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Data snooping is a major concern in empirical asset pricing. We develop a new framework
to rigorously perform multiple hypothesis testing in linear asset pricing models, while
limiting the occurrence of false positive results typically associated with data snooping. By
exploiting a variety of machine learning techniques, our multiple-testing procedure is robust
to omitted factors and missing data. We also prove its asymptotic validity when the number
of tests is large relative to the sample size, as in many finance applications. To improve the
finite sample performance, we also provide a wild-bootstrap procedure for inference and
prove its validity in this setting. Finally, we illustrate the empirical relevance in the context
of hedge fund performance evaluation. (JEL C12, C55, G12, G23)
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Multiple testing is pervasive in empirical finance. It takes place, for example,
when trying to identify which among hundreds of factors add explanatory power
for the cross-section of returns, relative to an existing model. It also appears
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Thousands of Alpha Tests

when trying to identify which funds are able to produce positive alphas (i.e.,
have “skill”) among thousands of existing funds—a central question in asset
management. In all these examples, the standard approach is to perform many
individual statistical tests on the alphas of the factors or funds relative to the
benchmark model, and then make a selection based on the significance of these
individual tests.

With multiple testing comes the concern—closely related to data snooping—
that as more and more tests are performed, an increasing number of them will
be positive purely due to chance. Even if each test individually has a low
probability of being due to chance alone, a potentially large fraction of the
tests that ex post appear positive will be “false discoveries.” A high “false
discovery proportion” (FDP) decreases the confidence we have in the testing
procedure; in the extreme case, if the number of false discoveries of a procedure
reaches 100%, the significance of the individual tests becomes completely
uninformative. Controlling the FDP ex ante or, more precisely, its expectation,
the false discovery rate (FDR) is more involved than controlling the size of an
individual test. The size only depends on evaluating the probability of rejection
under the null hypothesis, whereas the FDR is associated with multiple tests and
it depends on the true (unknown) data-generating process. In the case of fund
performance evaluation, both the FDP and FDR depend on the true underlying
distribution of alphas across funds.

In this paper, we propose a rigorous framework to address the data-snooping
issue that arises in a specific, but fundamental, finance setting: testing for
multiple alphas in linear asset pricing models. We base our methodology on
the false discovery control approach introduced by Benjamini and Hochberg
(1995) (hereinafter B-H). The idea of the FDR control procedure is to optimally
set different significance thresholds across different individual tests in such a
way that the overall false discovery rate of the procedure is bounded below a
prespecified level, for example, 5%. The objective of our paper is to extend the
false discovery control procedure like B-H to the asset pricing context. This
involves combining different methods together (to deal with omitted factors,
missing data, and so on) and requires additional estimation steps and new
asymptotic theory, which we develop. Specifically, our paper makes four main
contributions.

First of all, we formally address the threat of omitted factors to the
performance of the B-H procedure. Anomaly returns or fund returns in excess
of the standard benchmarks appear to be highly cross-sectionally correlated,
suggesting that anomalies potentially have exposures to unknown risk factors,
and that fund managers may trade common factors that are not observable.
This means that there are plausibly omitted factors from the benchmark that,
generally speaking, could bias the resulting alpha estimates, and in turn lead
to more rejections if alphas are overestimated or less otherwise. Even if there
were no bias, omitted factors can still produce large standard errors in the
resulting alpha estimates and hence larger p-values corresponding to the true
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alternatives, resulting in a power loss. Furthermore, leaving factors in the
residuals produces strong correlation among the alpha test statistics, which
invalidates the independence assumption of the standard B-H procedure and
leads to an increase in the standard error of the FDP. We provide valid asymptotic
theory on multiple testing of alphas, which accounts for latent factors estimated
using principal component analysis (PCA). While in a recent study Giglio and
Xiu (2017) advocate the use of PCA to address the issue of omitted factor bias
in the context of risk premium estimation, they do not consider multiple testing
of many alphas, which involves a high-dimensional vector of parameters and
is thereby a fundamentally different statistical inference problem. Key to being
able to tackle the challenge of omitted factors is the fact that we exploit the
“blessing” of dimensionality—the other side of the “curse” of dimensionality
(Donoho 2000)—that obtains as both N, T — 00.!

Second, we adopt the matrix completion method from the recent machine
learning literature, see, for example, Koltchinskii et al. (2011), Maetal. (2011),
and Candes and Tao (2010), to recover missing entries in the matrix of asset
returns. A notable application of this method is the so-called Netflix problem—
predicting customers’ ratings of movies based on existing ratings. Because most
customers only rate a small set of movies, a large number of ratings are missing
from the customer-movie matrix. The key assumption behind this algorithm is
that the full matrix is approximately low-rank. This approach is particularly
relevant to empirical asset pricing, because many time series of returns have
short histories or missing records, and these returns likely follow a factor model.
Our use of matrix completion exploits this structure of returns to recover the
low-rank part of the returns without missing entries, which in turn leads to
estimates of latent factors and their betas. Notably, this matrix completion
approach would yield the same result as PCA if there were no missing data.
When data are missing, the common approach in the literature is to adopt an
EM algorithm (e.g., Stock and Watson 2002; Su et al. 2019). In contrast, our
matrix completion approach is much faster; hence it is particularly appealing
for large dimensional return matrices.”

To improve the finite sample performance of our procedure and prompted
by the popularity of the bootstrap approach in this literature, we also develop a
wild-bootstrap procedure for multiple testing of alphas, which we prove robust
to missing factors and missing data. Notably, the empirical setting suffers from
a severe missing data problem, which substantially reduces the effective sample
size. As a concrete example, over 70% of entries are missing from the hedge

In most finance applications, the number of hypotheses to test is overwhelmingly large relative to the available
sample size. For example, in our empirical analysis we use a couple hundred monthly returns to evaluate the
performance of thousands of hedge funds. It is more reasonable to cast our analysis in a large N and large T
setting.

The matrix completion method has also attracted attention in the recent econometrics literature on panel data,
for example, Athey et al. (2018), Bai and Ng (2019), and Moon and Weidner (2018). Our paper is a first attempt
to apply this technique to asset pricing.
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fund returns we investigate in this paper because of their short lifespans. The
same issue also occurs to individual stock and mutual fund returns. As shown
from our simulations, the wild-bootstrap method outperforms the asymptotic
approach; both methods appear to control the FDR well. On the contrary,
standard widely used bootstrap procedures based on alphas from fund-by-fund
time-series regressions fail to control the FDR.

Last but not least, in the context of testing for inequality null hypotheses (e.g.,
that alphas are non-negative, a null relevant for fund performance evaluation),
another contribution of the paper is that we design a screening method to
improve the power of the B-H procedure. Holding the count of true alternatives
constant, the number of rejections according to the B-H procedure tends to
decrease as the total number of hypotheses increases (because the critical
value of the B-H procedure drops), hence reducing its average power.> In our
context, the B-H procedure becomes increasingly less able to detect skilled
fund managers as the count of unskilled funds rises. Effectively, our screening
approach safely eliminates a set of very unskilled funds in a data-driven way,
so that they no longer affect the critical value of the B-H procedure. The alphas
of these funds are “deep in the null,” and we show theoretically that ignoring
them improves the average power compared to the usual B-H procedure, while
maintaining the desired FDR control.*

In a nutshell, our false discovery control test proceeds as follows. We first
adopt matrix completion to interpolate missing entries in asset returns, which
also produces estimates of latent factors and betas of both observable and latent
factors. We then use the cross-section of average returns to estimate the risk
premiums of all factors and obtain all the individual alphas from the regression
residuals. Next, we compute asymptotic t-statistics and their p-values or use a
wild-bootstrap procedure to construct these p-values directly. Before we plug
these p-values into the B-H procedure, we apply the alpha screening step to
eliminate rather negative alphas. Finally, we apply the B-H procedure.

We illustrate this procedure using the Lipper TASS data of hedge fund
returns. We show empirically that hedge fund returns are highly correlated
in the cross-section, even after controlling for the standard models, like the
Fung-Hsieh seven-factor model. This is perhaps not surprising, as it is to
be expected that many hedge fund strategies load on factors beyond these
standard ones, but it needs to be accounted for when measuring funds’ alphas.
Our procedure—which bounds the false discovery rate below 5%—is able to
select, among the universe of funds, a subset of funds that consistently beats
the benchmarks both in and out of sample. Compared to other methodologies

2 According to Benjamini and Liu (1999), the average power of a multiple hypothesis test is defined as the ratio of

the expectation of the number of correct rejections (a random variable) and the number of hypotheses for which
the alternative holds (assumed to be known).

This screening technique was previously adopted in different contexts by Hansen (2005), Chernozhukov et al.
(2013), and Romano and Wolf (2018).
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proposed to deal with multiple testing, our procedure is able to identify a larger
number of “skilled” funds, achieving superior out-of-sample alpha even with
significantly larger portfolios (both in terms of number of funds included and
assets under management [AUM]). We also show that our results are robust
with respect to using different portfolio sorting procedures, using different
observable benchmarks, and using different hedge fund data sets (Evestment
instead of TASS).

We emphasize that our methodology is by no means limited to the evaluation
of hedge fund performance. Instead, our procedure (and all the inference
techniques we derive) can be adapted to different contexts relevant to asset
pricing research. For example, it could also be applied to the evaluation of
mutual fund performance (e.g., Kosowski et al. 2006, Barras et al. 2010), the
detection of anomalies (Harvey et al. 2015, Yan and Zheng 2017; Chordia et al.
2020), and the search for predictive signals of risk-adjusted returns (Green et al.
2013). Different components of our methodology may be applied separately
to these contexts. For example, the matrix completion step is important if the
underlying data have missing values, but not otherwise. We derive our theory
in the most general case, so that it is relevant for all potential applications
mentioned above.

The existing literature in asset pricing is aware of the data-snooping concern
with multiple testing (e.g., Lo and MacKinlay 1990) and has taken in response
two alternative approaches. One has been to abandon the multiple-testing
problem altogether: for example, rather than trying to identify which funds
or factors have alphas, an alternative is to ask whether any fund beats the
benchmark, or whether funds on average beat the benchmark (see, e.g., White
2000, Kosowski et al. 2006, Fama and French 2010). This approach can
overcome the multiple-testing problem, since it replaces a multitude of null
hypotheses (one per fund) with one joint null hypothesis, but it throws the baby
out with the bathwater, as it cannot tell us which of the funds actually produce
alpha. The second approach, proposed by Barras et al. (2010), Bajgrowicz
and Scaillet (2012), Harvey et al. (2015), etc., imports statistical methods that
directly control the family-wise error rate or the false discovery rate. While the
recent statistical advances on multiple testing have been successful in many
fields (like biology and medicine), their general applicability to finance is still
not well understood. The main issue at play is that many of the assumptions
on which these methods are based are clearly violated in finance contexts
because of omitted factors and missing data. Recently, Harvey and Liu (2018)
propose a double-bootstrap approach to control FDR, while also considering
other quantities such as false negative rate and odds ratio to trade off false and
missed discoveries. Our approach to compute t-statistics can also apply to their
context so that the combined approach correctly accounts for omitted factors
and missing data.

Data snooping has been a central topic in statistics ever since the early
1950s. Earlier work mainly focuses on using Bonferroni-type procedures to
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control the family-wise error rate (FWER) (see, e.g., Simes 1986; Holm 1979).
These procedures guard against any single false discovery and hence are
overly conservative, in particular when testing many hypotheses. Instead of
targeting the question of whether any error was made, the approach of FDR
control, developed by Benjamini and Hochberg (1995), takes into account
the number of erroneous rejections and controls the expected proportion of
errors among the rejected hypotheses. While this seminal work relies on
the independence assumption among test statistics, follow-up studies such
as Benjamini and Yekutieli (2001) and Storey et al. (2004) demonstrate the
robustness of this procedure to certain forms of dependence. Nevertheless, the
literature, for example Schwartzman and Lin (2011) and Fan et al. (2012), has
recognized the drawbacks of the standard FDR approach in the presence of
dependence, including excessive conservativeness, high variance of the FDP,
etc., and has proposed alternative procedures, for example., Leek and Storey
(2008), Romano and Wolf (2005), and Fan and Han (2016). These methods,
however, do not exploit the factor structure of asset returns, nor are they directly
applicable to an unbalanced panel. There is also a burgeoning body of research
that applies machine learning methods to push the frontiers of empirical asset
pricing (see, e.g., Kozak et al. 2017; Freyberger et al. 2017; Giglio and Xiu
2017; Feng et al. 2020; Kelly et al. 2017; Gu et al. 2018). These papers employ
variable selection or dimension reduction techniques to analyze a large number
of covariates. These procedures, however, do not directly control the number
of false discoveries.

Finally, our empirical results directly speak to a long literature dedicated to
evaluating the performance of the hedge fund industry. Contrary to the case of
mutual funds, for which net alpha is estimated to be zero or negative for the vast
majority of funds (with some exceptions, evidenced in the recent work of Berk
and Van Binsbergen [2015]), there is more evidence that some hedge funds
are able to generate alpha. An important first step in this empirical exercise has
been the exploration of hedge fund strategies and their risk exposures (Fung and
Hsieh 1997, 2001, 2004, Agarwal and Naik 2000, 2004, Agarwal et al. 2009,
Patton and Ramadorai 2013, Bali et al. 2014); we use several of the benchmarks
proposed in this literature as observable factors in our analysis. At the same
time, the literature has explored whether hedge funds are able to produce alpha
in excess of these benchmarks, using different statistical methodologies (Liang
1999, Ackermann et al. 1999, Liang 2001, Mitchell and Pulvino 2001, Baquero
et al. 2005, Kosowski et al. 2007, Fung et al. 2008, Jagannathan et al. 2010,
Aggarwal and Jorion 2010, Bali et al. 2011). While the majority in this literature
focus on using alpha as the key performance measure, Chen (2019) proposes to
identify skilled fund managers by evaluating their probability of outperforming
their unskilled counterfactuals.

The paper proceeds as follows. Section 1 discusses the detailed procedure
for our FDR control. Section 2 presents Monte Carlo simulations, followed by
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an empirical study in Section 3. Section 4 concludes. The Internet Appendix
provides the asymptotic theory and technical details.

1. Methodology

Our framework is based on a combination of three key ingredients, each
essential to execute multiple testing correctly in our asset pricing context: factor
analysis, Fama-MacBeth regressions, and false discovery control. These three
ingredients are complemented by additional procedures that help us tackle
issues specific to the asset pricing applications (e.g., the presence of missing
data).

At a broad level, our methodology proceeds as follows. In a first step, we use
time-series regressions to estimate fund exposures to (observable) benchmark
factors. Since these benchmarks do not fully capture the comovement of
fund returns, hiding, for example, unobservable risk exposures, we further
apply PCA or matrix completion to the residuals to recover the missing
commonalities. This results in a model where, effectively, both observable and
estimated latent factors coexist. Next, we implement cross-sectional regressions
like Fama-MacBeth to estimate the risk premiums of the factors and the alphas
relative to the augmented benchmark model that includes both observable
and estimated latent factors. Importantly, in the presence of missing data, the
estimated alphas need to be debiased. Finally, we build t-statistics for these
alphas and apply the B-H procedure for the FDR control.

In what follows, we describe each ingredient of our procedure in detail,
and we discuss how we tackle complications due to missing data and how to
enhance the power of our procedure using alpha screening. We also provide
an alternative wild-bootstrap approach to construct statistical tests. We derive
the statistical properties of our methodology, and show formally that it indeed
achieves the desired false discovery rate control in multiple tests for alpha.

1.1 Model setup
We begin with a description of the model. We assume the N x 1 vector of excess
returns r; follows a linear factor model:

re=a+Br+B(fi —E(f))+us, (D

where f; isa K x 1 vector of factors and u, is the idiosyncratic component. The
parameter A is a K x 1 vector of factor risk premiums, which is identical to the
expected return of f; only if £, is tradable.’

Throughout, we impose an unconditional factor model in which both « and g are time-invariant. This corresponds
to a practical trade-off between efficiency and robustness (to model misspecification) in light of the limited sample
size in our empirical analysis. That said, it is straightforward to extend our procedure to conditional models a
la Ang and Kristensen (2012), although the theory would become less transparent. In practice, we follow the
literature and apply our procedure on a sequence of rolling windows.

3462

920z Auenuer g0 uo Jesn Ateiqr oA Aq LE L L L6S/9GHE/L/FE/RIo1E/SH /W00 dNO"oIWepEdE//:SdRY WOl POpeo|umod


https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhaa111#supplementary-data
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhaa111#supplementary-data

Thousands of Alpha Tests

The objective is to find individual funds with truly positive alphas. To do so,
we formulate a collection of null hypotheses, one for each fund:

Hi:a; <0, i=1,...,N. 2)

While our primary target is on inequalities, almost all techniques we introduce
below work for equality nulls (except for alpha screening, which is designed
for inequalities):

Hi:; =0, i=1,...,N. (3)

Importantly, the alpha testing problems we consider are fundamentally different
from the standard GRS test, in which the null hypothesis is a single statement
that

Hy:ay=ar=...=ay=0. @

The former is a multiple-testing problem that addresses which funds have
significantly positive alphas. In contrast, the latter addresses whether there
exists (at least one) fund whose alpha is significantly different from zero. While
the latter is the natural way to test asset pricing models (which imply that all
alphas should be zero), it is not the right one if the objective is to identify which
funds are able to generate positive alpha.®

Simultaneous testing of multiple hypotheses—Ilike the test we propose—is
prone to a false discovery problem, also referred to as data-snooping bias: the
possibility that many of the tests will look significant by pure chance, even if
their true alpha is zero. To understand why, recall that for each 5%-level test,
there is a 5% chance that the corresponding null hypothesis is falsely rejected.
This is the so-called Type I error. In other words, there is a 5% chance that a
fund with no alpha realizes a significant test statistic and is therefore falsely
recognized as one with real positive alpha. This error exacerbates substantially
when testing many hypotheses. For example, suppose there are 1,000 funds
available, with only 10% of them having positive alphas. Conducting 1,000 tests
independently would yield 1,000 x (1 —10%) x 5% =45 false positive alphas,
in addition to 1,000 x 10% =100 true positive alphas (assuming ideally a zero
Type Il error). Consequently, among the 100+45 =145 “skilled” fund managers
we find, almost one-third of them are purely due to luck.

The multiple-testing problem is one of the central concerns in statistics and
machine learning. One of the classical approaches is to control the probability
of one or more false rejections, that is, the FWER, instead of the Type I Error.
One such approach is the Bonferroni procedure, which suggests rejecting the
null of the individual hypothesis at the 5%/ N level, where N is the total number
of tests. However, this method is overly conservative in that the level of the test
shrinks to zero asymptotically. To ensure that the probability that even just

Common tests in the literature also include the test for positive average alphas, that is, Hj : E(o;) <0, and the test
for existence of at least one fund with a positive alpha, that is, Hyq : max|<; <y () <0.
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one of the N tests is a false discovery stays below a certain level, say 5%, the
procedure needs to adopt a higher and higher threshold as the number of tests
N increases; this will result in an unfeasibly high bar for the t-statistic of each
test.

A more suitable procedure in this scenario is to control the FDR instead, that
is, the expected fraction of false rejections. This is the purpose of the original
B-H procedure, which has been the most popular since it was introduced and
has been widely used across disciplines. We now turn to describing the B-H
procedure and showing under what conditions it can be applied in an asset
pricing context.

1.2 Controlling the false discovery rate

We start by setting up some notation. Suppose ¢; is a test statistic for the null
Hf) (often taken as the t-statistic) and a corresponding test that rejects the null
whenever ¢; > ¢; under a prespecified cutoff ¢;. Let Ho C{1,..., N} denote the
set of indices for which the corresponding null hypotheses are true. In addition,
let R be the total number of rejections in a sample, and let F be the number of
false rejections in that sample:

N

F = Y Hi<N:ti>c andieH,),
i=1
N

R = Y HisN:>c)

i=1
Both F and R are random variables. Note that, in a specific sample, we can
obviously observe R, but we cannot observe F. However, we can design a
procedure to effectively limit how large F is relative to R in expectation. More
formally, we write the FDP and its expectation, FDR, as

P=———, FDR=E(FDP).
max{R, 1}

For comparison, we can also write the per-test error rate, [E(F)/N, and the
FWER, P(F > 1). The naive procedure that tests each individual hypothesis at
a predetermined level 7 €(0, 1) guarantees that E(F)/N <t. But note that it
does not guarantee any limits on the false discovery rate, which can be much
larger than 7. The Bonferroni procedure, instead, tests each hypothesis at a
level 7/N. This guarantees that P(F > 1) <t and implies a false discovery rate
below T, at the cost of reducing the power of the test in detecting the true alphas
(in the limit, if a test is so strict that it never rejects, the false discovery rate is
zero! But that test will have no power.).

1.2.1 The B-H algorithm. The FDR control procedure strikes a balance
between these two approaches. It accepts a certain number of false discoveries
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as the price to pay to gain power in detecting true rejections. Analogously to
standard individual tests (that control the size of Type I error), this procedure
controls the size of the FDR: it ensures that FDR <.

We now describe the details of the B-H procedure.

Algorithm 1. (B-H procedure)

S1. Sort in ascending order the collection of p-values, {p;:i=1,..., N}, of
the individual test statistics {t;}. Denote p(y <... < p.) as the sorted
p-values.

S2. For i=1,...,N, reject Hj if p; <pg, where 7<\=max{i§N:p(,-)§
Ti/N}.

Benjamini and Hochberg (1995) establish the validity of their procedure
under the condition that the test statistics are independent.’” A natural question
is how this procedure can correctly control the FDR given that the FDR depends
on the unobservable distribution of alphas. Below we provide a brief discussion
of the intuition of this procedure.

Recall that we aim to identify a critical value p*, so that the null Hf) is
rejected for all p; < p*. To increase power, p* should be equal to the largest
value p € (0, 1) such that the FDP is controlled with high probability:

& <, 5)
max{R(p), 1}
where F(p) denotes the number of false discoveries and R(p) the number of
significant tests. They are the same as the aforementioned F and R, but are
written in terms of a given p:
N
F(p) = Y MHi<N:pj<panda; <0},

i=1

N
> Hi<N:pi<p).

i=1

R(p)

Note that for any given p, R(p) is known. While F(p) is not, it can
be bounded from above using the data. Let Ny be the number of true null
hypotheses. We have the following approximation (with high probability):

(a) (b) (©)
F(p)= NoP(p; < pla; <0) < NoP(p; < pla;=0) = Noyp, (6)

where approximate equality (a) follows from the independence assumption of
individual test statistics; inequality (b) follows from the fact that p-values p;’s

Benjamini and Yekutieli (2001) revise the use of % in S2 by ?:max{isN:p(,-) <t1i/(NCy)}., where Cy =

Z{i 1 i~!, which they show guarantees FDR control under a certain form of dependence. Nonetheless, because

of Cy ~log(N)+0.5, C1 gpg ~ 7.4, the method remains too conservative, limiting the power of the procedure.
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are larger under o; <0 than under «; =0; equality (c) follows since under the
null of «; =0, p-values are uniformly distributed. We still do not know Ny, so
we replace it with some upper bound M. The choice of M determines the degree
of conservativeness of an FDR control procedure, which we shall discuss later.
We then have, with high probability,

F(p)<Mp.

Replace F(p) with such upper bound. Therefore, inequality (5) is preserved so
long as:®

p<rR(p)=er\ill{i§N:p,»<p}' .

- M M
We can then find p* as the largest p to satisfy inequality (7):

erill{ifN:p,-<p}
M 9

p*=max{pe(0,1):p§

which equals the usual B-H critical value P® if M =N, a rather conservative
estimate of Ny. The above derivation sheds light on the sources of
conservativeness in the B-H procedure: testing inequalities as shown from part
(b) of inequality (6), as well as overestimating the number of true nulls, Ny. In
the next section, we focus on alleviating the conservativeness of the procedure
and enhancing its power.

1.2.2 Alpha screening. Based on the above discussion, not surprisingly, the
count of negative alphas adversely affects the power of the B-H procedure. To
see this, holding the number of non-negative alphas constant, as the count of
negative alphas increases, the critical value t7<\/ N in the B-H procedure shrinks
(because N increases and the relative order of p-values corresponding to non-
negative alphas remains approximately the same), making it more difficult to
detect true positive alphas.

We tackle this problem by using a simple yet powerful dimension reduction
technique—the screening method in the context of testing for inequalities. The
idea is that when some of the alphas are “overwhelmingly negative” (which
we call “deep in the null”), their corresponding hypotheses could be simply
eliminated from the set of candidate hypotheses, because it is safe to accept
them. This would reduce the total count of hypotheses and thereby improve
the power of FDR control. Based on this idea, we propose to reduce the set of
funds to

7= {i <N:t;> —log(logT)\/logN},

where the threshold depends on the sample size and the cross-sectional
dimension. Our theory (presented in the Internet Appendix) shows that with

If R(p)=0, then F(p)=0, so Equation (5) holds trivially.
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probability approaching one, for any i such that ;¢ 7, the true a; <0. We
thereby can safely consider a smaller set of funds, Z, for FDR control. Also, we
formally show in the Internet Appendix that this screening-based B-H procedure
has a larger power to detect positive alphas, and it can consistently identify all
positive alphas with reasonably strong signal strength.

Algorithm 2. (alpha screening B-H procedure) Let |f | denote the
number of elements in Z.

S1. Sort the p-values, pa)<...<p(7, for {p;:i €1}.

S2. For i €Z, reject H it p; <pg, where = max{leI p(,)<rl/|Z|}
Accept all other ]HIB.

Alternatively, Barras et al. (2010) apply a simple adjustment proposed by
Storey (2002) to improve the power of the B-H procedure. Specifically, they
suggest replacing kT /N in the cutoff value by kT /No, where Ny is the number
of true null hypotheses that can be estimated using No (1—n)"" Zl Upi > A},
where A €(0,1) is a tuning parameter. The intuition behind this adjustment is
that under the zero-alpha nulls, the p-values are uniformly distributed on (0, 1);
therefore one would expect Ny(1 —A) of the p-values to lie within the interval
(A, 1) for any sufficiently large A. Replacing N with Ny < N thereby increases
the power of the procedure. As shown in the previous section, this amounts to
setting M = Ny, which still controls the FDR, making it less conservative.

However, this adjustment is not applicable in the context of testing null
hypotheses that are inequalities, under which the p-values are no longer
uniformly distributed. The deviation from the uniform distribution becomes
very severe when many alphas are very negative, which would substantially
overestimate N, eventually resulting in conservativeness.’ In contrast, the
Algorithm 2 we propose replaces i <N in the definition of ¥ with i €Z and
sets M = II |, which directly targets the conservativeness due to inequality null
hypotheses. By eliminating the true negatives, the remaining null alphas are
close to zero, so that we can safely increase the critical value, and consequently
enhance the power of the procedure.

In a setting similar to ours, Harvey and Liu (2018) propose to increase
statistical power by dropping funds that appear only for a small number of
periods. This approach shares the same spirit as our alpha screening step and
is typically used in the literature (e.g., Fung and Hsieh [1997] require at least
36 months of data). As we discuss below, this requirement is also important for

Although truly negative alphas conform with the null hypotheses, their corresponding p-values are larger than
those with zero alphas. In the case with many negative alphas, according to the estimator by Storey (2002), No =

1=xn"1 l=1 {p; > 1}, more p-values are greater than A, resulting in an overestimate of N. In our simulations,
ﬁo can even be greater than N.
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dealing with missing values, so we impose it in our analysis. However, in our
study we also apply the alpha screening procedure.

Finally, it is interesting to think about our screening procedure in relation
to the problem of selection bias in hedge fund reporting, which also affects
our empirical application. A well-known problem with standard hedge fund
data sets (e.g., Agarwal et al. 2013), is that “bad” funds, those with particularly
negative alpha, will likely not report to the data set. This is of course an important
issue for understanding the average alpha (denoted by o) of hedge funds, which
would be biased upwards. But when the objective is to identify funds with skill,
this bias is much less relevant. The fact that funds with a truly negative alpha
and funds that would have displayed a negative t-statistic anyway are excluded
from consideration if they do not report to the data sets, has the same effect as
our screening step: it increases the power of the methodology to identify good
funds among those that do report.

The above discussion on FDR control assumes the existence of valid test
statistics that are approximately uncorrelated. In the next section, we explain
how we construct alpha estimates and the corresponding t-statistics (or p-
values) that satisfy this condition.

1.3 Estimating alpha

To properly estimate the alphas of asset or fund returns, we first need to specify
a benchmark model. As discussed in detail in Cochrane (2009), when the
benchmark includes nontradable factors, estimating Equation (1) requires two-
pass Fama-MacBeth regressions. The first stage estimates 8 using time-series
regressions of individual fund returns onto the benchmark factors, and the
second stage involves a cross-sectional regression of average returns onto the
estimated B, where the residuals of this regression yield estimates of alpha,
denoted as @.

The classical setting assumes a fixed dimension N, so that the asymptotic
theory is developed under 7' — oo only, which only holds under the GRS null
hypothesis Hy: oj =, =...=ay =0. A close scrutiny of the Fama-MacBeth
estimator shows that in a more general setting that allows for non-zero alphas,
we have

@—a=—B(B'MiyB)"' B M a+0p(T" "), ®)

where Ml;, =Iy —N 1y 1’y and the first term dominates and hence prohibits
a consistent estimator of «.' Importantly, @; is inconsistent even if a; =0
for any fixed i, as long as B; #0. The bias arises from the cross-sectional
correlation between betas and alphas. This is not surprising since the cross-
sectional regression requires an exact orthogonality condition between residual

We give a formal statement on the inconsistency of @ for fixed N setting in Proposition A.7 in the Internet
Appendix.
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and regressors, which is not satisfied if some alphas are not zero. Consequently,
when the dimension N is fixed, the two-pass regression cannot be applied to
the tests of multiple hypotheses unless all alphas are zero. Since we cannot
exclude that some of the alphas are actually nonzero when testing individual
hypotheses, this creates fundamental obstacles to the estimation and testing of
alphas.

A potential solution to this problem is to estimate and test alphas using only
time-series regressions. This approach appears viable but only in the case in
which all factors are excess returns; this assumption is violated if the observable
factors are nontradable.

A second concern relates to the choice of the benchmark and the possibility
that some important factors are omitted, thus attributing to alpha what truly is
just exposure to the omitted risk factors. More explicitly, consider a specific
example of Equation (1):

rt=05+[ Bo B ][ ]}(l): i|+uz=a+ﬂl)\l+,30fo,z+ Bi(fre—Efio)+u, , 9)

“alpha” “idiosyncratic” error

where f,; is the observed benchmark model and f; ; is the vector of omitted
factors missing from the benchmark. To make things simple in this example,
assume that f,, is an excess return (this condition is not required in our general
specification below). Equation (9) indicates at least three challenges due to the
omitted factors. First, the “alpha” computed relative to the benchmark model
that just includes f, (and thus omits f;) includes the risk premium associated
with the missing factor f;. As long as the latent factors in f; contribute to the
total risk premiums, then a bias 8;A; would arise in the estimated “alpha.” Even
if f; is not priced, omitting f; would still lead to an omitted variable bias for o
when f; is correlated with f,.!! The bias of alpha can result in more rejections
if alphas are overestimated, or less because of underestimation. Secondly, f;
plays the role of “idiosyncratic” error. Since the idiosyncratic error covariance
matrix contributes to the asymptotic covariance matrix of the alpha estimates,
the presence of f; in the residuals increases the standard errors of the alpha
estimates, making it more difficult to separate the nulls from the alternatives. For
instance, the p-values corresponding to the true positive alphas become larger,
resulting in a loss of power. Thirdly, leaving f; in the residuals produces strong
correlation among the alpha test statistics, which invalidates the independence
assumption of the standard B-H procedure. A consequence of this is that the
standard error of the FDP will increase, so the control on FDR (the mean of
FDP) becomes unstable, as shown by Efron (2010).

In what follows, we explain how our new test statistics overcome these
obstacles by exploiting the blessings of dimensionality. To better explain the

11 Explicitly, the bias equals g;4; — BE f; fo(E fo £) " E £ A, where A=(1—Ef}(Bf, f) " 'Ef)~ L.
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intuition, we start with the balanced panel and two special cases of Equation
(1). For convenience, we introduce some additional notation. We use capital
letter A to denote the matrix (ay,as,...,ar), where a, is a time series of vectors.
We use Mp=1,— B(B'B)~'B to denote the annihilator matrix for any p x g
matrix B. Let F be the K x T matrix of {f;:t<T}, V be the K x T matrix
of {fy—Ef;:t<T}, Rbethe N x T matrix of {r,:t<T},and U be the N x T
matrix of {u,:t <T}. Letr= % >, 1. We use excess returns for r, throughout.

1.3.1 Observable factors only. When all factors are observable (not
necessarily tradable), we can directly estimate « using the classical two-pass
regression:

Algorithm 3. (observable factors only)
Sla. Run time-series regressions and obtain the OLS estimator E
B=(RM,, F')(FM,, F)~". (10)

S2. Run a cross-sectional regression of 7 on the estimated B\and a constant
regressor 1, to obtain the slopes A:

A=(B My, B (B'Miy, 7). (1n

S3. Estimate « by subtracting the estimated risk premiums from average
returns: o

a=r—pBAi. (12)

Since r, is a vector of excess returns, risk premiums are usually estimated
without using an intercept in the cross-sectional regression of S2. That is
because the assumption of zero alphas is typically imposed for risk premiums
estimation. In contrast, including an intercept term here allows for a possibly
nonzero cross-sectional mean for «, denoted by «. Its estimator can be written
explicitly as @op=N""1,@. As a side note, it is also interesting to test if o
is non-negative, which addresses whether on average hedge fund alphas are
positive, though it is not the objective we pursue in this paper.

In a special case that all observable factors are tradable, factors’ risk
premiums are equal to their expectations, so we simply estimate the risk
premiums by taking thelr time-series averages. As such, 2 in Equation (11)
can be replaced by A== Zr , Jt» whereas the remaining steps are identical.

1.3.2 Latent factors only. In the case that some factors are missing from
an observable factor model, the first-step time-series regressions are no longer
consistent. We could instead consider a model with all factors being latent.
Such a model is in fact quite general, in that we can always assume all factors
being latent even if there were observable factors, and estimate all factors from
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the data altogether. In this case, we follow Giglio and Xiu (2017) and proceed
by rewriting Equation (1) into a statistical factor model:

R=BV+U, (13)
where A:AMlT for A=R,V,and U.

Simply replacing Slain Algorithm 3 with S1b below leads to a new algorithm
for estimating « in this scenario:

Algorithm 4. (latent factors only)

S1b. Let Sg= %Rﬁ/ be the N x N sample covariance matrix of R. Conduct
the principal component analysis of Sg: set

B=+vN(by,...,bx),

where by,...,bg are the K eigenvectors of Sg, corresponding to its
largest K eignvalues.

S2 & S3 are the same as in Algorithm 3.

This procedure therefore uses the principal components of returns as factors
and uses them as a benchmark to estimate the alphas. Note that Algorithm 4
requires the number of latent factors as an input, which can be estimated using
a variety of procedures in the literature, such as those based on information
criteria (Bai and Ng 2002), or based on eigenvalue ratios (Ahn and Horenstein
2013), etc. Alternatively, we can treat the number of latent factors as a tuning
parameter, which can be selected based on the eigenvalue scree plot. We adopt
this procedure in practice for convenience.

1.3.3 General case. We now present the most general case, where we assume

re=a+[ B, B ]|: ))\\7 :|+[ Bo B ]|: ]}Zi:%é’; :|+ur, (14)

where f,, is a K, x 1 vector of observable factors, and f;; is a K; x 1 vector
of latent factors, respectively. Both factors can be nontradable. Note that we do
not assume that latent and observable factors are uncorrelated, or that the betas
with respect to observable and latent factors are cross-sectionally uncorrelated.

While Algorithm 4 still works without using observable factors, using these
factors is expected to deliver better performance. To estimate « in this case,
we combine Sla and S1b, and then proceed with S2 and S3 as in Algorithm 3.
Specifically, we first obtain ,30 from time-series regressions using observable
factors alone, and then obtain f; by applying PCA to the covariance matrix
of residuals from time-series regressions. The estimated ,B\o and B\l are stacked
together as B\ The algorithm is summarized as follows.

In Internet Appendix A.1.1, we provide a simpler version of this algorithm in the special case of tradable
observable factors, in which we directly use the time-series average of these factors as the estimates for their risk
premiums. This, however, does not affect the asymptotic behavior of the estimator as N and T increase.
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Algorithm 5. (estimating « in model (14))

SI. a. Run time-series regressions and obtain the OLS estimator ;’3\(, and
residual matrix Z:

B,=(RM,, F.)(F,M,, F))™", Z=R—PB,F,,  (15)

Where F0=(f0,17.f(),2""’f0,T)‘
b. LetS;= %Z Z' be the N x N sample covariance matrix of Z. Let

Bi=vN(bi.....bx,),

where by, ..., bk, are the K; eigenvectors of Sz, corresponding to
its largest K; eigenvalues.

The resulting Eis given by
B=(Bo. B).

S2 & S3.The same as S2 & S3 in Algorithm 3.

It is worth mentioning that ,4/3\,, is a consistent estimator of 8, only if f, and f;
are uncorrelated. In our general setting, this condition is not imposed, so ,1’3\0 is
possibly inconsistent due to the omitted variable (latent factors) bias. However,
one of our theoretical contributions is to show that the presence of such bias
does not affect the inference for alphas, thanks to the invariance of alpha to the

rotation of the factors. Formally, we can show that B:, L Bo+ B H; for some
matrix H;, where ; H; denotes the omitted variable bias. Hence the probability
limit of ;’3; is still spanned by 8=(8,, B;). Note that the probability limit of the
PCA estimator Ez is also spanned by S;. As a result, we have established that
there is a rotation matrix H such that'?

B=B.. B)— BH.

The resulting alpha estimate remains consistent because it is invariant to
rotations (the rotation matrix H is canceled with its inverse in A) and is thus
not affected by the omitted variable bias.

As a side note, a close scrutiny of the matrix H shows that it has the following structure:

I 0
i=( o)

The rotation invariance of B implies that % converges to H =13, which in turn yields that /):0 is a consistent
estimator of 1,. This conclusion echoes the result of Giglio and Xiu (2017).
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1.4 Dealing with missing data

It is not uncommon in finance applications to deal with unbalanced panels. For
example, many hedge funds last for short periods of time, then liquidate, and
many new funds pop up. Itis therefore important that the estimators we propose
work in the presence of missing data. In this section, we describe how to use a
matrix completion algorithm to handle missing data within our procedure.

1.4.1 Matrix completion. The matrix completion approach relies on a critical
assumption that the full matrix can be written as a noisy low-rank matrix. This
assumption is naturally justified for de-meaned realized returns in our context
(see Equation (13)).

We now present the matrix completion algorithm in a generic setting. The
goal is to recover an N x T low-rank matrix X. Suppose that Z isan N x T
matrix (the “noisy version” of X), which can be written as Z=X+FE, and E
is the noise. In addition, suppose Z is not fully observed and 2 is an N X
T matrix whose (i, )-th element w;; =1{z;, is observed}. Using this notation,
econometricians can only observe Z o §2 and £2, where o represents the element-
wise matrix product.

We employ the following nuclear-norm penalized regression approach to
recover X: .

X=argmin[(Z = X)o 2| +anz||X]],. " (16)

where || X ||,, denotes the matrix nuclear norm and A y7 > 0 is a tuning parameter.
By penalizing the singular values of X, the algorithm achieves a low-rank
matrix as the output.'> The latent factors and betas can then be estimated via
the associated singular vectors of X.

We now apply this algorithm to our model (Equation (14)) and update the
steps of Algorithm 5. For this purpose, we need some additional notation. Let
N; denote the set of funds that are observed at time ¢ and 7; denote the collection
of time points on which the i-th fund return is observed:

N;= {i€{l,...,N}:ry isobserved}, 7T;= {re{l,...,T}:r; is observed}.

We first estimate an observable factor model to obtain loadings of observable
factors, as we do in Sla of Algorithm 5. This step allows us to calculate the
residual matrix Z for all periods and all funds (of course with missing entries),
which will then serve as the input for the matrix completion algorithm. With the
estimated factors and loadings, we then proceed with S2 and S3 of Algorithm
5, except that in the case of missing data, the estimated «; has a bias. So we
add a de-biasing step before we can use the estimates for testing. The detailed
steps are given as follows:

min{N,T
i=1

)\0,-(X), where 1 (X) > (X)> ... are the sorted singular values of X.

15 We leave the details on how we solve Equation (14) to Algorithm A.2 of the Internet Appendix.
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Algorithm 6. (estimating « in model (14) via matrix completion)

S1. a. Obtain B\D and the residual matrix Z =(z;,)yxr:
Boi = (FoMy, F) )7 (F, My, Ry,
zie = ri—7Fi—By;(for— foi) whenr; is observable;

otherwise z;; is missing,

where r; =Tli2, e Tit is the average return for each fund i at

its observed time points, f, ;= Tl, > e7; Jor 1s the average of
observable factors at time points on which fund i is observed
(note that we assume no data are missing for observable factors),
R;isthe T; x 1 vector of {r;; : t € 7;}, and F, ; is the K, x T; matrix
of {fo::teT;}.

b. Conduct matrix completion, with Z in Equation (14) constructed
above, and obtain a low-rank matrix X. Estimate the latent factors
and their loadings using X:

-1
U > obibp | Y bz t=1,...T,
ieN; ieN;
—1

=
I

~ —~ .
V1,1V v .Zir, i=1,...,N,
teT; teT;

where (b, ..., bg,) is the top K; left singular-vectors of X.
The resulting Eis given by

B=(Bo- P,
and the factors'@:(ﬁ,,,—ﬂ),ﬂ’,)’, where fo=%Z[T=1fo,,.

S2 is the same as in A}gorithm 3 with inputs Efrom above and r;, which
yields the estimate A.

S3. Estimate and de-bias the estimates of a:

@=ri—Ba+A;, i=1,..N, (17
where, writing g’zel’. —B\,{(B\/MWB\)_I,@MW’ ¢;=(0,..0,1,0,...,0),
§=%Z,€Ti@/§\i, ﬁo,i={/\l,iM1Ti F, (Fo My, F) )7, and
H,=ViMi, F)(F,Mi, F))™",

Ai=PB] (Hyi— Hy)ko— /2.

Here f/\l is the K; x T matrix of {v;,:# <T}and f/\l,i is the K; x T; matrix
of {v;,:1€T;}.
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The additional term ;4\, in Equation (17) is introduced to de-bias the estimated
alphas due to an unbalanced panel. It is worth noting that for balanced panels
(i.e., 7;={1,...,T} for all i), ;\\,:0 and our matrix completion algorithm is
equivalent to the usual PCA.

1.5 Constructing valid test statistics for false discovery control

Having described how we obtain the alpha estimates, we now turn to the
construction of the test statistics. One of our theoretical contributions is that
we formally show in Theorem A.1 of Internet Appendix A.2 that the alpha
estimates satisfy, in the case of balanced panel, for each i <N, as N,T — oo,

oar@—a) 5 N1,

1 S 1 |
ofwr = o Var(u (1 v )+ - Var(en) - BiSy B (18)

where v, :=f;, —Ef,, X;:=Cov(f;) and S,g:%ﬁ/MlN,B. This formula holds
true for all three cases: observable factors only, latent factors only, and the
general case. The asymptotic result (18) can be used for inference about each
individual alpha. Note that the variance of T consists of two components: in
addition to the 1/T term that arises from time-series estimation, the second
term % Var(a,-)% B! S;l B; directly reflects the estimation errors from the cross-
sectional regression. This second component will result in cross-sectional
dependence among the test statistics, jeopardizing the FDR control. That said,
as long as T'log N =o(N), the second term is dominated by the first, and so is
its impact on FDR.

In the general case of an unbalanced panel, if max;(7;)logN =o(N),
Theorem A.2 of Internet Appendix A.2 shows that fori=1,2,..., N,

. 1 . 1
\/T,-(ozi—ai)=ﬁ2ui,(l—vt2flk)+0p(m>. (19)

teT;

Based on Equation (19), Algorithm 7 below constructs the corresponding t-
statistics. Note that this asymptotic approximation also holds in the case where
all factors are observable and tradable, in which time-series regressions are
used for alpha estimation. Because the idiosyncratic error u;,’s are weakly
dependent, these t-statistics are weakly dependent, using which we then apply
the proposed alpha screening B-H procedure (Algorithm 2) to select the positive
alphas.

Algorithm 7. (construction of the test statistics)

S1 & S2 & S3 are the same as those in Algorithms 3, 4, 5, and 6.
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S4. Calculate the standard error as follows:

1 ~_i~
se@) = —=0i. o=z Z =020 o)
\/Ti teT

where W;; =r;; —7; — //377)\, is the residual, and /Z\Jf = % ZLTM)\[’
S5. Calculate the t-statistics and p-values:

where ®(-) is the Gaussian cumulative distribution function.

Obviously, while this algorithm is presented in the context of unbalanced panel,
the balanced panel is a special case by setting 7; ={1,...,T} and 7;=T for all
i <N. Another remark worth mentioning is that in the context of testing for the
equalities in Equation (3), we can simply replace the calculation of p-values in
S5.by p;=2(1—-®(|#;])) fori=1,2,...,N.

1.6 Constructing valid p-values using bootstrap

While the asymptotic inference is straightforward, its finite sample performance
may become a concern in scenarios where a large amount of data are missing.
The bootstrap is a popular approach that has been used frequently in this
context to compute critical values for various test statistic (e.g., Kosowski et al.
2006, Fama and French 2010, Harvey and Liu 2018; Chordia et al. 2020). It
substitutes computation for asymptotic approximations, yet delivers potentially
better small sample performance. That said, the bootstrap is not a panacea as it
is known to fail in extensive examples (Horowitz 2001). The choice of bootstrap
algorithms also matters in that less effective algorithms can lead to a dramatic
loss of power and level of accuracy of a test (Hall and Wilson 1991). Distinct
from what has been commonly employed in asset pricing, we propose here a
wild-bootstrap algorithm, originally introduced by Liu (1988) and Mammen
(1993), and prove its validity in the presence of omitted factors and missing
data.

Recall that Algorithm 6 produces the estimated factors v;, their loadmgs
ﬁ,, their nsk premiums A and @; for each fund, which in turn yield u;; :=
rig—ri— ﬂ v, if r;; is not missing. Our bootstrap algorithm below produces
the p-values of the alpha test statistics that will serve as inputs for the B-H
procedure in Algorithm 2.

Algorithm 8. (bootstrapping p-values)

S0. Generate a bootstrap sample of 7/, by resampling weighted residuals:

=m+@i)\z+ﬁz, iz;k[=i;itwita fOrtG’];, (21)
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where {w;;:i <N,t<T} is a sequence of i.i.d. random variables,
satisfying Ew;, =0 and Var(w;,)=1.1®
S1. Obtain B*=(B;,.... BY)':

-~

,31* =(V:M1Tl- {/\i/)_l({/\iMITi R;k)’

where R} is the T; x 1 vector of {r :t € 7;}, and V, is the K x T; matrix
of {v;:teT;}.

S2 is the same as in Algorithm 6, using r;" and E*, which yields the estimate
AR

S3. Estimate and de-bias the estimates of «:

@ =r—p =g, i=1,..N, (22)
with £ =¢/ — B¥ (B* M, B*)' B* M, and ¢ =(0,...0,1,0,...,0), g =
1 ~ %
T; £teT; vtlBi :
S4. Repeat S0-S3 for B times and denote the estimates from S3 as {7, :i =
1,...,N,b=1,..., B}. Compute the bootstrap p-values as

B
1 . —~ .
pi:E E 1{a;fb>a,-}, i=1,...,N,
b=1

where @; is given by S3 of Algorithm 6.

A few points are worth mentioning. First of all, Hall and Wilson (1991)
suggest that the bootstrap resampling should reflect the null hypothesis to
preserve the power of a test. In our context, we test a large number of individual
hypotheses with different null hypotheses. We prove that it is sufficient to
impose the joint null hypothesis that all alphas are zero for resampling,
instead of generating separate bootstrap samples imposing each one of the
null hypotheses. This substantially simplifies the bootstrap procedure. Second,
bootstrap resampling should maintain the same missing pattern as that of the
original sample; that is, r}; is resampled if and only if 7;; is not missing (t € 7;).
Needless to say, this algorithm also works if no data are missing. Last but not
least, compared to S1b of Algorithm 6, the corresponding step in Algorithm 8
does not involve matrix completion as it directly uses the estimated latent factors
as if they were observed in the bootstrap samples. For the same reason, the
bias correction in S3 is also simpler for the bootstrap approach. This strategy
again simplifies and accelerates the calculation. Furthermore, we prove in
Theorem A .4 of Internet Appendix A.2 that our wild-bootstrap method is valid
in this context. Finally, if the object of interest is multiple testing for equality
nulls as in Barras et al. (2010), then the only modification to make in the above

16 Mammen (1993) suggested using w;; = % Nir+ %(y’% —1), where n;; and y;, are independent standard normal.
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algorithm is to replace the one-sided bootstrap p-values in S4 with two-sided
ones:

B
1 e~ :
pi:EE 1{|ozi,b|>|oe,-|}, l=1,...,N.
b=1

The (standard) bootstrap algorithm, widely adopted in the literature, differs
from Algorithm 8 in Step SO. Specifically, this approach generates a bootstrap

sample with replacement S={ty,...,t7} from {1, ..., T} using
rly =B+ B, i, (23)

where {(UF,u}):t=1,...,T}={(V;,u;;):t €S}. In the case of a severe missing
data problem, we find (not reported here for reasons of space) that this approach
performs inadequately.!” In contrast, our wild-bootstrap procedure is immune
to idiosyncrasies due to missing data.

2. Simulations

In this section, we examine the finite sample performance of the tests and their
asymptotic approximations developed in Internet Appendix A.2. With respect
to the data-generating process, we consider a five-factor model for hedge fund
returns, with factors calibrated to match a latent factor model estimated using
the empirical data. We then resample the estimates of beta and idiosyncratic
volatility of individual funds in our data, so that the summary statistics (e.g.,
time series R’s, volatilities) of the simulated fund returns match their empirical
counterparts. To examine the impact of missing data on our procedures, we
also resample the exact missing pattern of these funds.'® Throughout the
simulations, we fix 7=240 and N =1,000, and on average over 70% of all
records are missing.

We vary the simulated cross-sectional distribution of alphas to check the
performance of the FDR control under various fractions of true null hypotheses.
As illustrated earlier, the conservativeness of an FDR procedure depends on
the percentage of true alternatives. To show this, we simulate the alphas from
a mixture of two Gaussian distributions, AV (—20,02%) and N (20,0?), with
mixture probabilities p; and p,, plus a point mass at zero. Recall that we test
multiple inequalities (alphas less than or equal to zero). The individual ¢-tests

One reason is that for certain fund with limited data, the degree of freedom in the resampled factors is rather
limited because resampling is only possible at time points when this fund’s return is not missing. In extreme cases,
this leads to singularity in beta estimation. Alternatively, we might resample residuals alone, but this requires
stronger assumptions (e.g., strict exogeneity) on the dependence between factors and residuals.

In the hedge fund literature, it is typical to remove funds that only survive for short periods of time. In the
empirical study, we follow the literature and require a fund to have at least 36 months of tracking record; the
remaining sample includes about 1,700 funds over 290 months. This is quite a challenging environment for the
various procedures we discuss, as more than 70% of the observations are missing. When the missing data problem
becomes more severe, the finite sample performance deteriorates. In Section 3, we instead explore imposing a
tighter constraint that mitigates the issue at the cost of removing additional funds.
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become increasingly conservative when there are more negative true alphas
(larger pp). Also, the FDR procedure tends to be more conservative when the
number of true null hypotheses is lower (larger p,). We vary their mixture
probabilities p; and p; to demonstrate the conservativeness of our procedure.
Different values of p; and p, also mimic different data sets. According to
Barras et al. (2010), most mutual fund alphas are not significant, in which
case p» would be very small.'® In contrast, for hedge fund returns in the TASS
sample, p; tends to be small, potentially due to a self-reporting (selection) bias,
whereas p, appears to be much larger (around 20%, as we discuss below).

In Table 1 we report the FDR (i.e., the sample average of the FDP) and
the standard error of the FDP for different procedures in many scenarios. In
addition, we report the average power as well as the false negative rates (FNRs),
defined as the average percentage of false acceptance among all accepted tests
in multiple testing, because both measures reflect the power of a multiple-
testing procedure. We consider in total 11 different scenarios. For (a), we apply
Algorithms 1 and 3 to all five observable factors. There are no missing factors
in this case. In (b) we apply the same procedure to four observable factors
alone. The comparison between (a) and (b) demonstrates the effect of missing
factors. We then apply Algorithm 4 with five latent factors and no observable
factors in (c), and Algorithm 5 with four observable factors and one latent
factor in (d). Next, in (e) we conduct alpha screening (Algorithm 2) on top of
the algorithms used in (d). To investigate the effect of missing data and missing
factors separately, we use a balanced panel in the above settings. In (f), we
use an unbalanced panel and adopt matrix completion (Algorithm 6) instead
of PCA (Algorithm 5), and construct #-statistics using asymptotic standard
errors. The next setting, (g), is identical, except that there we adopt the wild-
bootstrap procedure (Algorithm 8) for inference. For both (f) and (g), we also
apply alpha screening as in (e). For comparison, we then implement a list of
common procedures in the literature. To start with, in (h) and (i), we apply the
standard bootstrap procedure to fund-by-fund time-series regression estimates
of o using four factors with/without a balanced panel, respectively. In (j) we
report the results based on the bootstrap procedure of Barras et al. (2010).2°
Finally, for (k), we simulate the ideal setting where neither factors nor data are
missing, but without using any FDR control methods.

We first verify the central limit results developed in Theorem A.1 of Internet
Appendix A.2. Figure 1 provides histograms of the standardized alpha estimates
for an arbitrary fund in each of the three scenarios (b), (c), and (d). The estimator
in the scenario (d) (based on Algorithm 3) is inconsistent, as verified from the

Our theory does not allow for the case of pp =0; see Assumption A.4 in the Internet Appendix, in which the
number of true alternatives is zero.

We follow the same procedure and choice of tuning parameters as theirs, in which we estimate the FDR over
a pre-selected grid of significance levels and determine a significance level that provides the estimated FDR as
close as possible to the 5% target.
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Table 1
Monte Carlo simulation results
(@) (b) (©) ) (e (® (& () () M
# of observable factors 5 4 0 4 4 4 4 4 4 4 5
# of latent factors 0 0 5 1 1 1 1 0 0 0 0
Missing data v v v v
P P2
0.1 0.1 FDR 520 8.14 481 485 555 836 558 47.78 27.83 4528 35.27
FDP std. 350 1527 323 327 352 511 451 670 8.69 617 7.21
Avg.power 64.81 53.62 64.62 64.58 6545 49.85 4270 60.98 41.17 5145 79.88
FNR 379 495 380 3.81 372 532 6.00 444 626 538 231
0.1 0.2 FDR 438 6.18 4.12 413 476 6.55 545 3341 2099 26.81 19.56
FDP std. 248 11.24 241 243 261 344 3118 494 532 473 531
Avg. power 69.02 57.68 68.78 68.72 69.63 54.70 51.72 64.19 47.44 51.78 80.43
FNR 7.15 953 720 7.21 7.03 10.14 10.72 877 11.81 11.11 4.83
0.1 03 FDR 3.67 4.88 344 344 392 519 459 2462 16.07 1791 12.31
FDP std. 202 856 190 193 202 253 242 387 380 409 3.84
Avg. power 71.29 60.14 71.10 71.03 71.96 57.47 55.48 66.18 50.39 52.25 80.43
FNR 10.86 14.44 10.92 10.94 10.64 1532 15.89 13.52 17.84 17.40 7.94
02 0.1 FDR 450 724 417 421 531 7.87 539 43.60 24.84 42.10 32.12
FDP std. 333 1422 3.01 3.07 352 492 462 681 835 622 744
Avg. power 63.40 5236 63.18 63.14 64.55 49.28 43.17 59.53 40.04 50.63 78.54
FNR 403 519 405 405 391 550 6.10 4.66 650 557 250
02 0.2 FDR 3,79 541 353 353 442 597 513 29.77 1826 24.06 17.29
FDP std. 232 1020 220 222 251 3.8 3.00 476 498 457 5.16
Avg. power 68.15 56.97 67.92 67.84 69.33 54.56 51.90 63.35 46.67 51.35 79.66
FNR 743 979 748 749 7.8 10.30 10.82 896 12.06 11.28 5.05
03 0.1 FDR 390 646 3.63 3.64 504 7.11 508 39.19 21.89 38.58 28.93

FDP std. 3.02 13.11 280 2.83 340 470 443 690 805 628 7.34
Avg. power 62.07 51.28 61.85 61.84 63.69 48.75 43.47 58.12 38.90 49.82 77.25
FNR 427 542 429 429 409 568 622 488 675 576 270

The table reports the false discovery rate (FDR), the standard error of false discovery proportion (FDP std.), the
average power (Avg. power) of different procedures, and the false negative rate (FNR), in simulation settings
with different choices of mixture probabilities p; and py. The total number of factors in the DGP is five. The
total number of observable and latent factors determines whether a procedure omits any factors. A checkmark
“v"” in the row “Missing Data” indicates that the simulated panels of individual fund returns are unbalanced.
The number of Monte Carlo repetitions is 1,000. All numbers in Columns a-k are percentages. We consider in
total 11 different scenarios. Column a applies Algorithms 1 and 3 to all five observable factors. Column b applies
the same procedure to four observable factors alone. Column c applies Algorithm 4 with five latent factors and
no observable factors, and d applies Algorithm 5 with four observable factors and one latent factor. Column e
conducts alpha screening (Algorithm 2) on top of the algorithms used in d. The above settings use a balanced
panel. Column f uses an unbalanced panel, adopts matrix completion (Algorithm 6) instead of PCA (Algorithm
5), and constructs t-statistics using asymptotic standard errors. Column g applies to the same setting, except that
it adopts the wild-bootstrap procedure (Algorithm 8) for inference. Alpha screening is employed in both f and g.
For comparison, columns h and i apply the standard bootstrap procedure to fund-by-fund time-series regression
estimates of « using four factors with/without a balanced panel, respectively. Column j reports the results based
on the bootstrap procedure of Barras et al. (2010).

left panel, because it adopts a misspecified four-factor model. In (c), Algorithm
5 is designed to take into account the omitted factor in the regression residual.
Not surprisingly, it works well. The estimator in the scenario (b) (based on
Algorithm 4) ignores all observable factors, but it estimates a five-factor latent
factor model, which also corrects the omitted factor bias; its histogram thereby
matches the asymptotic distribution.
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Figure 1

Histograms of the standardized individual alpha tests

The figure plots the histograms of the standardized alpha estimates for one fixed fund using Algorithms 3
(observable factors only), 4 (latent factors only), and 5 (mixture), respectively. The true data-generating process
is a five-factor model. p| and p, are fixed at .1. The number of Monte Carlo repetitions is 1,000.

There are quite a few conclusions we can draw from the comparison results
in Table 1. First of all, we find it critical to use alpha tests that take into account
omitted factors, by comparing columns ¢ and d with column b. Comparing
columns ¢ and d with a, using latent factors in place of the omitted factors
works well, as if the omitted factors were known. Second, comparing columns
d and e, we find alpha screening less conservative and more powerful, in
particular when p;, the percentage of unskilled funds, is large. Third, the
standard bootstrap method in various scenarios does not cope well with missing
data and missing factors. In contrast, our wild-bootstrap approach works well,
as our theoretical analysis shows. The wild-bootstrap algorithm also improves
over the asymptotic inference in f, which is perhaps not surprising. Fourth,
columns b, h, i, and j clearly show that missing a factor tends to increase the
standard errors of the FDP. This observation agrees with our intuition and earlier
discussion. Finally, without any B-H type control, the false discovery rate can
exceed 35% among the experiments we consider even in the most ideal setting,
even though, not surprisingly, its false negative rate hits the lowest value, given
that this procedure overly rejects by a large margin compared to the other
procedures.
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Overall, the alpha screening B-H procedure (Algorithm 2), together with
matrix completion for alpha estimation (Algorithm 6) and wild-bootstrap for
inference (Algorithm 8), performs stably well in all scenarios we consider. We
thereby choose it as our benchmark in the following empirical analysis.

3. Empirical Analysis: Hedge Fund Alphas

3.1 Hedge fund returns data

To illustrate a potential use of our methodology, we apply it to the Lipper TASS
hedge funds data set, covering the time period 1994-2018. The data set contains
a panel of returns and assets under management. The Lipper TASS data set is
subject to a number of potential biases. We follow closely the bias correction
and data-cleaning procedures of Sinclair (2018), who kindly shared his code
with us; these are in turn mostly based on the procedures detailed in Getmansky
etal. (2015). We describe the main concerns with the data and the data-cleaning
procedures in Internet Appendix C. As is standard in this literature, we only
focus on funds that have a sufficiently long time series. This is particularly
important in our setting, because a large amount of missing data affects our
ability to estimate the risk premiums of latent factors and deteriorates the finite
sample performance of the estimator. Based on our simulations, we choose
a minimum period of 36 months (i.e., a three-year tracking record), and we
explore robustness below.

After applying these filters, we are left with 1,761 funds in our data set.
Panel A of Figure 2 reports the histogram of average monthly excess returns,
which shows large dispersion across funds. The cross-sectional mean of average
excess returns in our sample is 19 bp per month. In total, around 73% of records
are missing, so our matrix completion step plays an important role in this
context.

3.2 Benchmark models

We consider two standard benchmark models. Our baseline model will be the
Fung and Hsieh (2004) seven-factor model, a well-known model proposed
specifically to benchmark hedge funds. The model includes market, size, a
bond factor, a credit risk factor, and three trend-following factors (related to
bonds, currencies, and commodities). As an alternative, we also consider the
model proposed by Agarwal and Naik (2004), which includes the Fama-French-
Carhart four factors (market, size, value, and momentum factors) plus two
option-based factors (an out-of-the-money call and an out-of-the-money put
factor).

3.3 Factor structure of hedge fund returns

To get a sense of the factor structure of hedge fund returns, the blue line in
panel B of Figure 2 shows the first 15 eigenvalues of the excess returns in
our panel. There clearly are important common components driving hedge
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Figure 2

Properties of hedge fund excess returns

Panel A shows the histogram of average monthly excess returns for the 1,761 funds in our full sample. Panel
B reports the first 15 eigenvalues of the covariance matrix of excess returns, denoted as “Latent,” sorted from
highest to lowest, as well as eigenvalues of the residual covariance matrices relative to two benchmarks: the
Market and the FH7 model. Sample period is 1994-2018.

fund returns. The figure also plots the eigenvalues of the residual covariance
matrices of two benchmark models: the CAPM and the FH7 model. It is evident
that observable factors indeed help capture certain common variation in the
cross-section, because the largest few eigenvalues shrink substantially. The
largest gain comes from the market factor, which shrinks the largest eigenvalue
by about two-thirds. The marginal contribution by the remaining observable
factors is less significant. Importantly, there remains common variation in the
residuals of the FH7 model, which will be captured in our empirical analysis
by the additional latent factors. Based on the scree plot, we choose three or five
factors in our analysis.

3.4 In-sample analysis
We begin with an in-sample analysis in which we compare the funds selected by
our FDR control methodology to those selected using different methodologies.
For 10 different fund selection procedures (one in each column), Table 2 reports
the average alphas in bp per month (first row) and the average t-stat (second
row) for the selected funds, as well as the fraction of funds selected out of 1,761
(third row). The table also reports in the fourth row the p-value of the test that
the average alpha is equal to zero, and in the fifth row the p-value for the
difference in average alpha between each methodology and our full-fledged
FDR procedure (reported in column 1, computed as described in Internet
Appendix A.3.2). To make the results comparable across methodologies, alphas
for funds selected using different procedures are computed using a common
benchmark, which includes the FH7 factors plus three latent factors.

The first column applies our methodology to select funds: our FDR control
with three latent factors in addition to FH7, using the wild bootstrap to compute

3483

920z Auenuer g0 uo Jesn Ateiqr oA Aq LE L L L6S/9GHE/L/FE/RIo1E/SH /W00 dNO"oIWepEdE//:SdRY WOl POpeo|umod


https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhaa111#supplementary-data
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhaa111#supplementary-data

f Financial Studies /v 34 n7 2021

ew oy

The Rev

Downloaded from https://academic.oup.com/rfs/article/34/7/3456/5911131 by Yale Library user on 06 January 2026

‘8107661 St sporrad ordwres ay [, *s10joe] JuSje| [RUONIPPE 1Y)
s LHA st seydre ayp 9andwod 03 pasn [opow YIeuwyouaq Y, ((010g) Te 19 serreg ur A3ojopoyiouwt 3y () {(810¢) NI pue A9AIeH ul A30[opoylaw ay) () 510308 A[QBAISO OU PUB SI0)08]
JUAIR] UL) NIM Y] Ino () ‘Surusaros eydfe Jnoyiim (s10)08) 9[qeAIasqo A[Uo Yim) Y prepuess (1) (Sutuaaros eydye moypim Y4 no (9) Surusards eydfe pue s1010e) 9[qeAIdsqo A[uo uisn
G0"0 9A0Qe 9n[eA-d [enpIAIPUL Y)Im SpuUny (G) ¢s10)oe) A[qeAIasqo A[uo Suisn ‘GO mo[oq an[ea-d [enpIAIPUT YA spunj () {(LHJ) $1010e] 9[qeAIdsqo UaAds ATUo (M YA (€) {SI0LI9 prepuels
onoydwAse pue ‘s1030e} Jude| 231y} pue (LHJ) SI0JOBJ A[qBAIISqO UAAS M Y IO () s10110 prepueys densjooq pue ‘s10)oej Judle| 221y} pue (LH.) SI0J0BJ J[qEAIdSqO USAdS YIIM YA
1n0 () :21npad501d UO1OI[As JUAIJIP B 0} Spuodsarrod uwnjod yoey "(uwnjod Isiy) A3ojopoyrow Y J [[NJ 2Y) uisn paurejqo auo ay) o3 [enba st eydie a5e1oA. 24) JeY) 159) 2Y) JO anjea-d A}
MOI Y}JY Ay 019z 0) [enba st eydye a3e1oAr o) 1By} 159) 9Y) JO an[eA-d U} MOI )INOJ AY) (PAJI[AS SPUNJ JO UONIRIJ AY) MOI PIIY) Y} {PIJII[S SPUNJ Y} JO Jels-] 9FLIIAL ) MOI PUOIAS Y}
£pa1o9fas spuny ayy jo eydie oSeroae oy s11odax mor 1s1y dy ], “serSojopoylow Juarayyip Sursn dfdwres Ino ur spuny 93pay [9/ ‘1 Ay} 1oy $1s9) eydye oidnnw oy Jo synsar oy suodar 9[qe) 9y,

10> SO’ 10> 10> 99° 10> 10> 10> ¥0 - (1) = eydye “rea-d
10> 10> 10> 10> 10> 0’ 10> 10> 10> 10> 0= eydye rea-d
[ 10° 6l or 8l 08’ 0T or YT 6l PIOJAS UOTIOLL]
¥ 881 o4 6S Lt ¢ a4 8°C (44 9t 1e15-) 98RI0AY
69 869 719 799 9°0L 8v 679 99 L'89 0L eydje oFeroAy
o1 (6) (8) (L) 9) (<) () (€) @) (1)
MSd TH aad A A19sqo qad S0 <d S0 >d qad TeAy densjoog
S[opOW SANRUIdY juare] A[uQ UJ2I0S ON UI210S ON J[qeAlasqo A[uQ A PXIN

sy nsax dpdures-uy
TOIqEL

3484



21

Thousands of Alpha Tests

p-values. Out of a total of 1,761 funds, our procedure deems 19% to have
positive alpha. The average fund selected has an alpha of 70 bp per month,
highly statistically significant. Column 2 also applies our methodology, but
using asymptotic standard errors to compute the p-values of the funds, instead
of the wild bootstrap. As expected, the two methodologies give similar results,
with bootstrap performing better, as expected from the simulations.

Columns 3-5 apply the standard methods of this literature (e.g., Kosowski
et al. 2007), in which alphas and p-values for the fund selection are calculated
against the FH7 model without any latent factors. Given that the benchmark
model has no latent factors and all observable factors are tradable, we use time-
series estimation for the alphas in columns 3-5, as prescribed in Section 1.3.1,
with alpha screening employed in column 3.2! Specifically, column 4 selects
all funds with p-values below .05, and therefore corresponds to the standard
selection procedure that ignores the multiple-testing problem. This procedure
selects about 20% of the funds, with an average alpha of 63 bp per month.
Column 3 uses these p-values to compute the FDR control, which reduces the
fraction of funds selected to 10% but has little effect on the alpha (66 bp per
month). Note that while the differences are economically small (5-10 bp), they
are often statistically significant (due to the nontrivial overlap in the different
portfolios). Finally, column 5 reports for comparison the characteristics of
funds with p-values above .05, which is therefore the complement of the funds
selected in column 4. These funds, which represent 80% of the fund population,
have an estimated average alpha of only 5 bp per month.

Two broad comments on these in-sample results are worth emphasizing.
First, the fact that, ex post, funds with a p-value below .05 seem to have a much
larger alpha than those with a p-value above .05 (columns 4 and 5) should not
be surprising, given that we are effectively selecting on the alpha estimated ex
post in this in-sample exercise. The difference will naturally be more muted
once we move to the out-of-sample analysis in the next section. That said,
these results are still interesting because they give us an overall sense of the
fraction of “skilled” funds in our universe of funds: around 20% of the total.
The results suggest that a nontrivial subset of hedge funds does seem to produce
a significant alpha, even after accounting for the multiple-testing problem.

A second note relates to the evaluation and comparison of different method-
ologies. Different methodologies imply different degrees of conservativeness in
the choice of funds. Making the bar for selection stricter will mechanically go in
the direction of selecting fewer (even if on average better) funds. A methodology
produces a clear improvement over alternatives if it achieves better performance
(alpha) without sacrificing investment opportunities (i.e., without reducing the
number of funds selected and corresponding investible AUM); or, alternatively,
if it maintains the same performance but allows investments to be scaled up

While some of the FH7 are based on changes in yields, which are not exactly tradable, they have been treated
by the existing literature as tradable, and we do the same here for comparability.
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(i.e., it selects more funds); or, ideally, both, achieving better performance on
a larger portfolio of funds. Given our theoretical results and corresponding
simulations, we would expect the power of our FDR to yield improvements in
both dimensions.

That is precisely what we find in Table 2. Consider, for example, columns 1
and 3: both use the FDR control, but column 1 uses our approach with latent
factors to estimate the alphas and test statistics, whereas column 3 omits latent
factors. Our procedure selects twice as many funds, while achieving a higher
average alpha, and it therefore represents a clear improvement over the FDR
that omits latent factors. This highlights the importance of accounting for latent
factors when testing for alpha.

Columns 6-8 consider a few variations of our approach. Column 6 removes
the alpha screening step from our full FDR procedure. Comparing it to column
1, it is clear that this makes little difference in our hedge fund data. Similarly,
column 7 removes the alpha screening step from the case with observable
factors (column 3), and again, the performance is very close. This is actually
not surprising, given that the main use of alpha screening is to remove deep-in-
the-null funds (that is, funds with an extremely low alpha). But unskilled funds
are less likely to report to TASS, and are also more likely to be removed by our
filters (described in Internet Appendix C).2% Of course, this does not mean that
the alpha screening step is not useful in general. We propose a methodology
that can be applied in other contexts as well, and different components of
each methodology can be more or less useful in different contexts. Column 8
uses 10 latent factors instead of seven observable ones and three latent ones.
The performance decreases to the level of the models that only use observable
factors. These results show that the best-performing model is the one that mixes
observable and latent factors, suggesting that in practice both are useful to
properly select funds. Economically motivated observable factors are important
to capture dimensions of risk that are not easily captured by factors estimated
via machine learning tools, especially in a setting like the one we study here,
in which many funds appear only for a few years and in which risk exposures
might change significantly over time as funds change their strategies.”?

Finally, columns 9 and 10 compare our procedure to two others that have tried
addressing the multiple testing problem: Harvey and Liu (2018) and Barras et al.
(2010), respectively. These methodologies differ from ours in several respects;
one thing that is common to both is that they do not employ latent factors or deal
directly with the issue of missing data. As the table shows, both methodologies
perform worse than our FDR procedure. Harvey and Liu (2018) achieve an

Given that the purpose of our test is to select good funds, it is not a problem for our exercise if “bad” funds do
not appear in the data set, whereas it would obviously be more of a problem for studies whose goal is to compute
the average performance of funds.

Note that even if omitted factors have zero risk premiums, they might still be correlated with the existing factors,
so omitting them would still produce biased alphas. So in this setting, it is not sufficient to only focus on priced
factors.
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average alpha similar to that of Barras et al. (2010), but their procedure selects
only a tiny fraction of funds.?*

Overall, the in-sample analysis shows that the use of FDR control procedures
has a significant effect on the fraction of funds selected, and the addition of
latent factors allows us to increase the average alpha of the selected funds
without sacrificing investment opportunities. Of course, it is hard to judge the
effectiveness of the selection procedures without looking out of sample. We
turn to that analysis next.

3.5 Out-of-sample analysis and robustness

In this section, we study the out-of-sample performance of portfolios of funds
selected using our FDR procedure and using the other methodologies presented
above. For each portfolio at each rebalancing date, we use the previous 10 years
of data to estimate the alphas and implement the selection, and we only focus
on funds with a 36-month track record during that window. We then compute
the value-weighted out-of-sample alpha of each portfolio using the estimated
time-varying betas and factor risk premiums.

Tables 3 and 4 report all the results of our out-of-sample analysis. In Table 3,
we find the alphas in panel A; the p-values for the test that the alphas are
equal to zero in panel B; and the p-values for the difference between the alphas
of the various methodologies and our full FDR methodology (column 1) in
panel C. In Table 4, we report the characteristics of the funds in each portfolio
(average fraction of funds selected and average AUM in the two panels). Panel
A of Table 4 also reports the average number of funds that are alive at each
rebalancing date, as well as the average number of funds used in the estimation
(this also includes funds that disappear sometime during the 10 years before
rebalancing but were still used to estimate the model). To show that our results
are robust to various ways of conducting the analysis, all the panels in these
tables contain several rows, corresponding to different specifications.

The first row of each panel contains our baseline specification, which
corresponds to the one we used for the in-sample analysis; here, portfolios
are rebalanced at the end of each year (we show monthly rebalancing a few
rows below). Looking at the first row of each panel in Tables 3 and 4, we can
see how the in-sample results from Table 2 change once we go out of sample.
The first clear result is that—not surprisingly—it is much harder to identify
skilled funds ex ante than ex post. To see this, compare the alphas in columns
4 and 5 of these tables, that is, the alpha of portfolios that select funds with a
p-value < .05 versus > .05. The alphas of the two columns of Table 3 are much
closer to each other (11 vs 12 bp) out of sample compared to the same columns

The methodology of Harvey and Liu (2018) requires taking a stand ex ante on the number of true positive alphas
in the data. We calibrate this parameter to 20% based on our baseline results in column 1; results are similar
when choosing 10% (calibrating this parameter to column 3).
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in Table 2. This suggests that using individual p-values estimated on past data
to select funds does not actually produce a good selection out of sample.

Applying the FDR control helps. Column 3—which uses the FDR control
but no latent factors—shows an improvement in the alpha to 15 bp per month,
even ignoring latent factors. Our procedure, which also incorporates three
latent factors, further increases the alpha of the portfolio to 22 bp per month.
So our procedure produces a portfolio with an alpha that is almost double
that produced by standard procedures that ignore latent factors and multiple
selection. In addition, Table 4 shows that the portfolio based on our FDR
control selects a larger number of funds, and invests in funds with larger AUM,
compared to the FDR without latent factors, all while achieving better out-of-
sample performance. So, just like in the in-sample case studied before, adding
latent factors improves the selection along both dimensions, even though the
economic magnitudes of these differences are relatively small, which once
again highlights the difficulty of predicting hedge fund performance.

The remaining results for the baseline specification (first row of each panel
of Tables 3 and 4) are similar to the in-sample analysis. To summarize without
delving into details: alpha screening improves only minimally in our context;
using a mixed-factor model dominates using only observable or only latent
factors, allowing for a larger investment while maintaining (in fact, improving
in almost all cases) the average alpha; finally, our FDR procedure also improves
over the selection by the alternative models of Harvey and Liu (2018) and Barras
et al. (2010).

The remaining rows of the two tables consider alternative ways to construct
the portfolios, alternative observable benchmarks, and alternative data sets
altogether. We first consider allowing for a lag between the data used for fund
selection and the investment of the portfolio (one month or three months) and
increasing the frequency of rebalancing to monthly. We next consider a battery
of additional robustness tests for our baseline specification: (a) restricting
the estimation only to those funds that have data for at least five years; (b)
using five instead of three latent factors; (c) using the Agarwal and Naik
(2004) benchmark model (Fama-French-Carhart four factors plus two option
factors); (d) using the Evestment data, an entirely different hedge fund data set;
(e) restricting to only U.S.-based hedge funds; (f) using equal-weighted instead
of value-weighted alphas.

Looking across the various rows, we see that the main patterns of the analysis
are robust to these different specifications. Our FDR control procedure with a
mixed observable-latent model achieves a higher alpha than the alternatives
quite consistently. For example, looking at columns 1 and 3 shows that when
comparing our procedure to the FDR control without latent factors, our portfolio
selects substantially more funds, and with larger AUM, while achieving a higher
alpha (though only slightly higher in some cases). This illustrates the power
of our procedure and the importance of accounting for latent factors when
applying the FDR control.
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It is also remarkable how stable the alphas are for our methodology across
the various specifications: all between 20.5 and 35.5 bp per month, in contrast
with many of the alternatives, whose performance appears much more variable
across rows (the most extreme case of this appears to be Harvey and Liu [2018],
which also tends to select a much smaller number of funds).

Overall, these results show that our FDR methodology performs well out of
sample, robustly selecting a larger number of funds with better performance,
compared to alternative methodologies.

Conclusion

This paper presents arigorous framework to address the data-snooping concerns
that arise when applying multiple testing in the asset pricing context. In
situations in which many tests are performed, many “false discoveries” should
be expected: cases in which the significance of some of the tests is obtained
by pure chance. The rate of false discoveries is hard to evaluate ex ante; and it
can grow unboundedly when standard statistical tests are used as the number
of tests performed increases.

Statistical theory has proposed different methods that aim to control and
mitigate this data-snooping problem, like the so-called “false discovery rate”
control test of Benjamini and Hochberg (1995). But these methods do not work
in the standard asset pricing context, in which some of the main assumptions
for the procedures are violated. In the paper, we show that the FDR control test
can be extended and generalized to be valid under a much broader range of
assumptions, specifically those that appear crucial when thinking about testing
for alphas in linear factor models.

Our paper exploits the “blessing of dimensionality” to build an FDR control
test that is valid when the benchmark includes nontradable factors whose risk
premiums need to be estimated, and is robust to the presence of omitted factors
and an unbalanced data panel. In addition, contrary to existing multiple-testing
methods, our test is built explicitly to handle large cross-sections; this makes
it particularly suitable for many finance applications, in which the size of the
cross-section N can be large relative to the sample size 7.

We illustrate this procedure by applying it to the evaluation of hedge fund
performance, a typical example where multiple testing issues arise. We show
empirically that hedge fund returns are highly correlated in the cross-section,
even after controlling for the standard models. We show that our procedure—
which allows for such correlation and bounds the false discovery rate to a pre-
determined level—produces superior in- and out-of-sample results compared
to several standard methodologies, including some that have been designed to
specifically deal with multiple testing.

The last few years have seen a burgeoning strand of literature on the
applications of machine learning techniques to high-dimensional problems
in asset pricing, in which data snooping leads to potentially numerous false
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discoveries. Our paper proposes a way to rigorously account for the data-
snooping bias, taking into account explicitly the specific properties of the
finance context to which it is applied. There remain many other settings in
which our high-dimensional multiple-testing framework can be applied: for
example, the evaluation of multiple potential new factors against an existing
asset pricing model. We leave the study of these applications to future research.
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