all i /∈ Î)→ 1.

For the screening approach, the additional condition says that the set {i : −ξNTσi(1 + ε) <

αi ≤ 0} should not contain as many elements as {i : αi > −ξNTσi(1 − ε)} does. This condition is

equivalent to: the set M := {i : −ξNTσi(1 + ε) < αi < −ξNTσi(1− ε)} contains less alphas than the

number of alternative alphas, which is a plausible assumption. We can take ε > 0 be arbitrarily small

so that ξNTσi(1 + ε) ≈ ξNTσi(1− ε); also ξNT → 0. So M is a set restricting on a very small range of

negative αi, and is often an empty set, while the number of alternative alphas grows to infinity. So

it is indeed reasonable to assume M is smaller than the alternative set. This is a technical condition,

needed to approximate the random sets Î and Î ∩ H0 by non-random sets {i : αi > −ξNTσi(1− ε)}
and {i : −ξNTσi(1 + ε) < αi ≤ 0}. The only requirement on the approximation is that the inequality

|Î ∩ H0| ≤ |Î| is preserved.

In addition, the usual B-H procedure focuses on the t-statistics formulated based on the “sample

average” and its standard errors (Liu and Shao, 2014), while in our context, α̂i is, approximately, the

sample average:
√
T (α̂i − αi) = 1√

T

∑
t uit(1− v′tΣfλ)σ−1

i + ∆i where maxi≤N |∆i| = oP (1/
√

logN)

when T logN = o(N). This theorem shows that the additional approximation error does not affect

the “size” asymptotically.
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As for the “power” property for detecting the significant alphas, note that Assumption A.4

ensures that for the true vector of α, there is a set H ⊂ {1, ..., N} so that

H := {i ≤ N : αi ≥ LNT

√
logN

T
}

and |H| → ∞. Apparently Hi
0 is false for all i ∈ H. Theorem A.3 shows that we can correctly detect

all positive alphas whose magnitudes are larger than
√

logN
T .

To compare the power of the regular B-H procedure and the B-H with alpha-screening, we use

the notation of “average power”, denoted by EGB-H/N and EGscreening B-H/N , that is, the expected

proportion of rejected false null hypothesis among the set of false null hypotheses. This definition is

adopted from Benjamini and Liu (1999). In addition, we also adopt the notation of “family power”,

which is defined as the probability of rejecting all of the false null hypotheses, as in Lee and Whitmore

(2002). For both definitions of power, the screening method improves the power of the usual B-H

procedure.

We summarize the results in Theorem A.3:

(a) The FDR/FDP can be controlled under the pre-determined level τ ∈ (0, 1).

(b) Our procedure can correctly identify all true alphas satisfying

αi ≥ LNT

√
logN

T
,

for sequence LNT →∞ that grows arbitrarily slowly.

(c) The alpha-screening B-H procedure more power than that of the regular B-H procedure.

(d) Unlike the B-H that tests all the alphas, the alpha-screening B-H procedure only tests alphas

that are in Î. Our theorem shows that it is safe to only focus on Î, because those alphas that

are not inside Î all satisfy αi ≤ 0 (asymptotically).

A.2.4 Wild-Bootstrap

In this section, we prove that the wild-bootstrap algorithm delivers the desirable FDR control.

Theorem A.4. Consider the case of unbalanced panel and all the five scenarios of observing factors.

and T logN = o(N) (which can be relaxed for scenario (iv)). Then

(a) uniformly in i = 1, ..., N ,

α̂∗i =
1

Ti

∑
t∈Ti

û∗it(1− v′tΣ−1
f λ) + oP ∗(

1√
T logN

),

where, ai, b1,it and b2,t are as defined in Theorem A.2.
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(b) Let p∗i = 1
B

∑B
b=1 1{α̂∗i − α̂i} be the bootstrap p-value. Then maxi≤N |p∗i − pi| = oP (1).

(c) Let FDRbootstrap and FDPbootstrap be the FDR and FDP of applying the B-H procedure to the

bootstrap p-values p∗, we have

FDRbootstrap ≤ τ + o(1), FDPbootstrap ≤ τ + oP (1).

A.3 Additional Theoretical Results

A.3.1 Identification of Alphas

We investigate the identification of α when both observable and latent factors are present. First,

define

Γ = E
[
(rt − Ert)(fo,t − Efo,t)′

]
Cov(fo,t)

−1,

Zt = rt − Ert − Γ(fo,t − Efo,t), t = 1, ..., T.

Both are identified quantities given the observables {(rt, fo,t) : t = 1, ..., T}. In addition, define

T (β) := β(β′M1Nβ)−1β′.

Note that T is rotation invariant, in the sense that T (βH) = T (β) for any invertible matrix H. We

show that α is identified by the following system of equations in the next theorem.

Theorem A.5. Consider the case when both (fo,t, fl,t) are present. There are latent invertible

matrices Q,H, and a latent dim(gt)-vector ht, so that equations (A.3)- (A.6) hold, where

Zt = βlht + ut, (A.3)

βH = (Γ, βlQ), (A.4)

βλ = T (βH)M1NErt − T (βH)M1Nα, (A.5)

α = Ert − βλ. (A.6)

In view of the relation between the above system of equations and Algorithm 5, we note the

following observations:

1. The identified components (Γ, Zt) are the population counterparts of (β̂o, Z) obtained in Step

S1a.

2. Equation (A.3) shows that Zt admits a factor structure, with βl as the factor loadings. It is

well known that in this case there is a rotation matrix Q, so that 1√
N
βlQ is identified as the

first Kl eigenvectors EZtZ ′t. Therefore, βlQ is the population counterpart of β̂l obtained in

Step S1b.
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3. Equation (A.4) shows that β is identified up to a rotation H, given that (Γ, βlQ) are both

identified. In fact (Γ, βlQ) is the population counterpart of β̂ obtained in Step S1.

4. (α, βλ) are then identified (as N →∞) through equations (A.5), (A.6) given the identification

of βH. In particular, T (βH)M1NErt is the population counterpart of

β̂λ̂ = T (β̂)M1N r̄,

whereas T (Hβ)M1Nα in (A.5) converges to zero as N →∞.

A.3.2 Inference on α0.

Let α0 = 1
N

∑
i Eαi. Here we provide the asymptotic distribution for the estimator for α0, given by

α̂0 = 1
N

∑N
i=1 α̂i. Additionally, let σ̂2

α = 1
N

∑
i(α̂i − α̂0)2.

Theorem A.6. Consider a general case where unbalanced panel is allowed. Let σ2
α > 0 denote the

cross-sectional variance. Suppose Eα4
i < C and β is deterministic. Assumptions A.1-A.5 hold, but

the condition T logN = o(N) can be relaxed. Then

√
N
α̂0 − α0

s0

d−→ N (0, 1), where

for scenarios (i)-(iii), suppose in addition lim inf(1− β̄′( 1
N β
′β)−1β̄)2 > 0 and N = o(T 2),

s2
0 = (1− ̂̄β′( 1

N
β̂′β̂)−1̂̄β)−1σ̂2

α,
̂̄β =

1

N

∑
i

β̂i;

for scenario (iv), suppose lim inf(1− β̄′l(
1
N β
′
lβl)
−1β̄l)

2 > 0 and N = o(T 2),

s2
0 = (1− ̂̄β′l( 1

N
β̂′lβ̂l)

−1̂̄βl)−1σ̂2
α,

̂̄βl =
1

N

∑
i

β̂l,i;

for scenario (v), s2
0 = σ̂2

α.

A.3.3 Inconsistency in the Low Dimensional Setting

When the dimension N is fixed and only observable factors (but not all tradable) are considered,

researchers frequently use two-pass regressions to estimate the alphas: (i) run time series regressions

to estimate individual betas; (ii) run cross-sectional regressions of the averaged returns on the es-

timated betas to estimate the risk premia and alphas. As we shall formally show below, when the

dimension N is fixed, the two-pass regression method fails to consistently estimate any alpha, so it

cannot be used in the FDR control or any multiple testing problems.

We shall focus on the case of balanced panel, and all factors are observable but not tradable.

12



Theorem A.7 (Inconsistent Estimation of α). Suppose N < C for some C > 0, and T → ∞.

Suppose α is stochastic and β is deterministic, satisfying α1, ..., αN are iid, Var(αi) > 0, and Sβ =
1
N

∑N
j=1(βj − β̄)(βj − β̄) is positive definite. Then we have for each i ≤ N , as long as βi 6= 0, there

is a random variable Xi so that Var(Xi) > 0 and

α̂i
P−→ αi +Xi.

In fact, Xi = −β′iηN with ηN = 1
N S
−1
β β′M1Nα.

In many asset pricing contexts, the common goal is to test the null hypothesis: H0 : all alphas

are zero, see, e.g., Gibbons et al. (1989). The two-pass regression is consistent for alphas when N is

fixed, because the null hypothesis is imposed. Under such null, Var(αi) = 0 so Xi = 0 for all i ≤ N

in the above proposition. However, as long as there are at least one alpha that is nonzero, it holds

that Var(αi) > 0, then α̂i would be inconsistent whenever βi 6= o(1) for that specific i.

B Technical Proofs

Recall that vt = ft−Eft. Throughout the proofs, we shall use ∆ to represent a generic N ×d matrix

of “estimation errors”, which may vary from case by case; here d ∈ {K,Ko,Kl} is a fixed dimension

that does not grow with N or T .

B.1 Proof of Theorem A.1

Proof. By Proposition B.1, α̂i−αi = 1
T

∑
t uit(1− v′tΣ

−1
f λ)− 1

N β
′
iS
−1
β β′M1Nα+OP ( logN

T + 1
N ). Now

let δNT = min{
√
N,
√
T}, we have for ζi,T = 1√

T

∑
t uit(1− v′tΣ

−1
f λ) and ζi,N = − 1√

N
β′iS
−1
β β′M1Nα

δNT (α̂i − αi) =
δNT√
T
ζi,T +

δNT√
N
ζi,N + oP (1).

Then ζi,T
d−→ N (0,Var(uit(1−vtΣ−2

f λ))) and ζi,N
d−→ N (0,Var(αi)β

′
iS
−1
β βi). In addition, Cov(ζi,T , ζi,N ) =

0, thus (ζi,T , ζi,N ) jointly converges to a bivariate normal distribution. Based on this, we can apply

the same argument of the proof of Theorem 3 in Bai (2003) to conclude that

α̂i − αi
( 1
T Var(uit(1− vtΣ−1

f λ)) + 1
N Var(αi)β′iS

−1
β βi)1/2

d−→ N (0, 1).

B.2 Proof of Theorem A.2

Proof. The proofs are similar throughout scenarios (i)-(iv). The case of scenario (iii) mixture of

observable and latent factors, in the presence of missing data where we apply the matrix completion

algorithm, is most challenging. Therefore, we mainly focus on the the proof of scenario (iii) below

and briefly mention the proof of all other cases.

Scenarios (i)(v): observable factors only
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When there are only observable factors, the matrix completion algorithm is not required. We

apply fund-by-fund time series regressions. When factors are tradable, then the estimated intercept

would then be the estimated alphas; when factors are not tradable, we additionally apply cross

sectional regression to estimate the factor risk premia and alphas. The details are well known even

for unbalanced data and are therefore omitted.

Scenario (ii): latent factors only

For any i, we have the following factor model: for lit = vl,t − v̄l,i and lt = vl,t − v̄l,

rit − r̄i = β′l,ilt + uit − ūi + β′l,i(v̄l − v̄l,i).

To apply the matrix completion algorithm and Proposition B.2, we set κit = 0 and git = β′l,i(v̄l,i− v̄l).
We need to verify maxi

1
T

∑
t g

2
it = oP ( 1√

T logN
) and 1

T

∑
t ‖

1
N

∑
j ωjtgjtβj‖2 = oP ( 1

T logN ). The

former is straightforward. Verifying the latter is very similar to that in scenario (iii) proved below.

Hence by Proposition B.2, there is Hl,

β̂l − βlHl = Jl + oP (
1√

T logN
), J ′l,i =

1

Ti

∑
t∈Ti

uitl
′
tS̄
−1
l Hl,

where S̄l = 1
T

∑
t ltl
′
t, and oP ( 1√

T logN
) is in the ‖.‖∞ norm. The expansion for λ̂ would be the same

as scenario (iii) below (and is much easier in the latent factor only case), leading to

r̄i − β̂′iλ̂− αi = Bi + ūi − (Υi + Ξi)
′H−1λ− β′iS−1

β

1

N
β′M1Nα+ oP (

1√
T logN

),

where Bi = β̂′i[H
−1v̄i − (β̂′M1N β̂)−1β̂′M1N g]. But the main difference here is that Υi = Ξi = 0 in

the absence of observable factors. Here β̂ := β̂l and v̄i := v̄l,i and gi = β′l,iv̄l,i. The bias correction

effect B̂i − Bi would be the same. Unlike scenario (iii), there is no additional bias Ho,i −Ho in the

absence of observable factors. So the final estimator is just

α̂i = r̄i − β̂′l,iλ̂i − B̂i,

which satisfies

α̂i − αi =
1

Ti

∑
t∈Ti

uit(1− v′tΣ−1
f λ)− β′iS−1

β

1

N
β′M1Nα+ oP (

1√
T logN

).

Here vt := vl,t, Σf = Cov(vl,t) and λ := λl.

Scenario (iii): mixture of observable and latent factors

Step 1. estimate beta. Define v̄o,i = 1
Ti

∑
t∈Ti vo,t, v̄l,i = 1

Ti

∑
t∈Ti vl,t, and So,i = 1

Ti

∑
t∈Ti vo,tv

′
o,t.

Then Lemma B.4 implies maxi ‖v̄o,i‖ = OP (
√

logN
T ) = maxi ‖v̄l,i‖ and maxi ‖S−1

o,i ‖ = OP (1).
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The first step OLS gives, for Ho,i = 1
Ti

∑
t∈Ti vl,tv

′
o,tS

−1
o,i , and Ho = 1

T

∑
t vl,tv

′
o,tS

−1
o ,

β̂o,i − βo,i =
1

Ti

∑
t∈Ti

uitS
−1
o,i vo,t +H ′o,iβl,i + δi, max

i
‖δi‖ = oP (

1√
T logN

). (B.7)

Now let lit = (vl,t − v̄l,i) −Ho,i(vo,t − v̄o,i), and lt = (vl,t − v̄l) −Ho(vo,t − v̄o). Then for any i,

we have the following factor model: for t ∈ Ti, and zit = rit − r̄i − β̂o,i(fo,t − f̄o,i),

zit = β′l,ilt − ηit + uit − ūi + β′l,i(lit − lt)− δ′i(vo,t − v̄o,i), ηit =
1

Ti

∑
s∈Ti

uisv
′
o,sS

−1
o,i (vo,t − v̄o,i).

To apply the matrix completion result in Proposition B.2, we set κit = −δ′i(vo,t − v̄o,i) and git =

β′l,i(lit−lt). We need to verify maxi
1
T

∑
t g

2
it = oP ( 1√

T logN
) and 1

T

∑
t ‖

1
N

∑
j ωjtgjtβj‖2 = oP ( 1

T logN ).

The former is straightforward. As for the latter,

1

T

∑
t

‖ 1

N

∑
i

ωitgitβi‖2 ≤
1

T

∑
t

‖ 1

N

∑
i

ωitβ
′
l,i(v̄l,i − v̄l)βi‖2 +

1

T

∑
t

‖ 1

N

∑
i

ωitβ
′
l,i(Ho,i −Ho)βi‖2

+
1

T

∑
t

‖ 1

N

∑
i

ωitβ
′
l,i(Ho,i −Ho)v̄o,iβi‖2 +

1

T

∑
t

‖ 1

N

∑
i

ωitβ
′
l,iHo(v̄o,i − v̄o)βi‖2

= oP (
1

T logN
),

which follows from lemma B.4. Hence by Proposition B.2, there exists Hl, such that

β̂l−βlHl = Jl+J2l+oP (
1√

T logN
), J ′l,i =

1

Ti

∑
t∈Ti

(uit−ηit)l′tS̄−1
l Hl, J ′2l,i =

1

Ti

∑
t∈Ti

β′l,i(lit−lt)l′tS̄−1
l Hl,

where S̄l = 1
T

∑
t ltl
′
t, and oP ( 1√

T logN
) is in the ‖.‖∞ norm. Hence

β̂ = (β̂o, β̂l) = βH + Υ + Ξ + oP (
1√

T logN
), H =

(
I 0

Ho Hl

)
,

Υ′i = (
1

Ti

∑
t∈Ti

uitv
′
o,tS

−1
o,i , J

′
l,i), Ξ′i = (β′li(Ho,i −Ho), J

′
2l,i).

Also maxi ‖β̂i −H ′βi‖ = oP (1).

Step 2. estimate factor risk premium.

First, from Lemma B.4, ‖ 1
N

∑
i

1
Ti

∑
t∈Ti(lit−lt)l

′
tbi‖ = oP ( 1√

T logN
). Hence for any deterministic

bounded sequence bi,
1
N

∑
i biJ2l,i = oP ( 1√

T logN
) = 1

N

∑
i biβ

′
l,i(Ho,i −Ho). It is also straightforward

to see 1
N

∑
i biJl,i = oP ( 1√

T logN
). This implies

1

N

∑
i

bi(β̂i −H ′βi) = oP (
1√

T logN
).

Thus λ̂ = (β̂′M1N β̂)−1(β̂′M1N r̄) implies, for g be the N × 1 vector of (β′iv̄i),

λ̂−H−1λ = (β̂′M1N β̂)−1β̂′M1N g + S−1
β

1

N
β′M1Nα+ oP (

1√
T logN

).
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So β̂′iλ̂− β′iλ = (Υi + Ξi)
′H−1λ+ β′iH(β̂′M1N β̂)−1β̂′M1N g + oP ( 1√

T logN
). Then

r̄i − β̂′iλ̂− αi = Bi + ūi − (Υi + Ξi)
′H−1λ− β′iS−1

β

1

N
β′M1Nα+ oP (

1√
T logN

),

where Bi = β̂′i[H
−1v̄i − (β̂′M1N β̂)−1β̂′M1N g]. In addition, λo can be consistently estimated due to:

H−1 =

(
I 0

−H−1
l Ho H−1

l

)
, H−1λ =

(
λo

H−1
l (λl −Hoλo)

)
.

We now work with (Υi + Ξi)
′H−1λ. By the same argument as of (B.30), for h = 1

Ti

∑
t∈Ti(uit−

ηit)l
′
tS̄
−1
l , we have

Υ′iH
−1λ = (

1

Ti

∑
t∈Ti

uitv
′
o,tS

−1
o,i − hHo, h)λ+ oP (

1√
T logN

)

=
1

Ti

∑
t∈Ti

uitv
′
tΣ
−1
f λ+ oP (

1√
T logN

).

For Ξ′iH
−1λ, note that S̄l = Sll − S′olS−1

o Sol +OP (T−1/2),

Ξ′iH
−1λ = β′li(Ho,i −Ho)λo +

1

Ti

∑
t∈Ti

β′l,i(lit − lt)l′tS̄−1
l (λl −Hoλo)

= Ci + oP (
1√

T logN
), where

Ci = β′li(Ho,i −Ho)λo.

For the last equality, recall lit = (vl,t − v̄l,i)−Ho,i(vo,t − v̄o,i) and lt = (vl,t − v̄l)−Ho(vo,t − v̄o).

1

Ti

∑
t∈Ti

β′l,i(lit − lt)l′tS̄−1
l (λl −Hoλo)

= −β′l,i(Ho,i −Ho)
1

Ti

∑
t∈Ti

votl
′
tS̄
−1
l (λl −Hoλo) + oP (

1√
T logN

)

= β′l,i(Ho,i −Ho)(SoH
′
o − Sol)S̄−1

l (λl −Hoλo) + oP (
1√

T logN
) = oP (

1√
T logN

),

where we used Ho = S′olS
−1
o . This implies

r̄i − β̂′iλ̂− αi =
1

Ti

∑
t∈Ti

uit(1− v′tΣ−1
f λ)− β′iS−1

β

1

N
β′M1Nα− Ci +Bi + oP (

1√
T logN

).

Step 3. bias correction. We now respectively estimate Ci and Bi.

For all t ≤ T , we have v̂t = (fo,t − f̄o, v̂l,t), then it follows that

v̂t −H−1(vt − v̄) = v̂t − (f ′o,t − f̄ ′o, (H−1
l lt)

′)′ = (0′, (v̂l,t −H−1
l lt)

′)′.
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It follows from Lemma B.4 that maxi ‖ 1
Ti

∑
t∈Ti v̂t−H

−1(vt−v̄)‖ = oP ( 1√
T logN

). Recall that ĝi = β̂′î̄vi
and gi = β′iv̄i. So uniformly in i, for any bounded deterministic sequence b = (b1, ..., bN )′,

1

N
b′(ĝ − (g − βv̄)) =

1

N

∑
i

bi(β̂i −H ′βi)′̂̄vi +
1

N

∑
i

biβ
′
iH(̂̄vi −H−1(v̄i − v̄)) = oP (

1√
T logN

).

Now define B̂i := β̂′i[̂̄vi − (β̂′M1N β̂)−1β̂′M1N ĝ] = ξ̂′iĝ. Uniformly in i ≤ N ,

B̂i −Bi = β̂′i[̂̄vi −H−1v̄i − (β̂′M1N β̂)−1β̂′M1N (ĝ − g)]

= β̂′i[̂̄vi −H−1(v̄i − v̄)− (β̂′M1N β̂)−1β̂′M1N (ĝ − (g − βv̄))

+(β̂′M1N β̂)−1β̂′M1N (βH − β̂)H−1v̄] = oP (
1√

T logN
).

As for Ci := β′li(Ho,i −Ho)λo, we define,

Ĥo,i =
1

Ti

∑
t∈Ti

v̂l,t(fo,t − f̄o,i)′Ŝ−1
o,i , Ĥo =

1

T

∑
t

v̂l,t(fo,t − f̄o)′Ŝ−1
o ,

where Ŝo and Ŝo,i are respectively defined using (fo,t − f̄o) and (fo,t − f̄o,i). The goal is to show

maxi ‖Ĉi − Ci‖ = oP ( 1√
T logN

), where Ĉi = β̂′li(Ĥo,i − Ĥo)λ̂o. Note

Ĉi − Ci = (β̂l,i −H ′lβl,i)′(Ĥo,i − Ĥo)λ̂o + β′l,iHl(Ĥo,i − Ĥo)(λ̂o − λo)
+β′l,iHl[(Ĥo,i − Ĥo)−H−1

l (Ho,i −Ho)]λo.

It is straightforward to show the first two terms are oP ( 1√
T logN

) uniformly in i. The most challenging

term is the third one. To analyze it, we first show

Ho,i −Ho =
1

Ti

∑
t∈Ti

ltv
′
o,tS

−1
o,i −

1

T

T∑
t=1

ltv
′
o,tS

−1
o + oP (

1√
T logN

),

where we recall lt = vl,t − v̄l −Ho(vo,t − v̄o). Note that 1
Ti

∑
t∈Ti ltv

′
o,tS

−1
o,i = Ho,i − v̄lv̄′o,iS

−1
o,i −Ho +

Hov̄ov̄
′
o,iS

−1
o,i and 1

T

∑
t ltv

′
o,tS

−1
o = −v̄lv̄′oS−1

o +Hov̄ov̄
′
oS
−1
o . Hence

1

Ti

∑
t∈Ti

ltv
′
o,tS

−1
o,i −

1

T

T∑
t=1

ltv
′
o,tS

−1
o − [Ho,i −Ho] = −v̄lv̄′o,i(S−1

o,i − S
−1
o ) +Hov̄o(v̄

′
o,iS

−1
o,i − v̄

′
oS
−1
o ),

where the right hand side is oP ( 1√
T logN

). So to show maxi ‖Ĉi − Ci‖ = oP ( 1√
T logN

), it suffices to

show maxi ‖(Ĥo,i − Ĥo)−H−1
l [ 1

Ti

∑
t∈Ti ltv

′
o,tS

−1
o,i −

1
T

∑T
t=1 ltv

′
o,tS

−1
o ]‖ = oP ( 1√

T logN
), which is also

sufficient to show

max
i
‖Ĥo,i −H−1

l

1

Ti

∑
t∈Ti

ltv
′
o,tS

−1
o,i ‖ = oP (

1√
T logN

).

This in fact immediately follows from Lemma B.4 that both maxi ‖ 1
Ti

∑
t∈Ti(v̂l,t(fo,t−f̄o,i)

′−H−1
l ltv

′
o,t)‖

and maxi ‖ 1
Ti

∑
t∈Ti((fo,t − f̄o,i)(fo,t − f̄o,i)

′ − vo,tv′o,t)‖ are oP ( 1√
T logN

).
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Therefore, for α̂i := r̄i − β̂′iλ̂+ Ĉi − B̂i,

α̂i − αi =
1

Ti

∑
t∈Ti

uit(1− v′tΣ−1
f λ)− β′iS−1

β

1

N
β′M1Nα+ oP (

1√
T logN

). (B.8)

Scenario (iv): mixture of observable and latent factors and observable factors are

tradable

The only difference from Scenario (iii) is that, λo = Efo,t, and λl is estimated by, for Ā =

(r̄i − β̂′o,if̄o,i) be an N × 1 vector,

λ̂l = (β̂′lM1N β̂l)
−1β̂′lM1N Ā,

and

α̂i = r̄i − β̂′of̄o,i − β̂′lλ̂l − estimated bias.

Similar to the proof of Scenario (iii), we have

β̂ = (β̂o, β̂l) = βH + Υ + Ξ + oP (
1√

T logN
), H =

(
I 0

Ho Hl

)
,

Υ′i = (
1

Ti

∑
t∈Ti

uitv
′
o,tS

−1
o,i︸ ︷︷ ︸

Υ′1i

, J ′l,i), Ξ′i = (β′li(Ho,i −Ho)︸ ︷︷ ︸
Ξ′1i

, J ′2l,i),

and for Ci = β′li(Ho,i −Ho)λo, (Υi + Ξi)
′H−1λ = 1

Ti

∑
t∈Ti uitv

′
tΣ
−1
f λ+ Ci + oP ( 1√

T logN
). So

β̂′o,i = β′o,i + β′l,iHo + Υ′1i + Ξ′1i + oP (
1√

T logN
),

and β̂′o,if̄o,i = β′o,if̄o,i + β′l,iHof̄o,i + (Υ′1i + Ξ′1i)λo + oP ( 1√
T logN

).

Also note that r̄i = αi + β′o,if̄o,i + β′l,iλl + β′liv̄l,i + ūi, so for gl = (β′li(v̄l,i −Hov̄o,i) : i ≤ N),

Ā = α+ βl(λl −Hoλo) + gl + ū− (Υ1 + Ξ1)λo + oP (
1√

T logN
).

We also note from Lemma B.4 (iv) that for any deterministic and bounded sequence b := (bi : i ≤ N),

‖ 1
N

∑N
i=1 bi(Ho,i −Ho)‖ = oP ( 1√

T logN
). Hence 1

N b
′(Υ1 + Ξ1) = oP ( 1√

T logN
). So

λ̂l = H−1
l (λl −Hoλo) + (β̂′lM1N β̂l)

−1β̂′lM1N gl + (β̂′lM1N β̂l)
−1β̂′lM1Nα+ oP (

1√
T logN

).

This implies(
f̄o,i

λ̂l

)
−H−1λ =

(
v̄o,i

(β̂′lM1N β̂l)
−1β̂′lM1N gl + (β̂′lM1N β̂l)

−1β̂′M1Nα

)
+ oP (

1√
T logN

).
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Then for Bi = β̂′li[H
−1
l (v̄l,i −Hov̄o,i)− (β̂′lM1N β̂l)

−1β̂′lM1N gl],

r̄i − β̂′o,if̄o,i − β̂′l,iλ̂l − αi =
1

Ti

∑
t∈Ti

uit(1− v′tΣ−1
f λ)− β′l,iS−1

β,l

1

N
β′lM1Nα− Ci +Bi + oP (

1√
T logN

).

Similar proof as before yields that (Bi, Ci) can be replaced with (B̂, Ĉi) with negligible effects, where

B̂i = β̂′li[ ̂̄vi − (β̂′lM1N β̂l)
−1β̂′lM1N ĝl], ĝl = (β̂′l,i ̂̄vi : i ≤ N).

B.3 Proof of Theorem A.3

Proof. We use α̂ , se(α̂i), and ti to denote the estimated α, its standard error and t-statistics. The

proof extends that of Liu and Shao (2014) to our context that (i)
√
T (α̂− α) is only approximately

equal to 1√
T

∑
t ut(1 − v′tΣ

−1
f λ), up to a term ‖∆‖∞ = oP (1) when T logN = o(N); (ii) The power

comparison between the usual B-H and the screening B-H.

By Assumption A.4, there is H ⊂ {1, ..., N} so that |H| → ∞ and

√
Tσ−1

i αi ≥ 4
√

logN, ∀i ∈ H. (B.9)

Next, let H0 denote the index set of all the true null hypotheses. Also, let Ψ(x) := 1 − Φ(x). Our

major goal is to bound the number of false rejections

F =
∑
i∈H0

1{ti ≥ t(k̂)
}.

The main inequality to use is: uniformly for x ∈ [0, t∗], where t∗ = Ψ−1(τ |H|/N),

1

|H0|
∑
i∈H0

1{ti ≥ x} ≤ Ψ(x)(1 + oP (1)). (B.10)

The remaining proof is divided into the following steps.

Step 1. We first show the inequality (B.10). This inequality is essentially the Gaussian approx-

imation to the “empirical measure” of the t-statistics for those true null hypotheses, whose proof

requires weak dependence among the t-statistics. The proof simply extends that of Liu and Shao

(2014) to allow approximation errors ∆i.

Write zi = 1√
T

∑
tXit/si where Xit = uit(1− v′tΣ−1

f λ). When T logN = o(N), αi ≤ 0 we have

ti ≤ (α̂i − αi)/ se(α̂i) = 1√
T

∑
tXit/si + ∆i where maxi |∆i| = oP (1/

√
logN) by Proposition B.1.

Hence
1

|H0|
∑
i∈H0

1{ti ≥ x} ≤
1

|H0|
∑
i∈H0

1{zi ≥ x− ‖∆‖∞}.
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The right-hand side does not depend on α because zi is centered and independent of α.

The same argument as that of Liu and Shao (2014) shows, uniformly for x ≤ Ψ−1(τ |H|/(2N)),

1

|H0|
∑
i∈H0

1{zi ≥ x} ≤ Ψ(x)(1 + oP (1)), (B.11)

where oP (1) is independent of x, α. On the other hand, there is ηx ∈ [0, ‖∆‖∞] so that for some

universe constant C > 0, uniformly for 0 < x ≤ t∗,

|Ψ(x)−Ψ(x− ‖∆‖∞)| ≤ φ(x+ ηx)‖∆‖∞ ≤ φ(x)‖∆‖∞
φ(x+ ηx)

φ(x)
≤ Cφ(x)‖∆‖∞ exp(Cηx(ηx + t∗))

≤ CxΨ(x)‖∆‖∞(1 + o(1)) ≤ Ct∗Ψ(x)‖∆‖∞(1 + o(1))

≤ o(1)Ψ(x), (B.12)

where o(1) is a uniform term because ηxt
∗ ≤ ‖∆‖∞t∗ ≤ oP (1/

√
logN)

√
2 logN = o(1); the fact that

t∗ ≤
√

2 logN is to be shown in step 2 below. This proves Ψ(x) = Ψ(x− ‖∆‖∞)(1 + o(1)). Also,

Ψ(x − ‖∆‖∞) = Ψ(x)(1 + o(1)) ≥ Ψ(t∗)(1 + o(1)) ≥ (1 + o(1))τ |H|/N ≥ τ |H|/(2N). So

x− ‖∆‖∞ ≤ Ψ−1(τ |H|/(2N)). Hence by (B.11), we have

1

|H0|
∑
i∈H0

1{ti ≥ x} ≤
1

|H0|
∑
i∈H0

1{zi ≥ x− ‖∆‖∞} ≤ Ψ(x− ‖∆‖∞)(1 + oP (1)) = Ψ(x)(1 + oP (1)).

Step 2. An equivalent statement for rejections: ti ≥ t(k̂)
if and only if ti ≥ t̂, where

t̂ := inf{x ∈ R : Ψ(x) ≤ τ 1

N
max{

N∑
i=1

1{ti ≥ x}, 1}}.

The proof of this step is to show that t
(k̂+1)

≤ t̂ ≤ t
(k̂)

, and is the same as that of Lemma 1 of Storey

et al. (2004). So we omit it to avoid repetitions.

Given step 2, our goal becomes to bound F =
∑

i∈H0
1{i ≤ N : ti ≥ t̂}. To use inequality

(B.10), we then aim to prove that x = t̂ ≤ t∗. To do so, note that

Ψ(t̂) = τ
1

N
max{

N∑
i=1

1{ti ≥ t̂}, 1}, (B.13)

hence showing t̂ ≤ t∗ is equivalent to showing Ψ(t̂) ≥ Ψ(t∗), that is

N∑
i=1

1{ti ≥ t̂} ≥ |H|. (B.14)

In other words, the number of rejections (if there is any) is at least |H|. This is to be done in the

following steps.
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Step 3. We now show P(∀j ∈ H, tj ≥
√

2 logN) → 1. Intuitively, it means the t-statistics of

“large” true alphas are also large. It then implies

N∑
i=1

1{ti ≥
√

2 logN} ≥ |H|.

By Proposition B.1, writing zi = 1√
T

∑
t uit(1−v′tΣ

−1
f λ)/si, we have (α̂i−αi)/ se(α̂i) = zi+ ∆i.

So it follows that

ti ≥ αi/ se(α̂i)− |zi| −∆i.

Next,
√
T maxi | se(α̂)

√
T−σi| ≤ OP (

√
logN+

√
T/N) by (B.32). So for all αi satisfying

√
Tσ−1

i αi ≥
Ln
√

logN with Ln →∞, and T = o(N),

αi/ se(α̂i) ≥
√
Tσ−1

i αi −OP (
√

logN +
√
T/N) ≥ Ln

√
logN/2.

Now note that
√
Tσ−1

i αi ≥ Ln
√

logN for all i ∈ H, so by Lemma B.2, uniformly for these i,

ti ≥ Ln
√

logN/2−
√

3 logN − oP (1) ≥
√

2 logN.

Step 4. The number of rejections (if there is any) is at least |H|. It is equivalent to (B.14).

Because |H| → ∞, Ψ(x) ≤ 0.5 exp(−x2/2), we have t∗ = Ψ−1(τ |H|/N) ≤
√

2 logN . Then by

step 3, Ψ(t∗) = τ |H|
N ≤ 1

N

∑N
i=1 1{ti ≥

√
2 logN}τ ≤ 1

N

∑N
i=1 1{ti ≥ t∗}τ. So by the definition of t̂,

we have t̂ ≤ t∗ and thus Ψ(t̂) ≥ τ |H|/N . In addition, by the definition of t̂, we have

Ψ(t̂) = τ
1

N

N∑
i=1

1{ti ≥ t̂} ≥ τ
|H|
N
. (B.15)

Step 5. We prove the FDR/FDP control.

In the proof of step 4, we have t̂ ≤ t∗ with probability converging to one, then by (B.10),

F ≤ Ψ(t̂)|H0|+ oP (1)|H0|. Also by (B.13),

R = max{
N∑
i=1

1{ti ≥ t̂}, 1} = Ψ(t̂)N/τ.

It then gives, for some X = oP (1), and |X| ≤ 1 almost surely, FR ≤ τ |H0|
N + X, on the event t̂ ≤ t∗.

Hence

FDP ≤ τ + oP (1).

Together, for any ε > 0,

FDR ≤ E(τ
|H0|
N

+X|t̂ ≤ t∗) + P(t̂ > t∗)
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≤ τ
|H0|
N

+ ε+ P(|X| ≥ ε|R ≥ 1) + o(1).

Since ε is chosen arbitrarily, FDR ≤ τ |H0|
N + o(1).

Step 6. We show FDR/FDP properties for the screening B-H.

Recall that Î = {ti > − log(log T )
√

logN}. Proposition B.1 and Lemma B.1 imply

max
i≤N

|α̂i − αi|
se(α̂i)

≤ oP (
1√

logN
) +OP (

√
logN) = OP (

√
logN). (B.16)

Hence with probability approaching one,

A1 ⊆ Î ⊆ A2,

where

A1 = {αi > − log log T

√
logN

T
σi(1− ε)}, A2 = {αi > − log log T

√
logN

T
σi(1 + ε)}.

Let H0,2 = H0 ∩A2 = {− log log T
√

logN
T σi(1 + ε) < αi ≤ 0}. Thus H0,2 ⊂ H0. Then the same proof

as step 1 leads to, uniformly for x ≤ t∗,

1

|H0,2|
∑
i∈H0,2

1{ti ≥ x} ≤ Ψ(x)(1 + oP (1)).

Let t̂1, F1 and R1 be as t̂, F and R but defined on Î. Then

Ψ(t̂1) =
τ

|Î|
max{

∑
i∈Î

1{ti ≥ t̂1}, 1}, R1 = max{
∑
i∈Î

1{ti ≥ t̂1}, 1} = Ψ(t̂1)|Î|/τ. (B.17)

Suppose t̂∗1 ≤ t∗, a claim to be proved later, then with probability approaching one,

F1

|H0,2|
=

∑
i∈Î∩H0

1{ti ≥ t̂1}
|H0,2|

≤
∑

i∈A2∩H0
1{ti ≥ t̂1}

|H0,2|
≤ Ψ(t̂1)(1 + oP (1)).

So with the assumption |H0,2| ≤ |A1|,

FDPscreening =
F1

R1
≤ Ψ(t̂1)(1 + oP (1))|H0,2|

Ψ(t̂1)|Î|/τ
=
τ |H0,2|
|Î|

(1+oP (1)) ≤ τ |H0,2|
|A1|

(1+oP (1)) ≤ τ(1+oP (1)).

Then with the same proof as step 5,

FDRscreening = EFDPscreening ≤ τ + o(1).

It remains to prove t̂∗1 ≤ t∗. For any i ∈ H, we note αi ≥ LNT

√
logN
T . So (B.16) implies, for

LNT →∞ slowly,

α̂i/ se(α̂i) >
√
Tσ−1

i αi −OP (
√

logN) ≥ σ−1
i LNT

√
logN/2 > 0
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Hence i ∈ Î. Hence H ⊂ Î. This combined with step 3 imply with probability approaching one,∑
i∈Î

1{ti ≥
√

2 logN} ≥ |H|.

Now let t∗1 = Ψ−1(τ |H|/|Î|). Since |H| → ∞, Ψ(
√

2 logN) ≤ 0.5 exp(− logN) = 1
2N ≤

1

|Î|
≤ τ |H|
|Î|

. So

t∗1 ≤
√

2 logN , thus

Ψ(t∗1) =
τ |H|
|Î|
≤ τ

|Î|

∑
i∈Î

1{ti ≥
√

2 logN} ≤ 1

|Î|

∑
i∈Î

1{ti ≥ t∗1}τ.

So by the definition of t̂1, t̂1 ≤ t∗1. Finally, |Î| ≤ N implies t∗1 ≤ t∗ almost surely.

(b) The power property.

Note that in the proof of Steps 3 and 4 we have proved

P(ti ≥
√

2 logN ≥ t∗ ≥ t̂, ∀i ∈ H)→ 1.

Note that ti ≥ t̂ if and only if Hi
0 is rejected. This proves the desired power property that

P(Hi
0 is false and rejected, for all i ∈ H)→ 1.

(c) To prove the power property, let k̂screening B-H and k̂B-H respectively denote the cut-off for

the screening B-H and B-H. Thus

p
(k̂B-H)

≤ τ k̂B-H

N
≤ τ k̂B-H

|Î|
.

Let j be the index of (k̂B-H) so that p
(k̂B-H)

= pj . Suppose it is true that j ∈ Î, then by the

alpha-screening method, k̂B-H ≤ k̂screening B-H and p
(k̂B-H)

≤ p
(k̂screening B-H)

. So

GB-H =
∑

Hi0 is false

1{Hi
0 is rejected by B-H} =

∑
Hi0 is false

1{pi ≤ p(k̂B-H)
}

=
∑

Hi0 is false,i/∈Î

1{pi ≤ p(k̂B-H)
}+

∑
Hi0 is false,i∈Î

1{pi ≤ p(k̂B-H)
}

≤
∑

Hi0 is false,i/∈Î

1{pi ≤ 1/2}+
∑

Hi0 is false,i∈Î

1{pi ≤ p(k̂screening B-H)
}

=
∑

Hi0 is false,i/∈Î

1{ti ≥ 0}+
∑

Hi0 is false,i∈Î

1{Hi
0 is rejected by screening B-H}

= Gscreening B-H

where we used, p
(k̂B-H)

≤ τ k̂B-H
N ≤ τ < 1/2, and if i ∈ Î and pi ≤ p

(k̂screening B-H)
, then Hi

0 is rejected

by screening B-H. Hence EGB-H ≤ EGscreening B-H.
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On the event AB-H,

max
Hi0 is false

pi ≤ p(k̂B-H)
≤ p

(k̂screening B-H)
.

Because Îc ⊂ H0 asymptotically (to be proved in (iv) below), thus if Hi
0 is false, i ∈ Î. Now for all

i ∈ Î, it is rejected if and only if pi ≤ p
(k̂screening B-H)

. The above inequality then implies that on the

event AB-H, the event Ascreening B-H also holds. Thus indeed P(Ascreening B-H) ≥ P(AB-H).

It remains to prove that j ∈ Î. Note that pj = p
(k̂B-H)

≤ τ k̂B-H
N ≤ τ < 1/2, then for one-sided

test, tj > 0 > − log(log T )
√

logN , so indeed j ∈ Î.

(d) We aim to show P(Îc ⊂ H0)→ 1 where H0 denotes the collection of all true null hypotheses.

In fact, for any i /∈ Î, we have α̂i/ se(α̂i) ≤ − log(log T )
√

logN . Thus (B.16) shows

αi/ se(α̂i) ≤ − log(log T )
√

logN +OP (
√

logN) < 0.

Hence it is true that αi < 0 and thus i ∈ H0.

B.4 Proof of Theorem A.4

Proof. (a) The main body of the proof is a standard argument of wild bootstrap. For brevity, in

part (i) we focus on the case when latent factors are present. The case of observed-factors-only is

well known and straightforward. Recall that

r∗it = β̂′iλ̂+ β̂′o,iv̂o,t + β̂′l,iv̂l,t + û∗it, t ∈ Ti.

For any ζit ∈ {ûit, ûitv̂t}, 1
Ti

∑
t∈Ti ζ

∗
it = T

Ti
1
T

∑
t ωitζitw

∗
it. We have maxi ‖ TTi ‖ = OP (1), and

E∗ 1
T

∑
t ωitζitw

∗
it = 0. Also, P (|wit| > x) ≤ Ce1−Cxc . Hence by Bernstein inequality and the

union bound, we have maxi ‖ 1
T

∑
t ωitζitw

∗
it‖ = OP ∗(

√
logN
T ). This implies maxi ‖ 1

Ti

∑
t∈Ti ζ

∗
it‖ =

OP ∗(
√

logN
T ). Also we have

1

Ti

∑
t∈Ti

(v̂t −H−1vt)û
∗
it = OP ∗(

√
logN

T
)

√
max
i

1

Ti

∑
t∈Ti

‖v̂t −H−1vt‖2 = oP ∗(
1√

T logN
).

By Lemma B.4 (vii), we have

β̂∗i − β̂i = (
1

Ti

∑
t∈Ti

(v̂t − ̂̄vi)(v̂t − ̂̄vi)′)−1 1

Ti

∑
t∈Ti

(v̂t − ̂̄vi)û∗it = H ′Σ−1
f

1

Ti

∑
t∈Ti

vtû
∗
it + oP ∗(

1√
T logN

).

Then 1
N

∑
imi(β̂

∗
i − β̂i)′ = oP ∗(

1√
T logN

) = 1
N

∑
i

1
Ti

∑
t∈Timiû

∗
it for all mi ∈ {β̂i, 1}.

As a result, for g∗ = (g∗i : i ≤ N) with g∗i = β̂∗
′
i

1
Ti

∑
t∈Ti v̂t, we have

λ̂∗ − λ̂ = (β̂∗M1N β̂
∗)−1β̂∗M1N g

∗ + oP ∗(
1√

T logN
).

24



Thus it follows that

r̄∗i − β̂∗
′
i λ̂
∗ =

1

Ti

∑
t∈Ti

û∗it − (β̂∗
′
i − β̂′i)λ̂+ g∗i − β̂′i(λ̂∗ − λ̂) + oP ∗(

1√
T logN

)

=
1

Ti

∑
t∈Ti

û∗it(1− v′tΣ−1
f Hλ̂) + g∗i − β̂′i(β̂∗M1N β̂

∗)−1β̂∗M1N g
∗ + oP ∗(

1√
T logN

),

which leads to the desired result.

(b) First, according to the Glivenko-Cantelli theorem, we can in spirit define p∗i = P ∗(α̂∗i > α̂i),

that is, replacing the bootstrap empirical measure 1
B

∑B
b=1 with the bootstrap measure P ∗. We have

the following decomposition: for maxi ‖∆i‖ = oP ∗(
1√

T logN
) and for ωit = 1{rit is observed},

α̂∗i =
1

T

T∑
t=1

y∗it + ∆i, y∗it = û∗itµit, (B.18)

where

µit :=
ωit
Eωit

(1− v′tΣ−1
f λ).

Let s∗i =
√

1
T

∑
t y
∗2
it and s2

i = 1
T

∑
t û

2
itµ

2
it. Then we have

max
i
|s∗2i − T se(α̂∗i )

2| ≤ max
i
|s∗2i − s2

i |+ max
i
|s2
i − T se(α̂∗i )

2| = oP (1).

Also, recall that Ψ(x) := 1− Φ(x). By definition pi = Ψ(
α̂∗i

se(α̂∗i )), and

p∗i = P ∗(α̂∗i > α̂∗i ) = P ∗(

√
T α̂∗i
s∗i

>
α̂∗i

se(α̂∗i )

√
T se(α̂∗i )

s∗i
) = P ∗(

1√
T

∑
t y
∗
it

s∗i
> y1i),

where y1i =
α̂∗i

se(α̂∗i )

√
T se(α̂∗i )
s∗i

−
√
T∆i
s∗i

.

The main technical tool is the moderate deviations for self-normalized sums (Peña et al., 2008)

(also see Lemma 5 of Belloni et al. (2012)), which approximates P ∗(
1√
T

∑
t y
∗
it

s∗i
> y) using the standard

normal distribution uniformly over y ≤ T 1/6/lTM for some lT → ∞ slowly and constant M . We

thus consider two sets:

Set 1: S1 = {i :
α̂∗i

se(α̂∗i ) > T 1/5}. Then maxi∈S1 pi ≤ Ψ(T 1/5) → 0. Also, mini∈S1 s
∗
i y1i ≥ cT 1/5

for some c > 0 with probability P ∗ goes to one. Hence by the Chebyshev inequality,

max
i∈S1

p∗i ≤ max
i∈S1

P ∗(
1√
T

∑
t

y∗it > cT 1/5) + oP (1) ≤
C maxi∈S1

1
T

∑
t û

2
itµ

2
it

T 2/5
+ oP (1) = oP (1).

Set 2: S2 = {i :
α̂∗i

se(α̂∗i ) ≤ T 1/5}. Then maxi∈S2 y1i ≤ 2T 1/5 with P ∗ approaching one. Also,

|y1i−
α̂∗i

se(α̂∗i ) | <
1√

logN
. Hence y2i :=

α̂∗i
se(α̂∗i )−

1√
logN

< y1i <
α̂∗i

se(α̂∗i ) + 1√
logN

:= y3i. Then P ∗(
1√
T

∑
t y
∗
it

s∗i
>
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y3i) < p∗i < P ∗(
1√
T

∑
t y
∗
it

s∗i
> y2i). Hence

max
i∈S2

|p∗i − pi| ≤ max
i∈S2

|P ∗(
1√
T

∑
t y
∗
it

s∗i
> y2i)− pi|+ max

i∈S2

|P ∗(
1√
T

∑
t y
∗
it

s∗i
> y3i)− pi|.

We now bound the first term on the right. The second one follows similarly.

max
i∈S2

|P ∗(
1√
T

∑
t y
∗
it

s∗i
> y2i)− pi| ≤ max

i∈S2

|P ∗(
1√
T

∑
t y
∗
it

s∗i
> y2i)−Ψ(y2i)|+ max

i∈S2

|pi −Ψ(y2i)|

≤ max
i∈S2

sup
y<T 1/5+ 1√

logN

|P ∗(
1√
T

∑
t y
∗
it

s∗i
> y)−Ψ(y)|+ C√

logN

= oP (1).

Together, maxi |pi − p∗i | = oP (1).

(c) Given the expansion (B.18), the proof of the FDR control is very standard (e.g., Proposition

2.3 of Liu and Shao (2014)), hence we only sketch it here. First, define

G∗i (t) = P ∗(

1√
T

∑T
t=1 y

∗
it

si
> t).

Then p∗i = G∗i (ti − δi) where ti =
√
T α̂i/si and maxi ‖δi‖ = maxi ‖

√
T∆i/si‖ = oP ( 1√

logN
). Also,

for the same µit, by Theorem A.2,

ti −
√
Tαi/si = zi + δi2, zi =

1√
Tsi

∑
t

uitµit, max
i
‖δi2‖ = oP (

1√
logN

).

Next, by the same argument as in the proof of their Proposition 2.3, there exists Gκ,i(t) such that

G∗i (t) = Gκ,i(t)(1 + o(1)),
1

|H0|
∑
i∈H0

1{zi ≥ t} =
1

|H0|
∑
i∈H0

Gκ,i(t)(1 + o(1))

uniformly for i ≤ N , t ∈ A := [−C
√

logN,C
√

logN ] for some C > 0 (for the left statement) and

uniformly t ∈ B := [0, G−1
κ,i(bN/N)] for any bN →∞ (for the right statement). Next, the B-H rejects

Hi
0 if and only if p∗i ≤ x̂, where x̂ = sup{0 ≤ x ≤ 1 : Nx ≤ τ max{1,

∑
i 1{p∗i ≤ x}}} satisfies

x̂ =
τ max{1,

∑
i 1{p∗i ≤ x̂}}
N

=
τ max{1,R}

N
.

With probability approaching one, ti −
√
Tαi/si − δi ∈ A for all i ∈ H0. Also, because |H| → ∞, we

have x0 := τ |H|
N ≥ Gκ,i(C

√
logN),

τ
∑
i

1{p∗i ≤ x0} ≥ τ
∑
i

1{p∗i ≤ Gκ,i(C
√

logN)} ≥ τ |H|
N

N = x0N,

where the last inequality is from the similar argument of step 3 of the proof of Theorem A.3(i). Then

the definition of x̂ yields x0 ≤ x̂. Thus G−1
κ,i(x̂(1 + o(1))) + δi3 ∈ B for all i ∈ H0. For δi3 = δi − δi2,

1

|H0|
F =

1

|H0|
∑
i∈H0

1{p∗i ≤ x̂} =
1

|H0|
∑
i∈H0

1{G∗i (ti − δi) ≤ x̂}
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≤ 1

|H0|
∑
i∈H0

1{G∗i (ti −
√
Tαi/si − δi) ≤ x̂}

=
1

|H0|
∑
i∈H0

1{Gκ,i(ti −
√
Tαi/si − δi) ≤ x̂(1 + o(1))}

=
1

|H0|
∑
i∈H0

1{zi ≥ G−1
κ,i(x̂(1 + o(1))) + δi3}

=
1

|H0|
∑
i∈H0

Gκ,i(mi + δi3)(1 + o(1)) =
1

|H0|
∑
i∈H0

Gκ,i(mi)(1 + o(1)) + δ4

(1)
=

1

|H0|
∑
i∈H0

Gκ,i(mi)(1 + o(1))

= x̂(1 + o(1)) =
τ max{1,R}

N
(1 + o(1)),

where the first inequality is due to αi ≤ 0 for i ∈ H0 and that G∗i is nonincreasing; mi = G−1
κ,i(x̂(1 +

o(1))); (1) is due to, following the same proof of (B.12),

δ4 =
1

|H0|
∑
i∈H0

[Gκ,i(mi + δi3)−Gκ,i(mi)](1 + o(1)) =
1

|H0|
∑
i∈H0

Gκ,i(mi)o(1).

Hence with probability approaching one,

F
max{1,R}

≤ |H0|τ
N

(1 + o(1)).

From here, the remaining proof is the same as in Theorem A.3(i).

B.5 Proof of Theorem A.5

Proof. First of all, let w = E[(fl.t − Efl,t)f ′o,t] Cov(fo,t)
−1. Then it is straightforward to check that

Γ = βlw + βo. (B.19)

(Note that β̂0 converges in probability to Γ, therefore β̂0 is biased for β0 unless fo,t and fl,t are

uncorrelated, which is the omitted variable bias.) Next, define

ht = fl.t − Efl,t − w(fo,t − Efo,t).

Then it is also straightforward to check that Zt = βlht + ut. This proves the first equation.

Next, given the invertible matrix Q (whose existence is proved in the high-dimensional factor

model literature, e.g., Fan et al. (2016)), we show that there is an invertible H so that βH = (Γ, βlQ).

In fact, from (B.19),

(Γ, βlQ) = (βo, βl)︸ ︷︷ ︸
β

(
I 0

w Q

)
︸ ︷︷ ︸

H

,
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where det(H) = det(Q) 6= 0. This proves the second equation. (Also, β̂l converges in probability to

βlQ. Therefore β̂ = (β̂o, β̂l) converges to (Γ, βlQ) = βH.)

Next, multiply T (β)M1N to both sides of Ert = α+ βλ:

βλ = β(β′M1Nβ)−1β′︸ ︷︷ ︸
T (β)

M1Nβλ = T (β)M1NErt − T (β)M1Nα.

This proves the third equation. Finally, α = Ert − βλ follows immediately.

B.6 Proof of Theorem A.6

Proof. In cases (i)-(iii), let ε̂i = r̄i − α̂0 − β̂′iλ̂, then
∑

i ε̂i = 0. Hence α̂0 = 1
N

∑
i α̂i. From (B.8),

α̂i − αi =
1

Ti

∑
t∈Ti

uit(1− v′tΣ−1
f λ)− β′iS−1

β

1

N
β′M1Nα+ ∆i,

where ‖∆‖∞ = OP ( logN
T + 1

N ). In (B.31), we showed ‖∆‖∞ = oP ( 1√
T logN

). In fact, a more careful

analysis could yield that 1
N

∑
i ∆i = OP ( 1

T + 1
N ). We omit details for brevity. Thus

α̂0 − ᾱ = −β̄′S−1
β

1

N
β′M1Nα+OP (

logN

T
+

1

N
).

For 1N = (1, ..., 1)′, Pβ = β(β′β)−1β′, Mβ = I − Pβ,

α̂0 − α0 +OP (
logN

T
+

1

N
) =

1

N
1′Nα−

1

N
1′Nβ(

1

N
β′M1Nβ)−1 1

N
β′M1Nα− α0

=
1

N
1′Nα− (1′NMβ1N )−11′NPβM1Nα− α0

=
1

N
1′Nα− (1′NMβ1N )−11′NPβα+ (1′NMβ1N )−11′NPβ1N1′N

1

N
α− α0

= (1′NMβ1N )−11′NMβ(α− 1Nα0)

= (1′NMβ1N )−1
∑
i

(αi − α0)(1− β̄(
1

N
β′β)−1βi).

The second equality uses the Woodbury matrix identity for ( 1
N β
′M1Nβ)−1. It is easy to check that

the triangular array Lindeberg condition holds, given Eα4
i < C. Define

σ̄2 = (
1

N
1′NMβ1N )−1σ2

α,

then
√
N α̂−α0

σ̄
d−→ N (0, 1). The result then follows due to s2

0 − σ̄2 = oP (1) and that σ̄2 > 0.

In case (iv) that observable factors are tradable and there are also latent factors, the result is

similar except that β̄ and Mβ should be replaced with β̄l and Mβ,l.

In case (v) that observable factors are tradable and there are no latent factors, we have

α̂i = αi − f̄ ′i(F ′iMTiFi)
−1F ′iMTiui + ūi.
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Hence α̂0 − α0 = ᾱ − α0 − 1
N

∑
i f̄
′
i(F
′
iMTiFi)

−1F ′iMTiui + 1
N

∑
i ūi = ᾱ − α0 + OP ( 1√

NT
). Then

√
N α̂−α0

σ̂α

d−→ N (0, 1).

B.7 Proof of Theorem A.7

Proof. When N is bounded, (B.22) still holds:

α̂− α = ū− 1

T

∑
t

utv
′
tS
−1
f λ̂+ ūv̄′S−1

f λ̂− βS−1
β

1

N
β′M1Nα− β

7∑
d=1

Ad.

Now β̂ − β = OP ( 1√
T

), ū = OP ( 1√
T

) and 1
T

∑
t utv

′
t = OP ( 1√

T
). So Ad = oP (1) for all d. So

α̂j − αj = Xi + oP (1),

where Xi = −β′iS
−1
β

1
N β
′M1Nα. Then Var(Xi) = 1

N β
′
iS
−1
β βi Var(αi) > 0 so long as βi 6= 0.

B.8 Technical Lemmas

The following proposition gives the asymptotic expansion for the estimated alphas. It applies to

estimators that are obtained in any of the five factor scenarios: (i) observable factors only (Algorithm

3), (ii) latent factors only (Algorithm 4), (iii) the general case (mixed of observable and latent factors,

Algorithm 3), (iv) mixed of observable and latent factors with additional condition that observable

factors are tradable (Algorithm A.1), and (v) all factors are observable and tradable.

Proposition B.1. Under the conditions of Theorem A.1,

(a) Let ‖∆‖∞ = OP ( logN
T + 1

N ). We have

α̂− α =
1

T

∑
t

ut(1− v′tΣ−1
f λ)− 1

N
ζM1Nα+ ∆,

where ζ = βS−1
β β′ for scenarios (i)-(iii), ζ = βlS

−1
β,l β

′
l for scenario (iv), and ζ = 0 for scenario

(v).

(b) Uniformly in i ≤ N , when T logN = o(N),

α̂i − αi
se(α̂i)

=
√
T

1
T

∑
t uit(1− v′tΣfλ)

σi
+ oP (1/

√
logN)

=
√
T

1
T

∑
t uit(1− v′tΣfλ)

si
+ oP (1/

√
logN),

where σ2
i = Eu2

it(1− v′tΣ
−1
f λ)2 and s2

i = 1
T

∑
t u

2
it(1− v′tΣ

−1
f λ)2.
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Proof. Without loss of generality, we shall assume dim(ft) = 1 in order to simplify the notation. We

use C > 0 to denote a generic constant.

(a) Scenario (i). In the known factor case, let β̂ be the N ×K matrix of β̂i. Then we have

β̂ − β = (
1

T

∑
t

utv
′
t − ūv̄′)S−1

f , (B.20)

where Sf = 1
T

∑
t(ft − f̄)(ft − f̄)′. It is easy to show 1

N ‖β̂ − β‖
2 = OP ( 1

T ).

Step 1. Expand λ̂− λ. Note that r̄ − Ert = βv̄ + ū, and λ̂ = Ŝ−1
β

1
N β̂
′M1N r̄, so

λ̂− λ = v̄ +
1

N
S−1
β β′M1Nα+

7∑
d=1

Ad,

where

A1 =
1

N
Ŝ−1
β (β̂ − β)′M1Nα, A2 =

1

N
Ŝ−1
β (β̂ − β)′M1N (β − β̂)λ,

A3 =
1

N
Ŝ−1
β β′M1N (β − β̂)λ, A4 =

1

N
Ŝ−1
β β̂′M1N (β − β̂)v̄,

A5 =
1

N
Ŝ−1
β (β̂ − β)′M1N ū, A6 =

1

N
Ŝ−1
β β′M1N ū,

A7 = (
1

N
Ŝ−1
β −

1

N
S−1
β )β′M1Nα.

We now show ‖Ad‖ = OP ( 1√
NT

) for all d. Conditioning on α,

E[‖α′ 1
T

∑
t

utf
′
t‖2] =

1

T 2

K∑
k=1

∑
t

N∑
i=1

N∑
j=1

αiαjEE[uitujt|ft]f2
t,k

≤ N

T
E‖ft‖2 max

i,t

N∑
j=1

|E[uitujt|ft]| ≤
CN

T
.

Similarly, |α′ū|, ‖β′ 1T
∑

t utf
′
t‖, ‖β′ū‖, ‖1′N

1
T

∑
t utf

′
t‖, and |1′N ū| are all OP (N1/2T−1/2). Thus it is

straightforward to prove all the following terms are OP ( 1√
NT

): ‖ 1
N (β̂ − β)′M1N ζ‖ for ζ ∈ {α, β, 1N}

and (Ŝ−1
β − S

−1
β ) 1

N β
′M1Nα. This implies ‖Ad‖ = OP ( 1√

NT
) for all d. In other words,

λ̂− λ = v̄ +
1

N
S−1
β β′M1Nα+OP (

1√
NT

). (B.21)

It also implies λ̂ = OP (1) and λ̂− λ = OP ( 1√
T

+ 1√
N

).

Step 2. Expand α̂− α. Note that α̂ = r̄ − β̂λ̂, we have α̂− α = βv̄ + ū− β(λ̂− λ) + (β − β̂)λ̂.

Substitute in (B.20) (B.21),

α̂− α = ū− 1

T

∑
t

utv
′
tS
−1
f λ̂+ ūv̄′S−1

f λ̂− β 1

N
S−1
β β′M1Nα− β

7∑
d=1

Ad. (B.22)
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By Lemma B.1, ‖ūv̄′S−1
f λ̂‖∞ = OP (

√
logN/T ). In addition, by step 1,

‖β
7∑
d=1

Ad‖∞ = OP (1)‖
7∑
d=1

Ad‖ = OP (
1√
NT

).

Also, we have ‖ 1
T

∑
t utv

′
t(S
−1
f λ̂−Σ−1

f λ)‖∞ ≤ ‖ 1
T

∑
t utvt‖∞‖S

−1
f λ̂−Σ−1

f λ‖K ≤ OP (
√

logN/T ). So

for ‖∆‖∞ = OP (
√

logN/T + 1/N) = oP (T−1/2), we have

α̂− α =
1

T

∑
t

ut(1− v′tΣ−1
f λ)− β 1

N
S−1
β β′M1Nα+ ∆.

Scenario (ii). In the latent factor case, we proceed as follows.

Step 1. Expand β̂. Recall that V is the Kl ×Kl diagonal matrix of the first Kl eigenvalues of

S/N , and that

H =
1

NT

∑
t

(vt − v̄)(vt − v̄)′β′β̂D−1 +
1

NT

∑
t

(vt − v̄)(ut − ū)′β̂D−1.

Note that there are three small differences here compared to Bai (2003). First, here we expand the

estimated betas while he expanded the estimated factors. They are symmetric, so can be analogously

derived; secondly, Bai (2003) defined H using just the first term. In contrast, we have a second term

in the definition, which introduces just tiny differences because it is oP (1) and dominated by the first

term. Doing so makes the technical argument slightly more convenient, because one of the terms in

the expansions in Bai (2003) now is “absorbed” in the second term in H. Finally, we use “demeaned

variables” which also introduce further terms in the expansions below (term G). Above all, we can

use the same argument to reach ‖D−1‖+ ‖H‖ = OP (1). The same proof as in Bai (2003) shows the

following equality holds

β̂ − βH =
1

NT

∑
t

utv
′
tβ
′β̂D−1 +

1

NT

∑
t

(utu
′
t − Eutu′t)β̂D−1 +

1

N
(Eutu′t)β̂D−1 −G, (B.23)

where

G = ūv̄′
1

N
β′β̂D−1 +

1

N
ūū′β̂D−1.

Note that ‖ 1√
N
G‖ = OP (T−1), ψ1(Eutu′t) = O(1), ‖ 1

T

∑
t utv

′
t‖ = OP (

√
N/T ) and

‖ 1
T

∑
t(utu

′
t − Eutu′t)‖ = OP (N/

√
T ). Also, the columns of β̂/

√
N are eigenvectors, so ‖β̂‖ =

OP (
√
N). Hence we have 1√

N
‖β̂ − βH‖ = OP (T−1/2 +N−1).

Step 2. Expand λ̂. We have

λ̂−H−1λ = H−1v̄ + Ŝ−1
β

1

N
H ′β′M1Nα+

4∑
d=1

Aλ,d,
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where

Aλ,1 = Ŝ−1
β

1

N
β̂′M1N ū,

Aλ,2 = Ŝ−1
β

1

N
β̂′M1N (βH − β̂)H−1v̄,

Aλ,3 = Ŝ−1
β

1

N
β̂′M1N (βH − β̂)H−1λ,

Aλ,4 = Ŝ−1
β

1

N
(β̂ − βH)′M1Nα.

We shall examine the terms on the right hand side one by one. First note that Ŝβ = H ′SβH +

oP (1) so Ŝ−1
β = OP (1). For the first term, we proved ‖β′M1N ū‖ = OP (N1/2T−1/2) in part (i), so

Aλ,1 = Ŝ−1
β

1

N
(β̂ − βH)′M1N ū+ Ŝ−1

β

1

N
H ′β′M1N ū = OP (

1√
NT

+
1

T
).

For Aλ,2 ∼ Aλ,4, note that the assumption maxi,j≤N
∑N

k=1 |Cov(uitukt, ujtukt)| < C implies

maxj ψ1(Var(utujt)) < C, so

E‖ 1√
N
β′

1

NT

∑
t

(utu
′
t − Eutu′t)‖2 =

1

N

N∑
j=1

1

N2T
β′Var(utujt)β

≤ max
j
ψ1(Var(utujt))

1

N2T
‖β‖2 ≤ C

NT
,

E‖ 1√
NN

β′1N1′N
1

NT

∑
t

(utu
′
t − Eutu′t)‖2 ≤ C

NT
. (B.24)

Hence 1√
N
β′M1N

1
NT

∑
t(utu

′
t−Eutu′t) = OP ((NT )−1/2). Similarly, 1√

N
α′M1N

1
NT

∑
t(utu

′
t−Eutu′t) =

OP ((NT )−1/2). Note that ‖Eutu′t‖ < C by the assumption of weak cross-sectional correlation, we

have

1

N
β′M1N (β̂ − βH) =

1

N
β′M1N

1

NT

∑
t

utv
′
tβ
′β̂D−1 +

1

N
β′M1N

1

NT

∑
t

(utu
′
t − Eutu′t)β̂D−1

+
1

N
β′M1N

1

N
(Eutu′t)β̂D−1 − 1

N
β′M1NG

= OP (
1√
NT

+
1

N
).

Similarly, 1
Nα
′M1N (β̂ − βH) = OP ( 1√

NT
+ 1

N ). Thus Aλ,2 = OP ( 1
T + 1

N ). Similarly, both Aλ,3 and

Aλ,4 are OP ( 1
N + 1

T ). Together,

λ̂−H−1λ = H−1v̄ + Ŝ−1
β

1

N
H ′β′M1Nα+OP (

1

N
+

1

T
). (B.25)

Step 3. Expand α̂− α. Substitute in the expansions (B.23) and (B.25) in steps 2, 3,

α̂− α = βv̄ + ū− βH(λ̂−H−1λ) + (βH − β̂)λ̂
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= ū+

4∑
d=1

Gd − βHŜ−1
β

1

N
H ′β′M1Nα+OP (

1

N
+

1

T
),

G1 = − 1

N
(Eutu′t)β̂D−1λ̂,

G2 = − 1

NT

∑
t

utv
′
tβ
′β̂D−1λ̂,

G3 = − 1

NT

∑
t

(utu
′
t − Eutu′t)β̂D−1λ̂,

G4 = (ūv̄′
1

N
β′β̂D−1 +

1

N
ūū′β̂D−1)λ̂.

First note that ‖βHŜ−1
β

1
NH

′β′M1Nα‖∞ = OP (1)‖ 1
N β
′M1Nα‖ = OP (N−1/2). For G1, we shall obtain

its rate later. For G2, note that

1

N
β′β̂D−1λ̂− Σ−1

f λ =
1

N
H
′−1(H ′β′ − β̂′)β̂D−1λ̂+H

′−1D−1(λ̂−H−1λ) + (HDH ′)−1λ− Σ−1
f λ

= OP (
1√
T

+
1

N
) + [(HDH ′)−1 − Σ−1

f ]λ.

But HDH ′ = OP ( 1√
T

) + 1
NT

∑
t vtv

′
tH
′−1(H ′β′ − β̂′)β̂H ′ + ( 1

T

∑
t vtv

′
t − Σf ) + Σf = Σf +OP ( 1√

T
).

So

‖ 1

NT

∑
t

utv
′
tβ
′β̂D−1λ̂− 1

T

∑
t

utv
′
tΣ
−1
f λ‖∞ = OP (

√
logN

T 2
+

√
logN

TN2
).

For G3, note that by Lemma B.1,

‖ 1

NT

∑
t

(utu
′
t − Eutu′t)β̂D−1‖∞ ≤ max

i
‖ 1√

NT

∑
t

(uitu
′
t − Euitu′t)‖

1√
N
‖β̂ − βH‖‖D−1‖

+‖ 1

NT

∑
t

(utu
′
t − Eutu′t)βHD−1‖∞

= OP (

√
logN

NT
+

√
logN

T 2
). (B.26)

As for G4, note that for G = ūv̄′ 1
N β
′β̂D−1 + 1

N ūū
′β̂D−1

‖G‖∞ ≤ ‖ū‖∞‖v̄′
1

N
β′β̂ +

1

N
ū′β̂‖‖D−1‖ ≤ OP (

√
logN

T 2
).

It remains to show that ‖G1‖∞ = OP (1/N). To do so, we need to show ‖β̂ − βH‖∞ =

OP (
√

logN
T + 1

N ). We use ‖A‖1 = maxi
∑

j |Aij |. Then by (B.26) and Lemma B.1,

‖β̂ − βH‖∞ ≤ ‖ 1

NT

∑
t

utv
′
tβ
′β̂D−1 +

1

NT

∑
t

(utu
′
t − Eutu′t)β̂D−1 +

1

N
(Eutu′t)β̂D−1 −G‖∞

≤ OP (

√
logN

T
) +

1

N
‖(Eutu′t)‖1‖βHD−1‖∞ +

1

N
‖(Eutu′t)‖1‖β̂ − βH‖∞‖D−1‖.
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Move the last term to the left hand side, and note that ‖(Eutu′t)‖1 < C,

‖β̂ − βH‖∞ = OP (

√
logN

T
+

1

N
).

Then ‖β̂‖∞ ≤ ‖β̂ − βH‖∞ + ‖βH‖∞ = OP (1). So

‖G1‖∞ ≤ 1

N
‖(Eutu′t)‖1‖β̂‖∞‖HD−1‖ = OP (

1

N
).

Put together,

α̂− α =
1

T

∑
t

ut(1− v′tΣ−1
f λ)− βS−1

β

1

N
β′M1Nα+ ∆,

where ‖∆‖∞ = OP (
√

logN
T 2 + 1

N ).

Scenario (iii). In the mixed factor case, let β̂o be the N × Ko matrix of β̂o,i where Ko =

dim(fo,t). Then we have β̂o − βo = ( 1
T

∑
t utv

′
o,t − ūv̄′o)S

−1
o + βl(

1
T

∑
t fl,tv

′
o,t − f̄lv̄

′
o)S
−1
o where

So = 1
T

∑
t(fo,t − f̄o)(fo,t − f̄o)′. So there exists a matrix

A =

(
IKo

1
T

∑
t(fl,t − f̄l)v′o,tS−1

o

)
=

(
IKo

a

)
,

such that

β̂o − βA = ξ1, ξ1 = (
1

T

∑
t

utv
′
o,t − ūv̄′o)S−1

o . (B.27)

Step 1. Note that β̂o is a biased estimator for βo, due to the correlations between fo,t and fl,t.

But the bias is βl
1
T

∑
t(fl,t − f̄l)v′o,tS−1

o , which is still inside the space spanned by β = (βo, βl). As a

result, in terms of estimating βA, β̂o is unbiased. In fact, we shall also show that β̂l also estimates

“the subspace of β” without bias. We also have Zt = βll1t + µt, where

µt = ut − ū− ξ1(fo,t − f̄o), l1t := fl,t − f̄l − a(fo,t − f̄o).

Therefore, we let D be the Kl ×Kl diagonal matrix of the first Kl eigenvalues of 1
T

∑
t ZtZ

′
t. Let

H1 =

(
0

b

)
. H = (A,H1) =

(
IKo 0

a b

)
, b =

1

TN

∑
t

l1t(l
′
1tβ
′
l + µ′t)β̂lD

−1.

Then β̂l − βlb = ξ2, where

ξ2 =
1

TN

∑
t

ut(l
′
1tβ
′
l + µ′t)β̂lD

−1 − ξ1
1

TN

∑
t

fo,t(l
′
1tβ
′
l + µ′t)β̂lD

−1.

Let β̂ = (β̂o, β̂l), and ξ3 = (ξ1, ξ2). So

β̂ = βH + ξ3. (B.28)
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This implies 1
N ‖β̂ − βH‖

2 = OP ( 1
T + 1

N2 ).

Step 2. Recall that r̄ − Ert = βv̄ + ū, and λ̂ = Ŝ−1
β

1
N β̂
′M1N r̄, where M1N = I − 1N1′N/N , so

λ̂−H−1λ = H−1v̄ + Ŝ−1
β

1

N
H ′β′M1Nα+

4∑
d=1

Aλ,d,

where

Aλ,1 = Ŝ−1
β

1

N
β̂′M1N ū,

Aλ,2 = Ŝ−1
β

1

N
β̂′M1N (βH − β̂)H−1v̄,

Aλ,3 = Ŝ−1
β

1

N
β̂′M1N (βH − β̂)H−1λ,

Aλ,4 = Ŝ−1
β

1

N
(β̂ − βH)′M1Nα.

To bound each term, note that (B.24) still applies. Even though ξ3 now takes a different form than

in the previous case, most of the proofs for the expansion in (B.25) still carries over. So we can avoid

repeating ourselves but directly conclude that

λ̂−H−1λ = H−1v̄ + Ŝ−1
β

1

N
H ′β′M1Nα+OP (

1

N
+

1

T
). (B.29)

Also, if we further write

H−1 =

(
IKo 0

−b−1a b−1

)
,

then it is easy to see that the first Ko components of H−1λ is λo. That is, the risk premia of observed

factors are consistently estimated: λ̂o →P λo, which is rotation-free, while the latent factor premia

are still estimated up to a rotation.

Step 3. Similar to part (ii), we have

α̂− α = βv̄ + ū− βH(λ̂−H−1λ) + (βH − β̂)λ̂

= ū− βHŜ−1
β

1

N
H ′β′M1Nα− ξ3H

−1λ+ ∆

where ∆ denotes a generic N × 1 vector satisfying ‖∆‖∞ = OP ( 1
N + logN

T ).

The main difference from the previous latent factor only case is to derive an expression for

ξ3H
−1, which we now focus on.

Note that by definition, for m2 := 1
N β
′
lβ̂lD

−1, L1 = (l1t : t ≤ T ) be Kl × T , vo = (vo,t : t ≤ T )

be Ko × T , vl = (vl,t : t ≤ T ) be Kl × T matrix, and U be N × T matrix of uit, we can write in a

matrix form

ξ3 =

(
1

T
Uv′oS

−1
o , (

1

T
U − 1

T
Uv′oS

−1
o

1

T
vo)L

′
1m2

)
+ ∆.
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Write J = ( 1
T U −

1
T Uv

′
oS
−1
o

1
T vo)L

′
1( 1
T L1L

′
1)−1. It can be verified that, for ‖∆‖∞ = OP ( logN

T + 1
N ),

ξ3H
−1 (1)

=

(
1

T

∑
t

utv
′
o,tS

−1
o − Ja, J

)
+ ∆

(2)
=

1

T

∑
t

utv
′
tΣ
−1
f + ∆. (B.30)

We now prove both equalities.

As for (1), note that

H1 =

(
0

b

)
, b =

1

TN

∑
t

l1tl
′
1tβ
′
lβ̂lD

−1 +OP (
1

T
+

1

N
) =

1

T
L1L

′
1m2 +OP (

1

T
+

1

N
).

Also note that H = (A,H1) so(
1

T
Uv′oS

−1
o − Ja, J

)
A =

1

T
Uv′oS

−1
o ,(

1

T
Uv′oS

−1
o − Ja, J

)
H1 = J

1

T
L1L

′
1m2 = (

1

T
U − 1

T
Uv′oS

−1
o

1

T
vo)L

′
1m2 +OP (

1

T
+

1

N
).

Therefore,
(

1
T Uv

′
oS
−1
o − Ja, J

)
H =

(
1
T Uv

′
oS
−1
o , J 1

T L1L
′
1m2

)
+OP ( 1

T + 1
N ) = ξ3 +OP ( 1

T + 1
N ).

This proves ζ3 =
(

1
T Uv

′
oS
−1
o − Ja, J

)
H + ∆ and thus (1) holds.

As for (2),

Sf =

(
So Sol

S′ol Sl

)
=

1

T

(
vov
′
o vov

′
l

vlv
′
o vlv

′
l

)
.

Let W = Sl − S′olS−1
o Sol. Using the matrix block inverse formula, 1

T

∑
t utv

′
tΣ
−1
f = (a1, a2) where

a1 =
1

T
Uv′oS

−1
o + [

1

T
Uv′oS

−1
o Sol −

1

T
Uv′l]W

−1S′olS
−1
o

a2 = − 1

T
Uv′oS

−1
o SolW

−1 +
1

T
Uv′lW

−1.

Note that a = S′olS
−1
o + OP (T−1/2), so ( 1

T L1L
′
1) = 1

T (v′l − av′o)(vl − voa′) = W + OP (T−1/2). So it

holds that

J =

[
1

T
Uv′l −

1

T
Uv′oS

−1
o Sol

]
W−1 + ∆ = a2 + ∆,

and

−Ja =

[
1

T
Uv′oS

−1
o Sol −

1

T
Uv′l

]
W−1S′olS

−1
o + ∆.

Then we have

1

T

∑
t

utv
′
o,tS

−1
o − Ja =

1

T
Uv′oS

−1
o +

[
1

T
Uv′oS

−1
o Sol −

1

T
Uv′l

]
W−1S′olS

−1
o + ∆ = a1 + ∆.
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This proves (2). Together, in the mixed factor case, we also have

α̂− α =
1

T

∑
t

ut(1− v′tΣ−1
f λ)− βS−1

β

1

N
β′M1Nα+ ∆, (B.31)

where ‖∆‖∞ = OP ( logN
T 2 + 1

N ).

Scenario (iv) & (v). In the mixed factor case with tradable observable factors, the proof

is very similar to scenario (iii). In the case of observed factors only and they are all tradable,

the problem becomes the regular fund-by-fund time series regression. We omit details to avoid

repetitions.

(b) We only provide proof for the latent factor case, since the other scenarios are very similar.

Let mi := 1√
T

∑
t uit(1− v′tΣ

−1
f λ). When T logN = o(N),

α̂i − αi
se(α̂i)

=
mi + ∆i

√
T√

T se(α̂i)
−
β′iS
−1
β

1
N β
′M1Nα

se(α̂i)
.

The second term is oP (1/
√

logN). Note that
√
T logN‖∆‖∞ = oP (1). It suffices to prove,√

logN max
i
|mi||σi −

√
T se(α̂i)| = oP (1) =

√
logN max

i
|mi||σi − si|.

By Lemma B.1, maxi |mi| = OP (
√

logN). In addition, let L = D−1λ̂. Then

max
i
|σ2
i − T se(α̂i)

2| ≤ max
i
| 1
T

∑
t

û2
it(1− v̂′tL)2 − u2

it(1− v′tΣ−1
f λ)2|+ max

i
|s2
i − σ2

i |.

The second term on the right is OP (
√

logN/T ) by Lemma B.1. We now focus on the first term.

The first term is bounded by Q1 +Q2 +Q3, where

Q1 = max
i
| 1
T

∑
t

u2
it(2 + v̂′tL+ v′tΣ

−1
f λ)(v̂t −H−1vt)

′L|,

Q2 = max
i
| 1
T

∑
t

u2
it(2 + v̂′tL+ v′tΣ

−1
f λ)v′t(H

−1′L− Σ−1
f λ)|,

Q3 = max
i
| 1
T

∑
t

(ûit + uit)(ûit − uit)(1− v̂′tL)2|.

(1) Bound Q1. Note that v̂t = 1
N β̂
′(rt − r̄). So

v̂t −H−1vt =
1

N
β̂′(βH − β̂)H−1vt −

1

N
β̂′βv̄ +

1

N
β̂′ut −

1

N
β̂′ū

=
1

N
β̂′(βH − β̂)H−1vt +

1

N
β̂′ut +OP (T−1/2),

where the last OP (T−1/2) is uniform in (i, t). Hence

Q1 ≤ max
i
| 1
T

∑
t

vtu
2
it(2 + v̂′tv + v′tΣ

−1
f λ)|‖ 1

N
β̂′(βH − β̂)H−1L‖
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+ max
i
| 1
T

∑
t

1

N
β̂′utu

2
it(2 + v̂′tv + v′tΣ

−1
f λ)L|

+ max
i
| 1
T

∑
t

u2
it(2 + v′tΣ

−1
f λ)|OP (T−1/2) + max

i
| 1
T

∑
t

u2
itv̂t|OP (T−1/2)

≤ OP (T−1 +N−1) max
i
| 1
T

∑
t

vtu
2
it(2 + v′tΣ

−1
f λ)− Evtu2

it(2 + v′tΣ
−1
f λ)|

+OP (T−1 +N−1) max
i
| 1
T

∑
t

v2
t u

2
it − Ev2

t u
2
it|+ max

i
| 1
T

∑
t

u2
itvt − Eu2

itvt|OP (T−1/2)

+OP (T−1/2) max
i
| 1
T

∑
t

u2
it(2 + v′tΣ

−1
f λ)− Eu2

it(2 + v′tΣ
−1
f λ)|

+|β̂‖∞max
ij

[
| 1
T

∑
t

(ujtu
2
itvt − Eujtu2

itvt)|+ |
1

T

∑
t

ujtu
2
it(2 + v′tΣ

−1
f λ)− Eujtu2

it(2 + v′tΣ
−1
f λ)|

]
+‖β̂‖∞

1

N
max
i

[
‖Eutu2

it(2 + v′tΣ
−1
f λ))‖1 + ‖Eutu2

itvt‖1
]

+OP (T−1 +N−1) max
i
| 1
T

∑
t

vtu
2
it(v̂t −H−1vt)|+ max

i
| 1
T

∑
t

u2
it(v̂t −H−1vt)|OP (T−1/2)

+ max
i
|β̂′ 1
T

∑
t

1

N
utu

2
it(v̂t −H−1vt)|

+OP (T−1/2 +N−1)

= OP (

√
logN

T
+

1

N
) +OP (1)

1

N
max
i

∑
j

|E(ujtu
2
it|vt)|

+OP (T−1 +N−1) max
i
| 1
T

∑
t

vtu
2
it(v̂t −H−1vt)|+ max

i
| 1
T

∑
t

u2
it(v̂t −H−1vt)|OP (T−1/2)

+ max
i
|β̂′ 1
T

∑
t

1

N
utu

2
it(v̂t −H−1vt)|

= OP (

√
logN

T
+

1

N
) +

1

N2
max
i
|β′ 1
T

∑
t

utu
2
itu
′
tβ|OP (1) = OP (

√
logN

T
+

1

N
),

where we bounded 1
N2 maxi |β′ 1T

∑
t utu

2
itu
′
tβ| as, for wt = u′tβ/

√
N ,

1

N
max
i
| 1
T

∑
t

u2
itw

2
t | ≤

1

N
max
i
| 1
T

∑
t

(u2
itw

2
t − Eu2

itw
2
t )|+

1

N
max
i
|E 1

T

∑
t

u2
itw

2
t | = OP (N−1).

(2) For Q2, note that

‖H−1′L− Σ−1
f λ‖ ≤ ‖H−1′D−1H−1 − Σ−1

f ‖‖Hλ̂‖+ ‖Σ−1
f H‖‖λ̂−H−1λ‖ = OP (N−1/2 + T−1/2).

So

Q2 ≤ max
i
‖ 1

T

∑
t

u2
it(2 + v̂′tL+ v′tΣ

−1
f λ)v′t‖OP (

1√
T

+
1√
N

)

≤ OP (
1√
T

+
1√
N

) + max
i
‖ 1

T

∑
t

u2
it(v̂t −H−1vt)‖OP (

1√
T

+
1√
N

)

≤ OP (
1√
T

+
1√
N

).
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(3) For Q3, note that ût − ut = −βv̄ − ū− (β̂ − βH)v̂t − βH(v̂t −H−1vt). First, we show

maxi | 1T
∑

t(ûit + uit)(1− v̂′tL)2| = OP (1), due to

max
i
| 1
T

∑
t

uit(1− v̂′tL)2| ≤ OP (1) + max
i
| 1
T

∑
t

uit(v̂t −H−1vt)
2| = OP (1), and

max
i
| 1
T

∑
t

ûit(1− v̂′tL)2| ≤ OP (1) + max
i
| 1
T

∑
t

(ûit − uit)(1− v̂′tL)2| = OP (1).

Similarly, it can be shown maxi | 1T
∑

t(ûit + uit)(1 − v̂′tL)2(v̂t + wt)| = OP (1) where wt = 1√
N
β′ut.

Next, by direct calculations

max
i
| 1
T

∑
t

(ûit + uit)(1− v̂′tL)2(v̂t −H−1vt)|

≤ max
i
| 1
T

∑
t

(ûit + uit)(1− v̂′tL)2vt|OP (N−1 + T−1)

+ max
i
| 1
T

∑
t

(ûit + uit)(1− v̂′tL)2 1

N
β̂′ut|+OP (T−1/2)

≤ OP (
1

N
+

1√
T

) + max
ij
| 1
T

∑
t

(ûit + uit)(1− v̂′tL)2||ujt|‖β̂ − βH‖∞

≤ OP (

√
logN

T
+

1

N
).

Then we have

Q3 = max
i
| 1
T

∑
t

(ûit + uit)(1− v̂′tL)2(ûit − uit)| ≤
9∑
d=1

Ad,

A1 = max
i
| 1
T

∑
t

(ûit + uit)(1− v̂′tL)2biv̄| = OP (T−1/2),

A2 = max
i
| 1
T

∑
t

(ûit + uit)(1− v̂′tL)2|max
i
|ūi| = OP (

√
logN

T
),

A3 = max
i
| 1
T

∑
t

(ûit + uit)(1− v̂′tL)2v̂t||β̂ − βH|∞ = OP (

√
logN

T
+

1

N
),

A4 = max
i
| 1
T

∑
t

(ûit + uit)(1− v̂′tL)2(v̂t −H−1vt)|‖βH‖∞ = OP (

√
logN

T
+

1

N
).

So Q3 = OP (
√

logN
T + 1

N ). Together, Q1 +Q2 +Q3 = OP (
√

logN
T + 1√

N
). Thus

max
i
|σ2
i − T se(α̂i)

2| ≤ OP (

√
logN

T
+

1√
N

). (B.32)

Hence maxi |mi||σi −
√
T se(α̂i)| = OP (

√
logN)OP (

√
logN
T + 1√

N
) = oP (1/

√
logN).
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Proposition B.2. Consider the latent factor model

Z = X + E +K + G, X = βlF

where F denotes the K × T matrix of latent factors, and Z is subject to missing data satisfying

Assumptions A.1-A.5; E is the idiosyncratic noise. Suppose

(i) with probability approaching one, 1.1‖E ◦X‖ < λNT ;

(ii) K is an approximation error so that K = (κit), κit = a′ibt where ai, bt are such that

maxi ‖ai‖ = oP ( 1√
T logN

) and 1
T

∑
t ‖bt‖4 = OP (1).

(iii) Also maxit
1
N

∑
j,k |Cov(εjtεit, εktεit)| < C.

(iv) G = (git) is that maxi
1
T

∑
t g

2
it = oP ( 1√

T logN
) and 1

T

∑
t(

1
N

∑
j ωjtgjtβj)

2 = oP ( 1
T logN ).

Then there is a rotation matrix H so that

β̂l,i −H ′βl,i = H ′(
1

T

T∑
t=1

FtF
′
t)
−1 1

Ti

∑
t∈Ti

Ftεit + oP (
1√

T logN
) (B.33)

where the oP term is in ‖.‖∞.

Proof. First of all, a standard argument, based on the restricted strong convexity condition, yields

that the nuclear-norm penalized regression yields:

1

NT
‖M̃ −M‖2F = OP (C2

NT ), CNT =
1√
N

+
1√
T
.

The novelty of the proof is to show the asymptotic normality of the debiased estimators for

low-rank inference, where we propose a new inference algorithm that is different from the existing

literature (e.g., Chen et al. (2019) ), and is more suitable in the context of asset pricing.

Let β̃ be N×K whose columns are
√
N times the top K left singular vectors of M̃ . Then by the

sine-theta inequality, there is matrix H1 such that 1√
N
‖β̃−βlH1‖F = OP (CNT ). Next, by definition,

F̂t = (
∑N

i=1 ωitβ̃iβ̃
′
i)
−1
∑N

i=1 ωitβ̃izit, where ωit = 1{rit is not missing}. Let B̃t = 1
N

∑N
i=1 ωitβ̃iβ̃

′
i and

B = H ′1
1
N

∑N
i=1 E(ωit)β̃iβ̃

′
iH1.

Then let H2 := H−1
1 +B−1H ′ 1

N

∑N
i=1(Eωit)βl,i(β′l,iH1−β̃i)H−1

1 . Both B and H2 are independent

of (i, t). Basic algebras show the following identity:

F̂t −H2Ft = B̃−1
t H ′1

1

N

N∑
j=1

ωjtβj(εjt + κjt + gjt) +

4∑
d=1

∆t,d,

∆t,1 = −B−1H ′1
1

N

N∑
j=1

(ωjt − Eωjt)βl,jF ′tH
′−1
1 (β̃j −H ′1βl,j) + B̃−1

t

1

N

N∑
j=1

ωjtεjt(β̃j −H ′1βl,j),
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∆t,2 = (B̃−1
t −B−1)

1

N

N∑
j=1

ωjtβ̃j(β
′
l,jH1 − β̃′j)H−1

1 Ft,

∆t,3 = B−1 1

N

N∑
j=1

ωjt(β̃j −H ′1βl,j)(β′l,jH1 − β̃′j)H−1
1 Ft,

∆t,4 = B̃−1
t

1

N

N∑
j=1

ωjt(κjt + gjt)(β̃j −H ′1βl,j). (B.34)

Next, let Âi = 1
T

∑T
t=1 ωitF̂tF̂

′
t . By definition, β̂l,i = (

∑T
t=1 ωitF̂tF̂

′
t)
−1
∑T

t=1 ωitF̂tzit. Substi-

tuting (B.34), basic algebras show the following identity:

β̂l,i −H
′−1
2 βl,i = H

′−1
2 (

1

T

T∑
t=1

ωitFtF
′
t)
−1 1

T

T∑
t=1

ωitFt(εit + git) +
6∑
d=1

δi,d

δi,1 = Â−1
i

1

T

T∑
t=1

ωitB̃
−1
t H ′1

1

N

N∑
j=1

ωjtβj(εjt + κjt + gjt)(εit + κit + git)

δi,2 = Â−1
i

1

T

T∑
t=1

ωitF̂t
1

N

∑
j

ωjt(εjt + κjt + gjt)β
′
jH1B̃

−1
t H

′−1
2 βl,i

δi,3 =
4∑
d=1

Â−1
i

1

T

T∑
t=1

ωitF̂t∆
′
t,dH

′−1
2 βl,i

δi,4 =
4∑
d=1

Â−1
i

1

T

T∑
t=1

ωit∆t,d(εjt + κjt + gjt)

δi,5 = (Â−1
i −A

−1
i )H2

1

T

T∑
t=1

ωitFt(εit + κit + git)

δi,6 = H
′−1
2 (

1

T

T∑
t=1

ωitFtF
′
t)
−1 1

T

T∑
t=1

ωitFtκit (B.35)

where Ai = H2
1
T

∑T
t=1 ωitFtF

′
tH
′
2 and we note A−1

i H2 = H
′−1
2 ( 1

T

∑T
t=1 ωitFtF

′
t)
−1.

We shall bound maxi ‖δi,1 + δi,2‖ in Lemma B.3. Note that maxi ‖Âi − Ai‖ = oP (1). Also,

mini ψmin(Ai) > c0. So maxi ‖Â−1
i ‖ = OP (1). Similarly, maxt ‖B̃−1

t ‖ = OP (1). So

max
i
‖A−1

i − Â
−1
i ‖ ≤ OP (1) max

i
‖Ai− Âi‖ = OP (1) max

i
‖ 1

T

T∑
t=1

ωit(F̂tF̂
′
t −H2FtF

′
tH
′
2)‖ = OP (CNT ).

This implies maxi ‖δi,5‖ = oP ( 1√
T logN

). Also, it is easy to see maxi ‖δi,6‖ = oP ( 1√
T logN

).

As for maxi ‖δi,3 + δi,4‖, we note maxi
1
T

∑
t ε

2
it ≤ maxi | 1T

∑
t ε

2
it−Eε2

it|+O(1) = OP (1). Hence

maxi ‖δi,3 + δi,4‖ = OP (1)
∑4

d=1

√
1
T

∑
t ‖∆t,d‖2.

Bounding 1
T

∑
t ‖∆t,1‖2 is more technically involved because it is challenging to directly obtain

an expansion for β̃j − H ′1βl,j . Meanwhile, the proof of maxi ‖δ1,i + δ2,i‖ +
∑

d6=1

√
1
T

∑
t ‖∆t,d‖2 =
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oP ( 1√
T logN

) is given in Lemma B.3. Then uniformly in i,

β̂l,i −H
′−1
2 βl,i = H

′−1
2 (

1

T

T∑
t=1

ωitFtF
′
t)
−1 1

T

T∑
t=1

ωitFtεit + oP (
1√

T logN
)

= H
′−1
2 (

1

T

T∑
t=1

FtF
′
t)
−1 1

Ti

∑
t∈Ti

Ftεit + oP (
1√

T logN
), (B.36)

where the last equality follows from the fact that maxi ‖ 1
T

∑T
t=1(ωit−Eωit)FtF ′t‖,maxi ‖ 1

T

∑T
t=1(ωit−

Eωit)‖ and maxi ‖ 1
T

∑T
t=1 ωitFtεit‖ are all OP (

√
logN
T ).

It remains to prove 1
T

∑
t ‖∆t,1‖2 = oP ( 1

T logN ).

We focus on bounding ξ := 1
T

∑
t ‖

1
N

∑N
j=1(ωjt − Eωjt)βl,jF ′tH

′−1
1 (β̃j −H ′1βl,j)‖2. To achieve a

sharp bound, we apply a computation result and the auxiliary leave-one-out argument in Chen et al.

(2019). Define for each t ≤ T ,

(W̃ , Ỹ ) = arg min
W∈RN×K

min
Y ∈RT×K

‖Ω ◦ (Z −WY ′)‖2F + λNT ‖W‖2F + λNT ‖Y ‖2F

(W̃ (−t), Ỹ (−t)) = arg min
W,Y ∈RN×K

‖Ω(−t) ◦ (Z −WY ′)‖2F + ‖E(t) ◦ (M −WY ′)‖2F + λNT ‖W‖2F + λNT ‖Y ‖2F

where we recall M is the true value of βlF ,

Ω(−t) = (ωis1{s 6= t})N×T , E(t) = (
√
Eωis1{s = t})N×T .

So (W̃ (−t), Ỹ (−t)) are the “leave-one-out” versions of (W̃ , Ỹ ). Importantly, (W̃ (−t), Ỹ (−t)) are inde-

pendent of Zt, (ωit : i ≤ N). We now apply three results from Chen et al. (2019), which are their

Lemma 12, Lemma 18(3), Lemma 5, and Lemma 2:

(a) There is a K × K orthonormal matrix H(−t) that only depends on W̃ (−t) and βlF , and

another orthonormal matrix H3

max
t
‖W̃ (−t)H(−t) − W̃H3‖F = oP ((

N

T
)1/4 1√

logN
).

(b) Let UMDMV
′
M be the SVD of M = βlF , and W = UMD

1/2
M . Then

‖W̃H3 −W‖F = OP (CNT (NT )1/4).

(c) ‖W̃ Ỹ ′ − M̃‖F = oP (
√
N/ logN).

Strictly speaking, Chen et al. (2019) considered the case N = T . However, by carefully ex-

amining their proofs, the proof of (A.12) (A.9a) and (A.14b) still carries over to the case when

N 6= T .
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We are now ready to bound ξ. We shall use a generic notation µ throughout the following steps

without causing confusions.

Step 1. There is a rotation H4 = OP (1) so that 1
(NT )1/4

W̃H4 equals the left singular-vectors of

W̃ Ỹ ′. So let Ωt = (ω1t, ..., ωNt)
′,

ξ =
1

T

∑
t

‖ 1

N
β′ldiag(Ωt − EΩt)(β̃ − βlH1)H−1

1 Ft‖2 ≤ 4ξ1 + 4µ

ξ1 =
1

T

∑
t

‖ 1

N
β′ldiag(Ωt − EΩt)(

√
N

(NT )1/4
W̃H4 − βlH1)H−1

1 Ft‖2

µ =
1

T

∑
t

‖ 1

N
β′ldiag(Ωt − EΩt)(β̃ −

√
N

(NT )1/4
W̃H4)H−1

1 Ft‖2.

By (c) and sine-theta inequality, µ ≤ OP ( 1
N )‖β̃ −

√
N

(NT )1/4
W̃H4‖2 ≤ OP ( 1

NT )‖M̃ − W̃ Ỹ ′‖2F =

oP ( 1
T logN ). The problem then becomes bounding ξ1.

Step 2. Note that

ξ1 ≤ 4ξ2 + 4µ

ξ2 =
1

T

∑
t

‖ 1

N
β′ldiag(Ωt − EΩt)(

√
NW̃H3D

−1/2
M − βlH1)H−1

1 Ft‖2

µ =
1

T

∑
t

‖ 1

N
β′ldiag(Ωt − EΩt)

√
N

(NT )1/4
W̃ (H4 −H3D

−1/2
M (NT )1/4)H−1

1 Ft‖2.

We now bound µ. For notational simplicity, we shall assume dim(Ft) = 1 as one can apply an

element-by-element analysis for the multivariate case without changing the result, given that the

number of factors is fixed. We first have, by (b)

‖H3D
−1/2
M (NT )1/4 −H4‖F ≤ (NT )1/4‖(W̃ ′W̃ )−1W̃ ′‖(NT )−1/4‖W̃H3D

−1/2
M (NT )1/4 − W̃H4‖F

≤ OP (1)‖W̃H3 −W‖F ‖D−1/2
M ‖+ (NT )−1/4‖WD

−1/2
M (NT )1/4 − W̃H4‖F

≤ OP (CNT ) + ‖UM − (NT )−1/4W̃H4‖F
≤ OP (CNT ) +OP ((NT )−1/2)‖W̃ Ỹ ′ −M‖F = OP (CNT ).

Let d :=
√
N

(NT )1/4
W . Then ‖d‖∞ < C. Hence by (b) and

µ = OP (1)
1

T

∑
t

‖Ft
1

N
β′ldiag(Ωt − EΩt)

√
N

(NT )1/4
W̃‖2‖H4 −H3D

−1/2
M (NT )1/4‖2

≤ OP (C2
NT )

1

T

∑
t

‖Ft
1

N
β′ldiag(Ωt − EΩt)‖2‖

√
N

(NT )1/4
(W̃H3 −W )‖2

+OP (C2
NT )

1

T

∑
t

‖Ft
1

N
β′ldiag(Ωt − EΩt)

√
N

(NT )1/4
W‖2

≤ OP (C4
NT ) +OP (C2

NT )
1

T

∑
t

(Ft
1

N

∑
j

βljdj(ωjt − Eωjt))2 = OP (C4
NT ) = oP (

1

T logN
)
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given that 1
N

∑
ij |Cov(ωjt, ωit)| < C. The problem then becomes bounding ξ2.

Step 3. Note that

ξ2 ≤ 4ξ3 + 4µ

ξ3 =
1

T

∑
t

‖ 1

N
β′ldiag(Ωt − EΩt)(

√
NW̃ (−t)H(−t)D

−1/2
M − βlH1)H−1

1 Ft‖2

µ = N
1

T

∑
t

‖ 1

N
β′ldiag(Ωt − EΩt)(W̃H3 − W̃ (−t)H(−t))D

−1/2
M H−1

1 Ft‖2.

We now bound µ. By (a) µ ≤ OP ((NT )−1/2) maxt ‖W̃H3−W̃ (−t)H(−t)‖2F = oP ( 1
T logN ). The problem

then becomes bounding ξ3.

Step 4. To bound ξ3, we still consider the case dim(Ft) = 1 without loss of generality. Note

that 1√
N
βlH1 equals the top left eigenvectors of M . Let pt := (

√
NW̃ (−t)H(−t)D

−1/2
M − βlH1). Note

that pt only depends on M and Z excluding the t th column of Z. As such, for P := (pt : t ≤ T ) we

have E(β′ldiag(Ωt − EΩt)ptH
−1
1 Ft|βl, F, P ) = 0, therefore

E(ξ3|βl, F, P ) = OP (
1

N2
)

1

T

∑
t

F 2
t p
′
tSpt ≤ OP (

1

N2
) max

t
‖pt‖2

≤ OP (
1

N2
) max

t
‖
√
NUM − βlH1‖2F +OP (

1

N
√
NT

) max
t
‖(W̃H3 −W )‖2F

+OP (
1

N2
√
T

) max
t
‖(W̃ (−t)H(−t) − W̃H3)‖2F = oP (

1

T logN
),

where S = Var(β′ldiag(Ωt − EΩt)|βl, F, P ) and almost surely,

‖S‖1 = max
i≤N

∑
j

|Sij | ≤ max
i≤N

∑
j

|βiβj ||Cov(ωit, ωjt)| < C.

Hence ξ3 = oP ( 1
T logN ). This proves ξ = oP ( 1

T logN ).

The bound for 1
T

∑
t ‖

1
N

∑N
j=1 ωjtεjt(β̃j −H ′1βl,j)‖2 is very similar. We just need to replace S

in Step 4 with S̃ = Var(ε′tdiag(Ωt)|βl, F, P ), whose ‖.‖1 norm is also bounded by a constant. This

completes the proof.

Next, we prove the following lemmas.

Lemma B.1. maxi≤N ‖ 1
T

∑
t u

m
it f

n
ktf

v
qt − Eumit fnktfvqt‖ = OP (

√
logN
T ), for m,n, v ∈ {0, 1, 2} for

any q, k ≤ K. Also, maxij ‖ 1
T

∑
t(uitujt − Euitujt)‖ = OP (

√
logN
T ), maxijk ‖ 1

T

∑
t(u

2
itujtukt −

Eu2
itujtukt)‖ = OP (

√
logN
T ), and for wt = 1√

N
β′ut, maxi≤N ‖ 1

T

∑
t u

d
itw

d
t − Euditwdt ‖ = OP (

√
logN
T )

for d ∈ {1, 2}.

44



Proof. We apply Lemmas A.2 and A.3 of Chernozhukov et al. (2013b) to reach a concentration

inequality: let X1, ..., XT be independent in Rp where p = N or N2. Let σ2 = maxi EX2
it. Suppose

EmaxitX
2
it logN ≤ Cσ2T , then there is a universe constant C > 0, for any x > 0,

max
i≤N
| 1
T

∑
t

Xit − EXit| ≤ Cσ
√

logN

T
+
x

T
,

with probability at least 1 − exp(− x2

3σ2T
) − CT Emaxi,t |Xit|4

x4
. Now we set x = σ

√
T logN . With the

assumption that (logN)4 = O(T ), and EmaxitX
4
it ≤ σ4(logN)2TC, we have, for any ε > 0, there is

Cε, with probability at least 1 − ε, maxi≤N | 1T
∑

tXit| ≤ Cεσ
√

logN
T . The desired result then holds

by respectively taking Ωt as umit f
n
ktf

v
qt, uitujt and uitwt.

Lemma B.2. With probability going to one, and any constant M > 2,

max
i

| 1√
T

∑
t uit(1− v′tΣ

−1
f λ)|

σi
+ max

i

| 1√
T

∑
t uit(1− v′tΣ

−1
f λ)|

si
≤
√
M logN.

where s2
i = 1

T

∑
t u

2
it(1− v′tΣ

−1
f λ)2.

Proof. The proof simply applies Corollary 2.1 of Chernozhukov et al. (2013a). Let Xit = uit(1 −
v′tΣ
−1
f λ). Then under Assumption A.3 (iii) and log(N)c = o(T ) for c > 7, Corollary 2.1 of Cher-

nozhukov et al. (2013a) implies for some c > 0,

sup
s

∣∣∣∣∣P
(

max
i

| 1√
T

∑
tXit|

σi
> s

)
− P

(
max
i
|Yi| > s

)∣∣∣∣∣ ≤ T−c
where Yi ∼ N (0, 1). In addition, P (maxi≤N |Yi| > s) ≤ 2N(1 − Φ(s)) ≤ 2 exp(logN − s2/2) = o(1)

for s =
√
M logN for any M > 2. Next, replacing σi with si, the result still holds, due to σi > c

and maxi |σ2
i − s2

i | = oP (1) , by Lemma B.1 .

Lemma B.3. Recall the definitions of δ1,i, δ2,i, ∆t,d in (B.34) and (B.35). We have maxi ‖δ1,i‖ =

oP ( 1√
T logN

) = maxi ‖δ2,i‖ = oP ( 1√
T logN

), and
∑4

d=2

√
1
T

∑
t ‖∆t,d‖2 = oP ( 1√

T logN
).

Proof. First note that maxt ‖B̃t −B‖ = oP (1) and thus maxt ‖B̃−1
t ‖ = OP (1), so

1

T

T∑
t=1

‖B̃−1
t −B−1‖2 ≤ OP (1)

1

T

T∑
t=1

‖B̃t −B‖2 ≤ OP (1)
1

T

T∑
t=1

‖ 1

N

N∑
i=1

ωit(β̃iβ̃
′
i −H ′1βl,iβ′l,iH1)‖2

+OP (1)
1

T

T∑
t=1

‖ 1

N

N∑
i=1

(ωit − Eωit)βl,iβ′l,i‖2 = OP (C2
NT ).
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Similarly, 1
T

∑T
t=1 ‖Ft‖2‖B̃

−1
t −B−1‖2 = OP (C2

NT ).

(i) Recall that δi,1 = Â−1
i

1
T

∑T
t=1 ωitB̃

−1
t H ′1

1
N

∑N
j=1 ωjtβj(ε̃jt + gjt)(ε̃it + git) where we write

ε̃it = εit + κit. Then maxi ‖δ1,i‖ ≤ I + II + III + oP ( 1√
T logN

) with

I ≤ OP (1) max
i
‖( 1

T

T∑
t=1

‖B̃−1
t −B−1‖2)1/2(

1

T

T∑
t=1

‖ 1

N

N∑
j=1

ωjtβj ε̃jtε̃it‖2)1/2

+OP (1) max
i
‖ 1

TN

T∑
t=1

N∑
j=1

ωitωjtβj ε̃jtε̃it‖

≤ OP (CNT ) max
i

(
1

T

∑
t

ε̃4
it)

1/4(
1

T

T∑
t=1

‖ 1

N

N∑
j=1

ωjtβj ε̃jt‖4)1/4

+OP (1) max
i
‖ 1

TN

T∑
t=1

N∑
j=1

ωitωjtβjEεjtεit‖

+OP (1) max
i
‖ 1

TN

T∑
t=1

N∑
j=1

ωitωjtβj(εjtεit − Eεjtεit)‖+ oP (
1√

T logN
)

= OP (CNT
√

log(NT )N−1/2 +N−1 +

√
Var( 1

N

∑
j ωjtβjεjtεit) logN

T
) = oP (

1√
T logN

),

given that maxit
1
N

∑
j,k |Cov(εjtεit, εktεit)| < C. Also, we have

II ≤ OP (1) max
i
‖ 1

T

T∑
t=1

1

N

N∑
j=1

ωitωjtβj ε̃jtgit)‖ = oP (
1√

T logN
),

III ≤ OP (1) max
i
‖ 1

T

T∑
t=1

1

N

N∑
j=1

ωitωjtβj ε̃itgjt)‖ = oP (
1√

T logN
).

(ii) Note that 1
T

∑T
t=1(F̂t −H2Ft)

2 = OP (C2
NT ).

max
i
‖δ2,i‖ ≤ OP (1)(

1

T

T∑
t=1

(F̂t −H2Ft)
2)1/2(

1

T

T∑
t=1

‖ 1

N

∑
j

ωjt(ε̃jt + gjt)β
′
j‖2)1/2

+OP (1)(
1

T

T∑
t=1

‖ 1

N

∑
j

ωjtFt(ε̃jt + gjt)β
′
j‖2)1/2(

1

T

T∑
t=1

(B̃−1
t −B−1)2)1/2

+OP (1) max
i
‖ 1

TN

T∑
t=1

∑
j

ωitωjtFtε̃jtβ
′
j‖+OP (1) max

i
‖ 1

TN

T∑
t=1

∑
j

ωitωjtFtgjtβ
′
j‖

= OP (

√
logN

NT
+ C2

NT ) = oP (
1√

T logN
),

where we used

max
i
‖ 1

TN

T∑
t=1

∑
j

ωitωjtFtgjtβ
′
j‖ ≤ OP (1)(

1

T

∑
t

(
1

N

∑
j

ωjtgjtβj)
2)1/2 = oP (

1√
T logN

).

46



(iii) By Cauchy-Schwarz, we have

1

T

∑
t

‖∆t,2‖2 ≤ OP (1)
1

T

∑
t

‖(B̃−1
t −B−1)‖2F ‖Ft‖2

1

N

N∑
j=1

‖β′l,jH1 − β̃′j‖2 = oP (
1

T logN
),

1

T

∑
t

‖∆t,3‖2 ≤ OP (1)
1

T

∑
t

‖Ft‖2(
1

N

N∑
j=1

‖β̃j −H ′1βl,j‖2)2 = oP (
1

T logN
),

1

T

∑
t

‖∆t,4‖2 ≤ OP (C2
NT ) max

j

1

T

∑
t

(κ2
jt + g2

jt) = oP (
1

T logN
).

Lemma B.4. Suppose mini Eωit > c. For any deterministic and bounded sequence {bi : i ≤ N},
(i) maxi≤N ‖ 1

Ti

∑
t∈Ti ζit −

1
T

∑
t ζit‖ = OP (

√
logN
T ) for ζit ∈ {vo,tv′o,t, vo,t, vl,t, vo,tvl,t, uit}.

(ii) ‖ 1
N

∑N
i=1 bi(

1
Ti

∑
t∈Ti ζit −

1
T

∑
t ζit)‖ = oP ( 1√

T logN
).

(iii) 1
T

∑
t ‖

1
N

∑
i ωitbi(ζ̄i − ζ̄)ηt‖2 = oP ( 1

T logN ) for ηt ∈ {vt, vtv′t, 1} where ζ̄i = 1
Ti

∑
t∈Ti ζt for

ζt ∈ {vt, vl,tv′o,t, vo,tv′o,t}.
(iv) ‖ 1

N

∑N
i=1 bi(Ho,i−Ho)‖ = oP ( 1√

T logN
) = ‖ 1

N

∑
i bi(Ho,i−Ho)

1
T

∑
t ζtωit‖, where ζt ∈ {vt, vl,tv′o,t, vo,tv′o,t},

Ho,i = 1
Ti

∑
t∈Ti vl,tv

′
o,tS

−1
o,i , and Ho = 1

T

∑
t vl,tv

′
o,tS

−1
o . Also, 1

T

∑
t ‖

1
N

∑
i ωitbi(Ho,i − Ho)ηt‖2 =

oP ( 1
T logN ) for ηt ∈ {vt, vtv′t, 1}.

(v) ‖ 1
N

∑
i

1
Ti

∑
t∈Ti(lit − lt)l

′
tbi‖ = oP ( 1√

T logN
) and 1

T

∑T
t=1 ‖

1
N

∑N
i=1 ωitbi(lit − lt)mt‖2 = o( 1

T logN )

where lit = (vl,t − v̄l,i)−Ho,i(vo,t − v̄o,i), and lt = (vl,t − v̄l)−Ho(vo,t − v̄o), for all mt ∈ {1, vt}.
(vi) All these terms are oP ( 1√

T logN
): maxi ‖ 1

Ti

∑
t∈Ti v̂l,t − H−1

l lt‖ , maxi ‖ 1
Ti

∑
t∈Ti v̂t − H−1vt‖,

maxi ‖ 1
Ti

∑
t∈Ti(v̂l,t(fo,t − f̄o,i)

′ −H−1
l ltv

′
o,t)‖ and maxi ‖ 1

Ti

∑
t∈Ti((fo,t − f̄o,i)(fo,t − f̄o,i)

′ − vo,tv′o,t)‖.

(vii) maxi ‖ 1
Ti

∑
t∈Ti v̂tv̂

′
t−H−1 1

T

∑
t vtv

′
tH
′−1‖ = OP (

√
logN
T ), and maxi ‖ 1

Ti

∑
t∈Ti v̂l,tv̂

′
o,t‖ = OP (

√
logN
T ).

Proof. (i) For pi := Eωit, conditioning on ζit, ωit are independent across (i, t). Hence

max
i
‖ 1

T

∑
t

ζit(ωit − pi)‖ = OP (

√
logN

T
) = max

i
‖ 1

T

∑
t

(ωit − pi)‖.

Also, mini pi > c. This implies: maxi ‖ 1
Tpi

∑
t ζit(ωit − pi)‖ = OP (

√
logN
T ), maxi ‖ 1

T

∑
t ζitωit‖ =

OP (1), and mini
1
T

∑
t ωit > c. Therefore, the result follows from the following identity:

1

Ti

∑
t∈Ti

ζit −
1

T

∑
t

ζit =
pi − 1

T

∑
t ωit

pi
1
T

∑
t ωit

1

T

∑
t

ζitωit +
1

Tpi

∑
t

ζit(ωit − pi).

(ii) Without loss of generality, we assume ζit is a scalar as the analysis can be carried out

elementwise. We have

1

N

N∑
i=1

bi(
1

Ti

∑
t∈Ti

ζit −
1

T

∑
t

ζit) = I + II + oP (
1√

T logN
), where
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I :=
1

T 2N

N∑
i=1

bi
p2
i

∑
s

∑
t

ζitωit(pi − ωis), II =
1

N

N∑
i=1

bi
Tpi

∑
t

ζit(ωit − pi).

It is straightforward to show EI2 = O( 1
T 2 ) and EII2 = O( 1

TN ). Hence this leads to the desired

result.

(iii) 1
T

∑
t ‖

1
N

∑
i ωitbi(ζ̄i − ζ̄)ηt‖2 ≤ 4I + 4II + oP ( 1

T logN ) where

I =
1

T

∑
s

‖ 1

N

∑
i

ωisbi
Tpi

∑
t

ζitηt(ωit − pi)‖2,

II =
1

T

∑
s

‖ 1

NT 2

∑
i

∑
t

∑
k

bi
p2
i

ζitηt(ωik − pi)ωitωis‖2.

It is straightforward to show EI = O( 1
TN + 1

T 2 ) = EII = oP ( 1
T logN ).

(iv) Let ξt = vl,tv
′
o,t. Let ξ̄ = 1

T

∑
t ξt and ξ̄i = 1

Ti

∑
t∈Ti ξt. By parts (i)(ii), maxi ‖S−1

o,i −S−1
o ‖ =

OP (
√

logN
T ). Therefore,

1

N

N∑
i=1

bi(Ho,i −Ho) =
1

N

N∑
i=1

bi(ξ̄i − ξ̄)S−1
o,i +

ξ̄

N

N∑
i=1

bi(S
−1
o,i − S

−1
o )

=
1

N

N∑
i=1

bi(ξ̄i − ξ̄)S−1
o +

ξ̄

N
S−1
o

N∑
i=1

bi(So − So,i)S−1
o + oP (

1√
T logN

)

= oP (
1√

T logN
).

In addition, we have

‖ 1

N

∑
i

bi(Ho,i −Ho)
1

T

∑
t

ζtωit‖

≤ ‖ 1

N

∑
i

bi(ξ̄i − ξ̄)S−1
o,i

1

T

∑
t

ζtωit‖+ ‖ 1

N

∑
i

biξ̄(S
−1
o,i − S

−1
o )

1

T

∑
t

ζtωit‖

≤ oP (
1√

T logN
) + ‖ 1

N

∑
i

bi(ξ̄i − ξ̄)S−1
o

1

T

∑
t

ζtωit‖+ ‖ξ̄S−1
o

1

N

∑
i

bi(So,i − So)S−1
o

1

T

∑
t

ζtωit‖.

Using the same argument as in part (ii), it can be shown that both terms are oP ( 1√
T logN

).

Additionally, for ζt = vl,tv
′
o,t,

1

T

∑
t

‖ 1

N

∑
i

ωitbi(Ho,i −Ho)ηt‖2

=
1

T

∑
t

‖ 1

N

∑
i

ωitbi(ζ̄i − ζ̄)S−1
o ηt‖2 +

1

T

∑
t

‖ 1

N

∑
i

ωitbiζ̄S
−1
o (So,i − So)S−1

o ηt‖2 + oP (
1

T logN
)

= oP (
1

T logN
).

The last equality follows from (iii) that 1
T

∑
t ‖

1
N

∑
i ωitbi(ζ̄i − ζ̄)ηt‖2 = oP ( 1

T logN ).
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(v) First, note that

‖ 1

N

∑
i

1

Ti

∑
t∈Ti

(lit − lt)l′tbi‖ ≤ oP (
1

T logN
) + ‖ 1

N

∑
i

bi
pi

(Ho,i −Ho)
1

T

∑
t

vo,tl
′
tωit‖

+‖ 1

N

∑
i

bi
pi

(v̄l,i − v̄l)
1

T

∑
t

l′tωit‖+ ‖ 1

N

∑
i

bi
pi
Ho(v̄o,i − v̄o)

1

T

∑
t

l′tωit‖.

Since maxi ‖ 1
T

∑
t l
′
tωit‖ = OP (

√
logN
T ), the last two terms are oP ( 1√

T logN
). The first term follows

from part (iii). Next, it follows directly from (iii)(iv) that for mt ∈ {1, vt},

1

T

T∑
t=1

‖ 1

N

N∑
i=1

ωitbi(lit − lt)mt‖2 ≤
1

T

T∑
t=1

‖ 1

N

N∑
i=1

ωitbi(v̄l,i − v̄l)mt‖2

+
1

T

T∑
t=1

‖ 1

N

N∑
i=1

ωitbi(Ho,i −Ho)vo,tmt‖2 +
1

T

T∑
t=1

‖ 1

N

N∑
i=1

ωitbi(Ho,i −Ho)v̄o,imt‖2

+
1

T

T∑
t=1

‖ 1

N

N∑
i=1

ωitbiHo(v̄o,i − v̄o)mt‖2 = oP (
1

T logN
).

(vi) We have v̂t = (fo,t − f̄o, v̂l,t). Then

v̂t −H−1(vt − v̄) = v̂t − (f ′o,t − f̄ ′o, (H−1
l lt)

′)′ = (0′, (v̂l,t −H−1
l lt)

′)′.

We can apply (B.34) in the proof of Proposition B.2 for H2 := H−1
l , F̂t = v̂l,t and Ft := lt. Hence

v̂l,t −H−1
l lt = B̃−1

t H ′1
1

N

N∑
j=1

ωjtβl,j(−ηjt + ujt − ūj + β′l,j(ljt − lt)) +
4∑
d=1

∆t,d,

where by the proof of Proposition B.2, 1
T

∑
t ‖∆t,d‖2 = oP ( 1

T logN ) for d = 1...4 and maxt ‖B̃−1
t ‖ =

OP (1). Therefore, maxi
1
Ti

∑
t∈Ti ‖∆t,d‖2 = oP ( 1

T logN ) and thus for mt ∈ {1, vo,t},

max
i
‖ 1

Ti

∑
t∈Ti

(v̂l,t −H−1
l lt)m

′
t‖

≤ max
i
‖ 1

Ti

T∑
t=1

1

N

N∑
j=1

ωjtωitβl,j(−ηjt + ujt − ūj + β′l,j(ljt − lt))m′t‖+ oP (
1√

T logN
)

≤ oP (
1√

T logN
) +OP (1)(

1

T

T∑
t=1

‖ 1

N

N∑
j=1

ωjtβl,jβ
′
l,j(ljt − lt)m′t‖2)1/2 = oP (

1√
T logN

).

The last equality follows from (v). For v̄o,i = 1
Ti

∑
t∈Ti vo,t,

max
i
‖ 1

Ti

∑
t∈Ti

(v̂l,t(fo,t−f̄o,i)′−H−1
l ltv

′
o,t)‖ = max

i
‖ 1

Ti

∑
t∈Ti

(v̂l,t−H−1
l lt)v

′
o,t−

1

Ti

∑
t∈Ti

v̂l,tv̄
′
o,i‖ = oP (

1√
T logN

).

Finally, maxi ‖ 1
Ti

∑
t∈Ti((fo,t − f̄o,i)(fo,t − f̄o,i)

′ − vo,tv′o,t)‖ = maxi ‖ − v̄o,iv̄′o,i‖ = oP ( 1√
T logN

).

49



(vii) By (vi), 1
Ti

∑
t∈Ti v̂l,tv̂

′
o,t = 1

Ti

∑
t∈Ti H

−1
l ltv

′
o,t + oP ( 1√

T logN
), and

1

Ti

∑
t∈Ti

H−1
l ltv

′
o,t + oP (

1√
T logN

) = H−1
l

1

T

∑
t

(vl,t −Hovo,t)v
′
o,t +OP (

√
logN

T
)

= H−1
l (Slo −HoSo) +OP (

√
logN

T
) = OP (

√
logN

T
).

Finally for pi = Eωit, we have

1

Ti

∑
t∈Ti

v̂tv̂
′
t −H−1 1

T

∑
t

vtv
′
tH
′−1 =

1

Ti

∑
t∈Ti

(v̂t −H−1vt)v̂
′
t +

1

Ti

∑
t∈Ti

H−1vt(v̂
′
t − v′tH

′−1)

+
T

Tipi
(pi −

1

T

∑
t

ωit)
1

T

∑
t∈Ti

H−1vtv
′
tH
′−1 +

1

T

N∑
t=1

H−1vtv
′
tH
′−1(

ωit
pi
− 1) = OP (

√
logN

T
).

C Data Appendix

C.1 Lipper-TASS

We follow Getmansky et al. (2015) and Sinclair (2018) in cleaning the TASS data. We receive the

TASS data in the form of roughly yearly snapshots,1 which include both dead and alive funds. In

order to adjust for backfill bias, we remove returns that were inputted prior to date when the fund was

reportedly added to TASS; if that date is missing, we use the date of the first snapshot in which the

fund appears.2 We remove funds that do not report monthly or do not report net returns. For funds

which report NAV, we recompute monthly returns to equal percent changes in NAV; otherwise,

we keep their reported returns. For firms reporting in an international currency, we adjust their

returns and AUMs into USD, whenever possible (this excludes returns before the start of the Euro

for European funds, as the pre-Euro currency cannot be determined). Finally, we remove suspicious

returns (returns more extreme than -100% or +200% returns in a month), suspicious funds (funds

with an 100-fold increase in AUM followed by a 99% decrease in returns; funds where an extreme

change in returns does not appear in the AUM: a return is lower than -50% in a month, but AUM

does not drop by at least 10% or vice-versa on the positive side), and stale returns (returns equal for

three consecutive months). We also remove funds that do not consistently report AUM: we require

funds to report AUM at least 95% of the time. The motivation for this requirement is twofold: first,

funds that strategically list their AUM in some periods but not in others are likely to also be funds

that manipulate their reported returns; second, because we want to use the AUM information to

focus only on large enough funds, as described below. We also remove funds with more than 5% of

1Specifically: the first snapshot is for 2000. We then have a snapshot for 2002, and at least one snapshot per year

from 2005 to 2018, except 2006, 2010, 2014, 2017.
2An alternative procedure, proposed by Jorion and Schwarz (2019), could be used in the absence of snapshots.
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returns missing. As the literature has noted (e.g., Aggarwal and Jorion (2009)), hedge fund datasets

sometimes report duplicate series (for example, multiple share classes or cases in which multiple

feeder funds channel capital to one investing master fund, see Joenväärä et al. (2012) and Bali et al.

(2014)). To prevent this, we screen for cases in which two funds have return correlations of 99% or

more while overlapping for at least 12 months (the 99% correlation cutoff was also used in Aggarwal

and Jorion (2009)), and in that case we remove one of the two funds (we keep the one with the

longest available time series of returns in case the two funds do not exactly overlap).

We impose two further constraints on the funds, again following the existing literature. First,

we require funds to have reported returns to the dataset for at least a certain amount of months.

This also helps reduce the total number of missing values in our data, which, as the simulation shows,

is important to be able to apply the FDR control. Based on the simulations, we choose 36 months

and check for robustness increasing this number to 60 months. Second, we follow Kosowski et al.

(2007) in only using funds above an AUM threshold; we require funds to have at least $10m of AUM,

and drop them after they fall below this amount. This ensures that we focus our analysis on larger

funds, which are also less likely to manipulate reporting to TASS.

C.2 Evestment

The eVestment dataset has been used in a smaller literature. We base our cleaning procedure partly

on the one employed for TASS, and partly by looking at the literature that has used eVestment,

among which Li et al. (2015); Sebastian and Attaluri (2014); Mozes and Steffens (2016); Cookson

et al. (2018); Jenkinson et al. (2016); Chava et al. (2019).

Specifically, we receive the eVestment data in a single large database containing both dead and

alive funds, with fund performance broken down into separate investment vehicles. Similarly to the

TASS data, we filter to only include returns which were reported monthly and on a net basis. We

remove any non-hedge fund products from the sample. For international returns, we recompute

returns and AUMs into their USD equivalents. We compute a fund’s returns by taking an AUM-

weighted average of its vehicle’s returns when available; if vehicle AUM is not available, we take

an equal-weighted average. We use the same criteria as for TASS to remove duplicate funds and

suspicious returns. We remove funds with likely reporting errors in AUMs. In particular, AUMs

are sometimes off by many orders of magnitude, sometimes for several months at a time. Given

that we compute value-weighted returns, including funds with AUMs that are erroneously high by

orders of magnitudes might bias our results. To be conservative, we exclude funds in which the AUM

increases more than 10-fold in any a month or more than 100-fold in any 12-month period (and only

among those funds that are always above the size cutoff). We also remove hedge funds whose AUM

is always reported to be above half a trillion dollars throughout the life of the fund (these are most

likely errors). We remove funds where AUM or returns are missing for more than 95% of the time.
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As for TASS, we require funds to have reported returns for at least 36 months, and with a size of

at least $10m. Finally, we note that eVestment reports the date in which each entry was added

to the database. Given that all the hedge fund data we observe was entered after 2009, we cannot

eliminate returns prior to data entry to avoid backfilling bias, as we would not have enough data

for the estimation. We do however keep the earliest observation whenever we see an entry being

subsequently changed.
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