6

10

11

12

Appendix to: “Intangible Capital, Relative Asset

Shortages and Bubbles”

Stefano Giglio

University of Chicago, Booth School of Business

Tiago Severo

International Monetary Fund

February 1, 2012

Proofs

Proof of Proposition 1

It is clear that K;(t+1) =0, Z;(t+1) = 0 for all ¢ satisfy the equilibrium conditions reported
in Section 4.1, for a certain value of \; > 0.

First, we prove that if a nontrivial bubbleless equilibrium exists in the parameter region
B, the constraint has to be binding at all times. Suppose that («, 5, 7) € B but the constraint

is not binding for at least one generation t. Then, A\; = 0, which implies:

ky(t+1) = %zt(H 1)



The following inequality must hold:

2(t+1) <w(t+1)

or

Zi(t+1) < mw(t +1)

Equilibrium in the savings market implies:

Ki(t+ 1)+ Z(t+ 1) =w(t+1)

SO:

Zi(t+1) <m(K(t+ 1)+ Z(t+ 1))

or:

(1—-m)p < 7a

which coincides with NB = ©\ B.
Conversely, suppose that an equilibrium exists for the parameter region NB, but the

constraint is binding for at least one period t. Then, A\; > 0 and we must have:

Zy(t +1) = 7w(t + 1)

so that
i
Besides, remember that
Yi(t+2) Yi(t+2) I6; Q@
AN =IRR(t+2)— R(t+2) = — =Yi(t+ 2 —
! (t+2) - R+2) ﬂZt(tJrl) “Kt+1) 2 )(Zt(t+1) Kt(t+1))
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Since in a non-trivial equilibrium Y;(t 4+ 2) > 0, we must have:

15} «
Z(t+1) K/(t+1)

>0

or

BE(t+1) > aZ(t+1) = aﬁl{t(t +1)

Therefore, if the constraint is binding in period ¢ we must have:
(1—m)p > na

which coincides with the B region.

We have then shown that if an equilibrium exists without bubbles it must either have the
constraint binding at all times (region B), or never binding (region NB). We will now prove
the existence of the dynamic equilibrium separately in each region, by construction.

Let us start with the equilibrium in the B region. As reported in the text, the equilibrium

must satisfy the following conditions:

w(t+1) = (1—a = B)Yia(t+1)

Yi(t +2)

R(t+2)=atrT%
(t+2) =i

~—

Kt+)+Z(t+1)=wlt+1)=1—a—-pB)Y,1(t+1)

Zi(t+1) <mw(t+1)

BY;(t + 2)

I 2) = 2 =
RR(t+2)=R(t+2)+ N Z 1)



M[Zi(t+ 1) —mw(t+1)] =0

A >0
YVi(t+2) = A(t + 2)K,(t + 1) Z,(t + 1)°

2 An equilibrium exists if the system above admits a solution for all t.
3 In the B region, for every ¢ and given Y;_1(t+ 1), the vector [Y;(t+2), Ky (t+ 1), Zi(t + 1)]

+ is determined by the solution to the system of equations:
Kt+1)+Z(t+1)=(1—-a—-8)Y,_1(t+1)

Zi(t+1) = Ki(t+1)

(1—m)
Yi(t+2) = A(t + 2) K (t + 1) Z,(t + 1)°

7 and prices can then be backed out through the optimality conditions of the firm. The system

s can be further simplified to:

K(t+D)=(1-n)1—a—-p8)Y((t+1)

- 8
Yi(t+2) = A(t +2) Ky (t + 1) (mm(zﬁ + 1))

o and finally

(1—m)

B
Vit +2) = A6+ 2) (7 ) (=m0 -ampYiaor D)™

10 This shows the existence of the equilibrium. For every Y, i(t + 1) > 0, this equation

1 tells us how Y;(¢ + 2) is determined along the equilibrium path, and through the equations



1 reported above we can always find Z;(t + 1) > 0, K;(t + 1) > 0 and then prices that satisfy
> all the equilibrium conditions.

3 Finally, we can rescale the system by A(t + 2) =a=% in order to obtain the steady state.

2 Denote

- Yi(t+2

Yi(t+2) = t(—)l

At + 2)T=e=5
5 and note that:
Yia(t+1) Yioi(t+1) _ Yia(t+1)
At +2)77  (A(t+1)(1+n))Te7s l+g

6 In the B region, the system becomes:

Vilt+2) = (1m0 s n)™ 1 g
(i) ( )

i-m

7 Steady state capital and intangibles satisfy:

. : Vi (t+1)
Kit+1)+Zt+1)=(1—-a—-p) —————=
D)+ L) = (-0 - §) 2
8 . . .
Zi(t+1) = —K;(t+1
t( + ) (1 _ 7T) t( + )
0 Finally, the rates of return satisfy:
Yi(t 42
R(t+2) = a2t +2)
(t+1)
10 A~
Yi(t+ 2
IRR(t+2) = pll£2)
Zi(t+1)
11 In the steady state of this economy }A/, K , 7 are constant, so the respective level variables

12 grow at rate 1 + ¢g. The unique steady-state is given by:

1
1—-a—p

B
% = T — T - — oath —(a+h)
7 [(ﬂ_w)) (1= (1= a= )™ (1+9)



% (1—7T)(1—CV—5)Y
(1+g9)

T(l—a—f)
(1+9) v

N

Also the interest rate R and the IRR will be constant in the long run.

B a(l+g)
A Fa T ——y
_ B(l4yg)
R

Let us now analyze the NB region. In the NB region, the equilibrium conditions simplify

to:

w(t+1) = (1—a— BVt +1)

K(t+1)+Z(t+1)=1—-—a—-8)Yq(t+1)

Yi(t +2)

IRR(t+2) = R(t+2) = B+ T)

Yi(t+2) = A(t + 2) K, (t + 1) Z,(t + 1)°

Again, an equilibrium exists if the system above admits a solution for all ¢. For every t
given Y;_1(t + 1), the vector [Y;(t +2), Ki(t + 1), Zi(t 4 1)] is determined by the solution to
the system:

Kt+1)+Z(t+1)=1—-a—-8)Y,_1(t+1)



Zi(t+1) = gKt(t-f- 1)

YVi(t+2) = At + 2)K,(t + 1) Z,(t + 1)°

> and prices can then be backed out from first order conditions. The system can be further

3 simplified to:

Ki(t+1)= 1—a—-p8)Y,q(t+1)

a+p
m@+m=Au+me+4w(§mu+n)ﬂ

4 Just like in the B case, we can represent the evolution of the system with one state

s variable, Y;_1(t 4+ 1). The equilibrium is characterized by:

s - (2) [t ]

~ « }A/;«/,l(t + 1)
Kit+l)=——1—-a—-p) ———=
B Y, 1(t+1)
Zi(t+1) = l1—a-—
6 In the steady-state of this economy, Y,K and Z are constant, so the respective level

7 variables grow at rate 1 + g. The unique steady-state is given by:

_B a+f
y_(éyQﬂ{ a (L-—a—p)]=
- \a a+p8 (1+g9)
. o Y
K:a+5(1_a_ﬁ) (1+9)



. Proof of Lemma 2

> We look first at bubbly equilibria in which the generation ¢ entrepreneurs are financially
s constrained (i.e. we look for a solution of the system where A\; > 0). In these equilibria, we

4+ must have:

Ki(t+1)+Z(t+1)+B(t+1)=1-a—-58)Y,1 (t+1)

B(t+1)=R(t+1)B(t)

Zit+1)=7m(1—a—-B)Y,1(t+1)

Yi(t+2) = A(t + 2) K, (t + 1) Z,(t + 1)°

Y, (t+2)

R(t+2) = am

5 Note that given the vector [Y;_1(t+1), B(t+1)], the state of the system when the financing

¢ constraint is binding is determined as follows. First, Z;(t+ 1) is determined given Y; 1 (t+1)

Zit+ 1) =7(1—a—pB)Y,_1(t+1)
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Then, K; is determined by the equation

K(t+1)=(1-7m)(1—a—8)Y,y(t+1)—B(t+1)

Knowing K;(t + 1) and Z;(t + 1) allows us to find Y;(t + 2) and B(t + 2):

Yi(t+2) = A(t + 2) K, (t + 1) Z,(t + 1)°

and
Yi(t +2)

B(t+2) = am

B(t+1)

These equations show two things. First, that [Y;_;(¢ + 1), B(t + 1)] plus the knowledge
that \; > 0 is enough to determine the state of the economy in the next period. Second, they
show that a necessary condition for the existence of a binding equilibrium in which, after

[Yi—1(t + 1), B(t + 1)], the financing constraint is binding is that

Kt+1l)=(1-m1-a-B)Yy(t+1)—B(t+1)>0

or

Bt+1)<(l-m(l-a—-p)Y,1(t+1)

Note that this is a condition that depends on the state of the economy [Y;_1(t+1), B(t+1)].
It is saying that if the economy at time ¢ + 1 has too big a bubble relative to output, in the
next generation there cannot exist a continuation of the equilibrium in which the financing
constraint is binding.

The other condition that needs to hold for the system to show a binding constraint is
that A\, > 0, or

BEK,(t+1) > aZ(t+1)



1 In turn, this implies
B(t+1) < [(1=m) = Gl o= B)Yi(t +1)

> Hence this is another necessary condition that constrains the maximum value of the bubble.
s This constraint can be satisfied only if 5(1 — 7) — wa > 0, which coincides with region B.

a This proves that in the parameter region NB no equilibrium path can support a bind-
s ing financing constraint. Since the term in square brackets is also always less than 1, this
¢ constraint is always tighter than the one above, so it always dominates it.

7 Hence, an equilibrium which supports the path [Y;—; (¢t + 1), B(t + 1)] has the following
s features:

0 i) In the region NB, the financing constraint can never be binding along any equilibrium

10 path. Because of this, [Y;_1(t + 1), B(t + 1)] is a state vector in this region of the parameter

1 Space.
12 ii) If the financing constraint is binding for generation ¢, then it must be that
Q@
Bt+1)<[1-m) — Ew](l —a—B)Yi1(t+1) = Bnazp(Yi1(t+ 1))
13 This condition is also sufficient for the existence of the intratemporal equilibrium of

1 generation ¢ (however, it does not guarantee that the whole path will be an equilibrium).
15 Suppose now that the generation ¢ entrepreneurs are not financially constrained (i.e. we
16 look for a solution of the system where A\, = 0). Then, the set of conditions that determine

17 the state of the economy at the next generation reduces to:

K(t+1)+Z(t+1)+Bt+1)=01—-a—-B)Y,1(t+1)

18

Zit+1) = gm(w 1)

10
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B(t+1)=R(t+1)B(t)

Yi(t+2) = A(t + 2)K,(t + 1) Z,(t + 1)°

Yi(t +2)

R(t+2) = am

The state of the system when the financing constraint is not binding is determined as
follows. Given [Y;—1(t + 1), B(t+1)], Z:(t + 1) and K,(t + 1) are jointly determined by the
first two equations.

This determines Y;(t + 2) and R(t + 2) through the last two equations, and in turn this
determines the state vector in the next generation, [Y;(t +2), B(t + 2)].

A necessary condition for the existence of the solution to these equations is that:
Bt+1)<(1—a—=8)Y,1(t+1)= Buazm(Yi-1(t +1))

which again imposes that the bubble cannot be too large.

Another necessary condition is that the constraint is slack:

Zit+ 1) <7l —a—B)Y,1(t+1)
ie.

(1—a—,6)3/t_1(t+1)—3(t+1)gw(l—a—ﬁ)yt_l(tﬂ)(u%)

B(t+1)2 [(1=m) = Gl (1= o= B) Yims (£ 1) = Busp(Yies(141) = B (Yica (t1)

Therefore, there exists a nonbinding continuation if and only if:

11
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Biazp(Yic1(t+ 1)) < B(t+ 1) < Bz (Yio1(t + 1))

This condition is also sufficient for the existence to the intratemporal nonbinding equi-
librium of generation ¢ (however, it does not guarantee that the whole path will be an
equilibrium). It is also clear that this condition can be satisfied only in the NB region, so
that a nonbinding continuation cannot occur in the B region.

From the analysis above, it becomes clear that given a value of the state vector [Y;_;(t +
1), B(t + 1)], whether the continuation is binding or not is uniquely determined by whether
we are in the B or NB regions of the parameter space. Once the state of the constraint in the
continuation is known,Y; (¢ + 1) and B(t 4 1) are sufficient to compute all the equilibrium
prices and quantities in the next period and, consequently, represent a state vector for the
economy.

It is immediate to see that [Y;_(t 4+ 1), B*(t 4+ 1)] is also a state vector for the dynam-
ics of the economy and the threshold value of the bubble for the binding and nonbinding

continuation can be expressed as:

e = (1= ) — %ﬂ (1—a—p)

Proof of Lemma 3

The AMSZ criterion requires that for each ¢
Vit+2)—(1—-a-p)Yi(t+2) > (1—a—-p)Y(t+2)

since Y;(t+2) is the amount of resources produced, 1 —a — 3 is the fraction of it paid to labor
(the rest is payed as returns to capital), and total wages (1 — a — 3)Y;(t + 2) are equivalent
to aggregate savings by generation ¢ + 1. Simplifying, we get (o + 3) > %

Based on the equations for the steady-state presented in the proof of proposition 1, we

12
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have

a+p

7T]RR—|—(1—7T)R:m

(1+g9)>1+g9)

independently of whether the economy is in the B or in the NB region.

Proof of Proposition 3

Consider an economy with state |Y,_y (£ + 1), B* (t + 1)] such that
0<B*t+1)<(1-m(l—-a—-08)—a

and

Vi (t+1)>0

Since the economy belongs to the B region, it is easy to check that
B(t+1) < Biazp (Yio1 (6 + 1))

Based on Lemma 2, we know the borrowing constraints will bind at ¢ + 1. Hence, the

equilibrium in this period is characterized by:

Kit+1)+Bt+1)=1-m(1—-a—-p)Y 1 (t+1)
Zit+1)=na(l—a—-B) Y (t+1)

Y, (t+2) = At +2) K, (t+1)* Z (t +1)°

13



Y,
t+2)=
R(t+2) s

1 and the bubble will evolve according to
B(t+2)=R(t+2)B(t+1)

2 Substituting the savings conditions on the production function and rearranging terms, we

3 obtain:
Vit+2)=(1+9) “r-a=-p)" [(1-m1-a=-p)—B {t+1)]" Y (t+1)**

4 Combining the savings condition with the expressions for the interest rate and the bubble

s dynamics, we obtain:

B*(t+1)
B*(t+2)=
e s v sy ey ey
6 These two equations fully describe the dynamics of the economy.

7 If
B t+)=(1-m(1—a—0) —«

s the solution to the system of difference equations is given by:

B (t+j)=0-m(1-a=F)—-a

T(l—a—8]"a?| -
[ (1(1 + g>aﬁ+)/; }Yt—&-j—Q (t —f‘j)a—w

Y/H-j—l (t+j+1)= {

w forall j ={1,2,3...}. It is easy to verify that this economy converges to a unique steady-state

y:{[w—a—m]aaﬂ}w
(149)*""

14

1 characterized by:
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B'=(1-mn)(1—-a—-0)—«

s_mll-—a-f),
(1+9)
~ o ~
K= %
(1+9)

If, on the other hand,
B t+)<(l-m(1l—a—0)—«

the bubble to output ratio converges to zero and the economy converges to the bubbleless

binding steady-state characterized in the proof of Proposition 2.

Proof of Proposition 4

That no bubble can exist before T' is a trivial result, since ASM Z is satisfied and the economy
is never expected to move to the B region. Now, suppose that, at the very beginning of date
T, agents learn about a permanent change in (a, 8) to (o/, 5"). Naturally, if bubbles are to

be sustained from that point on and if the AMSZ is satisfied, financial constraints have to
! T
S
o {1 — 7T:|

o +p >05

bind and we must have:

and

Suppose, additionally, that the following holds

[(1—a'=f) (A —7)—a]>0

15
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It is straightforward to check that, for any values of (o/ 4+ 4') in the interval(0.5,1) and
any 7 € (0,1), those conditions will be satisfied provided that g—i is large enough.

We will focus on an equilibrium in which the bubble is issued uniformly at time T by
entrepreneurs of generation T'— 1, who will immediately sell it to the households of the same
generation. Naturally, from that point on, the rational bubble will evolve at the market
interest rate and will be traded among households of different generations only. We also
assume that the bubble issued will be the largest possible.

Because in this equilibrium the bubble relaxes the borrowing constraint of the entrepreneurs
of generation 7" — 1, it allows them to invest more in intangible capital. If the size of the
bubble is large enough, the entrepreneur might have enough resources to invest as much as
he wants in intangible capital, i.e. the financing constraint becomes slack.

Instead, the effect of this bubble on the future generations comes entirely from the in-
creased production of those entrepreneurs. From time 7'+ 1 on, the dynamics of the economy
follow exactly those derived in Lemma 2 and Proposition 3. In particular, an equilibrium
in which a bubble is created at time T requires that the bubble never grows beyond the
maximum valued reported in the proof of Proposition 3.

Focus then on an equilibrium in which at 7"+ 1 the bubble is positive but small enough
that the dynamic equilibrium can be sustained (The analysis of Proposition 3 shows that
under the conditions assumed above, such a bubble can always be found). Call this level of
the bubble B(t + 1).

Now, consider the required size of the bubble at time 7', B(T'), such that it will grow

exactly to B(t + 1) between ¢ and ¢ + 1. It must satisfy:

B(T+1)=R(T+1)B(T)

In order to determine R(7 + 1), we need to solve for the intratemporal equilibrium at

time 7. In particular, it can be that the bubble B(T') will be small enough that the financing

16



1 constraint is still binding for the entrepreneur, i.e. the system satisfies the equations

B(T+1)

KT—l (T) + m

:(1—W)(1—OJ—5)YT_2(T)

ZT_1 (T) =T (1 — X — B) YT_2 (T)

Yr 1 (T+1) = A(T + 1) Kp_1 (T)* Zp_1 (T)°

Yr 1 (T+1)
T+1l)=a———-—-+-
R(T+1) aKT(T+1)
2 or it is slack, i.e. it satisfies:
B(T+1)
Kr_ (T =(1- l—a—-8)Yr_o (T
Tl()+R(T+) (I-7m) (1 —a—=p8)Yr»(T)

Yo (T+1) = A(T +1) Kp_y (T)* Zp_y (T)°

YT_1 (T + ].)
R(T+1)=a—F71——
( ) Kr(T+1)
3 As shown in the derivation of Lemma 2, either one or the other system will have a solution,

« given the required B (T + 1) and the initial conditions Y7_»(T), provided that the implied

s bubble B(T') is not too large. In turn, the relevant system of equations determines the output

s and the bubble at time 7. Therefore, for a small enough bubble B (T + 1) we can sustain

7 an equilibrium in which the bubble is issued by the entrepreneurs at time 7', does not exist

17
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before, and persists from time 7" on.

Proof of Proposition 5

Suppose that, upon a technological change, the new parameters (o, ') are such that:

(1—a/=B)(1—m) —a] >0

/
™
Z.

% 1—m

B+rd+p)>n

It is straightforward to check that, for any values of (o/ + ') in the interval(0.5,1) and
any 7 € (0,1), those conditions will be satisfied provided that % is large enough.

We will prove the existence of one type of bubbly equilibria, where the bubble is a constant
fraction of output until technological change occurs, and jumps when it happens, growing
at the market interest rate thereafter. To start, suppose the economy arrives at date ¢ + 1
with initial condition [Y;_1 (t+ 1), B (¢t + 1)] and no technological progress has occurred yet.
We assume that B (t + 1) = 0Y;—1 (t + 1), where 0 < 6 < 1. Suppose that, if technological

progress occurs in period ¢ + 2, the bubble jumps to

B(t+2)=¢Y; (t+2)

where

v=[1—-a' = p)1-m) -0 (%)

The restrictions on the parameters guarantee that 0 < ¢ < 1.

This choice of B (t 4+ 2) ensures that, if technological change takes place at the beginning

of period t + 2, the new economy will be in a bubbly equilibrium that converges to a bubbly

18
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steady-state similar to the one defined in proposition 3. To confirm this, first we check that,
for this choice of the bubble and conditional on a technological shift, the borrowing constraint
binds at date t 4+ 2. Suppose, for the sake of contradiction, that this is not the case. Then,
we have

K (t+2)+Z1 (t+2) +B(t+2)=1—a—-3) Y, (t+2)

Ziga(t+2)<n(l—a—p) Y (t+2)

a/
K (t+2) = EZtJrl (t+2)

Note that the labor income received by the middle age entrepreneurs at date T is still
determined by the parameters of the old technology. Combining the three conditions and the
expression for B (t + 2), we get

B+rmd+8)<n

which violates the initial assumption about the parameters. Hence, the borrowing constraint
binds at time ¢ + 2 .

Second, we follow the steps in the proof of proposition 3 and verify that, upon technolog-
ical progress, the dynamic equations characterizing the transition of the economy from t + 2

to t + 3 reduce to:

/

SO ma—a-p vy

Yirr (t+3) = A(t +3) [O/(m

B*(t+3)=d Br(t+2)
(== (1-m) =B (t+2)

which yields:

B (t+3)=[1-a =p)(1—7)—0d]

19
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Because, from time t + 2 on, the technology is constant, it is clear that this economy will
evolve as the economy in the proof of proposition 3. Hence, it will converge to a bubbly steady-
state and financing constraints will bind at every period. Therefore, we have shown that,
upon technological change occurring at date t 4+ 2, the proposed allocation is an equilibrium
thereafter.

If technological change does not occur at the beginning of period t + 2, the economy will
arrive at that period with initial condition [Y; (t + 2), B (t + 2)] where B (t + 2) = 6Y; (t + 2)
again. Therefore, if the proposed allocation is an equilibrium from a time ¢ 4+ 1 perspective
for any Y; ;1 (t+ 1) > 0, it will be an equilibrium from time a ¢ 4+ 1 + j perspective as well,
for any j = {1,2,3...}. Hence, to finalize the proof we need to show the proposed allocation
is indeed an equilibrium at time ¢ + 1.

Since technological progress has not occurred at time ¢ 4 1, entrepreneurs know they
will produce using the old technology and everybody anticipates the market interest rate.
Additionally, the economy is in the VB region of the parameter space, which implies that,
for any positive bubble, financing constraints do not bind. Hence, the equilibrium in that

period requires that:

Ki(t+1)+Z(t+1)+Bt+1)=1—-a—-p5) Y1 (t+1)

KM#H):%Z@+D

Manipulation of these equilibrium conditions yields:

+
K, (t+1) <aaﬁ) =1l-a=-B)Y,1(t+1)-B(t+1)
which is equivalent to
Yt_l (t—f-].) Oé‘f’ﬁ

K (t+1) all—a-p8)—1

20
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Moreover, the evolution of the bubble requires that

gB(t+2)+(1—q)B(t+2)=R({t+2)B(t+1)

which reduces to

q¢+(1—Q)9=a9—%1(§tj11))
0 (a+ 5)
ql/}—i_(l_(ﬁe: [(1_a_6)_0]

The right hand side of this expression varies from zero to infinity as # varies from zero
to (1 — a — (), whereas the left hand side varies from ¢v to i + (1 — ¢q) (1 — @ — ) which
is always between (0, 1). Hence, there exists a 6* € (0,1 — a — ) which solves the equation
above.

Therefore, for any Y; ; (t+1) > 0, the proposed process for the bubble is indeed an
intertemporal stochastic equilibrium. As a matter of fact, there are infinitely many more
equilibria. For instance, if we choose ©¥* < 1 and adjust 6* appropriately, we will have
equilibria where, upon technological change, the economy is in a bubbly path that converges

to an steady-state where the bubble-to-output ratio is zero, as in proposition 3.

Proof of Proposition 6

Part i) is straightforward. Suppose that technological change has not taken place at date 7.

Hence, the economy is in the N B region of the parameter space forever and it also satisfies

the AMSZ condition. Based on proposition 2, there can be no bubbles from that date on.
As for part ii) , the proof follows very similar steps to the proof of proposition 6. So,

suppose that the new parameters (o/, §') are such that:
[(1—a'=pf)(1-7)—a]>0

21
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g >

% 1—m

B+r+p)>r

It is straightforward to check that, for any values of (o/ 4+ £') in the interval(0.5,1) and
any 7 € (0,1), those conditions will be satisfied provided that % is large enough.

We derive a bubbly allocation that is an intratemporal equilibrium at time 7" — 1, and
show it is indeed part of an intertemporal equilibrium. We will focus on an equilibrium
path in which, if technological change takes place, the bubble grows at the market in-
terest rate thereafter. So suppose that, at date T"— 1, the economy has initial condition
[Yr_s3(T'—1),B (T —1)]. Since the economy originally belongs to the N B region, and given
that the middle age entrepreneurs of generation 7' — 2 know for sure the technological speci-
fication they use to produce between T — 1 and T, it is clear that financing constraints are

slack. Hence, the intratemporal equilibrium at time 7" — 1 is characterized by:

Kroy(T=1)+Zr»,(T-1)+B(I'-1)=(1-a—p)Yr3(T—-1)

ZT,Q (T - 1) - gKTQ (T - 1)

Yro(T) = A(T) Kp_o (T — 1)* Zp_o (T — 1)°

Yr_o (T)

R(T) = a—Ksz T—1)

Moreover, based on i), the bubble has to evolve according to

R(T)B(T —1)
q
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if technology shifts and
B(T)=0

otherwise.

Let us define B (T)) as in the proof of proposition 6:
B (T) =9YY¥Yr o (T)

where
p=[1-a=p)1-m)—d] (%)

The restrictions on the parameters guarantee that 0 < ¢ < 1.

As shown in the proof of proposition 6, this choice of B (T') ensures that, if technological
change takes place, the new economy will be in a bubbly equilibrium that converges to
a bubbly steady-state similar to the one defined in proposition 3. To prove that, from
a time T — 1 perspective, the allocation is indeed part of an unconditional intertemporal
equilibrium - taking into account uncertainty about technological change at T" - we need to
show that the set of admissible initial conditions [Y7_3 (T — 1), B (T — 1)] is not empty. So,
without loss of generality, let us assume that B (7' — 1) = 0Yr_3 (T'— 1). We now show that
0 € (0,1 — a — ). This is important, otherwise the proposed bubble would outgrow savings
in period T'— 1, which is not feasible.

Note that the no-arbitrage relationship for the bubble requires that

~ TYB(T -1
B ROBI-1)
q
which is equivalent to
B(T -1)
=y
W= T =)

Since the economy is in the N B region at date T'— 1, we know that financing constraints

23



1

6

9

10

14

are slack, which results in

Kro(-1) = (225) (1 -a=§)¥rs (T - ) - BT - )]
This condition generates:
YT_3(T—1)_ Oé‘i‘ﬁ

Kro(T—1) afl—a-p8)-0

Hence, we have:

B (a+pB)0
YT —a-p) -0
_ ¥ 0
9_{q¢+a+5](1 2

Since 6 € (0,1 — a — [3), we confirm that, for any Yr_3 (7" — 1) > 0, the proposed process
for the bubble is indeed an intertemporal stochastic equilibrium. As a matter of fact, there are
infinitely many more equilibria. For instance, if we choose ¥* < v and adjust 6 appropriately,
we will have equilibria where, upon technological change, the economy is in a bubbly path

that converges to an steady-state where the bubble-to-output ratio is zero, as in proposition

3.

Proof of Proposition 7

An economy in which the financing constraint is strictly binding and satisfies the AMSZ test

will respect two conditions:

N | —

(B+a) >
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We show that in this region of the parameter space we can construct a deviation that does
not rely on intragenerational transfers and improves the utility of the first generation without
reducing the utility of any other individual. For simplicity, our counterexample focuses on
an economy in the bubbleless steady state. We consider a deviation small enough that the
economy remains in the binding region.

Call K(t+ 1) the amount of capital in the original allocation (which is the steady state
of this economy), and similarly for all other variables. Start by transferring an amount dC
of goods from the households of generation ¢ to the old of generation ¢t — 1, at period t + 1,
just before production occurs. This generation needs then to be compensated by an amount
of consumption (in period ¢+ 2) equal to the amount of consumption lost due to the transfer
to generation t — 1.

The loss in output for this generation will be:

Y1 = f(K,(t+ 1), Zy(t + 1)) — f(K,(t+ 1) — dC, Z,(t + 1))

The first-order linear approximation of this loss will be:

dY;4, = RdC

where R = R(t +1) = 4 (E(tf;[?z(tﬂ)) which is constant in the steady state. Importantly,

note that since f is concave with respect to K, we have:
AV < dYp

locally, which means that if we compensate by giving dY; ., instead of df/}ﬂ to generation
t + 1, they will actually be made better off (by a second-order term).

Assume then that we transfer (a+ 3)dY;;; from generation ¢+ 2 households to generation
t+1 households. Note that the fact that generation t+1 invests less capital means that output

in t+2 will be lower, which in turn means that the young of generation t42, who provide labor
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and get a share (1 —a — ) of output at time ¢+ 3, will be losing an amount (1 —a — 3)dY;44
of resources. The lower starting wealth of the young will affect both those who become
households and those who become entrepreneurs, in proportion (1 — 7) and 7 respectively.
Since we are still in the binding region, this will imply that production of this generation will
occur with an amount of aggregate physical capital lowered by (1 — a — 8)(1 — 7)dY;4; and
an amount of intangible capital lowered by (1 — a — )7dY;;;. Therefore, the loss of output

to generation t + 2 will be:

dYirs = [(Kpa(t +2), Zega (t +2))

(K1t +2) = (1—a—B) (1 —m)dY1 — (a+ B)dYipr, Zipa(t+2) — (1 — o — B)7d Y4

The first order approximation to the total loss of output for generation ¢ 4 2 is again enough
for our purposes due to the concavity of the production function. Therefore, we can (more

than) compensate generation t + 2 by transferring to them an amount:

dYi2 ={R[(1—a—=B)(1—7)+ (a+ B)]+ IRR(l —a — f)r} dYi

or

dYyy ={[rIRR + (1 = m)R|(1 — a — ) + (a + B)R}dY; 4

The same reasoning holds for the future generations. Therefore, the following difference

equation holds generally for s > 1:

dYpes = {[FIRR+ (1 = M)R|(1 — a — B) + (a + B)R}d¥iss s

Re-expressing the equation in relative changes, we obtain:

dYyys A{[mIRR+(1—mR|(1—a—0)+ (a+ B)R}dY, s 1
Yiis I+g Yits
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The deviation will be feasible as long as this difference equation converges to a number

less than one, where % is constant. Convergence will occur if and only if:

[TIRR+ (1 —m)R|(1—a—-p)+(a+p)R<1+g

To finish the proof, we just need to find a region of the parameter space {a, 3,7} for

which this equation is satisfied together with

N | —

(B+a) >

s
— > (11—

= (1)
that guarantee that the AMSZ test is satisfied and that we are in the binding region. By

rewriting the convergence equation as:

(1+g9)a

<l+yg

it is easy to see how it is always possible to achieve that result by choosing o low enough

and [ high enough.

Proof of Proposition 8

The proof mimics the proof of Proposition 1 in AMSZ, taking into account that because
IRR > R, in any intertemporal transfer scheme entrepreneurs should be compensated more
than households, which forces the planner to transfer IRR to both groups (since she cannot

distinguish between them).
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Examples and extensions

Stochastic bubbles

This section presents a model with stochastic bubbles. For continuity of exposition, proofs
are reported at the end of the section. Consider an environment in which, at every period,
the rational bubble survives with probability p or bursts with probability 1 — p as in the
classic model of Blanchard and Watson (1982). Naturally, as long as the bubble exists, it has
to grow at a rate %, so its expected return is equal to R.

The definition of a conditional steady-state is the first step in developing the machinery

to analyze stochastic bubbly equilibria.

Definition. A conditional steady-state is an allocation such that a stochastic bubble ex-
ists and then bursts at some point. While the bubble exists, all variables in the economy
{Yt (t+2), K, (t+1),Z (t+1),B* (t + 1)} are constant. After the bubble bursts, the econ-

omy converges to a bubbleless steady-state as shown in subsection 4.1.

Naturally, unless the economy starts at the conditional steady-state, it will almost surely
not reach it, since the probability of that event happening converges to zero. The conditional
steady-state is, notwithstanding, a useful benchmark because it determines the trajectory of a
bubbly economy while the bubble lasts. In what follows, a series of propositions characterizes
the dynamics of the economy when bubbles are stochastic. They focus on the case where
the stochastic bubble has not burst until the most recent period, since the dynamics of the

economy after the bubble bursts has been explored in Section 4.1 of the text already.

Lemma 1. Along any bubbly path with initial condition [Y;—1 (t + 1), B (t + 1)], all the results

i Lemma 2 of the text hold.

Lemma 1 shows that the dynamics of the economy are not materially affected by the
stochastic nature of bubbles. Whether the continuation is binding or not depends only on

the bubble-to-output ratio and the region of the parameter space where the economy lies.
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Proposition 1. There are no stochastic bubbly equilibria in the NB region if AMSZ is sat-
isfied.

As before, economies that are productive in the AMSZ sense cannot sustain stochastic

bubbly equilibria if they are in the NB region of the parameter space.

Proposition 2. In the B region with o+ 3 > %, there exist dynamic bubbly equilibria that

converge to a conditional steady-state in which

. a
B'=(1-a-p)(1-m)—— (1)

p
and the borrowing constraint is binding at all times, as long as B* > 0. There also exist

dynamic equilibria such that the bubble-to-output ratio is always non-negative but converges

to zero over time. |

These results show that economies that satisfy the AMSZ criterion can sustain stochastic
bubbles. Obviously, the conditions for the existence of stochastic bubbles are more stringent
relative to the deterministic case. As mentioned before, conditional on not bursting, stochas-
tic bubbles grow at the rate @ > R(t + 1). Hence, for these bubbles to not outgrow the
economy in finite time, interest rates in the bubbleless equilibrium have to be even lower
compared to the economy’s growth rate in the long-run (the more so the higher the chance
the bubble will burst). This can be achieved by having a sufficiently high ratio g and binding
financing constraints.

It is interesting to consider the macroeconomic consequences of a bursting bubble. The
crash immediately reduces the consumption of the old households currently alive, whose port-
folios were exposed to the bubble. Because the entrepreneurs never buy the bubbly security
in equilibrium, they are unaffected. Hence, aggregate consumption is immediately reduced.
Future output and investment, however, will expand. In the absence of a bubble, the middle-

aged households of following generations have no option but to make collateralized loans

to the contemporaneous entrepreneurs, raising the stock of physical capital and increasing
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production. This predicted positive impact is at odds with the historical experience, since
asset market crashes tend to be followed by prolonged slumps in real activity. The model’s
inability to generate such effect results mainly from the lack of a direct link between the price
of the bubbly asset and the balance sheet of levered agents, as instead is the case in Kiyotaki
and Moore (1997).

This limitation can be solved by extending the baseline specification and considering
an environment where the entrepreneurs’ capacity to raise funds is directly affected by the
bubble. More specifically, instead of taking the total amount of the bubble as given, assume
that, at each period, the middle-aged entrepreneurs are able to issue an additional quantity
of bubbly assets to be sold to the contemporaneous households. This process continues as
long as the bubble hasn’t burst, but stops permanently after a crash. Clearly, the continued
issuance of bubbles alleviates financial frictions for all generations, allowing entrepreneurs to
increase the amount of resources invested in intangible capital. The bursting of the bubble
shuts down this channel, exacerbating financial frictions and increasing distortions in real
investments for all future generations.! Depending on the strength of this effect, a crash in
bubbly securities might reduce output and investment in the long-run. This possibility is

investigated formally below, where the following Proposition is proved:

Proposition 3. Call Q(t) the quantity of the bubble at time t. Call B(t) its price. Suppose
every entrepreneur can issue an additional quantity nQ(t—1) of bubble at t, and, if the bubble
bursts, no entrepreneur can issue the bubble anymore. Then, there exists an area in the B
region of the parameter space such that the bursting of the bubble will cause a permanent drop

mn output.

n fact, this mechanism is similar to the one explored in Kocherlakota (2009).
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Stochastic bubbles - proofs

Proof of Appendix Lemma 1

Let us start with cases i7) and i7) of Lemma 2. The characterization of the slack continuation
follows the proof of that Lemma. Conditional on the bubble not bursting until period ¢ + 1,
the intratemporal equilibrium in the savings market at that date requires:

Kit+1)+Z,t+1)+Bt+1)=1—-a—-p5)Y, 1 (t+1)

If financial constraints are to be slack, we must have:

Zit+ ) <m(l—a—-0B)Yi1(t+1)

and

Kt(t+1):%Zt(t+1)

A final restriction is that the bubble does not exhaust all savings of generation ¢
B(t+1)<(1—a—-p8)Y1 (1+1)

Substituting these restrictions in the savings market equilibrium proves condition #i7) in
Lemma 2.

If, on the other hand, the constraints are to be binding, we must have:

Zit+1)=n(l—a—-0) Y1 (t+1)

Kit+1)+Bt+1)=1-m(1—-a-0)Y 1 (t+1)

Substituting these two conditions in the savings market equilibrium results in condition

i) in Lemma 2.
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1 Case i) can be proved by contradiction following the steps above. Assume («, 5, 7,n) C

> N B but suppose that financing constraints bind at ¢t 4+ 1. Hence

(1-m) « 1o
- 5} (1 B)Y,. (t+1)<0

B(t+1) < [

3 which is an absurdity.
4 Finally, it follows that conditional on the bubble not bursting, [Y;_1(t+ 1), B(t +1)] is a

s state vector for the economy.

¢ Proof of Appendix Proposition 1

7 Suppose o + (3 > % and assume that the economy is in a bubbly path. Because g < 15, we
s know that financing constraints are slack - if anything, the existence of the bubble relaxes
o financing constraints. The state of the economy at the beginning of period ¢ + 1 is given by

w [Yio1(t+1),B(t+1)]. Hence, the equilibrium in the continuation is characterized by:

Kit+1)+Z,t+1)+Bt+1)=1—-a—-p)Y, 1 (t+1)
Kt(t+1)=%Zt(t+1)

Y, (t+2) = At +2) K, (t+1)* Z, (t +1)°

Y (t+2)

R(t+2):aKt(t+1)

11 and the bubble will evolve according to

R(t+2)B(t+1)

B(t+2) = p
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Simple manipulation of these conditions yields

Y, (t+2) = (%)a Zy (t +1)*°

Isolating Z; (t + 1) from the production function and substituting it in the last equation

yields
(1+9)

_B_ _B_
5a+6 otB

{ (o + B) }: Vi (t+1)
(I—a=p)=B*(t+1)] ¥, (t+2)ss

Manipulating the equation representing the dynamics of the bubble, we obtain:

B _a
ﬁaJrB otB

p(l+g)

Vi (t+1)

B*(t+2)= - T
e Y, (t+2)=+

B*(t+1)

Using the condition above and taking logs yields:

log (B* (t + 2)) — logB* (t + 1) = —log (p) + log <(1 o g)_l—_ﬁB* (t + 1))

Since the AMSZ criterion requires that o+ 5 > %, the last equation implies that, for any
p € (0,1], the bubble-to-output ratio will reach (1 — « — /3) in finite time, fully absorbing
the combined savings of households and entrepreneurs. Hence, with positive probability the

economy will be in an explosive path, which cannot be an equilibrium.

Proof of Appendix Proposition 2

Consider an economy with initial condition [}A/t_l (t+1),B*(t+ 1)| such that

B*(t+1) < B}, (Yo (t+1))

mazx,b
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1 and

Vii(t+1)>0

2 Based on Lemma 4, we know the borrowing constraints will bind at ¢t + 1. Hence, the

3 equilibrium in this period is characterized by:

Ki(t+1)+Bt+1)=1-m(1—-a—-p)Y,1(t+1)
Zyt+1l)=m(l-a-0)Yi(t+1)
Vi(t+2) = At +2) K, (t+1)* Z, (t +1)°

R(t+2):a%

» and the bubble will evolve according to

R(t+2)B(t+1)

B(t+2)= ;

s if it doesn’t burst.
6 Substituting the savings conditions in the production function and rearranging terms, we

7 obtain:
it+2)=(1+9) P r(1l-a-B)"[(1-m)(1-a=-p8) - B ({t+1)]" Y (t+1)"

8 Combining the savings condition with the expressions for the interest rate and the bubble

o dynamics, we obtain:

a B*(t+1)
p [T -a-5-B @D

B (t+2) =
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1 These two equations fully describe the dynamics of the economy. Conditional on the

> bubble not bursting, there exists a solution to the system of difference equations given by:

B*(t+j+1):(1—7r)(1—a—5)—%

w1 —a—p) 2]

Vigja(t+j+1)= e Vi ()
’ (149)**" ’
o forall j ={1,2,3...}.
5 It is immediate to verify that, while the bubble lasts, this economy converges to a condi-

¢ tional steady-state characterized by:

r—a-p) 2]

Y = 4
(1+9)™"
ST (1—a—-p5)
(1+9)
7
5 o ~
p(1+9)
B"‘:(l—ﬂ)(l—oz—ﬁ)—g
p
Y
(I+g)=az
8 Based on the restrictions imposed over the parameters, it is easy to check that this solution

o satisfies the condition

0< B*< B

max,b
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Proof of Appendix Proposition 3

In our baseline case, the quantity of the bubble is fixed and its value is given by B(ty). Over
time, the value of the bubble grows at a rate that makes households indifferent between
holding it or investing in tangible capital, taking into account the risk of collapse of the
bubble.

Just for illustration purposes, we can analyze the case in which the quantity of the bubble
increases over time as well. In particular, we can imagine that the entrepreneurs of each
generation are able to issue an additional amount of the bubble, at no cost, as long as the
bubble has not burst. Note that, for the bubble to be attractive to households, its price must
still grow at the usual rate, %.

Assume that the new quantity of the bubble Q(¢ + 1) that entrepreneurs from generation

t can issue (at time t + 1) is such that:

Qt +1) = nQ(t)
The total value V() of the bubble grows according to:

Vt+1) = Bt + DO+ 1) = V() E

—n
p

The main equations that describe the economy change as follows. The savings market

equilibrium becomes:
K(t+D)+Z,t+1)+Qt)Bt+1)=(1—-a—pB)Y,_(t+1)

since savings must be invested in tangible capital, or intangible capital, or to buy the
existing bubble (the issuance of the new bubble is a transfer within the same generation).

If financial constraints are to be slack, we must have:
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Z(t4+1) <7 (1—a— ) Yiy (t 4+ DHQUAD) Q) B(t+1) = 7 (1 — a — #) Yiy (¢ + D+ (n-1)Q(0) Bt

and

Kt(t+1):%Zt(t+1)

If, on the other hand, the constraints are to be binding, we must have:

Zit+ ) =n(l—a—-08)Y1 (t+ 1)+ (n—1)Qt)B(t+ 1)

and

Kit+1)+n-)Q®)Bt+1)+Qt)Bt+1)=1-7)(1—-a—-8)Y, 1 (t+1)

Kit+1)+ViE+)=1-m)(1—-a—-p8)Y,1(t+1)

A final restriction is that the bubble does not exhaust all savings of generation ¢
Vit+1)<(l—a-p8)Y, 1 (1+1)

To see the effect of the bubble bursting, one can focus on the steady state of the economy
(for simplicity, we only look at the steady state in which financial constraints are binding).
Since (n — 1)Q(t)B(t+1) = (n — 1)@3(15 +1) = @V(t + 1), we can rewrite all the

equations in terms of V:
V(t+2) = At +2) K, (t+1)* Z (t +1)°
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R<t+2):a%
Zt(t—l—l):ﬂ(l—a—ﬁ)yt1(t_|_1)+(77;1)

V(t+1)

Kit+1)+ViE+)=01-m)(1—-a—-p8)Y,q(t+1)

V(t+2) =n

R(t+2)

V(t+1)

Rescaled as in Proposition 1, these equations yield

Vi(t+2) =K, (t+1)"Z(t+1)°

~

R(t+2):a%
Z(t+1) = Sl ) _1 i; Dy, (t+1)+ —77(271;1;) VH(t+ 1Y (t+1)
K(t+1)+ V*(t—i-?j—/tg—l(t—f-l) - (1—1i;5)
V*(t+2)=nR<t+2);gi;))— R(Hz)V*(Hl)

In the steady state, Y, K and Z are constant, so the respective level variables grow at rate
1+ g. If the bubble is to survive in steady state, it will be constant as a fraction of output,

so that V* will be constant as well. This steady state will satisfy:

Vi, (t+1)

i1 (t+1)

Yi(t +2)
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R
l+g=n—
p

The last equation determines R:

R=(1+g9g)=
Then we have:
K v 1—a-—
=+ —q-md=a=h)
14g 1+g¢g
1% _ )(1—04—6) «
1+g 1+g R
Vi=(1-m-a-pg) -
b
Plus
Y = K28
R:az
K
Y HLE T LI P
1+g¢ n(l+g) a
So:

e ([ et 2

Manipulating these expressions, we find that the bubbly steady state solves the following

three equations (superscript B denotes the bubbly equilibrium):

i) s ]

RB = 1+g1—9
( )77

V*:(l—w)(l—a—ﬂ)—%>0

We can now compare this steady state with the bubbleless counterpart (to which the
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economy converges after the bubble bursts: superscript L). The bubbleless steady state

solves:

a(l+g)
(I-m1—a-7)

It is clear that the interest rate is surely higher in the equilibrium with the bubble. This

Rt =

results from two effects. First, the accumulated bubble crowds out investment in tangible
capital, increasing RZ. Second, the issuance of additional bubble raises the investment in
intangible capital, increasing the marginal productivity of tangible capital.

More formally, start from the condition that the bubble is nonnegative in steady state as
a fraction of output:

v*=(1—ﬂ)(1—a—@)—%>o

and rearrange:
o
< p

(I-m1-a=5) 7

so it is clear that

RY < RE

Output in the bubbleless steady state can be higher or lower than in the bubbly steady
state. The following Proposition proves that, depending on parameter values, output will

fall in the steady state after the bubble bursts.

Proposition. For a small enough relative to 3, there exist parameter values in the B region
such that YE < VB, Therefore, the bursting of the bubble can cause a permanent drop in

output.
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1 Proof. Note that we can rewrite the inequality as:

B

(L=m) (1 —a=B) (r(l—a-B) < {%] [W(l—a—ﬁHV*—%V*

> where

V*:(l—ﬂ)(l—a—ﬁ)—%>0

3 This clearly shows that the bubbleless output may be higher or lower depending on the
+ parameters since it features more tangible capital but less intangible capital (as long as
s 1> 1). We observe a drop in output when the bubble bursts if the second term prevails.

6 Rewrite:

(-m-a-g)rr-a-) <|2] [ra-a-g+a-na-a-pnTt-

7 We now look at the limit for &« — 0 but keeping v = « + [ constant (so 5 — v). the

s left-hand side converges to:

(r (1 =v))"

o and the right-hand side converges to:

1 By continuity, for a small enough, after the bubble explodes the economy converges to a

12 steady state in which output is in fact lower. O]
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Log-utility of Consumption for Households

Deterministic Bubbles

Its is now proved that the main results of the paper are not materially affected by the
benchmark specification where agents’ savings decisions are exogenously determined. To
see this, let us introduce a meaningful savings choice by assuming that households and
entrepreneurs consume both during their middle age and when they are old. More specifically,

suppose that the lifetime utility of an individual from generation ¢ is given by
Uy (t+1),at+2)=In(c,(t+ 1)) +In(c (t+2))
At time t + 1, the agent’s intertemporal allocation problem is given by:
maz{U (¢; (t+1),¢c: (t+2))}

s.t.

¢ (t+2)
Ct(t—f—l)—f—m

<w(t+1)
where R(t + 2) is the rate of return each individual faces on her investment opportunity.
Households always obtain the interest rate paid on physical capital R, while entrepreneurs
enjoy a return given by I RR.

The solution to this maximization problem features:

w(t+1)

Ct(t+1): B

Hence, with log utility of consumption in the last two periods of life, agents always save
half of their labor income during middle age. Note that the solution is independent of the

rate of return prevalent at the time savings are chosen, implying that the fraction of income
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saved is identical for both households and entrepreneurs. This results from a property of the
log-utility specification, where the income and substitution effects associated with changes
in interest rates offset each other perfectly.

In light on this finding, the dynamic equations describing the evolution of the economy
shall not change substantially. Indeed, the only modification regards the equilibrium in the
savings market. To see this, note that, in any bubbleless equilibrium, the savings market-
clearing conditions is:

w(t+1)
2

Zit+ )+ K (t+1)=m

When financing constraints bind, the following conditions hold:

w(t+1)

wt+1)

K,(t+1)=(1-m) 5

Moreover, as shown in the proofs of various propositions, binding financing constraints also

imply:

aZ (t+1) < BK, (t+1)

Therefore, it becomes clear that financial frictions will bind whenever

Ll
=

a-m

and they will be slack if the inequality is reversed. This threshold is identical to the original
threshold separating the B and NB regions of the parameter space in section 4.
The same logic can be easily applied to all other results in subsection 4.1. Moreover,

it is also immediate that all results in subsection 4.2 hold as well, with small modifications
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in some of the expressions. For example, proposition 3 would be adjusted with a slightly

different expression for the bubble-to-output ratio in the steady-state:

l-m(1l—-a-p)—2a
2

B* =

where the numerator is positive for a sufficiently small. Note that this is maximum bubble-
to-output ratio the economy can sustain in equilibrium. It is smaller than the corresponding
bubble in the original specification, since middle-age consumption reduces the supply of
savings necessary to sustain any bubble.

Finally, it is important to emphasize that, in the present context, the AMSZ criterion is
satisfied whenever o + § > % This can be easily verified from an adjustment of the proof
of Lemma 3 to consider agents’ savings decision. In the original specification, the AMSZ
threshold was higher (o + 5 > %) Hence, a larger set of economies shall satisfy the AMSZ
condition when savings are endogenized. This result reinforces the importance of active
financing constraints as underpinnings of asset bubbles in a context where economies are

efficient.

Stochastic Bubbles

The case of stochastic bubbles is slightly more involved, since the log-utility of consumption
introduces risk aversion in investors’ portfolio choice problem. Despite the solution to this
case being different from the closed-form expressions derived in subsection 4.1 and 4.2, the
basic intuition remains the same. To illustrate the main points, we will restrict ourselves to
equilibria where neither households nor entrepreneurs can short the risky bubble.

The first aspect to be noted is that, with a strictly concave utility of consumption in the

last period, the optimization problem of households from generation ¢ is given by:

mazeo{ln (c; (t+ 1)) +n[(w (t+1) — ¢ (t+1)]+pln [0} (¢ + 1) R* (t+2) + (1 — 60} (t + 1)) R(t +2)]
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+(1—p)in[(1-0}(t+1)R(t+2)]}

where 07 (t + 1) is the fraction of wealth invested in the risky bubble and R* (t + 2)
denotes the gross return on the risky bubble if it does not burst, whereas R (¢ + 2) is the
riskless interest rate they obtain by investing in tangible capital.

The solution to this problem involves:

w(t+1)

Ct(t+1): 5

9h<t+1)_p}?(t+2)—}z(t+2)
!  R(t+2) —R(t+2)

As argued in subsection 4.3, in any bubbly conditional steady-state the return R (t+2)
has to be equal to the growth rate of the economy (1 + g). A smaller R (¢ + 2) leads to an
ever declining bubble-to-output ratio, whereas a larger rate of return leads to explosive paths

in finite time. Therefore, a bubbly conditional steady-state features:

p(l+g) - R
(1+9) —R

0" =
The corresponding portfolio allocation of entrepreneurs 6€ is even simpler: in equilibrium,
they will not hold any fraction of the bubble (in fact they would short it if they could). The
reason is that, for an economy that satisfies the AMSZ criterion, the steady-state IRR has
to be larger than the growth rate (1 + ¢), making the risky bubble a dominated investment
opportunity for entrepreneurs.
Extending this logic, we can prove that there cannot exist an unconstrained conditional
steady-state with a positive bubble for economies that satisfy the AM SZ benchmark. To see
this, consider an economy with a bubbly conditional steady-state where financing constraints

are slack. This implies R = [RR. Hence, both households and entrepreneurs allocate an

identical fraction of their wealth to invest in the risky bubble: #" = §¢ = § > 0. This requires
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p(1+g) > R = IRR, which yields:

TIRR+(1—-7m)R< (1+g)

Following the same steps in the proof of Lemma 3, we can easily verify that this inequality
violates the AMSZ condition.
Based on these considerations, a bubbly conditional steady-state will have binding finan-

cial constraints. Consequently,

a2<6f(
or
15} T
a” A=ma—0om

For any 0" € (0, 1), this inequality will be satisfied provided f is sufficiently large relative
to a. The new threshold for the ratio g is higher than in the original specification as well as
in the log-utility case without uncertainty. In other words, the combination of uncertainty
and risk aversion makes it harder for bubbles to be sustained in equilibrium. In the current
framework, bubbly equilibria demand an even higher importance of intangibles relative to
physical capital.

In steady-state, the riskless interest rate equals:

=

I

)
SIE

2a (14 g)
(1—a—=pF)(1—m)(1-06"

Substituting this condition in the expression for ", we obtain:

R:

pl—m)(l—a—-p)(1-0") —2a

o= (I-m)(1-a-p)1-0" -2«
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First, note that for 8" to be positive, we need

20
- _—a_pa_o ="

a condition that also guarantees that R < (1 + g). This will always be the case provided
that « is small enough.
Defining 1 = (1 — 7) (1 — a — ) and noting that py» > 2a, we conclude that 6" satisfies

the following quadratic equation:

b (6M) = [+ pip — 20] 6" + [pyp — 2] = 0

whose solutions are:

o — W’""pd’_%‘]i\/[1/1+p1/1—204]2—4w[pw—2a]
- 5

This expression can be rewritten as:

o [P0 = 20] & \/42 ~ 20 [py — 20] + [py — 20]°

24
whose solutions are:
o =1
and
oh pY — 2c
- (0

We can immediately rule out the case 8" = 1. It implies that households are fully invested
in the bubble, which requires entrepreneurs to invest in both physical and intangible capital
in equilibrium. But in this case, financing constraints are slack and R = IRR. As argued
before,the portfolio choices of households and entrepreneurs are identical when constraints

are slack, which means entrepreneurs would fully invest in the bubble as well. Under those
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1 circumstances, both K and Z would be zero, and so would be the bubble.
2 Therefore, there is a unique feasible solution for households’ portfolio choice in a bubbly

3 conditional steady-state:
Y —2a

o € (0,1)
(8
a Given 6"*, the expression for the interest rate in the conditional steady-state becomes:
2¢a (14 g)

R =

(1—a=p3)1-m) (1 -p)+2a)

5 The value of the bubble follows:

B(t+1) =

eh*
;DYt (t+1)

s Hence, the bubble-to-output ratio in a conditional steady-state is:

_pY =2«

B*
2

7 The following set of equations determines the steady-state values of Y, K and Z:

N AN /A \B

= (5) ()
9 Finally, the equilibrium IRR = 5;— has to be larger than (1 + g) for entrepreneurs not
10 to hold the bubble:

26 (1
IR~ _280+9)
7(1—a—0)
1 Hence, we have proved the existence of a bubbly conditional steady-state subject to the
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following restrictions:

1. The economy satisfies the AMSZ benchmark: o+ 5 > 3.

2. Financial frictions are binding: g > #)
3. The bubble is positive: p(1 —7) (1 —a — ) > 2a.

4. Entrepreneurs do not want to hold the bubble: 5 > e T ays

It is easy to verify that these conditions will be satisfied provided (5 is large and « is small.

The complementarity between technological progress and
foreign inflows of funds: an example.

In this example, we analyze the impact of foreign inflows of funds in the domestic economy.
We formalize the intuition presented in Subsection 5.3 where we argued that the savings glut
explanation can complement the technology-based approach as a structural condition behind
asset price bubbles.

Consider a foreign economy where the representative agent of each generation lives for
two periods - we assume the foreign economy is represented by an OLG model as well. Every
generation is born with an endowment Y. For simplicity, we assume that the representative
agent in the foreign economy only consumes in the last period of her life. In the first period,
she has no choice but to invest her endowment abroad, earning the same rate of return paid
to domestic households R — that is, the foreign individual cannot overcome domestic moral
hazard problems and is, thus, prevented from investing in intangible capital. So in equilibrium
all the endowment of the foreign country will be invested in the domestic economy’s capital
stock. We assume that Y/ and Y are perfect substitutes and can be exchanged one-to-one
at no cost. The endowment process Y/ grows at a rate g/ (t) across generations, which will

be carefully calibrated in order to facilitate the demonstration of the main intuition.
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Let us focus on the dynamics of the bubbleless economy. The domestic economy is
assumed to satisfy the AMSZ condition, and we require it to be in the B region of the
parameter space. Naturally, because the inflow of foreign savings Y/ is always positive, and
given the restriction that foreigners cannot overcome domestic frictions, financing constraints
will bind at all times.? The positive inflow of funds increases physical capital in all periods,
driving its marginal productivity down and increasing the attractiveness of intangibles.

Under those assumptions, the domestic economy evolves according to the following set of

equations:

K(t+1)=1-m)1-a-B3)Y,_ (t+1)+Y (t+1)

Zit+1)=mn(l—a—-0)Yi 1 (t+1)

Vi(t+2) = At +2) K, (t+1)* Z, (t+1)°

Y (t+2)

Rt+2)=a——=
(t+2) aKt(t+1

~—

The evolution of the economy can be reduced to:

Vit+2)=At+2)[(1-7m)(1—a—8)Yia ¢+ D+Y  t + )] [r (1 —a = B) Vi (¢t + 1))

In order to obtain a steady-state in which the foreign economy does not disappear or
explode in relative terms, we need to calibrate the process Y/ accordingly. For example,

suppose that Y7/ grows at all times at a rate 1 + ¢, the same growth rate of the domestic

2The overall net inflow of funds at date ¢ will be negative if R (t) < (1+ g/ (¢)), since the outflows are
given by R (t) Y/ (t — 1). However, only the inflows Y/ (¢) affect capital accumulation at time ¢, since outflows
are withdrawn from the consumption of old individuals of the previous generation.

20



economy in the long-run. Then, we have:

; (1-a-p)

Yi(t+2)=[(1—m) T+ g Y (t+ )+ Y ¢+ D[ (1 —a = B) Vi (¢ + 1))°

where
Yt +1)

Vi) = D
A(t + 1)o7

which is constant at some level Y7 determined by the initial conditions. It is then easy to

see that there is a steady-state such that Y solves:

- (1—a—-p)x v/ Y
Y =[(1- Y m(l—a—p)—I°
(1 =m) ST 4 P (1= = ) o]
o l-m(l-a-BY+Y/
I+g
and
Y
R=a—+
K
Without loss of generality, let us define
i
0= —
Y

where 0 is a function of Y at the steady state.

This allows us to solve the system of equations above to arrive at

?:{[“—W)(l—a—ﬁ)wr [m_a_ﬂ)r}laﬁ

(1+9) (1+9)

where again 0 is defined implicitly as a function of V.
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and
a(l+yg)

s R

Based on the equations above, we can choose any positive value for 6 if we calibrate v/
appropriately. In fact, any choice of 8 > 0 results in a unique value for the domestic output
in steady-state Y. Then, the corresponding steady-state value of the foreign endowment v/
can be directly recovered from the definition of 6.

As it should be clear by now, the fundamental condition for rational bubbles to be sus-
tained in equilibrium is that, in the bubbleless steady-state, the interest rate in the domestic
economy R is below its growth rate (14 g¢). Hence, to check for the interaction between
technological progress and foreign inflows of funds, and their implications for bubbles, we
analyze how the steady-state interest rate varies with # and the technological parameters.

Indeed, note that R < (1 + g¢) if and only if
6>a—(1—7)(1—a—0)

This inequality will hold provided that 6 is large enough. Conversely, for any positive ¢
- no matter how small - and for any (a + ) > 0.5, the inequality will be satisfied provided
the ratio g is large enough. Finally, it is clear that the required threshold g is decreasing
in #. Therefore, foreign inflows of funds and technological progress complement each other
in driving the domestic interest rate below the growth rate of the economy in the long-run.
Their combination is fuel to bubbly episodes.

Our example is admittedly stylized but it still retains some interesting properties. First
it assumes that the size of the foreign economy stabilizes relative to the domestic one in the
long-run, so it does not rely on one economy growing faster than the other forever. Second,
the example does not impose any ad-hoc restrictions on the evolution of the current account

balance.?> Hence, it is clear that the intuition built here can be carried over to more general

3In the bubbleless steady-state, the domestic economy will run a permanent current account surplus if
and only if R > (1+ g).
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environments.

Calibration Details

Our model has only four parameters to calibrate: «, 3, 7, n.

e We calibrate the parameters of the production function, o and 3, in a way that guar-

antees that AMSZ’s criterion is satisfied. This imposes o + 5 > % We pick a = 0.27,
f = 0.25 as the starting point of our calibration (which lies in the NB region). Note
that in our simplified model we need to have a+ 3 high enough in order for the economy
to be producing more resources than are entering the economy, since in the model the
whole fraction 1 —a — 8 of output (paid as wages) reenters the economy as investment.
Of course, enriching the model by allowing consumption in the middle period and re-
moving full depreciation would allow us to achieve a better match of the levels of these

parameters with those observed in the data.

In our model, 7 represent the fraction of entrepreneurs in the population. In a more

general interpretation, it is related to the leverage of the corporate sector: the lower m,

the larger the fraction of output saved by households and lent to entrepreneurs relative
(1—m)

to their own funds, and therefore the higher the leverage ratio —. Picking 7 = 0.6

leads to a leverage ratio of about %, consistent with the evidence for the United States.

e We choose n = 0.01 per period.

23



