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Abstract

We review the work of Giglio, Maggiori and Stroebel (2015, 2016) (GMS15,16) and
Giglio, Maggiori, Stroebel and Weber (2015) (GMSW15) on long run discounting and
bubbles. They explore how households trade off immediate costs and uncertain fu-
ture benefits that occur in the very long run, 100 or more years away. They exploit a
unique feature of housing markets in the U.K. and Singapore, where residential prop-
erty ownership takes the form of either leaseholds or freeholds. Leaseholds are tem-
porary, pre-paid, and tradable ownership contracts with maturities between 99 and
999 years, while freeholds are perpetual ownership contracts. The price difference
between leaseholds and freeholds reflects the value of a claim to the freehold after
the leasehold expires and is informative of long-run discount rates and the possible
presence of bubbles. They estimate the price discounts for varying leasehold maturities
relative to freeholds and extremely long-run leaseholds, using hedonic regressions with
data on the universe of housing transactions in each country. GMS15 find that house-
holds discount very long-run housing cash flows at low rates, assigning high present
value to cash flows hundreds of years in the future. GMS16 develop a test for rational
bubbles and rule out their presence in the U.K. and Singapore housing markets for the
period 1995-2013. GMSW15 estimate the entire term structure of housing discount rates
and combine it with estimates of housing riskiness and structural models to infer how
households trade off risk and return at extremely long horizons; they bring this unique
setup to bear on the debate regarding the appropriate discount rate for climate change
abatement investments.
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1 Introduction

In this article we review and complement the work on very long-run discounting by

Giglio, Maggiori and Stroebel (2015, 2016) and Giglio, Maggiori, Stroebel and Weber (2015).

In what follows we refer to these papers in brief as GMS15, GMS16, and GMSW15. This

body of work has shown how a seemingly quirky feature of housing markets in the U.K.

and Singapore, the presence of both leasehold and freehold ownership contracts for res-

idential real estate, can be exploited to learn about how households discount potentially

uncertain payoffs that occur hundreds of years into the future and to test for the presence

of rational bubbles. Combining these observations with structural models offers guidance

on how households trade off risk and return over long horizons.

Long-run discount rates play a central role in economics and public policy. For ex-

ample, much of the debate around the optimal response to climate change centers on the

trade-off between the immediate costs and the very long-term benefits of policies that aim

to reduce global warming (Nordhaus, 2007; Weitzman, 2007; Gollier, 2006; Barro, 2013).

Similar cost-benefit analyses are necessary in many governmental decisions, because of

their intergenerational nature.

Unfortunately, direct empirical evidence on how households discount payments over

very long horizons has been lacking, because of the scarcity of finite, long-maturity assets

necessary to estimate households’ valuation of very long-run claims. For regulatory action

with “intergenerational benefits or costs,” the U.S. Office of Management and Budget there-

fore recommends a wide range of discount rates (1% - 7%), lamenting that while “private

markets provide a reliable reference for determining how society values time within a

generation, for extremely long time periods no comparable private rates exist.”

GMS15 provide direct estimates of households’ discount rates for payments very far

into the future (100 years and beyond). They exploit a unique feature of residential hous-

ing markets in the U.K. and Singapore, where property ownership takes the form of ei-

ther long-term leaseholds or freeholds. Leaseholds are temporary, pre-paid and tradable

ownership contracts with maturities ranging from 99 to 999 years, while freeholds are
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perpetual ownership contracts. The price difference between leaseholds and freeholds

for otherwise identical properties captures, in the absence of rational bubbles, the present

value of perpetual rental income starting at leasehold expiry, and is thus informative about

households’ discount rates over that horizon. GMS15 estimate the discount rates for these

housing cash flows to be approximately 2.6% per year for horizons of 100 or more years.

GMS16 focus on extremely-long leaseholds (maturity greater than 700 years) and free-

holds and show that their price difference is informative of the possible presence of rational

bubbles. Bubbles of this type may arise on infinite maturity assets since the asset can

be traded infinitely many times, at potentially higher and higher prices. The theory of

these bubbles was established in seminal contributions by Samuelson (1958); Diamond

(1965); Tirole (1982, 1985). Subsequently, rational bubbles have become the workhorse

model of bubbles in macroeconomics (e.g., Caballero and Krishnamurthy, 2006; Arce and

López-Salido, 2011; Martin, 2012; Martin and Ventura, 2014; Farhi and Tirole, 2012; Doblas-

Madrid, 2012; Giglio and Severo, 2012; Gali, 2014; Galí and Gambetti, 2014; Caballero and

Farhi, 2014). In these models, each trader purchases the asset purely due to the expectation

of being able to resell it in the future at a sufficiently high price, even if the price today

is above the fundamental value. Such bubbles cannot arise on finite maturity assets since

the terminal period breaks the infinite loop of price-increase expectations. At maturity, the

price has to collapse to its fundamental value, and backward induction then implies that

the price has to always equal the fundamental value in all previous periods. GMS16 test

for the presence of bubbles by comparing the prices of extremely-long (close to 1000 years

of maturity) leaseholds and freeholds. These two contracts have the same fundamental

present value, since they differ only by cash flows occurring more than 700 years into the

future, but are differentially affected by the presence of rational bubbles since these bubbles

would only increase the value of the freehold. They find that extremely-long leaseholds

and freeholds are priced identically, thus ruling out the presence of rational bubbles in the

U.K. and Singapore housing markets for the period 1995-2013.

Finally, in ongoing work, GMSW15 provide new evidence on the entire term structure
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of housing discount rates and the riskiness of housing cash flows, and show how these

data can be combined with structural models to inform important economic decisions,

such as climate change policy, that rely crucially on long run discount rates. GMS15 and

GMS16 focused only on long-run discount rates (100 year of maturity and above) and did

not study the shape of the entire term structure, nor decomposed discount rates into their

risk free and risk premium components. Studying the entire term structure of discount

rates, and understanding the maturity dependence of risk and return, are important steps

in extracting information from one particular asset (housing) to understand more generally

long-run discounting for other investments (for example, investments to mitigate climate

change). GMSW15 find the term structure of discount rates for housing to be downward

sloping with long run cash flows being discounted at substantially lower rates than short

run cashflows. This result on long run term structure is complementary to recent empirical

work documenting downward sloping term structures of discount rates in equity markets

up to 10 year maturity (van Binsbergen et al., 2012, 2013) and in other markets like the

market for variance risk (Dew-Becker et al., 2016; van Binsbergen and Koijen, 2016).

Section 2 provides an elementary review of discounting, Sections 3 and 4 review the

institutional features of leaseholds and freeholds and discuss how to use their prices to

learn about long-run discounting, Section 5 develops a convenient reduced-form declining

discount function, Section 6 reviews the results in GMS15, Section 7 reviews the results in

GMS16, and Section 8 reviews the results in GMSW15.

2 Discounting: The Role of Risk and Horizon

We start by reviewing the main concepts relating to long-run discounting, and the role

of maturity and risk premia. The review in this section follows closely GMSW15; we refer

the reader to that paper for additional details.

The analysis concerns the discounting of a stream of stochastic cash flows arising at

different times in the future, Dt+k, k = 1, 2..., T, where T is the final maturity of the cash

flows. Under no arbitrage, the time-t price of such stream of cash flows, Pt, is equal to the
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sum of expected dividends adjusted for risk and time through an appropriate Stochastic

Discount Factor (SDF) ξ:

Pt =
T

∑
k=1

Et[ξt,t+kDt+k].

A cash flow that occurs at maturity t + k is discounted using the maturity-specific SDF

ξt,t+k. Therefore, a claim to a single cash flow occurring at time t + k is priced at:

P(k)
t = Et [ξt,t+kDt+k] .

Any asset with arbitrary maturity T (where T could be infinity) can be thought of as a

“bundle” of individual claims with maturities k = 1, 2, ..., T, each paying the cash flow of

the corresponding maturity, Dt+k. Under no arbitrage, the price of the bundle is the sum

of the prices of the individual components:

Pt =
T

∑
k=1

P(k)
t . (1)

A common alternative – equivalent – representation expresses prices in terms of expecta-

tions of future cash flows (not risk-adjusted cash flows) discounted at rates that incorporate

a risk adjustment. For example, the price of the claim to the dividend occurring at time t+ k

is represented as:

P(k)
t =

Et [Dt+k]

(1 + rk
t )

k
, (2)

where rk
t is the per-period discount rate applied to the cash flow of maturity t + k. The

discount rate rk adjusts for both the timing of the dividend and the (maturity-specific)

riskiness of the dividend.

For any asset, we can find an asset-specific discount rate r that makes the price equal

to the present discounted value of the expected cash flows, all discounted at the same rate

r. For example, for an asset A with maturity T and price PA,t, the corresponding discount

rate rA,t satisfies

PA,t =
Et [Dt+1]

1 + rA,t
+

Et [Dt+2]

(1 + rA,t)2 + ... +
Et [Dt+T]

(1 + rA,t)T . (3)
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Using Equations (1) and (2) we can also express PA,t as

PA,t =
Et [Dt+1]

1 + r1
t

+
Et [Dt+2]

(1 + r2
t )

2
+ ... +

Et [Dt+T]

(1 + rT
t )

T
, (4)

where each individual cash flow is discounted at a maturity-specific rate rk
t . The two rep-

resentations in Equations (3) and (4) are equivalent, implying that the per-period discount

rate appropriate for a specific security, rA,t, can be thought of as a function of the maturity-

specific discount rates rk
t appropriate for each of the payments of that security.

This analysis emphasizes the importance of thinking about the maturity structure of

any investment when deciding the appropriate discount rate. Consider for example a

stream of 3 successive cashflows, Dt for t = {1, 2, 3}, that are expected to be $10 at all

future times, but with decreasing risk across maturity, such that the one-period-ahead cash

flow should be discounted at 5% (r1
t = 5%), the two-period-ahead cash flow should be

discounted at 3% (r2
t = 3%), and the three-period-ahead cash flow should be discounted

at 1% (r3
t = 1%). Let investment A be a claim to all three cashflows. The price of this

investment is:

PA,0 =
10

1.05
+

10
(1.03)2 +

10
(1.01)3 = $28.66

The implied per-period discount rate is 2.33% since

10
1.0233

+
10

(1.0233)2 +
10

(1.0233)3 = $28.66 = PA,0

Consider now an investment that is a claim only to the cashflow at time 3, i.e. a “long-

run” investment. Clearly, the cash flow from this investment should be discounted at 1%,

not at the 2.33% rate that is appropriate for the three-period “bundle” (investment A). This

simple example illustrates how even when restricting our attention to the same cash flows, the

appropriate discount rate for an investment is a function of the maturity structure of the

investment. In general, to assess the appropriate discount rate to be applied to a specific

investment, one needs to know the entire term structure of discount rates (r1
t , r2

t ...), as well

as the maturity structure of the investment’s cash flows.
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Finally, we remark that the term structure of discount rates r1
t , r2

t ... reflects not only

time discounting across horizons, but also the specific riskiness of cash flows at different

horizons. In particular, it is easy to show that a cash flow Dt+k that is negatively correlated

with the stochastic discount factor ξ is risky, and should be discounted at a rate rk
t greater

than the risk-free rate for that horizon. Conversely, a cash flow positively correlated with

the stochastic discount factor is a hedge for priced risks, and should be discounted at a rate

rk
t lower than the risk-free rate for that horizon.

3 Leaseholds and Freeholds

In valuing investments that involve very long-run payoffs, it is crucial to obtain a

reliable estimate of the discount rates rk
t to be applied to cash flows arising far in the future

(k of hundreds of years). GMS15, GMS16, and GMSW15 make progress on this question

by studying a unique setup in the housing market that allows them to estimate these long-

run discount rates. In particular, they exploit an institutional feature of housing markets

in the U.K. and Singapore in which property ownership takes two forms: leasehold and

freehold. A freehold corresponds to permanent ownership of a property, i.e. a claim to all

future rents from the property. A leasehold is a grant of exclusive possession for a clearly

defined and finite period of time (Burn et al., 2011). Common initial leasehold maturities

are 99, 125, 150, 250 or 999 years. Unlike for commercial leases, in most cases the entire

cost associated with a residential leasehold comes through the upfront purchase price.

Leasehold properties are traded in liquid secondary markets, where the buyer purchases

the remaining term of the lease. Once the leasehold expires, the ownership reverts back

to the freeholder. GMS15 review in detail the rights and obligations of leaseholders and

freeholders and find them comparable for the purpose of analyzing discount rates.

The empirical analysis in GMS15, GMS16, and GMSW15 is based on a comprehensive

proprietary dataset of transaction-level administrative data on all residential housing sales

in the U.K. and Singapore for the period 1995-2013. The data include the price paid for each

property as well as various structural characteristics of the property. When the property is
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purchased under a leasehold the data include how many unexpired years remain on the

lease at the time of sale.

We briefly review here the main characteristics of the U.K. data. GMS15 focus on 1.4

million transactions for flats (apartments) between 2004 and 2013. Figure I displays the

distribution of remaining lease lengths for flats at the time of sale. There are many trans-

actions with remaining lease lengths below 300 years and above 700 years; this variation

makes it possible to trace out the term structure of leasehold discounts across maturities.

About 3% of transactions are for freeholds, and 27% are for extremly long leaseholds (700

or more years remaining). The rest of the transactions are for shorter-maturity leaseholds.

Table I provides summary statistics for the main property characteristics in the U.K.

sample. GMS15 group leasehold transactions by remaining maturity: 80-99 years, 100-

124 years, 125-149 years, 150-300 years, greater than 700 years, and freeholds. As the

table shows, the median flat in the U.K. is approximately 65 square meters large, with two

bedrooms and one bathroom, and is located in a building that is 36 years old. The median

price for a flat is £123, 000. Property characteristics display some variation both between

freeholds and leaseholds, and across leaseholds of different remaining lease length. The

patterns, however, differ across characteristics. For example, freeholds tend to have more

bedrooms but fewer bathrooms than leaseholds do, and tend to be larger. Shorter-maturity

leaseholds and freeholds tend to be on older buildings than leaseholds of intermediate

lease length. GMS15 show that this variation is drastically reduced once properties are

compared only within the same three-digit postal code and conclude that properties held

on leasehold contracts of varying maturity and on freehold contracts are overall very sim-

ilar.

4 Interpreting Leaseholds’ Discounts

To understand why the term structure of leasehold price discounts compared to free-

holds is informative of discount rates, it is useful to think about the price difference be-

tween a hypothetical freehold and a leasehold on the same property.
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Intuitively, since the underlying freeholder on a property that currently has a leasehold

on it will receive the property back after the leasehold expires, the current difference in

price between the freehold and the leasehold is the present value of receiving the freehold

after the leasehold expires. More formally, the price difference between the freehold and

the T-maturity leasehold is the current price of a claim to the freehold after the leasehold

has expired (at T). One can compute this present value by applying the simple valuation

formula: Pt − PT
t = Et[PT ]

Rt,t+T
, where Pt is the price of a freehold at time t, PT

t is the price of a

leasehold with maturity T, and Rt,t+T is the total discount rate appropriate for this claim.

We obtain percentage leasehold discounts by dividing both sides by Pt:

DiscT
t = −Et[PT]/Pt

Rt,t+T
= − Et[PT]/Pt

R f
t,t+T + RPt,t+T

, (5)

where R f
t,t+T is the discount rate appropriate for a risk-free claim and RPt,t+T is the risk-

premium adjustment due to the riskiness of rental income.1

This formula shows that leasehold discounts are related to two basic forces: the ex-

pected capital appreciation of the freehold (the numerator), and the discount factor (the

denominator). The discounts are bigger the more households expect the price of the free-

hold to increase over the length of the leasehold. This is because the leaseholder does not

benefit from these capital gains while the freeholder does. The discounts are also bigger

the lower the discount factor, since this attaches higher present value to future rents.

5 A Reduced-Form Declining Discount Function

To make the general formula in Equation (5) operational it is convenient to specify a

simple model of discounting and rent growth. We introduce here what turns out to be a

convenient analytical functional form to match the term structure of leasehold discounts.

Formally, in this reduced-form model, the total discount rate (that includes the risk-free

rate and any risk premia) is a mix of hyperbolic and exponential discounting. It is beyond

1In the notation of Section 2 we write Rt,t+T = (1 + rT
t )

T since this discount rate is the one appropriate for
time-T cash flows.
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the scope of this paper to provide a microfounded model explaining where such a dis-

counting function might be coming from; here it is simply taken as exogenous and not to

be interpreted as either a risk-free rate or a rate of time preference.

Moving for analytical simplicity to continuous time (so that the total discounting factor

from 0 to t, (1+ rt
0)
−t, can be written as e−rt

0t) we assume that the discount function at time

0 for cash flows arising at time t is

e−rt
0t =

e−ρt

1 + κt
, (6)

where ρ > 0 controls the exponential component, and κ > 0 is the hyperbolic parameter.

For κ = 0, the per-period discount rate is constant across maturities, rt
0 = ρ for all t, and

the term structure of discount rates is flat. For ρ = 0, the term structure of discount rates

has a hyperbolic shape: 1
1+κt . In general, the reduced form discount function in Equation

(6) implies higher discount rates for short term than for long term cash flows. To illustrate

this property, consider how the per-period discount rate differs across maturities: rt
0 =

ρ + ln(1+κt)
t , for the case ρ > 0 and κ > 0. Notice that we have limt↓0 rt

0 = ρ + κ and

limT→∞ rt
0 = ρ.2 Therefore, per-period discount rates start at ρ + κ and then decrease to ρ

as maturity increases.

Note that the parameters ρ and κ should not be interpreted as deep primitives, but sim-

ply as convenient mathematical representations that allow us to capture the shape of the

term structure of discount rates in a flexible way.3 Since in this section we are not aiming

to decompose the total discount rate into risk free and risk premium subcomponents, we

assume for simplicity that rents grow at constant rate g.

Finally, note that in this setup, the T-maturity leasehold is valued at: PT
0 =

∫ T
0

e−(ρ−g)s

1+κs D0ds.

Appendix A.1 derives analytic expressions for the resulting value, as well as for the value

of the freehold.
2The first limit follows from an application of l’Hopital’s rule.
3That is, we are not assuming that agents have either hyperbolic or exponential discounting, but simply

that, whatever the underlying true model might be, the equilibrium discount rates can be approximately
described by the assumed functional form.
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6 Estimating Very Long-Run Discount Rates

GMS15 estimate the relative prices paid for leaseholds of varying maturity and free-

holds using transaction data in the U.K. and Singapore. In each country, leaseholds are

assigned to maturity buckets, based on the maturity remaining on the lease at the time of

sale. GMS15 estimate the specification below:

log(Pi,h,t) = α +
5

∑
j=1

β j1{Ti,t∈MaturityGroupj} + γControlsi,t + ξh × ψt + εi,h,t

where Pi,h,t is the price of a transaction i of a property in geographic area h at time t; Ti,t

is the maturity remaining on the leasehold at time of sale; the β j coefficients capture the

log price discount of leaseholds with maturity in bucket j of the MaturityGroup relative to

otherwise similar freeholds, which are the excluded category in the regression; Controls are

various hedonic controls (like number of bathrooms and size of the property); and ξh × ψt

indicates the interaction of postcode and time fixed effects.

Figure II reports the estimated β j coefficients with their respective standard errors.

Leaseholds with shorter maturities trade at greater price discounts to otherwise identical

freeholds. Leaseholds with 80-99 years remaining trade at an approximately 16% discount

to freeholds; the discount decreases to 10% for leaseholds with 100 to 124 years remaining,

8% for 125-149 years remaining, and 3% for 150-300 years remaining.

Interestingly, similar results hold in the case of Singapore, a country with a very dif-

ferent history and institutional environment. This suggests that the observed discount

between freeholds and leaseholds is unlikely to be explained by country-specific institu-

tional features. GMS15 further explores the possibility that the observed discounts may

not capture maturity-specific discounting, but rather reflect confounding factors in these

markets.4

GMS15 use the simplest model of finance, the Gordon growth model, to provide a

4GMS15 perform numerous robustness tests to rule out alternative hypotheses related to: systematic
unobserved structural heterogeneity across different properties, differences in the liquidity of the properties,
different clientele for the different ownership structures, and contractual restrictions in leasehold contracts.
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back-of-the-envelope assessment of the discount rates implied by the leasehold/freehold

price discounts. Assume that cash flows are discounted at a constant rate r, and rents Dt

grow over time at a constant rate g. This model is a special case of the one we introduced

in Section 5 and is obtained by setting κ = 0. The price of a freehold is Dt
r−g and the price of

a T-maturity leasehold is:

PT
t =

Dt

r− g
(1− e−(r−g)T).

The percentage price difference between leaseholds and freeholds is:

DiscT
t = −e−(r−g)T.

GMS15 calibrate g to the empirical real growth rate of rents ( 0.7% per year in the data),

and show that a discount rate r of 2.6% per year fits the observed leasehold/freehold price

discounts.

7 No-Bubble Condition

GMS16 show how the housing market setup with leaseholds and freeholds can be used

to test empirically for the presence of bubbles. They focus on a particular type of bubble,

the most prominent incarnation of which is a rational bubble, that satisfies the following

properties:

Pt =
∞

∑
s=1

Et[ξt,t+sDt+s] + Bt, Bt ≡ lim
T→∞

Et[ξt,t+TPt+T], (7)

where ξt,t+s ≡ ∏s−1
j=0 ξt+j,t+j+1, and

Bt = Et[ξt,t+1Bt+1], with B0 > 0.

The term Bt is a bubble since it attaches positive present value to a claim that postpones

indefinitely making any payments and has therefore zero fundamental value. Recall that
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for a finite maturity asset, like the T-maturity leasehold, we have:

PT
t =

T

∑
s=1

Et[ξt,t+sDt+s] (8)

Subtracting (8) from (7) we obtain:5

Pt − PT
t = Et[ξt,t+TPt+T]

Taking the limit as maturity of the leasehold goes to infinity, we obtain:

lim
T→∞

(Pt − PT
t ) = lim

T→∞
Et[ξt,t+TPt+T] = Bt, (9)

where the last equality follows from the definition of the bubble in Equation (7).

The classic rational bubble has a long-standing tradition in the theoretical literature,

with seminal papers by Samuelson (1958), Diamond (1965), Blanchard and Watson (1982),

Tirole (1982, 1985), and Froot and Obstfeld (1991). It has since become the workhorse

model of bubbles in macroeconomics (e.g., Caballero and Krishnamurthy, 2006; Arce and

López-Salido, 2011; Martin, 2012; Martin and Ventura, 2014; Farhi and Tirole, 2012; Doblas-

Madrid, 2012; Giglio and Severo, 2012; Gali, 2014; Galí and Gambetti, 2014; Caballero and

Farhi, 2014).

Equation (9) is the basis of the empirical test strategy described in GMS16. They ap-

proximate the infinite limit by focusing on leaseholds of extremely long maturity: T > 700

years. GMS16 first show that rational bubbles were not present on average in their sample

(U.K. and Singapore 1995-2013). They then also rule out such bubbles in subsamples across

both time and geography. They focus on specific subsamples that were ex-ante more likely

to have experienced a bubble.

Figure III reproduces some of the tests in GMS16. Panel A reports estimates for the

U.K. of the 700-year leasehold discount to freehold estimated year by year between 1995

5See the Appendix in Giglio, Maggiori and Stroebel (2016) for full derivations.
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and 2013. The difference in price is never statistically or economically significant despite

substantial variation over time in house prices and house price to rent ratios. The remain-

ing panels on Figure III focus on cross sectional analysis. GMS16 focus on 7,000 different

geographic units, the MSOAs of England and Wales, and sort them in quintiles according to

characteristics of the properties in each MSOA. They then estimate the 700-year leasehold

discount to freehold in each quintile separately. Panel B displays the discounts when areas

are sorted by their corresponding house price to income ratio. Panel C repeats the exercise

sorting areas by the growth rate of the price to income ratio between 2004 and 2007. Panel

D sorts areas by the average time on the market for properties on sale in each area. The

rationale behind these cross sectional tests is that bubbles might be a priori more likely

to be present in regions with higher house prices relative to income, with higher house

price growth relative to income growth, and with lower time on market (more liquid or

“hot" markets). GMS16 rule out the presence of rational bubbles across all these different

sortings of the areas.

One notable feature of the test for bubbles in GMS16 is that it uses a purely cross-

sectional (across assets) approach to identify bubbles, as opposed to a time-series approach.

Many existing econometric tests for bubbles identify bubbly episodes by studying the time

series behavior of prices compared to fundamentals (rents). These tests find it hard to

distinguish between sharp and persistent movements in discount rates and the presence of

a bubble. This occurs because both discount rate variation and the presence of a stochastic

bubble induce sharp and persistent movements in prices compared to rents. GMS16’s

test helps overcome this difficulty since it does not compare the time-series properties of

prices to those of rents, but instead compares the prices of extremely-long leaseholds and

freeholds at each point in time. Since the prices of both contracts are equally affected by

variation in discount rates (the fundamental value of the two contracts is the same), but

only the price of the freehold is affected by a bubble, the test can correctly account for

(even sharp) movements in discount rates.
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8 Climate Change and Long-Run Discount Rates

Any consideration of the costs of meeting climate objectives requires confronting one

of the thorniest issues in all climate-change economics: how should we compare present

and future costs and benefits? [...] A full appreciation of the economics of climate change

cannot proceed without dealing with discounting. (Nordhaus, 2013)

The literature on the economics of climate change, starting with Nordhaus (1973), has fo-

cused on the importance of discounting for evaluating the tradeoff between the immediate

costs of climate change mitigation policy and its uncertain benefits that occur very far in

the future.6 An empirical literature has tried to infer the appropriate discount rates from

the realized returns of traded assets such as private capital, equity, bonds, and real estate.

For example, the dynamic integrated climate-economy (DICE) model of Nordhaus and

Boyer (2000) and Nordhaus (2008) features a constant rate of discounting, calibrated to 4%

to reflect the authors’ preferred estimate of the average return to capital.7

GMSW15 first show theoretically that the appropriate inference from their estimates of

discount rates for housing cashflows about the relevant discount rate for climate change

abatement investments depends both on the horizon of the investment and on the rel-

ative risk properties of housing compared to investments in climate change mitigation.

GMSW15 then provide new empirical evidence on the entire term structure of discount

rates for housing cash flows as well as evidence of the riskiness of these cash flows.

As we reviewed in Section 2, the horizon of the investment matters because estimates

of expected returns of assets capture only their average return, which might not reveal the

appropriate discount rates for long-run claims if term structures of discount rates are not

flat. For example, GMSW15 estimate that the average returns to residential housing are in

the range of 6-8%. However, the relevant estimates to evaluate long-run housing claims are

6See also: Arrow et al. (1996); Weitzman (1998); Groom et al. (2005); Gollier (2006); Nordhaus (2007);
Weitzman (2007); Pindyck (2013); Greenstone et al. (2013).

7Stern (2007) argues for 0% discount rate on ethical grounds that require the present generation to not
discount the welfare of future generations. Nordhaus (2007) points out that a 0% discount rate cannot be
reconciled with economic theory because it would imply an enormous burden on the current generation by
attaching infinite values to many investments that are routinely available in private markets at finite prices.
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the discount rates for cash-flows very far into the future. GMSW15 found such discount

rates to be much lower than those implied by average returns and of the order of 2.6% for

100-year claims on housing. They conclude that the term structure of discount rates for

real estate cash flows must be downward sloping. Figure IV shows that the reduced form

declining discount function we introduced in Section 5 is capable of fitting both the low

long-run discount rates and the high average rate of return (in the calibrated version, the

expected return of a freehold is about 6%).8

GMSW15 then turn to the riskiness of housing cash flows and show that housing across

countries and time periods is a risky asset: it has low returns in periods of financial crises,

rare disasters, and wars. Finally, in ongoing work GMSW15 combine these new empirical

estimates with structural models of risk premia to provide guidance to the climate change

discounting literature; discount rates at or below 2% are likely to be appropriate for climate

change abatement investments, when such investments mitigate the probability or the

effects of climate-change-induced aggregate risk.
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Figure I: Distribution of Observed Maturities
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Note: Source: GMS15. The figure shows the distribution of remaining lease length at the point of sale for
flats in the U.K. sample. See original reference for further details on the data.
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Figure II: Leasehold Price Discounts by Remaining Lease Length
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Note: Source: GMS15. The figure plots log-price difference between leaseholds of varying remaining
maturity and freeholds for flats sold in the U.K. between 2004 and 2013. The vertical axis is expressed in
log-points, the horizontal axis shows leasehold discounts depending on the remaining term of the lease. The
bars indicate the 95% confidence interval of the estimate. See original reference for further details on data
and estimation.
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Figure III: Time-Series and Cross-Section of Bubble Claim
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(B) By price-income ratio (2004)
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(C) By price-income ratio growth (2004-7)
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Note: Source: GMS16. The figure reports estimates of the discount between 700+ year leaseholds and
freeholds from regression 6, dividing the U.K. sample along time-series and cross-sectional dimensions.
Panel A shows the coefficients of the 700+ leasehold discount year by year. Panels B through D report
the coefficients of the 700+ leasehold discount, splitting Middle Layer Super Output Areas by quintiles of
measures of the potential for a bubble: the price-income ratio in 2004 (Panel B), the growth of the price-
income ratio between 2004 and 2007 (Panel C), and the time-on-market (Panel D). The bars indicate the 95%
confidence interval of the estimate using standard errors clustered at the 3-digit postcode level. See original
reference for further details on data and estimation.
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Figure IV: Discounts generated by the Hyperbolic-Exponential model
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Note: The figure shows the log price discounts for leaseholds observed in U.K. together with the discounts
implied by a parameterizations of the hyperbolic-exponential discounting model. The model generates
expected returns for freeholds of about 6% per year.
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Table I: Summary Statistics

PERCENTILE

Variable Lease Length Mean Stdev p1 p5 p25 p50 p75 p95 p99

Price (£’000)

80-99 121.1 125.7 18 29 57 91 149 290 545
100-124 155.0 145.0 21 36 80 130 190 350 610
125-149 177.6 183.6 25 52 103 145 205 380 750
150-300 175.2 146.7 26 46 103 146 210 385 650
700+ 176.0 242.9 20 33 75 125 202 460 950
Freehold 140.9 191.6 15 27 59 105 163 359 780
TOTAL 155.6 178.1 20 34 73 123 185 371 712

Bedrooms

80-99 1.66 0.65 1 1 1 2 2 3 3
100-124 1.79 0.66 1 1 1 2 2 3 4
125-149 1.83 0.60 1 1 1 2 2 3 4
150-300 1.80 0.58 1 1 1 2 2 3 3
700+ 1.84 0.65 1 1 1 2 2 3 4
Freehold 2.33 0.98 1 1 2 2 3 4 5
TOTAL 1.79 0.66 1 1 1 2 2 3 4

Bathrooms

80-99 1.08 0.29 1 1 1 1 1 2 2
100-124 1.17 0.40 1 1 1 1 1 2 2
125-149 1.29 0.50 1 1 1 1 2 2 3
150-300 1.27 0.46 1 1 1 1 2 2 2
700+ 1.21 0.44 1 1 1 1 1 2 3
Freehold 1.17 0.47 1 1 1 1 1 2 3
TOTAL 1.17 .40 1 1 1 1 1 2 2

Size (m2)

80-99 66.3 48.2 29 35 49 60 73 103 161
100-124 71.9 55.0 30 40 54 66 79 108 180
125-149 74.0 52.4 33 43 57 67 79 115 200
150-300 71.1 42.9 31 41 55 66 78 111 162
700+ 75.6 62.7 30 39 54 67 82 127 212
Freehold 94.0 45.0 42 49 71 96 99 152 237
TOTAL 72.2 54.9 30 39 53 65 80 115 190

Age (years)

80-99 60.3 48.4 0 3 15 56 101 127 165
100-124 44.8 44.1 0 0 10 35 67 121 158
125-149 37.4 49.4 0 0 1 9 69 123 160
150-300 39.4 48.9 0 0 1 21 73 123 162
700+ 52.2 60.0 0 0 10 35 97 144 205
Freehold 61.2 56.7 0 2 19 45 100 146 253
TOTAL 50.3 48.7 0 0 10 36 95 128 179

Note: Source: GMS15. The table shows summary statistics for the main hedonic variables for the sample
of U.K. flats. For each characteristic, the table reports the statistics separately for different buckets of
remaining lease length, as well as for the pooled sample. See original reference for further details on the
data.
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A.1 Appendix: Details on Hyperbolic-Exponential Discount-

ing
We include here details for the derivations in Section 5 of the paper. First, let us focus on a

model where the discount rate by maturity is purely hyperbolic. In continuous time, the hyperbolic

discount function is simply 1
1+κs where κ > 0 is the hyperbolic parameter. To gather intuition, assume

that rents were constant at D. Let us value the T-maturity lease contract. For simplicity consider

valuation at t = 0.

PT
0 =

∫ T

0

1
1 + κ s

Dds = D
ln(1 + κ T)

κ
.

The obvious problem with this model for the term structure of discount rates when applied to longer

term assets is that the valuation of claims diverges (even without dividend growth) as the horizon T

increases (T → ∞).

In the paper, therefore, we augmented the hyperbolic discount function to include an exponential

term: e−ρs

1+κs , where ρ > 0 is the exponential component of the discount rate. This mixed hyperbolic-

exponential form of discounting tends to behave like hyperbolic discounting in the short run and

like exponential discounting in the long run. Since the long-run discount rate approaches ρ, finite

prices for long-run securities in the presence of cash-flow growth g are guaranteed by ρ > g. The

T-maturity leasehold is valued at:

PT
0 =

∫ T

0

e−(ρ−g)s

1 + κs
D0ds = D0

e
ρ−g

κ

(
Ei
(
(Tκ+1)(g−ρ)

κ

)
− Ei

(
g−ρ

κ

))
κ

,

where Ei(x) is the Exponential Integral function defined as:

Ei(x) ≡ −
∫ ∞

−x

e−t

t
dt.

The freehold is correspondingly valued at:

P0 = D0

e
ρ−g

κ Γ
(

0, ρ−g
κ

)
κ

,

where Γ(x) is the Upper Incomplete Gamma Function defined as:1

Γ(0, x) ≡
∫ ∞

x

e−t

t
dt.

The leasehold-freehold discount is now:

DiscT
0 =

Ei
(
(Tκ+1)(g−ρ)

κ

)
− Ei

(
g−ρ

κ

)
Γ
(

0, ρ−g
κ

) − 1.

1Notice Γ(0, x) = −Ei(−x).

A.1



The per-period equivalent constant discount rate rT
0 for any horizon T solves e−rT

0 T = (R0,T)
−1 =

e−ρT

1+κT , and is hence obtained via the formula:

rT
0 = ρ +

ln(1 + κT)
T

.

This is the formula reported in the main text. Notice that we also have limT↓0 rT
0 = ρ + κ and

limT→∞ rT
0 = ρ.2 So that total discount rates start at ρ + κ and then decay over the horizon to ρ.

Similarly, marginal discount rates r(s) can be derived by defining the discount function F0,T =

exp
(
−
∫ T

0 r(s)ds
)

. Then an application of Leibniz’s rule for differentiation under the integral sign

yields: ˙F0,T = −r(T)F0,T, where ˙F0,T is the time derivative of function F0,T. Hence, we have the result

hat r(T) = − ˙F0,T
F0,T

. Finally, applying this formula to the exponential-hyperbolic discount function,

F0,T = e−ρT

1+κT , one obtains the result:

r(T) = −
˙F0,T

F0,T
= ρ +

κ

1 + κt
.

Marginal discount rates are therefore monotonically decreasing from ρ + κ to ρ.

We next derive the expected, instantaneous returns to the freehold, under the assumption that

the term structure of discount rates is constant over time (hence, this instantaneous return will also be

the expected return). Before deriving the expression for the hyperbolic-exponential model, we report

the derivation for the simple Gordon growth model where all cash flows are discounted at the same

rate r (flat term structure of discount rates). The instantaneous return on the freehold is given by:

dPt + Dtdt
Pt

.

In the Gordon growth environment with a flat term structure of discount rates, capital gains are
dPt
Pt

= gdt. This can be derived recalling that Pt =
Dt

r−g = D0egt

r−g and taking the time derivative. The

rental yield is Dt
Pt

= r− g. We conclude that total returns on the freehold in the Gordon growth model

are:
dPt + Dtdt

Pt
= gdt + (r− g)dt = rdt.

We now derive the formula for expected returns to the freehold in our hyperbolic-exponential model

by analogy with the Gordon growth model derivation above. The capital gains in our hyperbolic-

exponential model are dPt
Pt

= gdt. This can be derived by recalling that Pt = Dt
e

ρ−g
κ Γ(0, ρ−g

κ )
κ =

D0egt e
ρ−g

κ Γ(0, ρ−g
κ )

κ , and taking the time derivative. The rental yield is Dt
Pt

= κ

e
ρ−g

κ Γ(0, ρ−g
κ )

. We conclude

that total returns on the freehold in the hyperbolic-exponential model are:

dPt + Dtdt
Pt

= gdt +
κ

e
ρ−g

κ Γ
(

0, ρ−g
κ

)dt.

2The first limit follows from an application of l’Hopital’s rule.
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If κ = 0 then the return to the freehold is simply ρ, and we are back to the exponential discounting

model. An increase in κ for a given ρ has the following comparative statics: the returns to the freehold

increase, short term discount rates increase, long-term discount rates are unchanged, and leasehold

discounts (Disc) increase in absolute value. These dynamics are precisely what allow the reduced-

form hyperbolic-exponential model to reconcile the long-run valuation pattern.
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