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Abstract

This appendix contains additional theoretical results and mathematical proofs, and a descrip-

tion of the data cleaning steps.
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A Asymptotic Theory

We present the formal asymptotic theory in this section. To begin with, we define the following
notation. Suppose A = (a;j) is an n x m matrix. We use ¢1(A) > ... > g (A) to denote the first K
ordered singular values of a matrix A if K < min{m,n}. We use {min(A4) and ¥max(A) to denote its
minimum and maximum eigenvalues. Let ||A|| = /tr(A’A), which is also known as the “Frobenius
norm” for A. In particular, if A is a vector, then ||A| equals its Euclidean norm. In addition, we
define [[Allc = max;<, > 7", |aij|, and [|A[, denotes the matrix nuclear norm. Finally, we define

My, =1Iny — 1In1} /N, where 1y = (1,...,1)" is a N x 1 vector of ones.
A.1 Technical Assumptions

We start by describing and discussing the technical assumptions used for our asymptototic theory.
We consider a general setting, where the DGP is given by (14), in which (fy, s, : ¢ < Nt < T)

are stochastic.

Assumption A.1. There are constants c,C > 0, such that the following statements hold:
(i) (pervasiveness) ¢ < Y (%B8B1) < ... < 1 (%B18) < C.
(ii) (idiosyncrasy) Y1 (Cov(u)) < C.

(iti) Let H, = 7 23:1 v,V o (7 Zle Vo). Then for all sy € {vi,vis — Hovor},

T T
1 / 1 /
c< wK(T gl si8) < .. < ¢1(T tgl stsy) < C.

In addition, for S = (s1,...,sT), the nonzero singular values of ;.S are distinct.

Assumption A.1 is adopted by Stock and Watson (2002) and many other works on estimating
latent factors. This assumption ensures that the factors are asymptotically identified (up to a
rotation) and that Cov(r;) has K growing eigenvalues whose rate is O(NN), while its remaining

N — K eigenvalues do not grow with the dimensionality. In particular, condition (iii) is with respect



to both the latent factors s; = v;; and the “transformed latent factors” l; = v,y — H,v, ¢, which is
the essential latent factors in the case of both observed and latent factors are present. In this case,

the essential latent factors are obtained by subtracting the effect observed factors: H,v, .
Assumption A.2. The following statements hold:
(i) {ft,ur : t < T} are independent and identically distributed, and E(u:|f:) = 0.
(ii) {a; : i < N} are mutually independent, and also independent of {fi,up 1t < T}.
(iii) (weak cross-sectional dependence) There is a constant C > 0 so that almost surely,

max;<y Zf\il |E(uiruje| fr)| < C, maxj<ny Zfil H{|E(uiruje| fr)| > (log N)=3} < CN€ for some
¢ >0, and max; j<n Zgﬂ | Cov(uipuge, wjrure)| < C.

Assumption A.2 imposes restrictions on the dependence structure of the DGP. We maintain
serial independence to keep the technical tools relatively simple. Allowing for serially weakly de-
pendent data is possible, by imposing extra mixing conditions for the time series. Condition (iii)
requires cross-sectional weak correlations among the idiosyncratic components wu;;. This assumption
is reasonable in that the idiosyncratic components should capture the remaining shocks and possible

local factors after conditioning on the common risk factors.
Assumption A.3 (Moment bounds). There are C > ¢ > 0, such that
(i) E|| fe||* + max;<y Eu, < C.

(ii) For any k,l < dim(f;), we have

4
Emax; ja<Na<1 & j q k1

< (log N)*TC
max; ja<N <1 B 411 ’

1
where & jakit € {Wittje, Wity Ugwe, URWE,, Wit frts U2 frts U2 frt frr, ubujiuge ) and wy = ﬁﬁlut-
(iii) There is 0 < L < 1, and a sequence Byt > ¢ satisfying B log(NT)" < TE, such that

E 44 NIt < B
SR B Rl < B

where Byt may diverge.
(iv) ||EJ71H < C and min;<y EuZ,(1 — 022;1)\)2 > ¢, E||71Nﬁ’ut\|4 < C.
(v) All eigenvalues of Z;V:l(ﬂj — B)(B; — B)" are bounded within [c, C).
Condition (ii) imposes that interchanging “max” with “E” on & j+ imposes an additional

term no larger than O(T log? N ). It is a technical condition for applying concentration inequalities

from Chernozhukov et al. (2013b) to establish

logN)
T Y

1
max |— g i —E¢; 5 =0
T,,],dSXN | T - 527]7d7k7lvt §Z7J7d7kvlzt’ P(



a key step to bound max;<y |@; — a;|. In addition, condition (iv) imposes that IEE|]\/LN,B’1L15||4 < C,

which is reasonable given the cross-sectional weak correlations among ;.

The above conditions allow for heavier tails than those of the sub-Gaussian distributions in the
DGP, as our results only require moment conditions. That said, it is possible to further extend our
assumptions to allow for even heavier tails, provided the use of Huber’s loss function ((Huber, 1964))

and more robust estimators, see, e.g., Fan et al. (2016).

Assumption A.4 (Growing number of positive alphas). There is a growing sequence Lyt — o0,

such that the true a satisfies

Assumption A.4 requires there should be a growing number of true alternatives. This is needed

to control the rate of false rejections and the same assumption is adopted by Liu and Shao (2014).

In a different context, Song and Zhao (2018) require the alphas of stock returns to be “sparse” in
the sense that many entries should be nearly zero. However, this is not the case for hedge funds; our
empirical studies indicate the presence of many nonzero alphas. For this reason, we do not require

such a sparse structure.

Below we present the required assumption for the missing data case. We adopt the same notation
as in Section 2.4.1. Let X be a general low rank matrix given by equation (16). Let (Ux,Us;) be the
left singular-vectors of X, where columns of Uy and U% correspond to the nonzero and zero singular
values; let (Vx, V§) be the right singular-vectors of X similarly defined. In addition, for any N x T
matrix A, let

P(A) = USUSAVEVE, M(A)=A—P(A).
Here M(-) can be regarded as the projection matrix onto the columns of Uy and Vx, and P(-) is
the projection onto its orthogonal space. Define the restricted low-rank set as, for some ¢ > 0,

C2

VNT

: 1
(e, c2) = {N x T matrix A : [|[P(A)|[n < ¢|M(A)]ln, WIIAII% 2 }-

Assumption A.5 (missing data). Let Ny = {i : ry is observed}, T; = {t : 1y is observed}, and

wit = L{riy is observed}. We assume the following conditions hold:

(i) For any (c1,c2) > 0 there is a constant k. > 0 so that uniformly for all A = (Ay)NxT €
G(c1,c2),

N T N T
ZzwitA?t > K,CZZAZ% — Op(N—FT).

i=1 t=1 i=1 t=1

(11) min;< n | T;| > coT and ming<p |N¢| > coN for some ¢y > 0.



(#3) maxi<T H\Tld Zjej\/’t /Bjﬂg‘ - % ngN /8]/85” =o(1).

(iv) {(vg, iy ui) + i < N,t < T} is independent of {wi : i < N,t < T}, and Ew;; does not vary
across both (i,t).

(1}) min; @/}min(% Zle witvtvé) > Cg.
(vi) + >ij | Cov(wje, wir)| < C, max; + > ik | Coviujpui, ugrui)| < C.

Condition (i) is the so-called “restricted strong convexity” condition, which is needed for matrix
completions. Additionally, for technical reasons, in the presence of latent factors, we require the
missing be both at random and homogeneous. Especially, the homogeneous missing substantially
simplifies the technical arguments for the effects of the nuclear-norm regularized estimations. The
inference for matrix completions using the penalized regression has been a challenging problem
because the nuclear-norm estimator is known to be biased. As a technical contribution to the
literature, in Algorithm 6 we provide a new inference procedure for debiasing the regularization,
and achieve asymptotically normal estimators for the latent factors and alphas in the context of
asset pricing. In proving the theoretical properties of these estimators, we apply an auxiliary leave-
one-out argument recently used in Chen et al. (2019), which crucially requires the assumption of
homogeneous missing. While we conjecture that the theoretical results might still hold in the presence
of heterogeneous missing, as evidenced by our simulation studies, we leave the theoretical treatment

for that case as an important open question.
A.1.1 When Observed Factors are Tradable

In this section, we consider cases when observed factors are all tradable. The observed factors’ risk
premia are equal to the factors’ time series expectations. As a result, a simpler algorithm can be

employed to estimate alphas. Consider the model

Tit = i + BN+ By ifor + B1i(fre — Efte) + wit, (A1)

where f,; and f;; respectively denote the observed and latent factors, and A; is the risk premia for
the latent factors. We assume f,; are tradable so the risk premia for the observable factors satisfies
)\o = ]Efo,t-

In this case we propose the following algorithm:
Algorithm A.1 (Estimating o with tradable observable factors).
S1. The same as S1 in Algorithm 6.

S2. Estimate the risk premia for latent factors.

No= (BMiB) BM M, M = (Fi — Bl i foi)nx1-



S3. Estimate and de-bias the estimates of a:
When there are latent factors
Qi = 7i—Boifoi— BN+ A, i=1,..,N,
where, writing E{ =e, — B{’i(@'MlN@)AB\l’MlN, i = T% ZteTi @7t317i,

~ —

0,0 Ho)fo,i - /7§

)

A; = Bz/z(
When there are no latent factors

ai - 771 - 5é),if0,i) 1= ]-7 aN

Note that S2 is the key difference between Algorithm A.1 and Algorithm 6. Algorithm 6 S2
runs the cross-sectional regression on all the estimated betas (BO, Bl) to estimate the risk premia for
both observed and latent factors. In contrast, when the observed factors are tradable, their risk
premia can be simply estimated by taking the factor time series averages. Hence in S2 of Algorithm
A.1, we only need to run cross-sectional OLS on the latent factor betas to estimate the risk premia

for the latent factors.

For completeness, the algorithm also includes the observed factors-only case. Fund-by-fund
time series regressions can be applied directly to estimate «;. However, when testing a; < 0, the
problem of conservativeness associated with testing inequality nulls is still present. As such we shall

still apply the alpha-screening step for dimension reductions.
A.2 Main Theoretical Results

We now present the asymptotic distributions for estimated alphas. They arise from the following

five scenarios:
(i) observable factors only (Algorithm 3);
(ii) latent factors only (Algorithm 4);
(iii) mixture of observable and latent factors (Algorithm 5);

(iv) mixture of observable and latent factors with an additional condition that observable factors
are tradable (Algorithm A.1);

(v) observable factors only and they are all tradable.

Theorems A.1, A.3 and A.4 below apply to estimators that are obtained in any of these scenarios.



A.2.1 Expansion of Estimated Alphas

Theorem A.1. Suppose T,N — oo, (log N)¢ = o(T), for some ¢ > 7 and Assumptions A.1-A.3
hold. Then for any i < N,
_ ~ d
o,y (@ — ai) == N(0,1),
where ‘71;2,NT = = Var(u; (1 — vtﬂfl)\)) + %Xi. In scenarios (i)-(iii), x; = %Var(ai)ﬁéSglﬁi and
Sg = %ﬂ’MlNﬁ; in scenario (iv) that observable factors are tradable, x; = % Var(ai)ﬁl’isgllﬁlvi, and

Sgy = %B;MlNﬁl; in scenario (v) that only tradable observable factors are present, x; = 0.

Theorem A.l is derived from a more general joint asymptotic expansion for the N x 1 vector
@, given in Proposition B.1: in scenarios (i)-(iv):
&—a%lZu(l—v'Z_lz\)—ﬁ ':iS_lﬂlM a
Ttt R Ny TN = Pp 1IyQ.

In the above expansion, the first term is Op(7~/2), and the second term is Op(N~1/2). The presence
of the second term is the key reason of inconsistency @ in the low dimension setting, see detailed
discussion in Section A.3.3. This term vanishes as N — oo. However, if N grows too slowly, it
could result in strong cross-sectional correlations among the estimated alphas due to the common

component 7y, which would adversely affect the FDR control.

For this reason, in what follows, we require T'log N = o(NV), so that the term, Sny, is negligible,
and that the asymptotic distribution of @ is characterized by & >, us (1 — 022;1)\). The t-statistics

are therefore weakly correlated in the cross section.
A.2.2 Matrix Completion for Unbalanced Panel

In the presence of missing data, scenarios (ii)(iii)(iv) require estimating latent factors. Then a key

step for matrix completion is to solve the following regularized regression:
)/(\':argm]vi[n 1(Z = X) 0 Q|2 + Anpl| X ||, (A.2)

for a given Z and Ay7. We begin by introducing the following singular value thresholding operator:

let Y = UDV’ be the singular value decomposition of a given matrix Y. Define
S,(Y):=UD,V’,

where D, is defined by replacing the diagonal entry D;; of D by max{D;; — v,0}. Then as shown by
Ma et al. (2011), the Karush-Kuhn-Tucker condition for X is: for any 7 > 0,

X=5,(X-7Q0(X—-2)), v=rAnr/2.

This fact suggests a simple iterative algorithm to solve for X.



Algorithm A.2 (Solving the low-rank regularized problem for X )
S1. Fix the “step size” 7 € (0,1). Let v = 7An7/2. Initialize X and set k = 0.
S2. Let Xpi1 =Sy (Xg —7Q0 (X — Z)). Set k to k + 1.
S3. Repeat S2 until convergence.

This algorithm requires two tuning parameters (7, Ay7). As for A7, let W be an N x T matrix
whose columns are generated as N (0, ¥,,) independently across (i,t), where ¥, is an N x N diagonal
matrix of estimated individual variances of u;. Let Q(||Q2 o W||2;1 — &) be the 1 — § th quantile of
[|€2 0 W{|2, where ||.||2 denotes the matrix spectral norm. We follow the suggestion of Chernozhukov
et al. (2018) by choosing An7r = 2(1 + ¢)Q([|2 0o W|; 1 — §). In practice, we set 7 = 0.9, ¢ = 0.1, and
0 = 0.05.

Below we present the asymptotic results for the estimator given by all the five scenarios.

Theorem A.2. Consider the case of unbalanced panel and all the five scenarios of observing fac-
tors. Suppose conditions of Theorem A.1 hold. Also, in the presence of latent factors (Scenarios
(i) (1) (iv)), additionally assume Assumption A.5. Then uniformly in i < N, when T log N = o(N)
(which can be relazed for scenario (iv)), the following results hold:

~ 1 _
G~ = Z wir(1 — véEfl)\) + op(
(]

1
byt v 1'log N

A.2.3 FDR/FDP Control

Given the asymptotic properties of the estimated alphas achieved in Theorems A.1 and A.2, we are

ready to establish the FDR/FDP control properties of the (alpha-screening) B-H procedure.

Theorem A.3. In addition to conditions in Theorem A.1, suppose T(log N) = o(N), and Assump-
tion A.J holds. For the alpha estimators that arise from all five scenarios, the following results
hold:

(a) The B-H procedure satisfies:
FDRp_g <7+0(1), FDPp_pg <71+op(1).

As for the alpha-screening procedure, define o? = Var(uit)E(l—nggl)\)Q and Enr = loglog T
Additionally assume |{i : —={nT0oi(1+€) < a; <0} < |{i: ay > —Enroi(l—¢€)}]| for somee > 0,

where |.| denotes the number of elements in the set. Then

FDR screening B-H ST 0(1)7 FDP screening B-H <7+ OP(l)-

log N



(b) Both the B-H and alpha-screening B-H procedures satisfy:

]P)(H% is correctly rejected, for alli € H) — 1.

In addition, as for the screening B-H procedure, we have:

(c) Suppose T < % Let Gp.n and Gscreening B-1 Tespectively be the numbers of correctly rejected

alternatives by the B-H and screening B-H. We have:

gB—H gscreem’ng B-H
E <E .
N — N
In addition, define events:
Ap.y = {all false HYy are correctly rejected by B-H},
Agcreening - = {all false H% are correctly rejected by screening B-H}.

Asymptotically, we have
]P(Ascreenmg B-H) 2 P(AB—H)-

(d) Recall that T = {i < N : t; > —log(log T')y/Iog N}, we have

P( 6:a,~§0istrueforalli%f)%l.

For the screening approach, the additional condition says that the set {i : —{npoi(1 +¢€) <
a; < 0} should not contain as many elements as {i : a; > —{n70;(1 — €)} does. This condition is
equivalent to: the set M := {i: —&n7oi(1 +¢€) < a; < —En70i(1 — €)} contains less alphas than the
number of alternative alphas, which is a plausible assumption. We can take ¢ > 0 be arbitrarily small
so that Enroi(1+¢€) ~ Enroi(1 —e); also Enr — 0. So M is a set restricting on a very small range of
negative «;, and is often an empty set, while the number of alternative alphas grows to infinity. So
it is indeed reasonable to assume M is smaller than the alternative set. This is a technical condition,
needed to approximate the random sets Z and ZN Ho by non-random sets {i : a; > —En7o;(1 —€)}
and {i : —={n70;(1+€) < a; < 0}. The only requirement on the approximation is that the inequality
IZ N Ho| < |Z] is preserved.

In addition, the usual B-H procedure focuses on the t-statistics formulated based on the “sample
average” and its standard errors (Liu and Shao, 2014), while in our context, @; is, approximately, the
sample average: VT(Q; — a;) = % S ui(l —vj2 N)o; b+ A; where max;<y |A| = op(1/+/Iog N)
when T'log N = o(N). This theorem shows that the additional approximation error does not affect

the “size” asymptotically.



As for the “power” property for detecting the significant alphas, note that Assumption A.4
ensures that for the true vector of «, there is a set H C {1,..., N} so that

logN}
T

HZZ{iSN:OziZLNT

and |H| — oo. Apparently HY is false for all i € H. Theorem A.3 shows that we can correctly detect
all positive alphas whose magnitudes are larger than 4/ ngN‘

To compare the power of the regular B-H procedure and the B-H with alpha-screening, we use
the notation of “average power”, denoted by EGp.i/N and EGscreening B-1/V, that is, the expected
proportion of rejected false null hypothesis among the set of false null hypotheses. This definition is
adopted from Benjamini and Liu (1999). In addition, we also adopt the notation of “family power”,
which is defined as the probability of rejecting all of the false null hypotheses, as in Lee and Whitmore
(2002). For both definitions of power, the screening method improves the power of the usual B-H

procedure.
We summarize the results in Theorem A.3:
(a) The FDR/FDP can be controlled under the pre-determined level 7 € (0, 1).

(b) Our procedure can correctly identify all true alphas satisfying

log N
a; > Lyt gT ;

for sequence Lyt — oo that grows arbitrarily slowly.
(¢) The alpha-screening B-H procedure more power than that of the regular B-H procedure.

(d) Unlike the B-H that tests all the alphas, the alpha-screening B-H procedure only tests alphas
that are in Z. Our theorem shows that it is safe to only focus on f, because those alphas that

are not inside Z all satisfy a; < 0 (asymptotically).

A.2.4 Wild-Bootstrap

In this section, we prove that the wild-bootstrap algorithm delivers the desirable FDR control.

Theorem A.4. Consider the case of unbalanced panel and all the five scenarios of observing factors.

and T'log N = o(N) (which can be relaxed for scenario (iv)). Then

(a) uniformly ini=1,....N,

1 1
o~ - (1 — /271)\ 4 (),
(6% T,L ; ult( Uy f ) op ( TlOgN)

where, a;, b1 and bay are as defined in Theorem A.2.

10



(b) Let p; = + Zszl 1{a; — au} be the bootstrap p-value. Then max;<n [p} — pi| = op(1).

(¢) Let FDRpootstrap and FDP pooisirap be the FDR and FDP of applying the B-H procedure to the

bootstrap p-values p*, we have

FDRbootstmp <7+ 0(1), FDPbootstmp <7+ OP(l)-

A.3 Additional Theoretical Results
A.3.1 Identification of Alphas

We investigate the identification of o when both observable and latent factors are present. First,
define

I' = E [(T‘t — Ert)(f(),t — Efo,t)/] COV(fOJ)il,
Zt = Tt_Ert_F(fo,t_Efo,t)a tzlva

Both are identified quantities given the observables {(r¢, fot) : t =1,...,T}. In addition, define
T(8) = B(B'MuyB) 5.

Note that 7 is rotation invariant, in the sense that 7(8H) = T () for any invertible matrix H. We

show that « is identified by the following system of equations in the next theorem.

Theorem A.5. Consider the case when both (fo4, fi+) are present. There are latent invertible

matrices Q, H, and a latent dim(g;)-vector hy, so that equations (A.3)- (A.6) hold, where

Zy = Bih + ug, (A.3)
BH = (I)AQ), (A4)
BA = T(BH)MyyEr — T(8H)Miyo, (A.5)
a = Eri—pA (A.6)

In view of the relation between the above system of equations and Algorithm 5, we note the

following observations:

1. The identified components (I', Z;) are the population counterparts of (B\O, Z) obtained in Step
Sla.

2. Equation (A.3) shows that Z; admits a factor structure, with /; as the factor loadings. It is
well known that in this case there is a rotation matrix @, so that ﬁ 5;Q is identified as the
first K eigenvectors EZ;Z;. Therefore, 5;Q is the population counterpart of 3; obtained in
Step S1b.

11



3. Equation (A.4) shows that § is identified up to a rotation H, given that (I', 5;Q)) are both
identified. In fact (I, 5;Q) is the population counterpart of B obtained in Step S1.

4. (a, fA) are then identified (as N — 0o) through equations (A.5), (A.6) given the identification
of BH. In particular, T (8H )M, ,Er; is the population counterpart of

BX = T(B)Mi 7,

whereas T (H /)M, « in (A.5) converges to zero as N — oo.
A.3.2 Inference on «.
Let ag = % > ;Ea;. Here we provide the asymptotic distribution for the estimator for ag, given by

dp = & SN | @;. Additionally, let 52 = L 3°.(@; — ao)>.

Theorem A.6. Consider a general case where unbalanced panel is allowed. Let ag > 0 denote the
cross-sectional variance. Suppose 1[430421 < C and B is deterministic. Assumptions A.1-A.5 hold, but

the condition T'log N = o(N) can be relaxed. Then

VAN N(0,1), where

S0

for scenarios (i)-(iii), suppose in addition liminf(1 — B’(%B’ﬁ)_lﬁ)Q >0 and N = o(T?),

for scenario (iv), suppose liminf(1 — B](+B/8) "' B1)? > 0 and N = o(T?),
B==BBB) B Bi= 3 B
0 N o N i KX

2

for scenario (v), s3 = 52.

A.3.3 Inconsistency in the Low Dimensional Setting

When the dimension N is fixed and only observable factors (but not all tradable) are considered,
researchers frequently use two-pass regressions to estimate the alphas: (i) run time series regressions
to estimate individual betas; (ii) run cross-sectional regressions of the averaged returns on the es-
timated betas to estimate the risk premia and alphas. As we shall formally show below, when the
dimension N is fixed, the two-pass regression method fails to consistently estimate any alpha, so it

cannot be used in the FDR control or any multiple testing problems.

We shall focus on the case of balanced panel, and all factors are observable but not tradable.

12



Theorem A.7 (Inconsistent Estimation of a). Suppose N < C for some C > 0, and T — oo.
Suppose « is stochastic and [ is deterministic, satisfying o, ...,an are 4id, Var(a;) > 0, and Sg =
% Z;V:l(ﬁj — B)(B; — B) is positive definite. Then we have for each i < N, as long as B; # 0, there
is a random variable X; so that Var(X;) > 0 and

&i i) o; + X;.
In fact, X; = —Binn with nn = %Sﬁ_lﬂ'MlNoe.

In many asset pricing contexts, the common goal is to test the null hypothesis: Hy : all alphas
are zero, see, e.g., Gibbons et al. (1989). The two-pass regression is consistent for alphas when N is
fixed, because the null hypothesis is imposed. Under such null, Var(a;) =0 so X; =0 for all i < N
in the above proposition. However, as long as there are at least one alpha that is nonzero, it holds

that Var(a;) > 0, then &; would be inconsistent whenever 3; # o(1) for that specific 1.
B Technical Proofs

Recall that vy = f; —Ef;. Throughout the proofs, we shall use A to represent a generic N X d matrix
of “estimation errors”, which may vary from case by case; here d € {K, K,, K} is a fixed dimension

that does not grow with N or T.

B.1 Proof of Theorem A.1

Proof. By Proposition B.1, a; — a; = % > (1l — UQZ]Tl/\) — %,B{Sglﬂ’MlNa + Op(lOgTN + %) Now

let 67 = min{v/N,V/T}, we have for ¢; 7 = ﬁ > iuir(l—viX7'A) and Gy = —\/Lﬁﬁgsglﬁ’MlNa

5 5
_ ot | ONT

vT " VN

Then ;.7 —% N(0, Var (uit(1-v:X3))) and ¢ v ~45 N0, Var(e;) 8,5 8:). In addition, Cov(Gir, Gi,n) =

0, thus (¢; 1, (i,n) jointly converges to a bivariate normal distribution. Based on this, we can apply

InT(Qi — ;) G~ +op(1).

the same argument of the proof of Theorem 3 in Bai (2003) to conclude that

a,-—ai

(% Var (u; (1 — th]Tl)\)) + % Var(ai)ﬁ,‘Sgl,Bi)l/Q

~45 N(0,1).

B.2 Proof of Theorem A.2

Proof. The proofs are similar throughout scenarios (i)-(iv). The case of scenario (iii) mixture of
observable and latent factors, in the presence of missing data where we apply the matrix completion
algorithm, is most challenging. Therefore, we mainly focus on the the proof of scenario (iii) below

and briefly mention the proof of all other cases.

Scenarios (i)(v): observable factors only

13



When there are only observable factors, the matrix completion algorithm is not required. We
apply fund-by-fund time series regressions. When factors are tradable, then the estimated intercept
would then be the estimated alphas; when factors are not tradable, we additionally apply cross
sectional regression to estimate the factor risk premia and alphas. The details are well known even

for unbalanced data and are therefore omitted.
Scenario (ii): latent factors only

For any 7, we have the following factor model: for l;; = v;; — v;; and l; = v — vy,
rit — 7 = Byl A win — @i + Bl (0 — p4).-

To apply the matrix completion algorithm and Proposition B.2, we set x;; = 0 and g;; = Bl’ (O —1p).

: 1 1 1 1 1
We need to verify max; Y., g7 = OP(W) and 7>, (% 225 wjtgitBil|? = op(7gw)- The
former is straightforward. Verifying the latter is very similar to that in scenario (iii) proved below.

Hence by Proposition B.2, there is Hj,

1 ~_
) Jle= o D wai ST H),
" teT;

—~ 1
— BH, = J .
B — BiH; = J; + op( TTog N

where S; = £ >, i1}, and Op(\/%g]\/) is in the ||.||oo norm. The expansion for A would be the same

as scenario (iii) below (and is much easier in the latent factor only case), leading to

1
v/T'log N
where B; = B;[H_lﬁi — (B’MlNE)_lg’MlNg]. But the main difference here is that ¥; = Z; = 0 in

the absence of observable factors. Here B\ = B\l and v; := 7;; and g; = f3],01;. The bias correction

PR _ _ 41
fi—ﬁz{)\—ai = Bi+ai—(Ti+:¢)’H IA—ﬁ;SﬁINﬂ/MlNQ—FOP( ),

effect é, — B; would be the same. Unlike scenario (iii), there is no additional bias H,; — H, in the

absence of observable factors. So the final estimator is just

which satisfies

_ 1 _ a1
Gi —aj = — > uir(1 = v ') = iS5 A My o+ op

1
i {eT \/TlogN)'

Here vy :=v14, Xy = Cov(vi4) and X := ;.
Scenario (iii): mixture of observable and latent factors

. | _ 1 1 /
Step 1. estimate beta. Define v,; = T Zte?;- Vot, Ui = 77 Zteﬁ v, and Sy = T Zteﬁ Vo,tVg, ¢

Then Lemma B.4 implies max; |0, = Op( IO%FN) = max; [|0,;] and max; ||S; }|| = Op(1).

14



The first step OLS gives, for Ho; = 7 ZteT Uy ,ﬂzotSOZ ,and H, = 7., vlﬂtvg,tSO_l,

~ 1
ﬁo,i—ﬁo,z-:t;uzts For+ Hobi+ 8, max 6] = op( g (B.7)

H, i(Vot — Vo), and Iy = (vi4 — U;) — Ho(Vot — Uo). Then for any 1,

- B\oi(fot - foz’)

Now let Iy = (v — Uy3) —
we have the following factor model: for ¢t € 7;, and z; = riy — 7;

/ — / ! _
zit = Bpile — it + wir — i + By (it — ) — 0;(Vot — Voi),  Mit = f E isVy 3557 (Vot — Voi)-
1
s€T;

To apply the matrix completion result in Proposition B.2, we set ki = —0.(vot — Uo;) and giy =
. 1 1 1 1 1
/Bll,z‘(lit_lt)' We need to verify max; 7 > gi2t = op( \/ngN) and = Do HN Zj wjtgjtB; H2 = OP(TlogN)-

The former is straightforward. As for the latter,

*ZH*ZWu&gztﬂJP > TZH sztﬁlz Ulz_ Bl||2+ ZH sztﬁll 0,i —
TZH Zwltﬁlz oz_ Uozﬁz||2 TZH sztﬁlz Uoz_@o)ﬁi||2

H,)B;1?

- (T log N )
which follows from lemma B.4. Hence by Proposition B.2, there exists H;, such that

~ 1 1 S5—
bi—BiH; = Jz+J21+0P(TgN)7 Ti= 7 > (=) liS; Hiy, Ty = Z Bl (lae—1e) Sy Hy,
LteT; teT

where S} = £ 3, lilf, and OP(ﬁ) is in the ||.||oo norm. Hence

B 3B I 0
B = (/607/61) ZIBH+T+E+OP(\/]%M)7 H: (H H) ’
o l

T, = Z wivy 1Sy Jla)s B = (Bl(Hoy — Ho), Joy ;).
teT

Also max; ||3; — H'Bi|| = op(1).

Step 2. estimate factor risk premium.
First, from Lemma B.4, || % Y, T% Y over: L —1)lbi]| = OP(ﬁ). Hence for any deterministic
bounded sequence b;, % Yo bidoi = Op(ﬁ) = % > 0B ;(Hoi — Hy). Tt is also straightforward
to see % Yoibidii= OP(\/%M). This implies

1

721) —H'8) = OP(\/TlogN

(B\’MlNF) implies, for g be the N x 1 vector of (8/v;),

).

Thus A = (3'M,, 3)~"

A— H '\= (M “158'M ~1 — 8'M — ).
(BMiyB)™ B Muyg + S5 6 Muya + op( TlogN)

15



So BIA = BIN = (Ti + Z) H A+ B/H(B'M,,, B) " f'M g + 0p( 77iss)- Then

5 1
=B = Bitw— (Ti+E)H A= iS5 -6 Mya -+ op( ),

1
v1'log N

where B; = BQ[H_lﬁi - (E’MlNB)_IB’MlNg]. In addition, A\, can be consistently estimated due to:

. I 0 . Ao
H™' = B ) o HTAN=( :
—H;'H, H; H (O — Ho\y)

We now work with (Y; +Z;)H~!'\. By the same argument as of (B.30), for h = T% > e (Wit —
nit)l}S;t, we have

1
Y H '\ = ; — hH,, h)\ S —
i tEZ7—UtUOt ) +OP( /7T10gN)
1
= N I\ —_—).
;rutvt + op( ﬁTlogN)
For E/H 1\, note that S; = Sy — 97,5, S0 + Op(T~1/?),
EH TN = B(Hou - ot = Z Ba(lie — (= Ho)o)
) teT
= C;+op(—==—=), where

Tlog N
Ci = ﬁl,i(Ho,i*Ho))\o-

For the last equality, recall l;; = (v;s — U1;) — Hoi(Voi — Vo) and Iy = (vi¢ — 0;) — Ho(Vor — Vo).

7Zﬁlz zt (>\l Ho>\o)
' teT;
1 - 1
= —Bi(Hoi — Ho) = > vatlt S, (A — Ho)o ——
B1.4(Ho, )E;vtt Y )+ op( TlogN)
_ 1
= B(Hoi — Hp)(SoH. — So) S (N — Holo OV —op(——),
B1.i(Ho, )(SoH,, — So) S, (N ) + op( TlogN) op( TlogN)
where we used H, = S/,S; 1. This implies
i — BIA — o = Zu )\)—B{S_liB’Ml a—Ci+Bj+o (é)
Z = D eV S

Step 3. bias correction. We now respectively estimate C; and B;.

For all t < T, we have Uy = (fos — fo,@ht), then it follows that
Oy — H v —0) =0 — (f), — fo, (H L)) = (0, (B — H ')
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It follows from Lemma B.4 that max; ||T% D oteT, U—H (v —0)| = OP(ﬁ)- Recall that g; = Bﬁ,

and g; = B/0;. So uniformly in 4, for any bounded deterministic sequence b = (by, ..., bn)’,

1

1 ! /— / _ —
Nb(g—(g Bv)) sz — H'Bi)'vi + — ZbﬁH 1(%_0)):013(W

).
D.._ 2 ar N—1727 ~ _ I~ : S
Now define B; := B![v; — (6'M1,3) "1 8'M1,g] = &£/g. Uniformly in i < N,

B;—B; = Bjo;—H 5 — (BM1,8) ' f'Mi, (5 — g)]
= Bivi — H ' (0; — 0) — (B'M1,8) " B'My, (5 — (91— B0))
+(B'My, B) 1B (BH — B)H 0] = OP(W)'

As for C; := §);,(Ho; — Ho) Ao, we define,

~ 1 R — o~
72”” fot_foz oz’ Hozfzvl,t(fo,t_foysol
t

Y teT;

where S, and §07i are respectively defined using (for — fo) and (for — foi). The goal is to show

max; [|C; — Cil| = op( ), where C; = B1:(Hoi — Hy)Xo. Note

~

ai - Cz = (//B\l 7 Hlﬁl z) ( 0,4 — Ao)/):o + Bllﬂ‘Hl(ﬁo,i - ﬁo)()\o - )\o)
+6l @Hl[( 0,5 — H ) Hl_l(Ho,i - Ho)])\o'

It is straightforward to show the first two terms are op( uniformly in 4. The most challenging

T . )
log N
term is the third one. To analyze lt, we first show

T
1 1
H,, Sl 5 S Sy on( ),
T = v1'log N

teT

where we recall l; = vy, — 0 — Ho(vo — ¥5). Note that 4 ZteT A 90 ! =H,; —uv,,S, ' H,+

OZ O'Z
HOUOUMSOZ- and %Zt ltvg’tSo = —u,S; 1—|—HOUOU Sy 1 . Hence
T
1 I oa—1 . ra—1 -1 — 1 a—1 a1
fzztvot letvo,ﬁo — [Houi — Ho) = =00, ;(S,; — S5) + Holo(¥),;5,} — 1,9, ),
L teT; t=1

where the right hand side is oP(\/%) So to show max; H@Z -Gl = op(\/TlloW

show max; H(ﬁoZ — H,) - H 'L = teT; ltvotS_ %Zthl 1), Sy M| = 0P<\/T110W)’ which is also
sufficient to show

), it suffices to

~ 1
max || Ho; — Z L0645, | = 0P (—m=2).
) tET \/TlOgN

This in fact immediately follows from Lemma B.4 that both max; || T% doteT: (@7,5(fo,t—fo,i)’—Hl_lltv’o,t) I
and max; HT% Ete’/’i((fo,t - fo,i)(fo,t - fo,i)/ - Uo,t”f;,t)“ are OP(W)'
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Therefore, for a; :=7; — BZ’X +C; — Ei,
Qi — oy = 1 D (1 —vfSy N - 545*1iﬁ’M1 o+ 0p(¥).
T; f BN N VTIog N

tteT;

(B.8)

Scenario (iv): mixture of observable and latent factors and observable factors are

tradable
The only difference from Scenario (iii) is that, A, = Ef,;, and \; is estimated by, for A =

(r; — A(’”foz) be an N x 1 vector,
A= (BM, B) " BiM A,

and
Qi = 7 — Bl foi — Bj\ — estimated bias.

Similar to the proof of Scenario (iii), we have

S B 1 I 0
B = (50751):/3H+T+:+0P(W), H_<H H>’
o l

1 _ —_
(f Z uitv:),tso,i17 Jl,,i)> :; = (/Bl/i(HO,i — H,), Jél,i):
—_———

' teT; -
—17

/
Tli

H) o, (Ti +Z)H 1N = T% D oteT: Uitvézfl)\ +C; + OP(\/%M)-

—

and for C; = f,(Ho; — So
Bl = B+ Bl iHy + Ty + Zhs + 0p(—mes),
’ B VTlog N
and Bézfoz =Bl . foi+ Bl,ﬂjHOf_‘O,i + (Y +ZE1) A + OP(m)'
Also note that 7 = o + 3} ; fo.i + Bl + Biitni + i, so for g; = (8};(v1; — Hotos) 1 < N),

) 1
A=a+ (N —H\)+ g +a— (T, +51)AO+OP(W)-

We also note from Lemma B.4 (iv) that for any deterministic and bounded sequence b := (b; : i < N),

|+ SN bi(H,; — Hy)|| = oP(ﬁ). Hence +b/(Y1 + E) = OP(W). So

- I SO 1
No=H7 (O — Hodo) + (BM1 B) 7 BiMiy g1 + (BMi B1) ' BiMy g o + OP(W).

This implies

fO,i _ i T)o,i 1
() ua- ) ot

(BM1, B) ' BiMi g1 + (B{M1, B) " F' M y o

18



Then for B; = B};[H; (01, — Hooi) — (B{Miy51) ' BiMiy a1],

~ ~ o~ 1
Fi = Boifoi — Bl —ai = = Z wir(1 = ;') = B OB ! ﬂlew — Ci+ Bi + op(

1
teT v1'log N

Similar proof as before yields that (B;, C;) can be replaced with (E , (AZ'Z) with negligible effects, where

B; = B[t — (BM1yB) ' BiMuyGl), G = (B0 : i < N).

B.3 Proof of Theorem A.3

Proof. We use & , se(@;), and t; to denote the estimated «, its standard error and t-statistics. The
proof extends that of Liu and Shao (2014) to our context that (i) v/T'(@ — «) is only approximately
equal to % doru(l— 022;1)\), up to a term [|A|lc = op(1) when T'log N = o(N); (ii) The power

comparison between the usual B-H and the screening B-H.

By Assumption A.4, there is H C {1,..., N} so that |H| — oo and
VTo'a; > 4\/log N, VicH. (B.9)

Next, let Hy denote the index set of all the true null hypotheses. Also, let ¥(z) := 1 — ®&(z). Our

major goal is to bound the number of false rejections
F = Z l{ti > t(E)}
i€Ho
The main inequality to use is: uniformly for = € [0,t*], where t* = U~ (7|H|/N),

‘H | > 1{ti = 2} < U(x)(1+ op(1)). (B.10)

1€Ho

The remaining proof is divided into the following steps.

Step 1. We first show the inequality (B.10). This inequality is essentially the Gaussian approx-
imation to the “empirical measure” of the t-statistics for those true null hypotheses, whose proof
requires weak dependence among the t-statistics. The proof simply extends that of Liu and Shao

(2014) to allow approximation errors A;.
Write z; = ﬁ > ¢ Xit/si; where X = ui(1 — véZ;l)\). When T'log N = o(N), a; < 0 we have
ti < (q; — ;) /se(a;) = % > Xit/si + A; where max; |A;| = op(1/y/log N) by Proposition B.1.

Hence

17.[ | Z {t; >z} < |’H Tl Z 1z >z — |A]|oc )

i€Ho i€Ho
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The right-hand side does not depend on « because z; is centered and independent of «.

The same argument as that of Liu and Shao (2014) shows, uniformly for x < ¥=1(7|H|/(2N)),

|H0| > Yz > a} < U(2)(1+op(1)), (B.11)
1€Ho

where op(1) is independent of z,«. On the other hand, there is 7, € [0,|A|ls] so that for some
universe constant C' > 0, uniformly for 0 < z < ¢*,

(x + 1)

W (@) — (o — [A]l) o)

IN

oz +12) 1Al oo < B(2)[|Alloo
Co(2)||Alloo exp(Cna(nz +17))

Ca¥(z)[[Alloo (1 +0(1)) < Ct*¥(2)[|Alloo(1 + o(1))
o(1)¥(x), (B.12)

INIA A

where o(1) is a uniform term because 7,t* < ||Al|oot* < 0p(1/y/log N)v/2log N = o(1); the fact that
t* < /2log N is to be shown in step 2 below. This proves ¥(z) = ¥(z — ||A]ls)(1 4 o(1)). Also,

Uz = [|Allc) = ¥(@)(1 +o(1)) = V)1 + o(1)) = (1 + o())7[H|/N > 7[H]|/(2N). So
T — HAHOO < \I'_I(T\”H|/(2N)). Hence by (B.11), we have
\H J Z Hti > a} < \H | Y Hziza— A} < (e~ [Alloe) (1 +0p(1)) = ¥(z)(1 + op(1)).

1€Ho

Step 2. An equivalent statement for rejections: t; > t@) if and only if ¢; > t, where
1 N
=inf{zr e R: ¥(z) < ™™~ max{z {t; >z}, 1}}.

<t < tq, and is the same as that of Lemma 1 of Storey

The proof of this step is to show that ¢4 @)’

(k+1)
et al. (2004). So we omit it to avoid repetitions.

Given step 2, our goal becomes to bound F =}, , 1{i < N :t; > t}. To use inequality
(B.10), we then aim to prove that z = ¢ < t*. To do so, note that

N
v (D) = T% max{ > 1{t; > 1}, 1}, (B.13)
=1

hence showing ¢ < t* is equivalent to showing ¥(t) > W(t*), that is

N

> it =ty > |H]. (B.14)

i=1
In other words, the number of rejections (if there is any) is at least |#|. This is to be done in the

following steps.
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Step 3. We now show P(Vj € H,t; > \/2log N) — 1. Intuitively, it means the t-statistics of
“large” true alphas are also large. It then implies

N

> 1{t; > \/2log N} > [H].

=1

By Proposition B.1, writing z; = % doui(l —022;1)\)/52-, we have (a; —a;)/se(Q;) = z + A;.
So it follows that

ti > i/ se(ay) — |zi| — A,

Next, /T max; | se(@)vVT—0i| < Op(v/Iog N++/T/N) by (B.32). So for all o; satisfying vT'o; 'a; >
L,+/log N with L, — oo, and T' = o(N),

a;/ se(q;) > \/Taflai - Op(\/logN + \/T/N) > Lyy/log N/2.

Now note that ﬁaflai > Lpy/log N for all i € H, so by Lemma B.2, uniformly for these i,

ti > Lpy/log N/2 — /3log N —op(1) > \/2log N.

Step 4. The number of rejections (if there is any) is at least |H|. It is equivalent to (B.14).

Because |H| — oo, ¥(z) < 0.5exp(—22/2), we have t* = U=1(7|H|/N) < y/2log N. Then by
step 3, U(t*) = # < % Zfil 1{t; > v2log N}t < + Zf\il 1{t; > t*}7. So by the definition of %,
we have ¢ < t* and thus () > 7|#|/N. In addition, by the definition of Z, we have

N 2|
\IJtA:—Elti>tA>—il. B.1
®) TN¢:1{ _}_TN (B.15)
Step 5. We prove the FDR/FDP control.

In the proof of step 4, we have ¢t < t* with probability converging to one, then by (B.10),
F < U(t)|Ho| + op(1)|Ho|. Also by (B.13),

N
R =max{) _1{t; > t},1} = U({)N/.

It then gives, for some X = op(1), and | X| < 1 almost surely, % < T'H—A})' + X, on the event ¢ < t*,
Hence
FDP < 74 op(1).
Together, for any € > 0,
|/H0‘ n * n *
FDR < E(r > +X[E<t') +P(E>t")
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< Ol B 2 R 2 1) 1 00),

Since € is chosen arbitrarily, FDR < 7"77\,—0‘ + o(1).

Step 6. We show FDR/FDP properties for the screening B-H.

Recall that 7 = {t; > —log(log T')\/log N'}. Proposition B.1 and Lemma B.1 imply

)+ Op(\/log N) = Op(y/log N). (B.16)

max @i — o < op( !
<N  se(q;) — Viog N

Hence with probability approaching one,
A1 CTC Ay,

where

log N log N
A1 ={a; > —loglogT Oi oi(l—¢€)}, Ay={a; > —loglogT Oi

Ul'(l + 6)}

Let Hoo = HoN Ay = {—loglogT logNoi(l +¢€) < o <0}. Thus Hp2 C Ho. Then the same proof
as step 1 leads to, uniformly for x < t*,

1
[Ho2|

ST 1t > 2} < U(2)(1 + op(1)).

1€Ho,2

Let tAl, JF1 and Rq be as tA, F and R but defined on Z. Then

U = = max{y 1{t; >}, 1}, Ry =max{d 1{t; >}, 1} = ¥(1)[Z]/r. (B.17)

12l il i€l
Suppose ?{ < t*, a claim to be proved later, then with probability approaching one,

fl o Ziefﬁ'ﬂo 1{1:1 Z tl} < Zi€A2mH0 1{tl 2 tl}

o = < U(H)(1+ op(1)).
|H0,2| |’H072| |’H072| ( 1)( P( ))

So with the assumption |Ho 2| < |A1],

Fi \I/(a)(1+OP(1))‘H02’ T’7-l02| T"Hoz
FDPscreenin =—< =< — = ——(14o0p(1)) < “ (1+o0p(1)) < 1+op(1)).
o=y S TR 2ol 10p (1) < T 10 (1) < r(140p(1)

Then with the same proof as step 5,

FDRscreening = EFDPSCreening <7+ 0(1)-

It remains to prove ?{ < t*. For any i € H, we note o; > Lyt 10%“N. So (B.16) implies, for

Lyt — 00 slowly,

a;/se(q;) > \/Taflai — Op(\/log N) > o; ' Lyr+\/log N/2 > 0
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Hence i € Z. Hence # C Z. This combined with step 3 imply with probability approaching one,

S 1{t: > /210g N} > [H].

i€l
Now let t] = U—L(r|H|/|Z]). Since [H| — oo, ¥(v/2Iog N) < 0.5exp(—log N) = o <& < 3o
t] <+/2log N, thus

. T|H
%):"ﬂ’g

B

S 1{t > 2log N} < %Zl{ti > 11}

i€l i€l

)

So by the definition of t,h < t7. Finally, ]f | < N implies ¢} < ¢* almost surely.
(b) The power property.

Note that in the proof of Steps 3 and 4 we have proved
P(t; > \/2log N > t* >t, VieH)— 1.
Note that t; > 7 if and only if Hg is rejected. This proves the desired power property that

P(H} is false and rejected, for all i € H) — 1.

(c) To prove the power property, let Escreening B-g and EB_H respectively denote the cut-off for
the screening B-H and B-H. Thus

o < TkB.H < T/{?E_H.
(kp-n) N IZ|

Suppose it is true that j € f, then by the
. So

Let j be the index of (kpu) so that Pligr) = Pi

alpha-screening method, k. < Kscreening B-0 and P o) < p(Esmcning nott)

G = Z 1{H}, is rejected by B-H} = Z Hpi < p(EB_H)}

Hf) is false Hé is false

= Z {p; < p(EB_H)} + Z H{p; < p(EB,H)}
Hg is false,ing H(i) is false,ief

< Y. Um<1/2b+ ) Umi<pg
HY is false,i¢T HY is false,icZ

= Z 1{t; > 0} + Z 1{HY is rejected by screening B-H}
HY is false,i¢T HY is false,i€T

1

screening B-H

= gscreening B-H

where we used, P an) < Tk]%-H <7<1/2,and if i € 7 and pi < P , then H} is rejected

- screening B-H)

by screening B-H. Hence EGp.g < EGscreening B-H-
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On the event Ap_g,
max p; <p

- <~
H6 is false (kB-H) - p(kscreening B»H) ’
Because Z¢ C Hy asymptotically (to be proved in (iv) below), thus if H, is false, i € 7. Now for all
1€ f, it is rejected if and only if p; < P e )" The above inequality then implies that on the
screening B-
event Ap.g, the event Agcreening B-1 also holds. Thus indeed P(Agcreening B-H) > P(AB-H).
It remains to prove that j € 7. Note that Pi = Plin) < Tk% < 7 < 1/2, then for one-sided

test, t; > 0 > —log(logT)/log N, so indeed j € 7.
(d) We aim to show P(Z¢ C Hy) — 1 where Ho denotes the collection of all true null hypotheses.
In fact, for any i ¢ Z, we have &;/se(d;) < —log(log T)+/Tog N. Thus (B.16) shows
a;/se(@;) < —log(logT)/log N + Op(y/log N) < 0.

Hence it is true that «; < 0 and thus ¢ € H.

B.4 Proof of Theorem A.4

Proof. (a) The main body of the proof is a standard argument of wild bootstrap. For brevity, in
part (i) we focus on the case when latent factors are present. The case of observed-factors-only is
well known and straightforward. Recall that

~

o~ , ~ .
T;Ft = ﬂi/\ + 5o,ivo,t + /Bl,ivl,t +uy, te€ T;.

For any (i € {Wi, Wi}, T%-ZteTi g = %% > wieGrwl,.  We have maxiH%H = Op(1), and
E*%thitgtw;} = 0. Also, P(Jwy| > z) < Ce!=¢*. Hence by Bernstein inequality and the
union bound, we have max; ||+ >, wiluw}|| = Op«( logTN). This implies max; H%Zteﬂ Al =

Op«( lo%ﬂN ). Also we have

1 . 1 log N 1 - B 1
T Z(vt — H ')ag, = Op+( )\/mlax = Z |0r — H 'w]|2 = op+ (——==).

" teT;

By Lemma B.4 (vii), we have

~ ~ 1 ~ ~ 1 ~ 1 1

Bf = Bi= (7 > @ —0) @ —0:)) ' > (@ = 0)ig, = H'SF' = > iy + ope (—m—=).
Ti teT; i teT; 1 teT; Tlog NV

Then % Soomi(Br—8i) = Op*(ﬁ) = % o T% > ter: mitiy, for all m; € {5, 1}.

As a result, for ¢* = (¢} : i < N) with g} = A;-"/T% > teT: Ut, we have

’)\\* . /)\\ _ (B*MlN//B\*)flg*MlNg* + OP*( )

1
V1'log N
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Thus it follows that

1
v 1'log N

1H)‘) + g5 — Bi(B" M1, B*) " B My g* + op=(

Fo B = BN+ gf = BIO = X) +op+( )

1

v 1'log N

1

g

ﬂz )
teT;

which leads to the desired result.

b) First, according to the Glivenko-Cantelli theorem, we can in spirit define pi = P*(a’ > a;),
(] K]
that is, replacing the bootstrap empirical measure % Zszl with the bootstrap measure P*. We have

the following decomposition: for max; ||A;|| = OP*(\/%) and for w;; = 1{r; is observed},

T log N
1 I
@ = 2 D vt Dyl = T (B.18)
t=1
where
o Yt iyl
Wit 1= Ewit(l v X A).
Let sf = /4 >, vyi2 and s? = 1 3", a4 u%. Then we have
max |s7% — T'se(a})?| <max\s — s7| + max |s? — T'se(a})?| = op(1).
1 (2
Also, recall that ¥(z) := 1 — ®(z). By definition p; = ‘Ij(se?éf))7 and
L prat > & P*(\/Ta;f . ﬁse(a;f)) mﬁzty;} o 1)
— o as) = < — Ny ),
2 ) % 8;( Se(Oé;-k) S: S;-k Y1i
ar  VTse(a: ,
where Y1i = Se?{&z;!‘) fi;(al) _ @Az .

The main technical tool is the moderate deviations for self—normalized sums (Pena et al., 2008)

I1 2t Zt s > y) using the standard

(also see Lemma 5 of Belloni et al. (2012)), which approximates P*(
normal distribution uniformly over y < T/6/17M for some I — oo slowly and constant M. We

thus consider two sets:

Set 1: S1 = {i: 7A*) > T'/5}. Then max;eg, p; < U(TY®) = 0. Also, minseg, siy1; > T/°

for some ¢ > 0 with probability P* goes to one. Hence by the Chebyshev inequality,

o 1 . Cmaxies, = >, U2
maxp;, < maxP (ﬁZyit>cT1/5)+0p(l)§ i 1112?5 L 4 op(1) = op(1).
t

1€S1 1€S1

Set 2: So = {i: ; aA < T1/5}. Then max;es, y1; < 2T1/5 with P* approaching one. Also,

ea

4 : al ar 1 * \ﬁZtyzt
=gty | < Toew Hencey?l = @D Ve < Vi < sn T vegw = Ui Then PT(EE= >
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\ﬁ Zt Uiy

y3i) < pf < P*(——— > yy;). Hence

1 * 1 *

=2 4 Y =2 Vit
max |p¥ — p: < max |P*H(YL =TS max | PH( YT =Ty ol
sy Ipi = pil < ie%?' ( s > yai) = pil + ie%);‘ ( st ysi) = pil

We now bound the first term on the right. The second one follows similarly.

thy*t ! Zt?f'kt
* ? % %
max [P* (L s ) gl < max PSS ) W)+ max [ — W)
1€ES2 i i€So i 1€S2
LZ *
v, T 2t Yit C
< max s [P ) W) e
1€02 y<T1/54 lolgN S; og
= op(1).

Together, max; |p; — p| = op(1).

(c) Given the expansion (B.18), the proof of the FDR control is very standard (e.g., Proposition
2.3 of Liu and Shao (2014)), hence we only sketch it here. First, define

LZT *
=1Y;
Git) = p*(%” > 1),

Then p; = G} (t; — ;) where t; = \/Taz/sz and max; ||d;|] = max; H\/>A /sil| = op(
for the same p;, by Theorem A.2,

Toe )

1 1
VTs; vdiog N

Next, by the same argument as in the proof of their Proposition 2.3, there exists G, ;(t) such that
Gr(t) = Gri()(1 + 0(1)), > Uz =ty = > Grat) (1 +o(1))
‘,H | 1€Ho ’H ‘ 1€Ho

uniformly for i < N, t € A := [-Cy/log N,C/log N| for some C > 0 (for the left statement) and
uniformly ¢ € B := [0, G} (by/N)] for any by — oo (for the right statement). Next, the B-H rejects
HY if and only if pf < &, where & = sup{0 <z <1: Nz < rmax{1,)., 1{p} < z}}} satisfies
rmax{l,)  l{p; <2}} tmax{l, R}

N B N '
With probability approaching one, t; — /T /s; — 6; € A for all i € Hy. Also, because |H| — 0o, we
have xq := T|H| > G i(Cy/logN),

Y Up; <o} = 7Y Upi < Gri(C\/logN)} > TLVMN = 20N,

- \/Tozi/si =2z; + 00, 2z =

Zuz’tuit, Hl?XH@QH = op( )-
¢

>

where the last inequality is from the similar argument of step 3 of the proof of Theorem A.3(i). Then
the definition of # yields 29 < &. Thus G;%(ﬁ:(l +o0(1))) + diz € B for all i € Hy. For ;3 = d; — di2,
1 1
= I H{Gi(ti—0;) <z
T 2 S = g 3 MG <2}

i€Ho i€Ho
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"Hlo| Z 1{G;‘(tz - \/TO&Z'/SZ' — 52) < i‘}

1€Ho
- m10| > HGuilti = VTaifsi — ;) < i(1+0(1))}
i€Ho
_ ‘Hlo‘ S 14z > G0+ 0(1)) + 0ig)
1€Ho
1 1
= ol i;{:g Gri(m; +6;3)(1+0(1)) = ol iGZH:O Gr,i(mi)(1 +o(1)) + 04
1) 1
= —— > Gyi(mi)(1+40(1))
‘/HO| iEZHo
= #(1+o0(1) = ma};@ﬂ +o(1)),

where the first inequality is due to o; < 0 for ¢ € H and that G is nonincreasing; m; = G;’% (z(1+
0(1))); (1) is due to, following the same proof of (B.12),
1 1
0 = == Y [Gri(mi + 0i3) — Gra(mi)](1+0(1)) = —= Y Gui(mi)o(1).
Hol 5 [Hol .
0 1€Ho
Hence with probability approaching one,

F |Ho|T
max{1l, R} = ]37 (1+o(1).

From here, the remaining proof is the same as in Theorem A.3(i).

B.5 Proof of Theorem A.5

Proof. First of all, let w = E[(fi.s — Efi4) f} ] Cov(fo:)~". Then it is straightforward to check that
s B.19)

(Note that BO converges in probability to I', therefore BO is biased for [y unless f,; and f;; are

uncorrelated, which is the omitted variable bias.) Next, define

hi = fis — IEfl,t - w(fo,t - Efo,t)-

Then it is also straightforward to check that Z; = B;h; + u;. This proves the first equation.

Next, given the invertible matrix @ (whose existence is proved in the high-dimensional factor
model literature, e.g., Fan et al. (2016)), we show that there is an invertible H so that SH = (T, 5;Q).
In fact, from (B.19),

(T.51Q) = (B ) (I O),
——\w Q

B
H
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where det(H) = det(Q) # 0. This proves the second equation. (Also, Bl converges in probability to
3,Q. Therefore 3 = (Bo,ﬁl) converges to (T, 5,Q) = BH.)

Next, multiply 7 (8)M;, to both sides of Er; = a+ SA:

BA = B(B' M1y B) ™' My A = T(B)MiyEre — T(8)Miy .
T(B)

This proves the third equation. Finally, a = Er; — S follows immediately. O

B.6 Proof of Theorem A.6

Proof. In cases (i)-(iii), let € = 7 — ap — B;X, then >, = 0. Hence ap = & >, @;. From (B.g),

_ 11
Zuzt Uz/fzfl)‘) _ﬁgsﬁlﬁﬁ/MlNO‘—FAi’
teT

In fact, a more careful

where ||Allo = Op(logTN +)- In (B.31), we showed [|Aljo = OP(ﬁ).
analysis could yield that 3 >; A; = Op(7 + 7). We omit details for brevity. Thus

log N 1
CEAN

P o1
Qo —a= —ﬁ’Sﬁlﬁﬁ’Mlch + Op( T N)'
For 1y = (1,...,1), Ps = B(B'B)7'8', Mg =1 — Pg,
. logN 1 1 1 1 .1
ao—a0+0p( T +N) == N]./]Va—ﬁls\[ﬁ(ﬁﬂ/MlNﬁ) 1NB/M1NOZ—O[0

1
= NllNa — (1/NM,31N)_11/NP,3M1N04 —
1 1
= ngva— Uy Mply) My Pga+ (IyMgly)™ 11’NP51N1§VN04—040
= (IyMply) "1y Ms(a — 1yap)
)"

= (InMgln)™" > (ai —ao)(1 - Bl w) LB:).

7

The second equality uses the Woodbury matrix identity for (% B'M;, B)~L. Tt is easy to check that
the triangular array Lindeberg condition holds, given IEa;l < C. Define

_ 1 _
7 = (31 Myly) o2,

then \/N@ LN N(0,1). The result then follows due to s3 — 3% = op(1) and that 52 > 0.

In case (iv) that observable factors are tradable and there are also latent factors, the result is

similar except that 5 and M, 3 should be replaced with B; and M, 8,1

In case (v) that observable factors are tradable and there are no latent factors, we have
a; = — E(FZ‘,MTZ-Fi)_lFZ’/MTiUi + u;.
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Hence ag —ag = @ — ag — % Zz ﬁ{(F{MTiE)_IF{MTiUZ‘ + % Zz U = @ — o + OP(\/%) Then
VN L N0, 1).
O]
B.7 Proof of Theorem A.7
Proof. When N is bounded, (B.22) still holds:
1 - < 1 !
G-a=i- Zt:utvgsj:u +av'S; A — ,65[;1N,3’M1Na — 5; Ag.
Now 3 — f = Op(%), u= Op(ﬁ) and 7 >, wvy = OP(%). So Ay = op(1) for all d. So
aj —aj = X; + op(1),
where X; = —ﬁz’»Sﬂ_lﬁﬁ’MlNa. Then Var(X;) = %ﬁz’»Sﬂ_lﬁi Var(a;) > 0 so long as 3; # 0. O

B.8 Technical Lemmas

The following proposition gives the asymptotic expansion for the estimated alphas. It applies to
estimators that are obtained in any of the five factor scenarios: (i) observable factors only (Algorithm
3), (ii) latent factors only (Algorithm 4), (iii) the general case (mixed of observable and latent factors,
Algorithm 3), (iv) mixed of observable and latent factors with additional condition that observable

factors are tradable (Algorithm A.1), and (v) all factors are observable and tradable.

Proposition B.1. Under the conditions of Theorem A.1,

(a) Let |Allo = Op(*%5™ + §). We have
a—a = lEj (1— ’z—u)—igM + A
(6% o = T t (7 Uy f 1Na y

where ¢ = /BSﬁ_l/B’ for scenarios (i)-(iii), ¢ = 5l55_l151/ for scenario (iv), and ( =0 for scenario
(v)-

(b) Uniformly in i < N, when T'log N = o(N),

Q; — O _ \/TTZtut(' Vg f )+0P(1/ quN)

se(&i) g

L5 w1 — vlSpA
— \/TTZt t(s' t=f )+0P(1/\/m),

where 02 = Eu3 (1 — véZJIl)\)z and s? = £ 3, ul (1 — véZ;l)\)z.
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Proof. Without loss of generality, we shall assume dim(f;) = 1 in order to simplify the notation. We

use C' > 0 to denote a generic constant.

(a) Scenario (i). In the known factor case, let B be the N x K matrix of ;. Then we have

1
= (7 > ugwp — ') Sy, (B.20)
t

where Sy = £ >,(fi — f)(fi — f). It is easy to show %HE— BlI? = Op(7).
Step 1. Expand X — \. Note that 7 — Ery = v + @, and A= S_1 L B’MlNr, SO

7
~ 1
A= A=0+ NS[;lﬁ/MlNOd + ZAd,

d=1
where

1 ~ 4 ~

AL = S5MB -8 Miga, A= 85 (B— B)Mu, (8- D)X,
1 ~ ~ _ _

Ay = ZBFAML(B- BN A= Nsﬂ By (8- B)o,
1~ o~ B 1 ~_ _

A5 = =55MF-AMiyu, Ag = 5516 My, G,

1~ 1 -
Ar = (NSB1 — NSBI)B’MlNa.
We now show ||Aq4]| = OP(\/—) for all d. Conditioning on a,

1 ) 1 K N N )
Bllo'g S wsiP) = 7w 3050 e Bl £
t k=

tzl]l

C’N
< *EllftHQmaXZ Efuirue| fil| < —-

A

Similarly, |a/al, |8'% S, wefill, |84, ||V 4 S, uefi]l, and |Vya| are all Op(NY2T=1/2). Thus it is
straightforward to prove all the following terms are Op( =): | N(ﬁ B)'M; (|| for ¢ € {a, B,1n}

and (SB1 Sg 1L B'Mi, «. This implies ||A4l| = (m) for all d. In other words,

~ 1
A—A=0+ N5515’M1Na + Op( ). (B.21)

1
VNT

It also implies A = Op(1) and X—A= Op(

ﬂ\

+ 1),
Step 2. Expand @ — a. Note that @ = 7 — ), we have & — o = 30 + & — /B(/): - AN+ (8- A)X
Substitute in (B.20) (B.21),

N

a—a=

7
1 ~ ~ 1
-7 > uwiS;tA+ 'S - 5N5515'M1Na B Aa (B.22)
t
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By Lemma B.1, [|at'S; Ao = Op(vIog N/T). In addition, by step 1,

1
VvVNT

7 7
18 Adllss = Op()II Y Adll = Ol )-
d=1

d=1

Also, we have || Y, utvé(SJTIX - Z;l)\)Hoo <z, utthooHS;lX - E;l)\HK < Op(y/log N/T). So

for |Allee = Op(vIog N/T +1/N) = op(T~/?), we have

~ 1 r—1 [P
oz—a—th:ut(l—vtEf )\)—BNSB B'Myya+ A.

Scenario (ii). In the latent factor case, we proceed as follows.

Step 1. Expand B . Recall that V is the K; x K; diagonal matrix of the first K eigenvalues of
S/N, and that

H= > (wr = )ur = 0 #BD7 + =3 > (ur = )un — B0

Note that there are three small differences here compared to Bai (2003). First, here we expand the
estimated betas while he expanded the estimated factors. They are symmetric, so can be analogously
derived; secondly, Bai (2003) defined H using just the first term. In contrast, we have a second term
in the definition, which introduces just tiny differences because it is op(1) and dominated by the first
term. Doing so makes the technical argument slightly more convenient, because one of the terms in
the expansions in Bai (2003) now is “absorbed” in the second term in H. Finally, we use “demeaned
variables” which also introduce further terms in the expansions below (term G). Above all, we can
use the same argument to reach | D7 + ||H|| = Op(1). The same proof as in Bai (2003) shows the
following equality holds

~ 1 ~ 1 ~ 1 S
8 —BH = 7 Zt:utvgﬁ’ﬁD Ly ~7 t (upuy — Bugul) BD™1 + N(Eutug)ﬂD l—a, (B23)

1
N
Note that HTINGH = Op(T™Y), 1 (Eugul) = O(1), ||% Yo uvy]| = Op(y/N/T) and

%>, (ueuy — Bugu})|| = Op(N/VT). Also, the columns of B/v/N are eigenvectors, so ||3]| =
Op(V/N). Hence we have \/LNHB— BH|| = Op(T~Y2 4+ N71).

~ 1 ~
G=ut'—p'BD !+ Naa’ﬁD—l.

Step 2. Expand . We have

4
~ ~ 11
AN—H " N=H 1'%+ SglﬁH'ﬂ’MlNa +> A
d=1
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where

)

1 ~
At = 85 BMud,
~ 1 ~ ~
Arg = *lfﬁ’MlNWH—ﬁ)H—lv,
1
Axz = 5 ! 5M1N(ﬁH B)H

~

A)\74 = Sﬁ N(B_BH)/MZLNO"

We shall examine the terms on the right hand side one by one. First note that §5 = H' SBH +
op(1) so §,§1 = Op(1). For the first term, we proved ||8'M @l = Op(NY?T~1/2) in part (i), s

1 n 1 )

VNT T7

AA,1=§‘ (ﬂ BH)MlNquS‘ NH’ﬁMlNu_OP(

For Ay ~ Ay 4, note that the assumption max; j<y Zivzl | Cov(wiruge, ujrure)| < C implies

max; ¢ (Var(uuje)) < C, so

N
1 1 1
EHW /ﬁ zt:(utué — Euup)||* = N z:: NQTﬁ Var(ugu;i) 8

C
< j 2 <
< mjaxw1 (Var(utujt))NgTHBH NT’
1 C
Bl 'l Wy S~ B < o (B.24

Hence ﬁﬁ’MlNﬁ S (e —Buguy) = Op((NT)~/2). Similarly, \/iﬁo/MlNﬁ > (upuy —Eupuy) =

Op((NT)~'/?). Note that |[Eusu;|| < C by the assumption of weak cross-sectional correlation, we

have
L, ) 1 "M 1 / NaPp-1
NOMiy(B—BH) =AMy NT Zutvtﬂ BD7 + 5 My 7 Z(Utut — Buyuy) BD
t~ ﬂ M N(Eutut)ﬂD_l - N/B MG
~ O 3
B VN N
Similarly, %o/MlN(B— BH) = Op(\/t +). Thus Ay2 = Op(F + +). Similarly, both A, 3 and

Ay 4 are Op(% + %) Together,

1 1

A—H '\ = H‘16+S H’BMlNa+Op(N 7)-

(B.25)

Step 3. Expand & — «. Substitute in the expansions (B.23) and (B.25) in steps 2, 3,

~

a—a = Bo+u—BHN—H '\ + (BH — B)A
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4 1

- u+;ad—mfs ! H/BMlNa"‘OP(]i] T)
G, = —N(Eutug)BD_IX,
Gy = —Nszt:Utvéﬁlngx
Gy = —ﬁ Zwtu;—Eutu;)BD—lX,

i = (@' #BD + vawBD A

First note that HBHgﬂ_l%H'B’MlNaHOO = Op(1)|| %8’ Mi,al = Op(N~Y2). For Gy, we shall obtain

its rate later. For G2, note that

1 =~ i~ 1 s e g e B _
NB’BD -3 = ~H YH'B = BBDTA+ H 'DTN (A= H™'\) + (HDH')"'A = 1A
1 1
= — 4 — HDH")~t — 71,
Op(ﬁ+N)+[( ) FA

But HDH' = Op(J) + 5 Xy vivfH'-W(H'B = BBH' + (3, viv} — ) + By = By + Op(k).
So

~ i~ 1 _ log N log N
2 : 1l 1 2 : Iy—1 _
7T t Utvtﬁ BD A — T t Ut’l)tzf )\HOO == OP(\/ T2 + TN2 )

For Gz, note that by Lemma B.1,

1 / nNan-—1 1 / -1
— —-E D < sy — Eu; H|||D
Iy D~ B30 o < | 3 Bl - #1107
1 -
w7 2wty = Bugup) BHD ™o
logN log N
\/ 72 ). (B.26)

As for Gy, note that for G = av' 8’ BD-1 + uu’ﬁD 1

log N
T2

1 ,~ 1 _,»~ _
1Glloe < Nlalloollt’ 588+ @ BIID| < O )-
It remains to show that ||Gi||cc = Op(1/N). To do so, we need to show ||B— fH|x =

Op( IO%N + %). We use [|All; = max; > |4ij|. Then by (B.26) and Lemma B.1,

~ 1
1B~ BH]lo < Zum BD™ + Z(utut Buf) B0 + - (Bu) B — Gl
logN _ 1 ~ _
< 0p(E8) + LIEue)nBHED oo + B 118~ BH Il D7
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Move the last term to the left hand side, and note that |[(Euu})|1 < C,

logN 1
T W)

15— BH s = Op(

Then [|B]loc < |8 = BH|loo + | BH o = Op(1). So

1

Eugty)||1]|Blloo | HD ™| = Op(%):

1
Gl < i

Put together,
_ 1 - 11
aa:TZZWu@zﬁmﬁ%fNaMma+A

where [|Alls = Op(1/'2Y + L).

Scenario (iii). In the mixed factor case, let B\O be the N x K, matrix of Bo’i where K, =
dim(f,+). Then we have Bo — By = (7 > et — w0,)Sy ™t + By oy fievhy — fivl)So ! where
S, = % o for — fo)(foyt — f,)". So there exists a matrix

A= ( IKO > _ (IKO>
% >oi(fie — fz)vg,tsgl a )’

~

Bo—pA=6, &= (3w, —at})S;" (B.27)
t

such that

Step 1. Note that Bo is a biased estimator for 3,, due to the correlations between f,; and f;;.
But the bias is Bl% Yoi(fre— ﬁ)v’O,thl, which is still inside the space spanned by 5 = (B,, ;). As a
result, in terms of estimating SA, BO is unbiased. In fact, we shall also show that Eil also estimates

“the subspace of 3” without bias. We also have Z; = §;l1+ + 1+, where

e = U — U — 51(fo,t - fo)> lig == fl,t - fl - a(fo,t - fTo)

Therefore, we let D be the K; x K; diagonal matrix of the first K; eigenvalues of % >+ ZeZ]. Let

0 Ik, 0 1 5D~
Hy = (b) H:(A,Hl):< b)’ b= D B+ u) D™
t

a

Then Bg — Bib = &, where

1 5 1 5D~
&= ij( W+ H)BDT — & Etjfo,taatﬁz +u)BD

Let B = (Bo, ), and & = (€1,&). So
B =BH +&. (B.28)
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This implies (|8 — BH||? = Op(% + ).

Step 2. Recall that 7 — Er; = S0 + 4, and = S_l L B’MlNr where M, =1 — 1x1%/N, so

4
. 1
N—H \N=H'%+ SglﬁH’ﬁ’MlNa +> A

d=1
where

~ 1
A)\,l = 8 N/BM

Ai 1 -~ .
Ao = 83" 6Muy (BH - mH

115
M = 5 NﬁM (8H - B)H

1 1

A)\74 = 7( )MlNa

To bound each term, note that (B.24) still applies. Even though &3 now takes a different form than
in the previous case, most of the proofs for the expansion in (B.25) still carries over. So we can avoid
repeating ourselves but directly conclude that

1 1

A—H 'A=H "o+ 5;" H’ﬁ Miya+Op(5; + =

. Ik, 0
b lg b 1)’

then it is easy to see that the first K, components of H~'\is \,. That is, the risk premia of observed

2. (B.29)

Also, if we further write

factors are consistently estimated: Xo —P )., which is rotation-free, while the latent factor premia

are still estimated up to a rotation.
Step 3. Similar to part (ii), we have
a—a = Bo+u—BHNA—H '\ + (BH — B)A
1
= a-— BHS‘ H’,B Mo —E&H A+ A

where A denotes a generic N x 1 vector satisfying [|Allsc = Op(+ + %)

The main difference from the previous latent factor only case is to derive an expression for

&3H !, which we now focus on.

Note that by definition, for mo := %ﬁ{@D‘l, Li=(t:t<T)be K; xT,v,= (ot :t <T)
be Ko x T, vy = (v : t < T) be K; x T matrix, and U be N x T matrix of u;, we can write in a

matrix form
o . 1 1o a1l '
& = <TUUOSO, (TU TUUOSO Tvo) ima | + A.
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Write J = (LU — LU, S, 2v,) Ly (AL L4)~". Tt can be verified that, for |Ale = Op(*8Y + 1),

1
E&H! W (T Zutvg,tsgl — Ja, J) + A
t

@ % ; uf S+ AL (B.30)
We now prove both equalities.
As for (1), note that
Hy = <0> ; letl WBIBID™ +0P( ! )= L1L1m2 +Op (7 1 . ~)-
b TN T N T T N

Also note that H = (A, Hy) so

1 1
(TUU;SO_I — Ja, J> A = TUU;S;%
1 1

TN)

1 1
(TUngo_l—Ja, J) H, = JTLlLllmQ ( U——UUOSO_ 7Y vo)Lima + Op(

Therefore, ($Uv,S; ! — Ja, J)H = (£Uv,S;t, JHLiLims) + Op(% + +) = & + Op(% + ).

o~o

This proves (3 = (+Uv,S,' — Ja, J)H + A and thus (1) holds.

S, — So Sa\ 1 Vol Vo]
f= S S T ' ]
LS ), v,

Let W =5, — SélS(leol. Using the matrix block inverse formula, % Do utv{fo = (a1, a2) where

As for (2),

1 _ 1 _ 1 _ —
o= UGS U S U
ay = —fU’U/OSO_ISOZW_l + TU/UZ/W_l'

Note that a = S,S;! + Op(T~1/2), so (LLiL}) = £(v] — av))(v; — vod') = W + Op(T~Y/?). So it
holds that
1 1
J = {Tng — TUngolSol} W e A=as+A,

and
1 I o—1 1 / —1¢g/ ¢o—1
—Ja = TU,UOSO Sol — TUUZ w SOZSO +A
Then we have

1 1 1 1
= > uw),, St = Ja = TUUIO;S’O_l + [TUU;S;lsol - TUU;] WSS+ A =ay + A
t
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This proves (2). Together, in the mixed factor case, we also have

1 _ 1
- TZut(l — 251N —ﬁsﬁlﬁﬁ’MlNa+A, (B.31)
t

where ||Aljeo = Op(lOgN + %)

Scenario (iv) & (v). In the mixed factor case with tradable observable factors, the proof
is very similar to scenario (iii). In the case of observed factors only and they are all tradable,
the problem becomes the regular fund-by-fund time series regression. We omit details to avoid

repetitions.
(b) We only provide proof for the latent factor case, since the other scenarios are very similar.
Let m; := ﬁ > wir(1 = v}%7 '), When T'log N = o(N),
ai—a;  mi+AVT iS5y Mo
se(q;) \/Tse(ai) se(q;)
The second term is op(1/+y/log N). Note that /T log N||A|lc = op(1). It suffices to prove,

Vlog N max [m||o; — VT se(@;)| = op(1) = \/log N max |m;||o; — sil.
(2 (2

By Lemma B.1, max; |m;| = Op(\/log N). In addition, let L = D~'X. Then

max |07 — T'se(a;)?| < max\ Zult —uZ(1 - viZ;l)\)2| + max |s? — 02|
(2 (2

The second term on the right is Op(y/log N/T) by Lemma B.1. We now focus on the first term.
The first term is bounded by Q1 + Q2 + Q3, where

1 e e
Q1 = mzaxlfZu?t(Q—{—i}\gL—l—véEfl)\)(vt—H L) L,
t
1 2 -~ Iv—1 / -1/ -1
Q = mzax]TZuit(Q—i—vtL—i-thf Ny (H™VL =570,
t

1 ~ ~
Qs = max ’T Zt:(uit + wit) (Wi — wie) (1 — B,L)?).

(1) Bound Q;. Note that v; = %B’(n — 7). So

B (3H — H v~ B0+ 1B — 150

= 3 (BH — BYH v, + %E'Ut +0p(T71/?),

7, —Hil’l)t =

\HZ\H

where the last Op(T~/?) is uniform in (4,t). Hence

1
@1 < m?X\TZUtUgt@*‘aU*‘Ut 1)‘)’H* B'(BH - B)H'L]|
t
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IN

+max \% ; %B’utu%@ + v + UéE;l)\)L’

+ma | D2 4} NIOR(T ) + = > ulOn(r )

Op(T'+ N1 max yl Z veugy (2 + 0S5 A) — Bogugy (2 + 025 ')

+O0p(T' + N~ max |— th ul, — Bvlul| + max |% Zu?tvt — EuZ v |Op(T~1/?)
t

FOR(T™ ) max| 70 3™ (2 + 57 N) — B (2 + {5y )|
t

"H//B\”oo H;aX

1 1 _ _
’f Z(ujtuz?tvt — Eujeufivg)| + ‘f Z wjeuzy(2 + ’Uézf ) = Bujeud, (2 + ngf )|
t t

1
1Bl oe - max [nEutun@ + 07 W)+ [Busudor

_ N _ 1 N _ _
+O0p(T™' + N )mlax|f zt:vtu?t(vt — H )| + max ’T zt:u?t(vt — H ') |0p(T7Y/?)

~1 1
7 2/~ _1
—I—mlax\ﬁ T Z Nutuit(vt — H vy)|

t
+Op(T7YV2 4 N7

log N 1
Op(y] 22

1
Tt ) Onl0) e 3 ()

_ _ 1 5 _ 1 - _ _

+0p(T Ly N 1) mzax |T zt:vtu?t(vt - H IUt)| + mzax ]T zt:uft(vt - H 1vt)|Op(T 1/2)
~1 1

+mzan/th: NUtUzt(’Ut H )|

logN 1 1

+ 4L logN 1
T N N2

Op( o+ )

max x|6' = ZUtU?tU:tmOP(l) = Op(
t

where we bounded w7 max; |8'7 -, wuZu}f| as, for wy = ujB/V'N,

1

N

1 1
max ’T Zuztwt| < Nmax ’T Z( ztwt Eultwt” + —max ‘E Zultwt =Op(N )
t

t

(2) For @2, note that

1L =S| < (|[H YD H = SN + |57 HIN — HIA| = Op(N~Y2 4+ 771/2),

So

1 1 1
Q2 < maxl|= uf 24 0L+ 8 1)\1) 0 —_—
2 s ”T; t( t t )t” P(\f \F)
1 1 1 1
< Op(—= i)eraXII*Zugt(ﬁt—H_ ) |Op(—= + —=)
< OP(ﬁ‘F\/iN)-
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(3) For Qs, note that Uy — uy = — 0 — i — (8 — BH)?, — BH(V; — H™'y). First, we show

max; |+ >, (Ui + uir) (1 — 9,L)%| = Op(1), due to
1 1
max |~ Zt:uitu — UL < Op(1) + max | zt:uit@ — H ',)?| = Op(1), and

1 N 1 ~
max | Y (1= 0L)?| < Op(1) +max|= Y (i —uir)(L = 0L)*| = Op(1).
t

Similarly, it can be shown max; \% > @i 4 ui) (1 — 0,L)% (0 + wy)| = Op(1) where w; = —L_Blu,.

Next, by direct calculations

max | 3@+ i) (L= DL — H o)

7
t

1 - _ _
< max| §<uit+uit><1—m>2vtrop<zv LT
1 N 15 _
| - 3+ )1 = L Bl + Op (27
1
< Op (N f)+maX|*Z(uzt+uzt)( 10)2||ujel 15 — BH||s
t
logN 1
< —).
< Op( Tt N)
Then we have
9
Q3 = m?X’*Z(Uzt +uzt)(1 _UtL) (uzt uzt)’ < ZAd;
t d=1

log N 1)
T N7

logN 1
T W

1 e o
A3 = max|z > (@it + it) (1 = BL)*5||B — BH]|oo = Op(

1 N - _
Ay = max|o > (it + wir) (1 = L)Y (T — H '0p)[||BH |00 = Op(

t

So Q3 = Op(1/'BN 1 L) Together, Q1 + Q2 + Q3 = OP(\/@"‘ Tlﬁ) Thus

log N 1

+ -
T VN
Hence max; |m;||o; — VT se(@;)| = Op(yv/Tog N)Op (/&Y + Tlﬁ) =op(1/+/1og N).

).

max |07 — T'se(q;)?| < Op(
7
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Proposition B.2. Consider the latent factor model
Z=X+E+K+G, X =p[F

where F' denotes the K x T matrix of latent factors, and Z is subject to missing data satisfying

Assumptions A.1-A.5; € is the idiosyncratic noise. Suppose
(i) with probability approaching one, 1.1]|€ o X|| < Anr;

1 is an approximation error so tha = (Kit), ks = aby where a;, by are suc a
(ii) K i mati that K (Kit) by wh b h that
max; [lai]| = 0p(rieg) and & 3, [bi]|* = Op(1).

(111) Also max; % Zj,k | Cov(ejieit, ereir)| < C.

(iv) G = (git) is that max; % Ztgzzt = Op(ﬁ) and % Zt(% Zj wjtgjtﬁj)Q = oP(m).

Then there is a rotation matrizc H so that

T
~ 1 1 1
—H'Bi=H'(=> FF) =) Fe T N b33
5[,2 Bl,z (T tzl t t) T, teZT t€it + OP( TlOgN) ( )

where the op term is in ||.||co-

Proof. First of all, a standard argument, based on the restricted strong convexity condition, yields

that the nuclear-norm penalized regression yields:

1, ~ 1 1
—||M — M||% = Op(C% Cnr = —=+ —.
The novelty of the proof is to show the asymptotic normality of the debiased estimators for

low-rank inference, where we propose a new inference algorithm that is different from the existing

literature (e.g., Chen et al. (2019) ), and is more suitable in the context of asset pricing.

Let E be N x K whose columns are v/N times the top K left singular vectors of M. Then by the
sine-theta inequality, there is matrix H; such that ﬁ” B— BH, |F = Op(Cnr). Next, by definition,
ﬁt = (Zf\il witﬁ,ﬁ;)—l Zf\il wit@zit, where w;; = 1{r;; is not missing}. Let B, = % Zf\il wzt@ﬁg and
B = Hi% ZZJL E(wit)gigéHl-

Then let Hy := H '+ B~ H' % SN | (Bwit)B1,4(8] H1—B;) Hy *. Both B and H, are independent
of (i,t). Basic algebras show the following identity:

N 4
~ ~ 1
F, — HyF, = Bt 1H1N Z;wjtﬁj(é“jt + Kjt + gjt) + ; At,d,
‘]: -
1 & 1 &
_ 1,7 ~_1 ~
Ay = -B 1H1N ;(wjt — Ewji) 1, F H, " (85 — HiB1,j) + B, N jz::letfjt(ﬂj — H1 ;)
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Ay = (Bf Zwﬁﬂg B jHy — B H ' F,

AVEREES ijt — H1B15)(8; ;H: B}')Hletv
~ 1 ~
Aig = B 1N ;%‘t(ﬁjt + gjt) (B — H1B15)- (B.34)

Next, let A, = %Zthl witﬁtﬁt’. By definition, B“ = (Z?zl witﬁtﬁ{)_l ZtT:1 witFizi. Substi-
tuting (B.34), basic algebras show the following identity:

Bii—Hy By = sztFtFt sztFt €it + git) + Z 0i,d
5i,l = sztB 1}11 ijtﬂ] €4t + Kyt + g]t)(gzt + K + gzt)
] 1

1 _ N
Sia = A7l witFt* wjt(Ejt + ki + gje) B HV By Y HY By
T N J

~
7

T
Z tht th_lﬂlz

IS¢
w
|
a
IS Mu;
’ﬂ\

1

N =
MHH

-1
51'4 = i
1

T
-~ _ 1
Sis = (A7 — A, 1)H2* sz‘tFt(Eit + Kit + git)

witAr,a(ejt + Kt + gjt)
1

i
~~
Il

t=1
dis = sztFtFt sztthizt (B.35)
where A; = _HQT Zt L wit Fy F{H) and we note A; LH, = ( Zt 1 wi FyF)) 1

We shall bound max; ||d;1 + 0;2|| in Lemma B.3. Note that max; | A; — Aql| = op(1). Also,
ming Yumin(Ai) > co. So max; | AL = Op(1). Similarly, max, | B;}|| = Op(1). So

T
N N 1 o~
max A7 = A7 < Op(1) max||4; — A} = Op(1) max|| > wu(FF — HyFyF{H)|| = Op(Cr).
t=1

This implies max; [|0; 5]| = Op(ﬁ). Also, it is easy to see max; ||0; 6| = op(iﬁlog]v)_

As for max; ||6; 3 + ;. 4||, we note max; £ >, €% < max; |# >, 4 —Ee% |+ O(1) = Op(1). Hence
max; |9 + bl = Op(1) Yoy /7 X 1 A0all

Bounding 7 >, || A¢1]|? is more technically involved because it is challenging to directly obtain

an expansion for B: — H! B, ;. Meanwhile, the proof of max; ||01; + do|| + S A gl? =
J 1 5J ) ) d?él T t )
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oP(ﬁ) is given in Lemma B.3. Then uniformly in 1,

T T
R , 1 1 1

-1 _ -1 . N—1 -~ . . -
Bii—Hy Bii = Hy (T ;wthtFt) T ;wthtfzt + op( TlogN)

T
/ 1 1 1
= Hy '( E RF) ™ g Fiey + op(——=), (B.36)
T = T; by Tlog N

where the last equality follows from the fact that max; ||+ Zthl(wz't —Ewi) FLFY||, max; || 7 Zthl (wit—

Ew;)|| and max; H% Zthl witFyeit|| are all Op(\/—k’%,N).

It remains to prove = >, [|Ag1[ = Op(m).

We focus on bounding & := 5, ||+ Zévzl(wjt - ijt)BlJFt/Hi_l(gj — H}Bij)|I*. To achieve a
sharp bound, we apply a computation result and the auxiliary leave-one-out argument in Chen et al.
(2019). Define for each t < T,

W.,Y) = i in [|Qo(Z WY |2+ At |W|% + Anz|Y ]2

N (N ) arg min - min |20 e+ AnelWlE + Ane Y7

WEDLYED) = arg  min 07 0 (2 = WY)[F + D o (M = WY)[F+ Anr[WIE + Avrl Y][E
) S x

where we recall M is the true value of g, F,

QD = (wisl{s # tHhnxr, B = (VEwisl{s = t})nxr-

So (WD, Y (D) are the “leave-one-out” versions of (W,Y). Importantly, (W, Y (%) are inde-
pendent of Z;, (wit : < N). We now apply three results from Chen et al. (2019), which are their

Lemma 12, Lemma 18(3), Lemma 5, and Lemma 2:

(a) There is a K x K orthonormal matrix H(~" that only depends on W and BiF, and

another orthonormal matrix Hj

—~ —~ N 1
(_t)H(_t) — H = —_— 1/47 .
max W WHs||p = op((7) logN)

(b) Let Up Dy Vi, be the SVD of M = 8,F, and W = Up;D3}*. Then
IW Hs — Wl|p = Op(Cyr(NT)'*).

(c) [WY' = M||p = op(y/N/log N).

Strictly speaking, Chen et al. (2019) considered the case N = T. However, by carefully ex-
amining their proofs, the proof of (A.12) (A.9a) and (A.14b) still carries over to the case when
N#£T.
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We are now ready to bound £. We shall use a generic notation p throughout the following steps

without causing confusions.

Step 1. There is a rotation Hs = Op(1) so that
WY"'. So let Q; = (Wity oy WAL,

( NT)1 NTT WH4 equals the left singular-vectors of

€ = 3 |l Biding( — EQ)(B — fiH T FP < 461 + 4
t
VN

WWH4 — B H)H{ ' Fy|)?

1 1
& = th:”Nﬁl/diag(Qt—Eth

1 1 /1 o \/N [T -1 2
po= th:HNBzdlag(Qt]EQt)(ﬁ WWH4)H1 E".
By (c¢) and sine-theta inequality, u < Op( )Hﬂ 7 1/41/1/'['[4”2 < Op(ﬁ)HM— W?’H% =

OP(W)' The problem then becomes bounding &;.

Step 2. Note that

§1 < 46 +4p

1 1 . =~ - _
& = 72 Iy Piding( - EQ)(VNWH Dy = Bl Hy ' Fy|P”
VN = . §
po= *lef fdiag (S — EQ) s W (H = Hs Dy H(NT) V) Hi P,

We now bound p. For notational simplicity, we shall assume dim(F;) = 1 as one can apply an
element-by-element analysis for the multivariate case without changing the result, given that the

number of factors is fixed. We first have, by (b)

|Hs D2 (NTYYE — Hyllp < (NT)YA|(WW) "W |(NT) V4| W Hs D> (NT) A — W Hy |
M M

Op(V)||W H — W||¢|| Dy /|| + (NT) /4| WDy 2(NT)/* — W Hy|
Op(Cnr) + |Unr — (NT) " YVAW Hy|

Op(Cnr) + Op((NT)™'3)|[WY’ — M||p = Op(Cnr).

VAN VAR VAN VAN

Let d := (N‘TF)IMW Then ||d|| < C. Hence by (b) and

1 1 . VN — 2 —-1/2 1/4(2
o= OP(l)TZHFtﬁﬁz/dlag(Qt—EQt)WW” |Hs — H3D), " (NT) / |
VN
< Op(CRr) leFt Bidiag(Qe — Q) ||l oy (W Hs — W)
(NT)Y
VN 9
+0p(CRr) = ZHFt Bidiag(Q ]EQt)WWH

1
< 0p(Cy7) + Op(CRr) Z (Fi— Zﬂly (wje — Ewjr))? = Op(Cyr) = OP(TlogN)
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given that + > | Cov(wjt, wit)| < C. The problem then becomes bounding &».
Step 3. Note that

& < 4153 + 4M1
& = 52l Adiag(@ — EQ)(VNW I HCI DY - gy iR
t

1 1, o 1
po= N ll5pAidiag(Qe — EQ)(WH; — WD H! 9D, P HTE2.
t

We now bound . By (a) 1 < Op((NT)~/2) max, |W Hs—W O HE0 |12, = (TlogN) The problem

then becomes bounding &3.

Step 4. To bound &3, we still consider the case dim(F;) = 1 without loss of generality. Note
that —ﬁlHl equals the top left eigenvectors of M. Let p; : (\/NW(_'S)H(_'”D]T/[l/2 — BHy). Note
that py only depends on M and Z excluding the ¢ th column of Z. As such, for P := (p; : t < T') we
have E(G;diag(£2 — ]EQt)ptHletwl, F, P) = 0, therefore

1
E(&|6, F.P) = Op(53 ZFt piSpe < Op( N2>mgxupt!!2
1 1 —~
< OP(F) max |[VNUy — BiHy |3 + OP(W) max ||1(WH3 - W%
(=) (=) _ 117 2
+0P(N2f)maXH( H WH3)|x OP(TlogN)’

where S = Var(f/diag(Q; — EQ)|5;, F, P) and almost surely,

151 = I}g}\f}iz |Si5] < I%%Z 1BiB;]| Cov(wir, wjt)| < C.
J J

Hence &35 = Op(ﬁ)- This proves § = OP(ﬁ)'

The bound for + >, ||+ Z 1 wjte]t(ﬁj HiB;)||* is very similar. We just need to replace S
in Step 4 with S = Var(e,diag(Q;)|3;, F, P), whose ||.||; norm is also bounded by a constant. This

completes the proof.

Next, we prove the following lemmas.

Lemma B.1. maxi<y ||7 Y, ul fi f — Bull fr foll = Op(1/' &Y, for m,n,v € {0,1,2} for

any q,k < K. Also, max;j ||+ Y, (uuj, — Euguji)|| = Op( IO%ﬂN), max;jy || 3 >, (udujiug —
1 [1og N
Eufujiug) | = Op( O%FN)’ and for wy = \Fﬁ Ut, MAX;<N HT > ugowi — Bugwf|| = Op( %)

for d e {1,2}.
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Proof. We apply Lemmas A.2 and A.3 of Chernozhukov et al. (2013b) to reach a concentration
inequality: let X1, ..., X7 be independent in R? where p = N or N2. Let 02 = max; EXZ%. Suppose
E max;; Xft log N < CoT, then there is a universe constant C' > 0, for any x > 0,

[log N x
. < —
rzréax \ E X — EXZt] Co + —,

with probability at least 1 — exp(— JQT) CTM. Now we set z = o+/1'log N. With the

CL’

assumption that (log N)* = O(T), and E max;; X < o*(log N)?TC, we have, for any € > 0, there is
C., with probability at least 1 — €, max;<y ‘T > Xit] < Ceoy/ @. The desired result then holds

by respectively taking € as ugy f}, fqt, Uity and wiwy.

Lemma B.2. With probability going to one, and any constant M > 2,

|LZ u-t(l—v’Z_l)\)| |LZ ug(1 —U’E_l)\)|
max VT 2 Fp A VT 1
i g; 4 Sq

where 2 = 25, uZ,(1 — véE}Tl)\)Q.

<+/MlogN.

Proof. The proof simply applies Corollary 2.1 of Chernozhukov et al. (2013a). Let X;; = uyu(1 —
’Z;l)\). Then under Assumption A.3 (iii) and log(N)¢ = o(T) for ¢ > 7, Corollary 2.1 of Cher-

nozhukov et al. (2013a) implies for some ¢ > 0,

|+ 37, Xl
sup P(maxw>s —P(max|Yi| >s> <T°
K3 3

s 0

where Y; ~ N(0,1). In addition, P (max;<y |Y;| > s) < 2N(1 — ®(s)) < 2exp(log N — s2/2) = o(1)
for s = v/Mlog N for any M > 2. Next, replacing o; with s;, the result still holds, due to o; > ¢

and max; [0? — s?| = op(1) , by Lemma B.1 .

O
Lemma B.3. Recall the definitions of 61, 02,3, A¢q in (B.34) and (B.35). We have max; ||61]| =
oP( i) = max; |10l = o szgy)s and Ygoo /7 20 1 A0all? = or () -
Proof. First note that max; ||[B; — B| = op(1) and thus max; | B; || = Op(1), so
1 =
7 BT =BT < Z 1B — BJI* < Op(1 Z I~ an Bil; — Hi B Hy)ll”
t=1 =

+0p(1

||Mﬂ

N

1

N D (Wit = Bwit) B1iBil1° = Op(CRr).
=1
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Similarly, i, | F[?|B; " — B7Y[? = Op(CRrp).

(i) Recall that §;; = A\;l% T 1wztB 1H’ L j-vzl w;tP;(€j¢ + gji)(Eit + gir) where we write

€it = €it + kit Then max; [|01,]| < T+ 1T+ 111+ oP(ﬁ) with
T N
I < Op(l)max|(z ZHB L= BT YA Z \wajtﬁjgjtatH?W
t=1 j=1
1 T N
+OP( )mlaXH Zwltwjtﬁjgjtgztn
t 1j5=1

t

T N
1 _
< Op(Cnr)max( e (= z:I*z:th»@’ﬁjt||4)l/4
=1 j=1

T N

1
+Op(1) HlaX ||7 Z Z WthJtBJEEthltH
t=1 j=1
1 K 1
+0p(1) max Hﬁ tzl J; wirwjt Bj(ejtei — Bejeen) || + OP(TgN)
Var(+ > wiBiejicit) log N 1
— Op(Cyp\/log(NT)N~1/2 N—l\/ N &g P = op(——=),
pP(CntT/log(NT) + + T op( TlogN>
given that max; % Zj,k | Cov(ejieir, ereir)| < C. Also, we have
II < Op(D)max||= Y =) wywjiBigjgi)| = op(———=),
; T;N; R Tlog N
11 & 1
IIT < Op()max|= > — Y wywjiBifigit)| = op(———).
; T;N;’ JHEITEII Tlog N

(ii) Note that L Zt 1 Ft HyFy)? = OP(CJ%]T)-

T T
1 ~ 1
max 2] < Op() (e Yo (Fi~ HaF)) (5 anzwﬂ St g
t=1 t=1
1 & 1 &
H0r(z 2 Iy ZthFt B 3B = B
+0p(1) maxH ZsztwﬁFtsjtﬁ |+ Op(1 maXH Zanw]tthﬁﬁ I
t 1 3 t 1 3
log N 9 1

= OP( NT +CNT):0P(\/W)7

where we used

tl] t

1 1 1
max || Z > wirw;iFigieBll < Op(1 Z < D witg;iBi)*)? = op(—m—=2)-
N r v1'log N
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(iii) By Cauchy-Schwarz, we have

N
1 1 = 1 3 1
- A 2 < 17 B*l_B—l 2 F27 /~H— /‘2:
I R OF DM WIS 2 Woisth = 1 = oroe )
1 1 1
< D= IR DB — HiBl?)? =
< )T t | ¢l (szl 18; 18u5117) OP(TlogN)’

1 2 2 1 2 2 1
T;”AWLH < OP(CNT)m?XT;(HjHFth):OP(TIOgN)-

Lemma B.4. Suppose min; Ew;; > c. For any deterministic and bounded sequence {b; : i < N},

(1) max;<n HT% > e Git — %Zt Gitll = OP(\/@) for Git € {vo,1V0 45 Vot Vi ts Vot VLt Wit }-

(i) 14 X bl Ser Gt — 3 Gl = opl( ).

(ii) 3 |+ S0 wiebi(G — Omel* = Op(m) for my € {vg, v}, 1} where & = T%Zteﬂ Gt for

Gt € {01, V405 4, Vo, UG }-

() |5 Z bi(Hoi—Ho)|| = op( mees) = 15 20 bi(Hoi—Ho) 7 3, G|, where G € {vg, vievg, 4, Vo404,
Hoi = 75 2 yeq: ViaVosSois and Hy = 33, o), S5t Also, 137, |14 20 withi(Hoi — Ho)ne||* =
oP(m) for my € {vg, vpvy, 1}.

(0) 5 X 7 Lver Uit = )bl = op(qe) and 7 320y |5 ity wiebi(lie — L)mel|* = o(rg)

where lyy = (vy — 013) — Hoi(Vot — Uos), and ly = (v — 1) — Ho(Vor — Vo), for all my € {1,v:}.

(vi) All these terms are Op(ﬁ)' max; ||% Dot Vit — H7 |, max; ||T% doteT: Ut — H |,
max; HTLZ Zteﬁ (V1 (for — fo i) = lltvot)H and max; HT ZteT((fot foi)(for — foi) — Uo,tvg,t)H'
(vii) max; || = Yoy 00— H 11 32, vl H Y| = Op(\/'%Y), and max; ||+ Yoy, 0140 41| = Op(1/ %),

Proof. (i) For p; := Ew;, conditioning on (;, w;; are independent across (i,t). Hence

1 log N 1
ma| 7 3 Gl =) = O - ) = maxlz 3 (e = po)l

Also, min; p; > c. This implies: max; HT%% > Git(wie — pi)|l = Op(y/ logN), max; ||% >t Girwit|| =
Op(1), and min; 7 Y, wit > c. Therefore, the result follows from the following identity:

1 Wit 1
=y Z Czt - Z Cit bi T Zt - Z Cztht + —— Z Czt Wit — pz
7 biT Zt Wit

teT

(ii) Without loss of generality, we assume (;; is a scalar as the analysis can be carried out

elementwise. We have
1 N 1
*Z ZQt ZCM) =1+1]+op(—==—=), where
N T+ - Tlog N
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SO

=1

= \

= ¢
T2N Z ; Z ztht W'Ls ; W’Lt pz

It is straightforward to show EI? = O(%) and EIT? = O(7%). Hence this leads to the desired

result.

(iii) 7 2o |4 Doy wiehi(G — Omel|? < 41 + 41T + oP(ﬁ) where
1 1 wisbi 2
I = = = . N
T zs: H N z@: Tp; zt:Cztnt(wzt pz)” s
1 1 by ,
I = T ; HW Z;zt:; EZth(wik — pi)witwis|| .

It is straightforward to show EI = O(7y + 72) = EII = Op(m).

(iv) Let & = vz,tvé,t- Let £ = % > & and & = T% ZteTi &. By parts (i)(ii), max; HS;} — S’O_1|| =

Op(4/ #) Therefore,

| X LN §_ N
N Zbl(HO,i - Ho) — N sz(ﬁz N Z
i=1 i=1 =1
N = N
_ 1 1, € , Na-1 1
- N; (52 ‘S)So +NSo ;bz(so_so,z)so +0P(\/1Tg;N)
1
= (i)
In addition, we have
1
H*Zb - Zthz‘tH
1
< ||f2bi P — MTZCMHH—ZM =8, > Gt
t
1
< - (S, . — ‘
. ng +HNZb S Tthwnnﬂis ' S = 55, zcmu

Using the same argument as in part (ii), it can be shown that both terms are oP(ﬁ).

Additionally, for ; = v tvo 4

- > I+ (o — o
- fZH—Zwltb O)Sy ml|? + ZH—sztch So)Sg ml* + o P(TlolgN)

A
_OPTlogN'

The last equality follows from (iii) that £ >, |4 >; wibi(G — Omel|* = OP(ﬁ).
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(v) First, note that

L Zzt—ztzbu@p(ﬂ )+||1ZZ(HO,Z-—HO)IZUO,J;MA
v t

i "~ tteT
b;
+”Nzi:p U — U thwth+||—Z— (Voyi — leth.
Since max; || >, lwi| = Op( 10%,]\7 ), the last two terms are Op(ﬁ). The first term follows

from part (iii). Next, it follows directly from (iii)(iv) that for m; € {1, v},

T N
1 1
T;HN sztb (lit = 1t) mt” ZH*anb U, — 1) mt||2
1 T
+= ZHizwztb 0,i — )Uotth + = Znizwztb - )'Uozth
t:l

1<a 1 N 1
B, 5 2 _
T Ztl by Zi:l witbiHo(To,i = To)mul|” = OP(TlogN)'

(vi) We have 0y = (for — fo,01¢). Then
O = H ™ (op = 0) =0 — (fo, = fo, (H 1)) = (0, (D0 — Hy "))’

We can apply (B.34) in the proof of Proposition B.2 for Hy := Hl_l7 1/7\,5 =y and F; :=[;. Hence

N

v — H =B 1H1 Zw]tﬁl,g —Mjt + ujt — u1+ﬁlg Jt = +2Atd’
j 1

where by the proof of Proposition B.2, £ 3, [|A¢4*> = Op(m) for d = 1...4 and max, || B;"!|| =
Op(1). Therefore, max; 7 D oteT: A4l = oP(m) and thus for m; € {1,v,4},

1 ~ _
max | = S @ — Hy )m)|

YieT:

11 & 1
< mxlg )y ;thwitﬁl,j(—njt g = 5+ B = )] + op(—eg)
< or o 0P SIS g (e 2 = o)
- VTlog N T N~ PPN ! VTlogN"

The last equality follows from (v). For v,; = T% Zte’ﬁ Vot

1 - 1 1
max || = > (O4(for—fos) —H; "livy,)|| = max ||* > (O —H; Z V1,47, 4]l = Pl )
o E = VIlog N

Finally, max; ”T%. Zte’n((fo,t - fo,i)(fo,t - fo,i), - UO,tUtly,t)H = max; || — @o,i@;,iH = OP(ﬁ)-
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(vii) By (vi), = T D ieT; Ul Vot = T ZteT ltvat + Op(ﬁ), and

B 1 1 log N
— ; H lt?}ot + OP(TgJV) = Hl T zt:(vht - HO/UO,t)/U:),t + OP( T )
log N logN)

T T 7

= H;'(Sio— HoSo) + Op( ) = Op(

Finally for p; = Ew;, we have

_ 1 r_ 1 /_
—thvt HITZWUQH 1 TZ(Ut H™ Ut)’Ut—i— ZH v (v — i H 1)

L teT; t teT; teT
_ /_ / w log N
szt Z H 'l H 1+ = ZH vy H (—Zt —1)=0p( & ).
zpz tETi pi T

C Data Appendix

C.1 Lipper-TASS

We follow Getmansky et al. (2015) and Sinclair (2018) in cleaning the TASS data. We receive the
TASS data in the form of roughly yearly snapshots,’ which include both dead and alive funds. In
order to adjust for backfill bias, we remove returns that were inputted prior to date when the fund was
reportedly added to TASS; if that date is missing, we use the date of the first snapshot in which the
fund appears.”? We remove funds that do not report monthly or do not report net returns. For funds
which report NAV, we recompute monthly returns to equal percent changes in NAV; otherwise,
we keep their reported returns. For firms reporting in an international currency, we adjust their
returns and AUMs into USD, whenever possible (this excludes returns before the start of the Euro
for European funds, as the pre-Euro currency cannot be determined). Finally, we remove suspicious
returns (returns more extreme than -100% or +200% returns in a month), suspicious funds (funds
with an 100-fold increase in AUM followed by a 99% decrease in returns; funds where an extreme
change in returns does not appear in the AUM: a return is lower than -50% in a month, but AUM
does not drop by at least 10% or vice-versa on the positive side), and stale returns (returns equal for
three consecutive months). We also remove funds that do not consistently report AUM: we require
funds to report AUM at least 95% of the time. The motivation for this requirement is twofold: first,
funds that strategically list their AUM in some periods but not in others are likely to also be funds
that manipulate their reported returns; second, because we want to use the AUM information to

focus only on large enough funds, as described below. We also remove funds with more than 5% of

1Specifically: the first snapshot is for 2000. We then have a snapshot for 2002, and at least one snapshot per year

from 2005 to 2018, except 2006, 2010, 2014, 2017.
2 An alternative procedure, proposed by Jorion and Schwarz (2019), could be used in the absence of snapshots.
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returns missing. As the literature has noted (e.g., Aggarwal and Jorion (2009)), hedge fund datasets
sometimes report duplicate series (for example, multiple share classes or cases in which multiple
feeder funds channel capital to one investing master fund, see Joenvaara et al. (2012) and Bali et al.
(2014)). To prevent this, we screen for cases in which two funds have return correlations of 99% or
more while overlapping for at least 12 months (the 99% correlation cutoff was also used in Aggarwal
and Jorion (2009)), and in that case we remove one of the two funds (we keep the one with the

longest available time series of returns in case the two funds do not exactly overlap).

We impose two further constraints on the funds, again following the existing literature. First,
we require funds to have reported returns to the dataset for at least a certain amount of months.
This also helps reduce the total number of missing values in our data, which, as the simulation shows,
is important to be able to apply the FDR control. Based on the simulations, we choose 36 months
and check for robustness increasing this number to 60 months. Second, we follow Kosowski et al.
(2007) in only using funds above an AUM threshold; we require funds to have at least $10m of AUM,
and drop them after they fall below this amount. This ensures that we focus our analysis on larger

funds, which are also less likely to manipulate reporting to TASS.
C.2 Evestment

The eVestment dataset has been used in a smaller literature. We base our cleaning procedure partly
on the one employed for TASS, and partly by looking at the literature that has used eVestment,
among which Li et al. (2015); Sebastian and Attaluri (2014); Mozes and Steffens (2016); Cookson
et al. (2018); Jenkinson et al. (2016); Chava et al. (2019).

Specifically, we receive the eVestment data in a single large database containing both dead and
alive funds, with fund performance broken down into separate investment vehicles. Similarly to the
TASS data, we filter to only include returns which were reported monthly and on a net basis. We
remove any non-hedge fund products from the sample. For international returns, we recompute
returns and AUMs into their USD equivalents. We compute a fund’s returns by taking an AUM-
weighted average of its vehicle’s returns when available; if vehicle AUM is not available, we take
an equal-weighted average. We use the same criteria as for TASS to remove duplicate funds and
suspicious returns. We remove funds with likely reporting errors in AUMs. In particular, AUMs
are sometimes off by many orders of magnitude, sometimes for several months at a time. Given
that we compute value-weighted returns, including funds with AUMSs that are erroneously high by
orders of magnitudes might bias our results. To be conservative, we exclude funds in which the AUM
increases more than 10-fold in any a month or more than 100-fold in any 12-month period (and only
among those funds that are always above the size cutoff). We also remove hedge funds whose AUM
is always reported to be above half a trillion dollars throughout the life of the fund (these are most

likely errors). We remove funds where AUM or returns are missing for more than 95% of the time.
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As for TASS, we require funds to have reported returns for at least 36 months, and with a size of
at least $10m. Finally, we note that eVestment reports the date in which each entry was added
to the database. Given that all the hedge fund data we observe was entered after 2009, we cannot
eliminate returns prior to data entry to avoid backfilling bias, as we would not have enough data
for the estimation. We do however keep the earliest observation whenever we see an entry being

subsequently changed.
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