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Abstract

This appendix contains additional theoretical results, Monte Carlo simulations, additional empir-

ical analysis, and supplementary mathematical proofs.

I Additional Theoretical Results

In what follows, we first provide a consistent estimator of the number of factors, p, and show the
robustness of the risk premia estimator with respect to the number of factors used. We then develop
the limiting distribution of the risk premia estimator and the zero-beta rate estimator in a more general
setting that allows for pricing errors. Next, we develop the limiting distribution of the estimated factors.

Finally we conclude this section by showing the consistency of the asymptotic variances involved.

I.1 Determining the Number of Factors

We propose to determine the number of factors using the following criterion:

p= arglgjrr%ipl}nax (n'TIN(RTR) +j x ¢(n, T)) — 1,
where ppax is some upper bound of p and ¢(n,T') is some penalty function.

While our estimator makes use of a penalty function, in the same spirit as Bai and Ng (2002) do, our
criterion takes on a simpler form. The objective function in Bai and Ng (2002) barring from penalty is
equal to arg ming % E?:k, 11 (RTR). It is rather challenging to analyze and control the growth rate of
the sum of many eigenvalues required by this objective function, at least under only moment conditions
we assume. Random matrix theory is likely unavoidable. In contrast, the plot of the objective function
in our case against j is a penalized version of the scree plot. We show in the next theorem that our

proposed estimator is consistent for the true number of factors p under appropriate conditions on the
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penalty function. On the one hand, the penalty function increases as j increases, so that it penalizes
the choice of smaller eigenvalues. On the other hand, the penalty function is sufficiently small that it is
dominated by the large eigenvalues. These two aspects together dictate the selected number of factors.
Our choice of ppax is an economically reasonable upper bound for the number of factors, imposed only

to improve the finite sample performance, which is not needed in the asymptotic analysis.

Theorem 1.1. Suppose Assumptions A.1, A.2, A.j — A.7 hold, and suppose that ¢(n,T) — 0 as n,
T — oo, then it follows that P(p > p) — 1. If, in addition, ¢(n,T)/(n~"? +T~1/2) = oo, then it
follows that p L.

Other estimators for the number of factors could be applied instead, including but not limited to
those proposed by Onatski (2010) and Ahn and Horenstein (2013). However, to prove the consistency of
these alternative estimators needs random matrix theory, which in turn requires stronger assumptions
than ours.! Notably, the criterion of Ahn and Horenstein (2013) does not rely on any tuning parameter,
which makes it appealing in certain scenarios. When applied empirically, their criterion often selects
one factor, because the first eigenvalue is a bit stronger than the next few ones. However, it is unlikely
that a single principal component summarizes all the risk factors in the financial markets. As we show
in our simulations, selecting insufficient number of factors harms the inference on risk premia because
of the omitted variable bias, whereas the risk premia estimates are robust to the inclusion of additional
principal components. Fan et al. (2013) also find in their simulations that selecting more factors than
necessary does not affect the performance of their factor-based covariance matrix estimates.

This robustness is a useful property, because in a finite sample, it is likely that p # p, although p is
a consistent estimator of p. The next theorem formally establishes the robustness of our estimates with
respect to a few extra principal components. As long as our selected number of factors, denoted by p,
is greater than or equal to p, yet is not too large relative to n and T, then the risk premia estimator

based on p, denoted by ¥4, remains consistent.

Theorem I.2. Suppose Assumptions A.2, A.J — A.11 hold. In addition, assume that z; is i.i.d. and
independent of ug. If p>p, p=o(nAT), and Ap15(UUT) > K(nV T) for some K > 0 with probability
approaching 1,> then Vg 18 consistent with respect to 1y, and it holds that

I.2 Allowing for Pricing Errors and Zero-beta Rate

Now we extend the main results to a more general setting, in which the zero-beta rate is unrestricted,

and in which mispricing is allowed for in the model.

"We only need moment conditions to prove Theorem I.1. Nonetheless, our rate condition on the penalty function
#(n, T) is not sharp, which could be improved to ¢(n,T)/(n"* +T') — oo using results of random matrix theory.

2 The assumptions on the lower bound of the eigenvalue of UUT can be replaced by more primitive assumptions on us.
For instance, if u; is ik (0,02) and n/T — ¢ € (0,00), then a direct result of the random matrix theory leads to such a
bound, see, e.g., Theorem 5.11 of Bai and Silverstein (2009). Ahn and Horenstein (2013) show that a similar bound holds
for somewhat more general u; with time-series and cross-sectional dependence.



Assumption I.1. Suppose the cross-section of asset returns r; follows
re =+ + By + Bor + g, (1.1)

where the cross-sectional pricing error o is i.i.d., independent of B, u and v, with mean 0, standard

deviation o® > 0, and a finite fourth moment.

There is a large body of literature on testing the APT by exploring the deviation of a from 0,
including Connor and Korajczyk (1988), Gibbons et al. (1989), MacKinlay and Richardson (1991), and
more recently, Pesaran and Yamagata (2012) and Fan et al. (2015). This is, however, not the focus
of this paper. Empirically, the pricing errors may exist for many reasons such as limits to arbitrage,
transaction costs, market inefficiency, and so on, so that it is important to allow for a misspecified
linear factor model. Gospodinov et al. (2014) and Kan et al. (2013) also consider this type of model
misspecification in their two-pass cross-sectional regression setting.

Next, we assume

Assumption 1.2. There exists a p X 1 vector By, such that Hn_lﬂTLn — ﬁOHMAX = op(1). Moreover,

the matriz

( 51 gi ) is of full rank.
0

This rank condition ensures that in the limit the factor loadings and ¢,, are not perfectly correlated
in the cross section, and in particular, that the zero-beta rate 7 is identifiable.

Finally, we need the following assumption, which imposes restrictions on the time series dependence
of uy. Assumption .3 is similar to part of Assumption C in Bai (2003). Stationarity of u; is not required.

Eigenvalues of the residual covariance matrices E(u¢u]) are not necessarily bounded.

Assumption 1.3. Define, for any i,i’ <mn, t,t’' <T,
E(ujuin) = o4y, and  E(ugupy) = o4 g0

The following moment conditions hold, for allm and T, and i,7 <p, | <d,

n n
(1)  max oy | < |owrl|, for some oyr.  In addition, n~! Z Z loiir| < K.
1se=T i=1 =1

n T

n T
(@) n'TY DN o < K.

i=1i'=1t=1 t/=1
T n 2
(tit) E E vjruge | < KnT.
t=1 k=1

In this scenario, we employ the alternative estimator (9), which also yields an estimate of the zero-

beta rate. The next theorem establishes their limiting distributions.



Theorem 1.3. Under Assumptions A.2, A.J — A.11, 1.1 — 1.3, and suppose ﬁi> p, then asn, T — oo,

we have

2 G = o) <55 7 (0. (1= 532 00)  0)2).
(T 0+ 1) 2 (5, =) < N (0. L),

where the asymptotic covariance matrices ® is given by (11), and Y is defined by

-1

T =(o")n (2~ Bos}) "

Unlike the CLT in Theorem 1, Theorem I.3 does not impose any restrictions on the relative rates of
n and T. Note that this result assumes that the factor loading 3 is uncorrelated with the pricing error
«, which means that the mispricing is not related to risk exposures. In fact, even if they were correlated,
our estimator would instead converge to the “pseudo-true” parameter n (’y + plim,,_, . (B™M,, B)ABT@),
which is difficult to interpret, see, e.g., Kan et al. (2013).

To measure the goodness-of-fit in the cross-section of expected returns, we define the usual (popu-

lation) cross-sectional R? for the latent factors in (I.1):

2 _ 7P = By
Y (092 +AT(28 = BoB)

which can be estimated in finite sample by

o ML BT M

ln

v FTM,, T

We can consistently estimate the cross-sectional R? for the latent factors as well as the time-series R?

for each observable factor g, introduced in Section 4.4 of the main text.

Theorem I.4. Under Assumptions A.2, A.J —A.11, 1.1 — 1.3, and suppose p SN p, then asn, T — oo,

we have
R2 %, R2 and RZ2-ZR2
v () g g'

I.3 Limiting Distribution of the Denoised Factors

As discussed above, our framework allows for measurement error in the observable factor proxies g.
Theorem [.4 above indicates that we can separate the error from the factors using the extracted PCs.

Moreover, we can conduct inference on g;, provided additional assumptions:

Assumption 1.4. The following conditions hold:

T
(i) Z Vo] < K, for allt.
=1



n

@) Y low| <K, foralli.

=1

This assumption is identical to Assumption E in Bai (2003). It restricts the eigenvalues of E(uu])
and E(u]u;) to be bounded as the dimension increases. We need this to bound the estimation error of
factors uniformly over ¢, which in turn leads to the consistency of the asymptotic variance estimation
to be discussed later.

For the same reason, we also need Assumption I.5, which Fan et al. (2011) and Fan et al. (2015)

also adopt:

Assumption 1.5. For allt',t < T, we have
E (uJuy — EuJup)* < Kn?,  E||fTu|* < Kn?

The next assumption we need is identical to Assumption F3 in Bai (2003), which is used to describe

the asymptotic distribution of the estimated factors at each point in time.

Assumption 1.6. For each t, as n — oo,
nY2RTu £ N(0,9),

where, writing f = (f1: B2 :...: Bn)T,

Q = lim - z; Z BiBYE (wiruin). (1.2)
1=14=1

Theorem 1.5. Under Assumptions A.2, and A — A.11, 1.1 — 1.6, and suppose that p - p, then as

n, T — 0o, we have
— ~ L
W, 2 (G — ) SN0, 1),
where Wy = T W, + n~ Wy,

vy ={ (o] (=) @ 1) T () v @) = (o (59)7 @ 1) Tian”
— I, <<2U)_1 vt ® Hd) + 77H2277T}7 and

D — (25) oy (zﬁ> .

In Bai (2003), the latent factors can be estimated at the n~1/2rate, provided that n*/27~! — 0. In

our setting, the estimation error consists of the errors in estimating 77 and v;. Because 7 is estimated

1/2

up to a T~/2-rate error which dominates 7! terms, the convergence rate of g; is n~Y2 47712 which

does not require any relative rate restrictions between n and 7T



I.4 Consistency of the Asymptotic Covariance Estimators

In this section, we propose asymptotic variance estimators used in this paper, as well as establish their
consistency. We only consider the more general setup in Theorem [.3. The case for Theorem 1 of the
main text is simpler.

We construct the following estimators of the asymptotic variances, simply by using the sample

analogues of their theoretical counterparts:

~

o= (‘?T(iv)_l ® Hd) T ((iv)_li ® ]Id) + (?T(iv)_l ® Hd) T97T 4 7illy ((iv)_w ® Hd) + T,
S |

T =o' (S Bf) T,

where ﬁll,ﬁlz, ﬁzg, 2, f]ﬂ, and i\]”, are defined in Section 4.5, and

B, —1371 cal ~1||5% AP s — (v B T ATM A T — (R ATT
Bo=n'Bn 0% =07 =G AT\ o A= (FM,B) BMLr, T=(Go:iT)

Theorem 1.6. The sequence of {vt, z:}1>1 satisfies the exponential-type tail condition. Under Assump-
tions A.2, and A4 — A.11, 1.1 — L.5, and suppose that p —= p, then as n, T — oo, n 3T — 0,
qT V4404 50,025 @ and ¥ 25 1.

We say a sequence of centered multivariate random variables {y; }+>1 satisfy the exponential-type tail
condition, if there exist some constants a and b, such that P (|y;t| > y) < exp{—(y/b)*}, for all 7 and ¢.
This exponential-tail assumption is perhaps overly restrictive for financial returns, which feature heavy-
tailness. The recent literature (e.g., Fan et al. (2017) and Fan et al. (2019)) replaces this assumption
by moment conditions, and correspondingly, constructs estimators using Huber’s loss. It is therefore
possible to relax the exponential-tail condition using their techniques, though we do not explore this in
this paper.

To estimate the asymptotic covariance matrices W1; and Wy, in Theorem 1.5, we can similarly replace
vy, 27, 11, Mo, Moo, n, 8 by their sample analogues, v, i”, ﬁn, ﬁlz, ﬁzg, 7, f]ﬁ, in the \Tllt and (I\lgt

constructions. With respect to )y, we need an additional assumption:

Assumption 1.7. The innovation u; is stationary and strongly mixing, and its covariance matriz X%
is sparse, i.e., there exists some h € [0,1/2), with wp = (logn)?T=1/2 4 n=1/2 such that

n -1
h 1—h -1 -1
Sp = 121%}%2 X5, where sy, =op ((wT +n+T ) > .
ir=1
Given this assumption, equation (I.2) and its estimator can be rewritten as

Q= lim S4TSU8, and O, = Q= L5TSE, (1.3)
n

n—oo N



where, for 1 <¢,7 < n,

S . . T
/
Su DILN 1 =1 =u 1 Py
i = uN . g M= T Zutut,
sii/(Eii,), 7 75 ] =1

and s;;(z) : R — R is a general thresholding function with an entry dependent threshold 7;; such that
(i) si(2) = 0if |2] < 75 (i) |84 (2) — 2| < 7 and (iii) |80 (2) — 2| < a7, if |2| > brpr, with some

a>0and b > 1. 75 can be chosen as:

~

Tit = C(ZiiEi/i/)l/QwT, for some constant ¢ > 0.

Bai and Liao (2013) adopt a similar estimator of ¥* for efficient estimation of factor models.

With their components constructed, our estimators for Wq1; and Wo; are defined as:

Ty, :T—l{ (@T@U)—l ® Hd) i ((iv)—la ® Hd) _ (ag(iv)—l ® ]Id) 97T — AT, ((iv)—lat ® ]Id)
+ ﬁﬁQQﬁT}7

~ N R |
gy =n" ' (E’8> O (Eﬁ) n,
where ﬁt is given by (I.3). The next theorem establishes the desired consistency of \/I\llt and \/I\]Qt:

Theorem 1.7. The sequence of {us,ve, 2zt }1>1 satisfies the exponential-type tail condition. Under As-
sumptions A.2, A.3 — A.11, and 1.1 — 1.7, we have

{I}lt - \Illt L) 0, and CI\IQt — \IIQt i) 0.

II Simulations

In this section, we study the finite sample performance of our inference procedure using Monte Carlo
simulations. We consider a five-factor data-generating process following (I.1), where the latent factors
are calibrated to match the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, CMA, see
Fama and French (2015)) from our empirical study. Suppose that we do not observe all five factors,
but instead some noisy version of the three Fama-French factors (RmRf, SMB, HML, see Fama and
French (1993)), plus a potentially spurious macro factor calibrated to industrial production growth (IP)
in our empirical study. Our simulations, therefore, include both the issue of omitted factors and that
of a spurious factor. We calibrate the parameters o, v, 1, XY, ¥%, 3% (0%)?2, By, and P to exactly
match their counterparts in the data (in our estimation of the Fama-French five-factor model). We then
generate the realizations of v, z¢, ut, a, and S from a multivariate normal using the calibrated means
and covariances.

We report in Tables I1.1, 1.2, and I1.3 the bias and the root-mean-square error of the estimates using
standard two-pass regressions and our three-pass approach. We choose different numbers of factors to

estimate the model, p = 4, 5, and 6, whereas the true value is 5. The five rows in each panel provide



the results for the zero-beta rate, RmRf, SMB, HML, and IP, respectively. Throughout these tables,
we find that the three-pass estimators with p = 5 or 6 outperform the other estimators, in particular
when n and T are large. By comparison, the two-pass estimates have substantial biases. Moreover, the
biases for the market factor premium are substantial and negative even when n and T are large. The
three-pass estimator with p = 4 has an obvious bias, compared to the cases with p = 5 and 6, because
an omitted-factor problem still affects it (4 factors do not span the entire factor space).

We then plot in Figure II.1 the histograms of the standardized risk premia estimates using the
estimated asymptotic standard errors for the two-pass estimator (right column) and for the three-pass
method with p = 5 (left column), respectively. The histograms on the right deviate substantially from
the standard normal distribution, whereas those on the left match the normal distribution very well,
which verifies our central limit results despite a small sample size T' = 240 and a moderate dimension
n = 200.% There exist some small higher order biases for 79, which would disappear with larger n and
T in simulations not included here.

Next, we report in Table I1.4 the estimated number of factors. We choose ¢(n,T) = K(logn +
log T)(n= Y% +T-1/2), where K = 0.5 x X, A is the median of the first pmax eigenvalues of n™'T~1RTR.
The median eigenvalue helps adjust the magnitude of the penalty function for better finite sample
accuracy. Although the estimator is consistent, it cannot give the true number of factors without error,
in particular when n or 7T is small, potentially due to the ad-hoc choice of tuning parameters.* In the
empirical study, we apply this estimator of p and select slightly more factors to ensure the robustness
of the estimates, as suggested by Theorem I.2.

Then we evaluate the size and power properties of the proposed test in Section 4.4. To check the size
control, we create a purely noisy factor with 7 = 0 and variance calibrated to be the average variance of
the four factors we consider. The top panel of Table I1.5 reports the rejection probabilities of the test
statistic under the null. In spite of slight over-rejection, the size control is acceptable given the moderate
sizes of n and T'. To evaluate the power, we report on the lower panel the average rejection probabilities
when the null is false (n # 0). We test for factors with a variety of the signal-to-noise strength measured
by Rg. These factors only load on the market factor, and share the same total variance calibrated to
be the average variance as above, with Rgs being 2.5%, 5%, and 10%, respectively. As expected, we
observe the rejection probability elevates to 100% as Rg increases.

Finally, we compare the performance of these estimators with the mimicking portfolio estimators
under more restrictive dynamics in which 7 is known and a = 0. So we estimate the model using (8)
and excess returns. We consider two sets of mimicking portfolios: one set (MP3) uses three portfolios
as spanning assets to project factors, where portfolio weights are exactly proportional to the market,
SMB, and HML beta. Using three base assets clearly leads to an omitted variable problem because
these three assets cannot span the space of five factors. The second set of mimicking portfolios (MP)

uses all assets as basis assets for projection. There is no omitted variable bias in this case as we prove

3Fan et al. (2017) show that the empirical eigenvectors can be estimated with very little finite sample bias. This
might explain why the asymptotic approximation for risk premia is rather accurate despite the finite sample errors that
accumulate from each step of our procedure.

“The eigenvalue ratio-based test by Ahn and Horenstein (2013) does not work well in our simulation setting because
the first eigenvalue dominates the rest by a wide margin, so that their test often suggests 1 factor.



Table II.1: Simulation Results for n = 50

Two-Pass Estimator Three-Pass Estimators
p=4 p=5 p=6
T Param True Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Yo 0.546 0.252 0.339 0.028 0.210 0.019 0.206 0.042 0.206
RmRf 0.372 -0.230 0.514 0.020 0.425 0.019 0.425 -0.016 0.425
120 SMB 0.229 -0.037 0.305 -0.024 0.275 -0.020 0.276 -0.012 0.276
HML 0.209 0.010 0.349 -0.111 0.227 -0.088 0.221 -0.071 0.217
1P -0.003 -0.015 0.116 0.000 0.009 0.000 0.010 0.000 0.010
Yo 0.546 0.265 0.324 0.085 0.191 0.060 0.177 0.048 0.173
RmRf 0.372 -0.214 0.396 -0.033 0.319 -0.029 0.318 -0.020 0.317
240 SMB 0.229 -0.129 0.250 -0.052 0.199 -0.037 0.196 -0.035 0.196
HML 0.209 0.082 0.278 -0.074 0.168 -0.049 0.159 -0.043 0.158
1P -0.003 -0.024 0.136 0.001 0.006 0.001 0.006 0.001 0.007
Yo 0.546 0.348 0.380 0.051 0.173 0.008 0.146 -0.001 0.145
RmRf 0.372 -0.333 0.415 -0.047 0.252 -0.006 0.237 0.003 0.237
480 SMB 0.229 -0.165 0.231 -0.067 0.158 -0.038 0.146 -0.036 0.146
HML 0.209 0.211 0.296 -0.008 0.115 -0.022 0.115 -0.020 0.116
1P -0.003 -0.040 0.159 0.001 0.004 0.000 0.005 0.000 0.005

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the
zero-beta rate and risk premia estimates using two-pass and three-pass estimators with p = 4, 5, and 6, for n = 50,
and T = 120, 240, and 480, respectively. The true data-generating process has five factors, and the parameters are
calibrated based on the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, and CMA). The true zero-beta
rate is 0.546, and the true risk premia of four noisy yet observed factors (RmRf, SMB, HML, and IP) are provided in
the “True” column. All numbers are in percentages.

in Proposition 1, but these estimators are not as efficient as the three-pass estimators. They become
infeasible when n > T'. Figure 1.2 verifies these statements. Indeed, the deviation from normality is
clearly visible for all estimators but ours. MP3 and two-pass estimates show visible biases whereas MP
estimates display distortion due to the curse of dimensionality (n is of a similar scale to T'). Tables
I1.6 - I1.8 further illustrate that the RMSEs of the mimicking portfolio estimators are often larger than
those of the three-pass estimators, due to large biases of MP3 and large variances of MP.

Overall, the three-pass estimator outperforms the two-pass and mimicking portfolio estimators by
a large margin in almost all cases. The MP estimator using all assets ranks the second, despite being
infeasible when n is greater than 7. The biases in the two-pass and MP3 are substantial, yet they are

unfortunately the most common choices in the empirical literature.

IIT Additional Empirical Results

In this section we provide more details on the construction of the test assets and present additional

empirical results and robustness tests.

ITI.1 Additional Details on the Datasets

We assemble the set of test portfolios as follows. We start from a set of 202 standard equity portfolios

from Kenneth French’s website, that span the most well-known dimensions of risk: 25 portfolios sorted



Table I1.2: Simulation Results for n = 100

Two-Pass Estimator Three-Pass Estimators
p=4 p=>5 p==6
T Param True Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Yo 0.546 0.434 0.482 0.102 0.191 0.083 0.167 0.076 0.163
RmRf 0.372 -0.422 0.612 -0.088 0.421 -0.069 0.414 -0.063 0.414
120 SMB 0.229 -0.087 0.305 -0.021 0.269 -0.018 0.269 -0.017 0.269
HML 0.209 0.138 0.356 -0.023 0.202 -0.026 0.208 -0.023 0.209
1P -0.003 -0.011 0.100 0.000 0.010 0.000 0.010 0.000 0.011
Yo 0.546 0.425 0.453 0.095 0.167 0.038 0.121 0.035 0.120
RmRf 0.372 -0.431 0.538 -0.103 0.322 -0.041 0.298 -0.037 0.297
240 SMB 0.229 -0.144 0.256 -0.043 0.197 -0.018 0.192 -0.018 0.192
HML 0.209 0.312 0.399 0.058 0.165 0.009 0.153 0.006 0.153
1P -0.003 -0.020 0.107 0.000 0.006 0.000 0.007 0.000 0.007
Yo 0.546 0.371 0.391 0.067 0.125 0.025 0.102 0.020 0.101
RmRf 0.372 -0.374 0.439 -0.069 0.228 -0.022 0.216 -0.019 0.216
480 SMB 0.229 -0.028 0.155 0.003 0.139 -0.001 0.140 0.002 0.140
HML 0.209 0.033 0.203 -0.025 0.115 -0.019 0.114 -0.015 0.113
1P -0.003 -0.043 0.170 0.001 0.005 0.000 0.005 0.000 0.005

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the
zero-beta rate and risk premia estimates using two-pass and three-pass estimators with p = 4, 5, and 6, for n = 100,
and T = 120, 240, and 480, respectively. The true data-generating process has five factors, and the parameters are
calibrated based on the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, and CMA). The true zero-beta
rate is 0.546, and the true risk premia of four noisy yet observed factors (RmRf, SMB, HML, and IP) are provided in
the “True” column. All numbers are in percentages.

Table II.3: Simulation Results for n = 200

Two-Pass Estimator Three-Pass Estimators
p=4 p=>5 p==6
T Param True Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Yo 0.546 0.423 0.460 0.069 0.132 0.059 0.113 0.058 0.112
RmRf 0.372 -0.366 0.561 -0.047 0.400 -0.038 0.396 -0.038 0.396
120 SMB 0.229 -0.137 0.323 -0.024 0.270 -0.020 0.271 -0.019 0.271
HML 0.209 0.169 0.358 -0.011 0.208 -0.013 0.210 -0.012 0.210
1P -0.003 -0.012 0.092 0.000 0.010 0.000 0.011 0.000 0.011
Yo 0.546 0.277 0.300 0.030 0.089 0.022 0.074 0.020 0.073
RmRf 0.372 -0.270 0.408 -0.024 0.291 -0.023 0.290 -0.021 0.290
240 SMB 0.229 -0.084 0.227 -0.011 0.196 -0.004 0.196 -0.004 0.196
HML 0.209 0.105 0.266 -0.018 0.152 -0.013 0.155 -0.011 0.155
1P -0.003 -0.027 0.135 0.000 0.007 0.000 0.007 0.000 0.007
Yo 0.546 0.256 0.273 0.051 0.105 0.013 0.067 0.012 0.067
RmRf 0.372 -0.246 0.331 -0.054 0.226 -0.011 0.209 -0.010 0.209
480 SMB 0.229 -0.089 0.175 -0.002 0.138 -0.007 0.138 -0.007 0.139
HML 0.209 0.121 0.226 -0.010 0.112 -0.010 0.112 -0.009 0.112
1P -0.003 -0.046 0.168 0.001 0.005 0.000 0.005 0.000 0.005
Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the

zero-beta rate and risk premia estimates using two-pass and three-pass estimators with p = 4, 5, and 6, for n = 200,
and T = 120, 240, and 480, respectively. The true data-generating process has five factors, and the parameters are
calibrated based on the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, and CMA). The true zero-beta
rate is 0.546, and the true risk premia of four noisy yet observed factors (RmRf, SMB, HML, and IP) are provided in
the “True” column. All numbers are in percentages.
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Figure II.1: Histograms of the Standardized Estimates in Simulations
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Note: The left panels provide the histograms of the standardized three-pass estimates using asymptotic standard errors,
whereas the right panels provide those of the standardized two-pass risk premia estimates using the Fama-MacBeth
approach for standard error estimation. We simulate the models with n = 200 and T" = 240.
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Figure I1.2: Histograms of the Standardized Estimates in Simulations
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Note: The top panel plots the histograms of the standardized estimates using the three-pass estimator (top left) and the
two-pass estimator (top right), respectively, for four parameters. The bottom panels provide those of the standardized
mimicking portfolio estimators, using three (bottom left) or all assets (bottom right), respectively. We simulate the
models with n = 200 and T" = 240.
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Table I1.4: Simulation Results for the Number of Factors

n =50 n = 100 n = 200
T Median Stderr Median Stderr Median Stderr
120 3 0.87 4 0.69 5 0.18
240 3 0.58 3 0.92 5 0.18
480 3 0.03 5 0.42 5 0.41

Note: In this table, we report the median (Column “Median”) and the standard error (Column “Stderr”) of the
estimates for the number of factors. The true number of factors in the data generating process is five.

Table I1.5: Size and Power of the Test Statistic

Size
n = 50 n = 100 n = 200
a-level 1.0% 5.0% 10.0% 1.0% 5.0% 10.0% 1.0% 5.0% 10.0%
120 6.9% 15.8% 23.4% 7.8% 17.5% 25.2% 7.4% 17.1% 25.2%
240 3.7% 10.6% 17.3% 3.1% 9.8% 17.1% 3.8% 10.6% 17.2%
480 2.3% 8.3% 14.2% 2.3% 7.6% 13.8% 2.1% 8.1% 14.8%
Power
Rg 2.5% 5.0% 10.0% 2.5% 5.0% 10.0% 2.5% 5.0% 10.0%
120 41.1% 61.8% 87.3% 40.4% 62.6% 87.9% 40.2% 62.0% 88.6%
240 55.1% 83.6% 99.1% 53.6% 83.1% 99.0% 54.2% 83.3% 99.2%
480 79.5% 98.3% 100.0% 81.0% 98.5% 100.0% 80.8% 98.4% 100.0%

Note: In this table, we report on the upper panel the rejection probabilities for the level-a tests when Hp : 7 = 0 holds.
The lower panel provides the rejection probabilities when the null hypothesis is false (R} = 2.5%, 5%, 10%).

by size and book-to-market ratio, 17 industry portfolios, 25 portfolios sorted by operating profitability
and investment, 25 portfolios sorted by size and variance, 35 portfolios sorted by size and net issuance,
25 portfolios sorted by size and accruals, 25 portfolios sorted by size and beta, and 25 portfolio sorted
by size and momentum.

We augment this set with a large set of additional anomaly portfolios sorted by various charac-
teristics. Specifically, we obtain from WRDS a list of 103 characteristics, which we use to compute
value-weighted quintile portfolios sorted by each characteristic (using NYSE breakpoints, restricting to
share code 10 and 11, and exchange code 1, 2 and 3).> We remove portfolios for which we have missing
returns during our sample period, yielding 413 additional test portfolios.

Finally, we add 10 maturity-sorted government bond portfolios, 10 corporate bond portfolios sorted
on yield spread, 6 currency portfolios sorted on interest rate differentials, and 6 currency portfolios
sorted on currency momentum obtained from Asaf Manela’s website, for a total of 647 test portfolios.

The factors whose risk premia we estimate are listed in the main text. We report here the data
sources. All tradable factors except BAB and QMJ are obtained from Kenneth French’s website; BAB
and QMJ from AQR’s website; IP from the Federal Reserve Bank of St. Louis; the Macro PCs from
Sydney Ludvigson’s website; liquidity from Lubos Pastor’s website; the intermediary factors from Bryan

Kelly’s website; the Novy-Marx factors from the various sources indicated in Novy-Marx (2014); the

5See Appendix B of the WRDS Factors Manuals for details of the sorting signals: https://wrds-www.wharton.upenn.
edu/documents/1109/Backtest_Manual_v2.pdf. We use their raw signals to reconstruct test portfolios that are more
conformable to the convention of the asset pricing literature.
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Table I1.6: Simulation Results for n = 50

Two-Pass Estimator Mimicking Portfolios Mimicking Portfolios
using three assets using all assets
T Param True Bias RMSE Bias RMSE Bias RMSE
RmRf 0.372 -0.212 0.484 0.044 0.389 0.004 0.403
120 SMB 0.229 -0.133 0.326 0.039 0.262 -0.023 0.282
HML 0.209 0.149 0.372 -0.344 0.359 0.003 0.263
IP -0.003 -0.009 0.088 0.003 0.008 0.000 0.028
RmRf 0.372 -0.573 0.665 0.001 0.271 0.007 0.277
240 SMB 0.229 -0.046 0.218 0.176 0.248 -0.002 0.196
HML 0.209 0.075 0.266 -0.380 0.388 -0.025 0.164
1P -0.003 -0.023 0.124 0.002 0.005 0.000 0.013
RmRf 0.372 -0.288 0.373 0.014 0.201 0.010 0.204
480 SMB 0.229 -0.081 0.172 0.124 0.179 -0.013 0.138
HML 0.209 0.057 0.216 -0.367 0.371 -0.032 0.112
IP -0.003 -0.053 0.160 0.002 0.004 0.000 0.007

Three-Pass Estimators

p=4 p=>5 p==6
T Param True Bias RMSE Bias RMSE Bias RMSE
RmRf 0.372 0.006 0.397 0.008 0.397 0.005 0.397
120 SMB 0.229 -0.072 0.273 -0.060 0.271 -0.046 0.269
HML 0.209 0.027 0.208 0.015 0.209 0.002 0.210
P -0.003 0.001 0.009 0.001 0.009 0.001 0.010
RmRf 0.372 0.020 0.274 0.019 0.275 0.009 0.275
240 SMB 0.229 -0.016 0.190 -0.011 0.190 -0.002 0.191
HML 0.209 -0.082 0.161 -0.074 0.158 -0.058 0.154
1P -0.003 0.000 0.006 0.000 0.007 0.000 0.007
RmRf 0.372 0.024 0.204 0.024 0.204 0.013 0.203
480 SMB 0.229 -0.053 0.145 -0.045 0.142 -0.031 0.139
HML 0.209 -0.043 0.110 -0.053 0.111 -0.036 0.105
P -0.003 0.000 0.004 0.000 0.004 0.001 0.004

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the
risk premia estimates using mimicking portfolios with three assets or all assets, two-pass and three-pass estimators with
p =4, 5, and 6, for n = 50, and T = 120, 240, and 480, respectively. The true data-generating process has five factors,
and the parameters are calibrated based on the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, and
CMA). In this setting, there is no a. The true zero-beta rate is 0, and the true risk premia of four noisy yet observed
factors (RmRf, SMB, HML, and IP) are provided in the “True” column. All numbers are in percentages.
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Table I1.7: Simulation Results for n = 100

Two-Pass Estimator Mimicking Portfolios Mimicking Portfolios
using three assets using all assets
T Param True Bias RMSE Bias RMSE Bias RMSE
RmRf 0.372 -0.228 0.478 0.047 0.395 0.015 0.417
120 SMB 0.229 -0.114 0.315 0.070 0.272 -0.008 0.321
HML 0.209 0.109 0.347 -0.417 0.433 0.004 0.439
IP -0.003 -0.010 0.098 0.002 0.008 0.000 0.073
RmRf 0.372 -0.223 0.377 0.043 0.283 -0.002 0.287
240 SMB 0.229 -0.141 0.255 0.117 0.222 -0.010 0.202
HML 0.209 0.220 0.328 -0.348 0.353 -0.001 0.181
1P -0.003 -0.024 0.114 0.002 0.006 0.000 0.020
RmRf 0.372 -0.301 0.373 0.030 0.202 0.001 0.205
480 SMB 0.229 -0.095 0.177 0.083 0.156 -0.006 0.139
HML 0.209 0.173 0.252 -0.389 0.393 -0.002 0.117
IP -0.003 -0.049 0.147 0.002 0.004 0.000 0.009

Three-Pass Estimators

p=4 p=>5 p==6
T Param True Bias RMSE Bias RMSE Bias RMSE
RmRf 0.372 0.009 0.396 0.019 0.397 0.017 0.397
120 SMB 0.229 -0.016 0.268 -0.018 0.269 -0.016 0.269
HML 0.209 0.000 0.208 -0.013 0.211 -0.012 0.212
P -0.003 0.000 0.010 0.000 0.011 0.000 0.011
RmRf 0.372 0.007 0.285 -0.005 0.285 -0.002 0.285
240 SMB 0.229 -0.034 0.198 -0.018 0.196 -0.016 0.196
HML 0.209 0.003 0.148 0.003 0.149 -0.003 0.149
1P -0.003 0.000 0.007 0.000 0.007 0.000 0.007
RmRf 0.372 0.008 0.204 0.004 0.204 0.001 0.204
480 SMB 0.229 -0.030 0.140 -0.016 0.138 -0.012 0.138
HML 0.209 -0.003 0.107 -0.004 0.108 -0.004 0.108
P -0.003 0.000 0.004 0.000 0.005 0.000 0.005

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the
risk premia estimates using mimicking portfolios with three assets or all assets, two-pass and three-pass estimators with
p=4,5, and 6, for n = 100, and T" = 120, 240, and 480, respectively. The true data-generating process has five factors,
and the parameters are calibrated based on the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, and
CMA). In this setting, there is no a. The true zero-beta rate is 0, and the true risk premia of four noisy yet observed
factors (RmRf, SMB, HML, and IP) are provided in the “True” column. All numbers are in percentages.
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Table II.8: Simulation Results for n = 200

Two-Pass Estimator Mimicking Portfolios Mimicking Portfolios
using three assets using all assets
T Param True Bias RMSE Bias RMSE Bias RMSE
RmRf 0.372 -0.357 0.554 0.022 0.396 NA NA
120 SMB 0.229 -0.074 0.302 0.088 0.280 NA NA
HML 0.209 0.083 0.327 -0.386 0.400 NA NA
IP -0.003 -0.009 0.087 0.003 0.008 NA NA
RmRf 0.372 -0.344 0.459 0.059 0.285 0.000 0.293
240 SMB 0.229 -0.095 0.229 0.033 0.191 -0.003 0.227
HML 0.209 0.122 0.266 -0.382 0.388 -0.008 0.297
IP -0.003 -0.026 0.130 0.002 0.006 0.002 0.051
RmRf 0.372 -0.276 0.351 0.030 0.201 0.000 0.202
480 SMB 0.229 -0.097 0.180 0.088 0.158 -0.005 0.142
HML 0.209 0.068 0.201 -0.419 0.422 -0.003 0.127
IP -0.003 -0.060 0.188 0.002 0.004 0.000 0.014

Three-Pass Estimators

p=4 p=>5 p==6
T Param True Bias RMSE Bias RMSE Bias RMSE
RmRf 0.372 -0.017 0.401 -0.005 0.402 -0.005 0.402
120 SMB 0.229 -0.005 0.273 -0.008 0.274 -0.008 0.274
HML 0.209 0.003 0.212 -0.012 0.214 -0.012 0.214
IP -0.003 0.001 0.010 0.000 0.011 0.000 0.011
RmRf 0.372 0.001 0.284 0.001 0.284 0.001 0.284
240 SMB 0.229 -0.010 0.193 -0.008 0.194 -0.008 0.194
HML 0.209 -0.009 0.149 -0.010 0.150 -0.010 0.151
1P -0.003 0.000 0.007 0.000 0.007 0.000 0.007
RmRf 0.372 0.024 0.203 0.002 0.201 0.001 0.201
480 SMB 0.229 -0.031 0.141 -0.008 0.138 -0.008 0.139
HML 0.209 -0.032 0.110 -0.009 0.107 -0.009 0.107
P -0.003 0.000 0.005 0.000 0.005 0.000 0.005

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the
risk premia estimates using mimicking portfolios with three assets or all assets, two-pass and three-pass estimators with
p =4, 5, and 6, for n = 200, and T" = 120, 240, and 480, respectively. The true data-generating process has five factors,
and the parameters are calibrated based on the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, and
CMA). In this setting, there is no a. The true zero-beta rate is 0, and the true risk premia of four noisy yet observed
factors (RmRf, SMB, HML, and IP) are provided in the “True” column. All numbers are in percentages. NA means
the estimators are “infeasible.”
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consumption factors from Toby Moskowitz’s website.

I11.2 Robustness to the Number of Latent Factors

Theorem 1.2 shows that our results are theoretically robust to using “a few” too many latent factors in
our analysis, compared to the true number p. Given the potential concern that our baseline choice of p,
p =7, might omit some latent factor with small eigenvalues, we explore here how the results change as
we increase the number of factors. We choose p = 10 and p = 13 based on the scree plot (Figure II1.3).

The results are reported in the first three columns of Table I11.9, and appear mostly robust to the
change in number of factors. While the significance changes in some cases (with more factors, estimates
of risk premia tend to become less precise), the signs and magnitudes of the estimated risk premia
remain similar as p varies.

Of course, we should not expect (and Theorem .2 does not guarantee) that the results remain the
same as p increases arbitrarily: in the limit, as p approaches n, the estimator becomes the mimicking-
portfolio estimator with all assets (which in this case is infeasible). It is however reassuring to see that

almost doubling the number of factors included gives similar results.

I11.3 Estimating the Zero-beta Rate

Column 4 of Table I11.9 shows the results produced by our more general estimator (9), that allows the
zero-beta rate to be different from the T-bill rate.’

The estimated zero-beta rate (which does not depend on the choice of g; by construction) is 49bp,
close to the average T-bill rate of 46bp per month in our sample. Given that the unconstrained estimates
of the zero-beta rate are close to the average T-bill rate, it should not be surprising that the results for
the risk premia are similar to the ones obtained when the zero-beta rate is constrained to be equal to
the T-bill rate.

I11.4 Robustness to the Presence of Weak Latent Factors

As we discuss in the main text, our procedure works even if the observable factor g; is weak (in fact,
we propose a test for whether g, is weak); however, PCA will not necessarily recover the entire factor
space if the underlying latent factors are weak. In this section we summarize our main theoretical and
empirical arguments for using PCA in practice, and propose an additional robustness test to mitigate
the concern that the presence of weak factors may distort our results.

In theory, weak latent factors — unobservable factors for which the dispersion of risk exposures is
small in the cross-section — can affect our estimator because they have low eigenvalues, and PCA might
fail to separate them from noise. However, for weak factors to bias our estimates of risk premia for
observable factors, they also need to have themselves high risk premia, which allows them to explain
a significant portion of the cross-section of average returns. But large risk premia for factors with low

eigenvalues imply high Sharpe ratios. A first theoretical argument in favor of focusing on the PCs with

5The inference based on Theorem 1.3 in this case is also robust to the presence of pricing errors (alphas) that satisfy
our assumptions.
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largest eigenvalues are good-deal bounds, which impose a theoretical upper bound on the potential bias
from weak factors (Kozak et al. (2018) make precisely this argument to support using PCA in this
context).

A second, empirical, argument is that we can easily add additional PCs with lower and lower
eigenvalues, and verify that the risk premia estimates are stable (as shown in Table I11.9).

A third way to verify that weak latent factors are not driving our empirical results is the comparison
of the risk premia estimated for tradable factors using our three-pass procedure with those obtained as
time-series average of the portfolios’ excess returns. As discussed in the text, the two should be the
same if the factor model is correctly specified. Biases due to the presence of weak latent factors should
produce significant differences between the estimates using cross-sectional methods and the time-series
averages.

Finally, we propose here an additional robustness test with respect to the possibility of weak factors,
based on changing the objective function when extracting the statistical factors from the panel of returns.
Recall that the first step towards PCA is to calculate eigenvalues of the covariance matrix of returns,
which equal the variances of the corresponding PCs, and that the constructed factors are eigenvectors
associated with the largest few eigenvalues.

Since weak factors are factors with low eigenvalues, which however explain the cross-section of
returns, we can modify the objective function to account for the contribution to the cross-sectional
variation. That is, rather than finding factors that best explain the time-series comovement of stock
returns, we find factors that strike a balance between explaining the time-series comovement of stock
returns and the cross-sectional variation of expected returns. This alternative objective function was
first proposed by Connor and Korajczyk (1986), and has been recently extended by Lettau and Pelger
(2018). It is a convenient reference point because it puts equal weight on the two components of the
objective function — the time-series and the cross-sectional variation.

As shown in Bai and Ng (2002), our PCA formula given in (7) is the solution to the following

optimization problem:

minn TR - V|5, subject to TV =15

ﬁ7V
where ||-||p is the Frobenius norm of a matrix. By our rotation invariance result, it would give the
same risk premia estimates if we were to use an alternative normalization n~'373 = I,,. Connor and

Korajczyk (1986) suggest another optimization problem (henceforth CK):

min n~ 17! HR — 5‘7”; +wn |7 — ﬁy”%, subject to n~!BTA =1,,
B,Vyy

where they choose w = 1. The solution turns out to be

B=n"?& &% .. &), and V = (BT8R,

where ¢, G, . . ., G are the eigenvectors associated with the largest eigenvalues of the matrix n~'T-'RRT+

wn~177T. Note that starting from CK’s formulation, setting w = 0 (thus focusing entirely on time-series
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comovement) is equivalent to PCA.

The CK approach can be used instead of the standard PCA in step (i) of our three-step procedure.
Since the second term of the objective function is the cross-sectional R?, it may help select latent factors
that have large risk premia but are weak. We can then continue steps (ii) and (iii) as in Section 3 using
the estimated latent factors together with g; to estimate risk premia. Note that the CK approach does
not allow for an unrestricted zero-beta rate or pricing errors.

In Table II1.9, column CK, we report the results using the CK approach (we have not derived the
standard error of our estimator when CK is used in the first step; so we only report the point estimates).
The table shows that there is almost no difference in the risk premia estimates relative to the baseline,
which suggests that weak factors are either not present in this dataset we consider, or if they are, they
have small enough risk premia that ignoring them has little consequence for our estimates.

Taken together, these considerations lead us to conclude that for the purposes of estimating risk

premia, using PCA to recover the factor space represents a simple yet robust solution.

III.5 Ridge Regression

Section 4.3 shows that instead of using PCA to reduce the dimensionality of the returns’ space, we could
instead use ridge regression and still obtain a consistent estimator of risk premia. Table I11.9 reports the
risk premia estimates in the second-to-last column. While we do not derive the asymptotic distribution
of the estimator (so we do not report standard errors), the point estimates we obtain are in general
quite similar to our baseline results that instead use PCA. Note that we fix the tuning parameter p in
the ridge equation (14) to be Aoy ;(RRT), so that the ridge results effectively serve as a benchmark of a

large factor model.

IT1.6 Robustness to the Choice of Test Portfolios

Our main empirical results are obtained using a large set of 647 portfolios, that spans equities, bonds,
and currencies. It is natural, however, to wonder to what extent the results are affected by the particular
selection of test assets.

We explore robustness with respect to the choice of test portfolios in two ways. First, we perform
the estimation using only equity portfolios. The results are in the last column of Table I11.9. The results
are similar to those of the baseline.

Second, we perform a bootstrap-type analysis that excludes systematically random subsets of assets.
In particular, from the 647 test portfolios we use in our empirical exercise, we randomly select (without
replacement) half of them, and we re-estimate the risk premia of all observable factors in this subsample.
We repeat this exercise 10,000 times, thus obtaining a distribution of risk premia estimates across
subsamples of 323 portfolios each, randomly selected.

Appendix Figure I11.5 shows the results for several factors. Note that all panels of the figure report
the same range of risk premia (x axis, between -20bp and 100bp), so that the histograms are easily
comparable across panels. The results are heterogeneous across factors. In the top left panel, we see

that the risk premium for the market return is precisely estimated, from essentially any of the random
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subsets of the assets. The top right panel shows that the risk premia estimates for SMB and HML vary
more across subsets of assets. The next panel shows that momentum’s risk premium varies even more
across subsets, but it is still estimated to be between 25bp and 70bp in almost all subsamples.

The last three panels show interesting results for non-tradable factors. Confirming the results of
Table 1, IP is a useless factor, with a risk premium of effectively zero in all subsamples. On the contrary,
liquidity and intermediary capital factors all appear positively priced across subsamples.

Overall, our subsample results show that the conclusions of our empirical analysis are very robust
to the selection of the test assets, at least within the universe of assets we consider (equity, bonds,
currencies). One caveat worth keeping in mind when interpreting these results is that this analysis
randomly selects (without replacement) half of the assets within the original set of 647 portfolios — but
the original universe was itself not randomly selected in the first place, since it is based on characteristics

proposed in the existing literature.

IT1.7 Robustness to the Choice of Estimation Time Period

A potential concern when working with PCs is the stability of the estimated loadings and factors over
time. The extent to which our risk premia estimates are consistent across time periods is an empirical
question that we explore in this section.

Similarly to the robustness with respect to the test assets, we perform our robustness check with
respect to the sample period by resampling half of the time periods randomly without replacement, and
looking at the variability of the risk premia estimates. Simple resampling in the time series is possible
in our context because of the low serial correlation of returns and factor innovations over time.

Figure I11.6 shows the results. Interestingly, the estimates are more variable across time subsamples
compared to the case in which test assets were resampled (previous section). That said, the estimated
risk premia remain positive across almost all subsamples, for all factors (except IP, which is clearly a
weak factor, and whose risk premium is precisely estimated to be zero); our results are therefore quite
stable across subsamples.

Note that the variability of estimates in this analysis is necessarily higher than the variability
captured by the standard errors of our full-sample estimates: we are resampling periods with half as
many observations than in our full-sample test.

Despite the increased variability, the estimates are quite stable across subsamples. This may appear
surprising, because our estimator is based on PCA, which is known to give different factor estimates
(rotations) in different subsamples. However, it is useful to note that our risk premia estimator is not
only based on PCA. Instead, a key step is the projection of the factor of interest g; onto the extracted
PCs. So any rotation that makes the extracted factors differ across subsamples will be entirely offset
by a corresponding rotation of the loading of g; onto those factors — resulting in stable risk premia

estimates for the observable factors.
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I11.8 Separating the Measurement Error from the Factors

The R? of the projection of each factor g; onto the latent factors (Rg in Table 1) reveals the amount
of measurement error in the factor. Figure I11.7 further explores how our method allows us to “clean”
the factors from measurement error. It shows the time series of cumulated innovations in the original
and cleaned (i.e., fitted) factors, for a few of them. The figures provide a graphical representation of
the extent to which the PCs of returns capture the variation in each factor. While for several factors
the original and cleaned factors track each other closely (e.g., for the market, SMB and HML plotted
in the figure), for others the cleaned factor displays much lower variation than the original factor: the
difference is the measurement error that our procedure has eliminated (a nice example is IP, plotted in

the figure, which is identified as a weak factor).

I11.9 Individual Assets vs. Portfolios

In this paper, we recommend using characteristic-sorted portfolios instead of individual stocks. The
main advantage of using portfolios is that their risk exposures are more stable over time, as discussed at
length in the asset pricing literature. This is particularly important in our setting, because we assume
the betas of the test assets are constant.

To see this intuition more formally, call 74 the vector of time-t returns for m individual stocks, and
¢t a m X n matrix of characteristics (or their functions) observed at time ¢ for the m stocks. The typical
procedure to construct characteristic-sorted portfolios in asset pricing categorizes stocks at each time
t — 1 into groups based on one or more observed characteristics, and then obtains the portfolio return
at time t using equal or market-value weights for stocks in each group.

The sorting procedure can be represented mathematically by constructing the matrix c¢;_; stacking
side-by-side the n dummy variables corresponding to each characteristic-sorted group. For example, to
construct 10 size-based portfolios, ¢;—1 would be an m x 10 matrix containing 10 dummy variables, each
indicating the size group to which each stock belongs at time t — 1. The n characteristic-sorted portfolio
returns from ¢ — 1 to t are simply the coefficients of a cross-sectional regression of 7, onto c¢;_1, since
c¢—1 contains only dummies.

More generally, given any matrix ¢;—1 (that could include dummies or continuous variables), the

characteristics-weighted portfolio returns at time ¢ are:
re = (c]_yei1) el 7, (I11.4)

where the term (¢]_jci—1) tci—1 therefore represents the time-(¢ — 1) portfolio weights.

Using this expression that links r; and 74, it is immediate to find that if individual factor exposures
are linear functions of ¢;—; (e.g., Rosenberg (1974)), then the sorted portfolios have constant factor
exposures. Specifically, extending our setup (1) to include time-varying factor exposures for individual

asset returns, we have:

Tt = Br—1Vi—1 + Bi—10¢ + Uy,
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where 7, and u; are m X 1 vectors, f;_1 is an m X n matrix of time-varying exposures, following

Bi-1 = c—18 + €11, (IIL.5)

for some n x p matrix 8, m x n matrix of observable characteristics ¢;—1, and some n X p matrix of
residuals ;1. Prior to applying our three-pass estimation procedure, we construct characteristics-sorted

portfolios:

-1 ~
Ty = (CLlCt—l) CLth = By + Py + uy,

where

y=E(-1), v=0+%1—BE(v-1), w=_(c jci1) e (U +e_1(y—1+)).

Therefore, our methodology to estimate risk premia can be applied even if individual stock risk exposures
are time-varying, as long as characteristic-sorted portfolios that have constant factor exposures are used
as test assets, provided that u; and v; satisfy assumptions in this paper. Also, we can interpret the
estimated risk premia as estimates of their time-series average.

In this paper, we take the portfolio-formation step as given, and use characteristic-sorted portfolios
that have been proposed in the literature. In contrast, Kelly et al. (2019) construct such portfolios using
characteristics and individual stocks for a model specification test. Their results show that PCs based
on such portfolios explain more cross-sectional variations than those based on individual stocks, which
is consistent with the formal result shown above that characteristic-sorted portfolios will have constant

betas if the characteristics are chosen appropriately.
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Figure II1.3: First Fifteen Eigenvalues of the Covariance Matrix of 647 Test Portfolios
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Figure II1.4: Sparsity plot of portfolio returns
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Note: The left panel reports a sparsity plot based on the correlation matrix of excess returns of the 647 portfolios. This
matrix plots a dot if the corresponding correlation is above 0.25, and no dot if it is below 0.25. The right-hand side
reports the same sparsity plot, but for the residuals of our 7-factor model. Assets are our 647 portfolios: assets 1-413 are
the characteristic-sorted portfolios from WRDS, 414-438 are the portfolios sorted by size and book-to-market, 439-455
are industry portfolios, 456-480 are portfolios sorted by operating profitability and investment, 481-505 are portfolios
sorted by size and variance, 506-540 are portfolios sorted by size and net issuance, 541-565 are portfolios sorted by
size and beta, 566-590 are portfolios sorted by size and accruals, 591-615 are portfolios sorted by size and momentum,
616-635 are bond portfolios and 636-647 are currency portfolios.
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Figure II1.5: Robustness to the Set of Test Portfolios: Resampling Exercise
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Note: This figure reports the histograms of risk premia estimated using the three-pass estimator across subsamples of
the set of 647 test portfolios. We generate 10,000 subsamples by randomly drawing (without replacement) half of the
portfolios from the baseline set of 647 portfolios. In each sample we estimate the risk premium of each factor using the
three-pass estimator, setting p = 7. The histogram reports the frequency of the risk premia estimates across samples.
All figures report the same range for the risk premia, between -20bp and 100bp per month.
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Figure II1.6: Robustness to the Time Period: Resampling Exercise
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Note: This figure reports the histograms of risk premia estimated using the three-pass estimator across subsamples
of the time period. We generate 10,000 subsamples by randomly drawing (without replacement) half of the available
time periods (using all 647 portfolios). In each sample we estimate the risk premium of each factor using the three-pass
estimator, setting p = 7. The histogram reports the frequency of the risk premia estimates across samples. All figures
report the same range for the risk premia, between -20bp and 100bp per month.
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Figure II1.7: Cumulative Factor Time Series with and without Measurement Error
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Note: This figure reports the time series of cumulative factor innovations for RmRf, SMB, HML, and IP (thin line)
together with the time series obtained from removing measurement error from the factor (thick line).
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IV  Technical Lemmas and Their Proofs

To prove the main theorems of the paper, we need the following lemmas:

Lemma 1. Under Assumptions A.1, A.2, A.j, A.5, A.6, and A.7, and suppose that p = p, we have
Hf/ - HVHF = 0,(n~ V2742 4 1),
Proof. We make use of the following decomposition:
V—HV = T (AWWRTR - AVVTETBY ) = n ' T RV (OB + VTAT0 + UT0) . (IV.6)

Note that by (V.36), we have

[V]le < K[[V]| = Op(T"). (IV.7)
Also, we have
7)< 71, < oo, - ws
Using (V.39), we have
i =0 a5, =000 o

Combining these estimates with (V.34), we obtain

W [F0sv| < koo B[P I708) = o),

MAX

The same bound holds for another term:
w1 [T = oyt
Using (V.31), (IV.8), and (IV.9), we obtain
nir! HK_I‘/}UTUHF <Kn T HT\—W/UTUH <K (n_1/2T1/2 n 1) ,

which concludes the proof.
O

Lemma 2. Under Assumptions A.1, A.2, A.4, A.5, A.6, and A.7, and suppose that p = p, if follows
that H is invertible with probability approaching 1. Moreover, ||H| = Op(1), HH‘lH = 0p(1), and
HHTH - (zv)—1H = 0,(n~Y2 4 T71/2),
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Proof. Note that

711 = 0z, [P < [P, =77 et issn < [t 7]+ 7] < 0y

it follows from (B.2) that
e <= |V V18781 A7 = 0p().
Moreover, by triangle inequalities, Assumption A.5, and Lemma 1, we have

|HSYHT — L[| <||HS HT — T 'HVVTHT|| + ||[T"'HVVTHT — L, ||

<= ([ =77V + footl)) + 77| - v | a0 || - v

:Op(n_1/2 + T_1/2).

By Weyl’s inequality, we have Apnin(HXVHT) > 1/2 with probability approaching 1.

(IV.10)

This implies

that H (2”)1/ 2 is invertible with probability approaching 1, so is H. Moreover, since Apin(HXVHT) <
Amax(Z?) ||H||?, there exists ¢ > 0 such that |H| > e with probability approaching 1, and hence

|HY| = 0,(2).
Multiplying H~! and H~T from each side of (IV.10) respectively, we obtain

sz _ H_lH_TH _ Op(n_1/2 LT,
so that multiplying (E”)f1 from the right hand side gives
| T (=) 7| = 0pn 2 T,
Finally, multiplying HTH from the left gives the desired result.
Lemma 3. Under Assumptions A.1, A.2, A.J, A.5, A.6, A.7, A.9, and p = p, we have

(@) T H (#V-7) VTHMAX = 0p(n L +T7Y).

(®) || BH|| = 0p(1+n' T2,
Proof. (a) By (IV.6) and (IV.9), we have

H (Hv _ 17) VTHMAX <Kn-l7! HWMWT FVVIBTOVT + VUTUVTH

(i) To bound the first term, we note that

7078,y <€ [7 = 27 10781+ 1€ [ 7078
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Since [|7yax = Op(T~?), it follows from (V.33) that
1087 Bllniax < K [19llyiax 187 Bllviax = Op(n'/?T71).
Combining with Assumption A.9(ii), we have
IVOTB|lyax < IVUTBllyax + T 106 Bllyax = Op(n'/2T/2).
By Lemmas 1 and 2, (V.34), and (IV.13), we obtain
01— 2021

Therefore, by (V.35), we have

\aiaN:\taral < T 2 1/2p3/2y
HVU Vv HMAX KHVU ’BHMAX [VV T llax = Op(T" + 0 5T55)

(ii) To bound the second term, by Weyl’s inequalities and Assumption A.6,
’ min < M) Aumin (zﬁ)‘ < H;m - zﬁH = 0y(1).
Therefore, there exists some 0 < & < Apin(2?), such that
Main(878) 2 m (Auin(2%) <)
which establishes that

[(n1B78) | = nALk(B78) = Op(1),

so that
7 = 707 250 [ i 793 0
Using (IV.13) we have
H‘A/VTﬁTU‘_/THMAX s K H‘/}VTHMAX HBTUVTHMAX - Op(n1/2T3/2).

(iii) Finally, we have

T W e P

On the one hand, note that

@ —mnyorovr| <k |v-nmv| o)V

MAX
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(IV.15)
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Combining with (V.36), (V.31), and Lemma 1, we have
V—HV)OTTOVT| = O,(T?+nT), IV.17
I ) Lax = On(T” 0T (Iv.17)
On the other hand, we have
|OVT

g < NUVTlp + T [[as"|g -

By Assumption A.9(i):

2
E|UVT|Z < zp:iE (ZT: vitujt> < KnT.
i=1j=1 \i=1
Also, by Assumption A.5 and Equation (V.27),
ol < p"? [0llax = Op(T™12),  llp = Op(n'*T~12),
so that T'||adT||p = Op(n'/?), hence we obtain that
[UVT[|p = Op(n'/2T/2), (IV.18)

and that

[HVITOVT|| ax < K 1 H|iax |OVT|2 = Op(nT).

Therefore, we obtain
|vorovr| =0, (1* + 7).
MAX
Combining (i), (ii), and (iii), we have
T |(rV - V) V| =0yt
( ) wax ~ O T

To prove (b), using the following decomposition,
B—BH=—T"" (ﬁH—l(HV _VWWTH+T (f/T - VTHT) H+ UVTHTH) :
it follows from Lemmas 1 and 2, (V.27), (V.28), (IV.8), (IV.18), and ||8]|y < p*/?||8]| = Op(n'/?), that

nt||8 - Ba|| <En T Bl B yax [|HY = P77 1 ax

ypax |
+ Kn = T [[Op |77 = VTET|| [H yax + Ko7 T [0V g 1 IR

:Op(nfl + n71/2T71/2)'

32



Lemma 4. Under Assumptions A.1, A.2, A.J, A.5, A.6, A.7, A.9, and p = p, we have

(@) 7 |[H BTy = Op (n7/2T712).
() w7t ||HTETE - BH)|| =0, (T T,
(¢c) nt <B— BH_1>T11HMAX =0,(n ' +T7h).

(d) n ' |HTTBT(B - BH = 0, (T2 4 773/2),

|
MAX

(e) nt|| (BT - HTBT)(5 - 5|

=O0,(n t+T7h.
MAX p(n” "+ )

Proof. For (a), by (V.33), we have

w8y < K[ |y 18Tl = Oy (n712T712).

As to (b), we have

n"LHTBT(3 — BH)
— it (H*TﬁTﬁH*l(HV _VWTH + H8T0 (fﬂ _ VTHT) H+ H*TﬁTUVTHTH) .

(i) We need the following result, which can be shown by Lemmas 1 and 3:

T H(HV— ?)VTH

MAX
<t ||V - V) (vr-vran)| 1|y - Vyvra |
MAX MAX
~ _ 112 _ ~\ -
k17! |7 -1y |+ k7| (V- 7) 77
<KT||[V - HV| +KT (HV V) || I Hhax
=0,(n" P +T71). (IV.19)
Combined with that ||375| = O,(n), we obtain
nol7 ! HH‘TBTBH‘I(HV - 17)I7THH < Kn~b|g78|| T H(HV - ?)?THMAX = 0,(n~t +T7Y).

(ii) It immediately follows from (V.34) and Lemma 2 that
|HT870||, = Op(n'/2T"/2).
Using this and Lemma 1, we have

n it |ETTETO (VI VT ) B < T E O || VT - vTET|

MAX
=0,(n"! + n’1/2T’1/2).
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(iii) By (IV.13) and Lemma 2, we have
DT H SOV H g € Kn T [H g L R [ VO8] = Oyl 27172,

(1), (ii), and (iil) yield (b).
To show (c), note that

n a3 - BH ') = —n'aT (B — BH)H !
—p 7 (aTﬁH—l(HV VWAl (f/T - VTHT) + aTUVTHT) .

(iv) By (V.33), we have
|@™ Bl = Op(n"/>T~1/2).
Combined with (IV.19), we have

w7 e v = VT <n T T T B [ g ||V - V)V

~0, <n_3/2T_1/2 + n—1/2T—3/2) .

MAX

(v) Next, note that by (V.31)

|[atOl|p =T R UTU | + leraTally < KT lep| [UTU + llerllg 137 allyax
=0, (n*?TY? 4+ p). (IV.20)

With this, we obtain

notr a0 (V- v <t @O [V - VT =0, (07 7).

MAX

(vi) By (IV.18), we have

n T T HaTOVT ||y ax <07 T allp |OVT || = Op(T7).
(iv), (v), and (vi) yield (c).
As to (d), by Assumption A.5, Lemmas 2 and 4(b), we have
1| - Yo 1| - 2 - —1p—1/2 —3/2
HTAY(B - BHye|| <Kt |[HTTET(B - BH)| = 0y(n ' T2 4 773/2),
Tt ||ETT (s - By <K B8~ BH)|  [olax = Opln + 77
For (e), we use Lemmas 2 and 3(b):
. ~ 2
13T —TRT\(A _ < -1 H _ H -1 _ -1 -1
|n 2@ =@ -Bm)||  <nt|g-BH| [1HY = 0ptnt + T,
which concludes the proof. O
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Lemma 5. Under Assumptions A.1, A.2, A.4, A.5, A.6, A.7, A.8, A.9, A.10, and p = p, we have

(a) HnH—l (HV - 17) f/T(f/f/T)—lHMAX —0,(nt +T7Y).
®) T H (HV - f/) ZTHMAX = 0,(n~t +T7Y).
(0 |zvrar@vn| =01,

Proof. To show (a), by (IV.19) and the fact that T~1VVT = IL,, we have

[t (7 = VY T @vn Y| <l i [T (H7 = 7) 77

MAX MAX
=0,(n~t+T71).
For (b) we use the following decomposition
\(rv-7)z7| <k Tt |[VOTVZT4 VVIETOZT 4 VOTOZT|
MAX MAX
(i) By Assumption A.8 and (IV.14), we have

vorsvzr| < K||[voTs| vz Tl z = 0,(T%? +n'/2T),
|vorsvz| < Bl V2T i + T olhiax 1 lhiax) = Op(T*? + n/2T)

(i) Next, since ||Z]yax = Op(T~1/2), it follows from (V.33) that
1878z lyiax < 1870 lnax 177 iax = Op(n°T 7).

By Assumption A.10(ii), we have

d p T n 2
E ||ﬁTUZT||12v[AX SKZZE (Z le“ksﬁk‘j) = Op(nT)7

=1 j=1 s=1 k=1

and hence
1BTUZT || \yax < 187U ZT Iniax + T 118Ta2T lyax = Op(n'*T'/2).
Therefore, we obtain

DS < wlloor T _ 1/273/2
A W L W i e

(iii) Finally, we note that

L e s W e
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On the one hand, using the same argument as in the proof of (IV.17) and HZH = T1/2) we obtain
V—HVTOZT| = Op(T*+nT), V.21
I ) oy = OplT 4 ) (IV.21)

On the other hand, we have

|UZT||p < IUZT||p + T |2z || -

By Assumption A.10(i):

d n T 2
ElUZT <KDY > E (Z zitujt> = 0,(nT).

i=1 j=1 t=1

Also, by Assumption A.8 and Equation (V.27),
12]lp < p'? 1Zllvax = OP(T_1/2)> allg = Op(”l/QT_l/Q)a
so that T'||azT||p = Op(n'/?), hence we obtain
|UZ7]| = Op(n/T"/?). (IV.22)
Combined with (IV.18), we have

|HVUTUZT < K || H|lyax [|[OVT \UZTHF Op(nT).

hiax I |

Therefore, we obtain

|vorozr| =0, (12 +nT).
MAX

Combining (i), (ii), and (iii), we have

H(HV V)ZTHMAX O,(n~t +T71).

For (¢), by Lemma 2, Assumptions A.5 and A.8,

= |7 ZVTHT ||y ux < || T ZVTHT 20T HT|[ypax = Op(T~Y2).

HZVTHT(‘A/‘A/T)AH lyiax + 112

MAX
O

Lemma 6. Under Assumptions A.2, A.J, A.5, A.6, A.7, A.8, A.9, 1.1, 1.2, 1.3, and p = p, we have

(@) n M egalax = Op (n7/2T742).

®) w7 |mB-Bm)|| =0, (7t T 7).

MAX
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(©) Hn—%;(ﬁ . EH)aHMAX = O0p(n T~ V/2 4 773/2),

Proof. To show (a), we note that by Assumption [.3(ii),
T T n n
E [l Uer|? < Z Z Z Z |oiir ssr] < KT, (IV.23)
s=1s'=1i=1i'=1

so that
7 i lhax = 0 T Uiy = Op (n27712).
To show (b), we start from the following decomposition:
n U8 — BH) = — n~'T! (Lmﬂfl(Hf/ VWTH 0 (f/T - VTHT) H+ L;UVTHTH) .
(i) By Assumption 1.2, n™1|[s].8]| . = Op(1). By Lemmas 1, 2, and 3, we have

nolr! HL;ﬁH—l(HV - f/)f/THH
MAX

<p~ir! HLIUBH_l(HV —V) (VT -vra) 4l HL;ﬁH—l(Hv - V)VTHTHH

A
MAX MAX

—1p—1],T -1 > = |2
<K' T 8l [ |y 1 H liax |V = HV |
KT o oo [H |y || (HV = 7) V7 R
=0,(n~ ' +T7h).
(ii) We note that
|0 < WU le + [lehaek ]|

and that by Assumption 1.3(i),
T n 2 T n n
E|JUIF=E) (Z uit> <KDY YD owal < KnT,
t=1 \i=1 t=1 i=14'=1
and that by Assumption [.3(ii) again,
) n n T T
Bldak|, < KT Y > oiw| < Kn,
i=1i'=1t=1t'=1
so that by Lemma 1 again, we obtain
n~tr 1

aU(Vi—viEn)m| <o TG0 ||V - vET| )

MAX
— Op(n—l + ’I’L_l/QT_l/2).
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(iii) By Assumption [.3(iii), we have
[TV lyax = Op (n1/2T'12) . (IV.24)
Moreover, it follows from (IV.23) that
LUzt vax < lehUer || [Bllyax = Op(n'?), (IV.25)
and hence that
|fOVT

= [ FUT |y < NAUV Tl + [E5Uero yax = Op(n>T'?).

hviax hiax

Therefore, we have
n Tt |LhUVTHTH ||y oy = O, (nY2171/2),

Combining (i), (ii), and (iii) leads to (b).
To show (c), by Assumption A.5 and Lemma 6(b), we have

n—l

a5 ] < 10

BB =BH)| | Nolhiax = Opln™ T2 47792,

which concludes the proof. O

Lemma 7. Under Assumptions A.2, A}, A.5, A.6, A.7, A.8, A.9, .1, and p = p, we have

nt H(B— ,BHfl)TaHMAX = Op(n~t 4 Y2771/2),

Proof. Note that

ntaT(B—BH ') =—n"'aT(B— BH)H
—p L7 (aTBH’l(HV VW +aTl (vT - VTHT) + aTWTHT> .

Since « is i.i.d., and « and § are independent, we have

2
P n
Ella™8IF =B [ Y e | < KE||BIE < Kn,
k=1 \j=1

and by (IV.19), we obtain

w T atgE Y - DT <R T [ g [V - DT

=0, (n~%?% 4 n~1/271),

38



Moreover, by Assumption I.1, we have

T n 2 n
E HaTUH% :EZ ( akukt> < ZZEaiEuzt < KnT,
k=1

t=1 t=1 k=1

n
E|ally <BY o} < Kn.
k=1

Therefore, we obtain
aTah ||y <llalp lallg lerlly = Op(n).
These imply that
—1p—1 7 (T Y —1p—1 - > Y
n 7 1o (V- vTET)| e T (0T + [laTad ) |7 - vET|
:Op(7f1 + n71/2T71/2).

Finally, by Assumption A.9(i), we have

n p T 2

EaTUVT|; =) E(})) E (Z thvit> < KnT.
j=1 i=1 t=1
Using the fact that
TlaTuv™||p <T [[ellp [[ullg [0l = Op(n),

we obtain
<n ' T (|[@TUVT g + T llaTaoT |[p) | H yax = Op(n /2 T71/2).

n T |aTOVTHT [y

O]

Lemma 8. Suppose that v satisfies the exponential-type tail condition. Under Assumptions A.2, A.4,
A.b, A6, AT, A8, A9, 1.1, 1./, 1.5, and p = p, we have

H?—HVH :4%@4@ﬂﬂ+rwﬁ.

MAX
Proof. By (IV.6)
U HV = 0\ TR0 (0T6V + VT + 070

We bound each term on the right-hand side. First, note that by the exponential-tail condition,
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HVHMAX = 0,((log T)*/*). Along with (IV.14), we obtain

HF/UTWH <K HVUTBH 0, (T0g T)1/* + n!/>T2(log )"/}

MAX v 1V Thaax =

Next, by Assumption [.5 and Bonferroni and Markov inequalities,
P T < TmaxP(]| 57 < Tz *maxE ||Tu|* < KTz *n?
(max (67wl > x) < TmaxP([|8Tul| > @) < Te™" max B | fTw|” < KTz™"n",
which implies that

T, — 1/4,1/2
max || BTul| = Op(1"/"n7%).
Then by (V.33) and (IV.16), we have ||fTac) ||y 4x = 1870l ax = O, (n'/2T=1/2) and hence

757310 = 797 (57 ) =0 (7).

Finally, by Cauchy-Schwartz inequality,
T 2 T
B0 B 1 = (3ol - B ) < T Bk Bl < Kofr?
s=1 s=1

therefore, by Bonferroni and Markov inequalities again, we have

P <I}1<a73( 1UTus — E(UTwy)||p > x) < T1g1<ajg<P (|UTuy — BE(UTug)||p > ) < KT32 4n?,

which implies that

max | UTu; — E(UTu)| = Op(n 279/,

Also, by Assumption 1.4 and the fact that |p, /| < 1, we obtain
T 1/2 T 1/2
T — T , 2 — 2 , < .
mae (U = mas (tZI<E<ut ) ) nmas (Z 7) < Kn
/— s=

Since by (V.27), (IV.20), and (V.49), we have

e |07 < (|07l + ol Nl sl + mape |07 — BT + mase BT g

:Op(nl/ZTg/4 +n),
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it follows that

[voro| < Kmax|[7O7a] < K |7 max [[07a]|, = 0pn! 2T 4 0T12).
MAX t<T F t<T

This concludes the proof.

V Proofs of Theorems in 1

Proof of Theorem 1.1. We take two steps to prove it.
Step 1: Since

RTR—-VIBTRBV =UTBV + VTBTU + U'U,
then by Weyl’s inequality, we have, for 1 < 5 < p,
M(RTR) = A(TTETB0)| < 070 + |T767 | + 77670

We analyze the terms on the right-hand side one by one.
(i) To begin with, write I'* = (v, 4). Note that

[T7T — || < |[UTU = al* g + 2 ||eraUllp + [JoraTat |l

By Assumption A.4(ii),

2

T T n
B|UTU - nl™g =Y ) E ) (wsuje — B(ujsug)) | < KnT?, (V.26)
s=1t=1 j=1

and by Assumption A.4(i),

n T

T T T
Ellalg =TE) > ) ity <nT 2> |ynw| < KnT ™, (V.27)
i=1 t=1t'=1 t=1t'=1

n

T T
EIUIF =YY Eul <nd ynu < KnT, (V.28)
i=1 t=1 t=1

it follows that
_ _ o 2 =112
L@ Ul < lozllp 1 lg U1l = Op(nT"2),  [[epaTady |y, < llerll2 laT Iz = Oy(n).
and hence that

|UTU — nT|| = O, (n*2T) + 0, (nT/?). (V.29)
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Next, writing pn st = Yn,st/\/Fn,ss In.it, Dy Assumption A.4(i) and the fact that |p, | <1,

HFUHF _ZZ’Y” st = ZZ')’n SS'Ynttpnst

s=1 t=1 s=1 t=1
T T T T
SKZZ ‘Vn,ss’)/n,tt’lm‘pn,st’ S KZ Z h/n,st’ S KT: (V30)
s=1t=1 s=1t=1
so we have n |T%|| = O,(nT"/2). Therefore, we obtain
|TTU|| < ||UTT — nl|| + n |0 = Op(nT?) + O, (n'/*T). (V.31)

(ii) By Assumption A.7, we have

p T n 2
E|UTBF =E> > (Z /3Z-juit> < KnT, (V.32)
j=1t=1 \i=1
P n 2
E HﬂTﬁ”% = Z ( uzﬁzk> < KnT_l, (V.33)
k=1 \:=1
it follows that
1078y < IUTBNg + llerlly 127 B]lp = Op(n'/>T/2). (V.34)
Also, by Assumption A.5,
THVVTyax < IT7VVT = 29 yax + 1E0vax + 1907 lyax < K, (V.35)
we have
V] < Vo) < K[[VIT[yax = On(TY2). (V.36)

Therefore, we have
77870 = 0787 < 0781, V] = Oy 27).
Combining (i) and (ii), we have for 1 < j < p,
n T [N(RTR) — N (VTATBV)| = Op(n™ /2 + T71/2) = 0,(1). (V.37)
(iii) Moreover, by Assumption A.6, (V.36), and Weyl’s inequality again,

T TTN(VTETBY) = TN (VISPV)| < [|n 2878 — 27| 771 |7 |7 = 0,(1)
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and combined with Assumption A.5, and the fact that ||| < K ||o]yax = Op(T~?),
) - ((20) 7 (7))
<[ wvT - || [ < (Irtv v - s+ ) |22 = o),

where we also use the fact that the non-zero eigenvalues of VTXPV are identical to the non-zero eigen-
values of (26)1/2 787 (26)1/2. Therefore, for 1 < j <p,

o 1/2 1/2
n T TIN(RTR) — A ((2/3> v (25) ) ‘ = 0,(1). (V.38)
Step 2: By Assumptions A.5 and A.6, there exists 0 < K7, Ko < oo, such that
Kl < )\min(zv))\min(zﬂ) < Amin(zvzﬂ) < )\max(zvzﬂ) < Amax(EU)Amax(Eﬁ) < K2-

Therefore the eigenvalues of (£7)1/25?(£8)1/2 are bounded away from 0 and co, we have by (V.38), for
I<j<p

K; <n'T7')(RR) < K. (V.39)
On the other hand, we can write

RRT = GVVTAT 4+ U (Ip — VI(VVT) "1V U7, (V.40)

where § = +UVT(VVT)"'. By (4.3.2a) of Theorem 4.3.1 and (4.3.14) of Corollary 4.3.12 in Horn and
Johnson (2013), for p+ 1 < j < n, we have

Ni(RRT) < Nj—yp (U7 — VI(VVT)TIV)TT) + A1 (BVVTS) < N (UTT) < \(UUT).
Moreover, by (V.31), we have
A(UUT) = ||TTT|| = Op(nT?) + Op(n'/?T),
hence for p 4+ 1 < j < n, there exists some K > 0, such that
n ' TIN(RTR) < K(n~Y2 4+ T771/2), (V.41)

Now we define, for 1 < j < mn,

F(G) =nT I TTIN(RTR) +j % ¢(n,T).
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(V.39) and (V.41) together imply that for 1 < j < p,

F(G) = flo+1) =n'T7 (\(RTR) = \ps1(RTR)) + (j —p — 1)o(n, T)

>\ ((25)1/2 v (2/3)1/2> +o,(1) > K,

for some K > 0. This establishes the first statement. Moreover, for p + 1 < j < n, we have

P(f() < flo+1)) =P (G —p—1¢(n,T) <n'T~" (Ap1(RTR) = X;(RTR))) = 0.
Therefore, p + 1 = argmini<j<p,... f(j) holds with probability approaching 1, and hence p Lyp. O

Proof of Theorem 1.2. We denote the estimators of V and 3 based on p as V and B respectively. Consider
the singular value decomposition of n=/2T—1/2R by scaling (B.10), we have

— 1/2 — — . 1/2
nTVPTVAT R =AP T and VATV RE = Guiph (V.42)

where A4 1.5 is a (p—p) x (p—p) diagonal matrix with the ith entry on the diagonal being n = 'T~1);(RTR),

Ept1p = (Epr1  &pr2 -1 &) IS T X (P—p), and Gpy1:5 = (Spg1 2 Sp2 1 --- 2 65) is n x (p—p). It is also
easy to observe that

VT = (‘/}T : T1/2§p+1:ﬁ> , B= (B\ n! gp+1 PApil p) I7§p+1:73 =0, and ' ot pﬁ =0.
By direct calculation, we have

v ~1/2,,-1/2 1 -
To—Ag=T"" PGy p+{p;+1p

First, by Lemma 3(b) and (V.27), we have

Hg;“%’b(ﬁ a BH)H = Op(1+n'PT71/2), H%Lrl:ﬁﬂ

|~ o,

which, in turn, leads to

1/27—1/2
A ] R R

Second, by Lemmas 1 and 2,

IV

Because z is ii.d., and that it is independent of &, 1,5, we also have ||Z&, 15|, = O,(p*/?). This
establishes that

H - 0,(1 +n_1/2T1/2)

HGfp+1pH = 1—|—p1/2_|_n 1/2T1/2)

44



Third, it follows from (V.40) that
RRT+UVY(VVT)"WUT = UUT 4 fVVTST,

where = 8+ UVT(VVT)"!. By (4.3.2a) and (4.3.2b) of Theorem 4.3.1 in Horn and Johnson (2013),
forp+1<j<p,

Nip(TTT) 4 At (BVVTAT) < Ajup(RRT + UVT(VVT)IVOT) < A(RRT) + A (CVT(VVT)" VD),

Since rank(BVVTAT) < p and rank(UVT(VVT)~'VUT) < p, we obtain,

Niip(OUT) < Ny (UUT) < X (RRT) < N (UUT) < M (UTT).
This implies that with probability approaching 1,
N(RRT) > K(nVT), p+1<j<p,

so that HAI;}@ = 0,(n'2 ATY?),

Combining results of the above three steps, we therefore obtain that

= op(1

~—

)

—1/2, —1/2 /A A2 1
HT n G 1A 1S T

which concludes the proof. ]

Proof of Theorem 1.3. We summarize the parameters of interest in I' = (7o : (7y)T)T, and denote

= Go 707 = (G2 B7en 8) s B, o ( iy ) - ( : ;>f: ( - > |

Because B and 7 only rely on R and G, which do not depend on 7g¢,, and o, we can recycle the estimates
derived in Lemmas 1 — 5, despite that the DGP is given by Assumption .1 instead of Assumption A.1.

We use the following decomposition:

= (o2 B D) (a2 B (8- BH) 4+ 67 +a + 1)
~ -1 ~
(O N 1 thin P 1 Lha N 1 Lha+ uh(B — BH)y
A\ H n\ B, BB n\ H BT |~ n\ HBTa+H TBT(3— BH)y
_|_

1( LL(B_BH)ﬁ >} (V 43)
—~ 1 B _ ~ ~ _ ~ B . .
n\ (B-BH )a+u)+H (B~ BH)v+ (BT - HTAT)(B8— BH)(y + 1)
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By Lemma 6(b), we have

n—l

J(B - 5H—1)H = Op(n~' +T7).

MAX

Therefore, we have

T T3 T TBH1
l lebn iné _ l lnln Lnﬁ + Op(n—l + T_l). (V44)
n\ BT, BTA n\ H T8, HTATBH!

Using this, and by Lemmas 2, 4, 5, 6, and 7, we have

~ ’70 O
F_ e _ _
< m ) ( TZVT(EY) "y + o )
1 0 1 [ thin i . - 1 [ wa ~1/2 | p-1/2
BURTACAW Al B P N B

Moreover, by Cramér-Wold theorem and Lyapunov’s central limit theorem, we can obtain

(E) ()

where we use Hn_lﬁTLn - 'BOHMAX = o(1) and Hn_lﬁTﬂ - EﬁHMAX = o(1). Also, Assumptions A.6 and
1.2 ensure that (1 — B5(2%)715y) and (X7 — o)) are invertible. Therefore, by the Delta method, we
have

W G0 S (0, (1L 52 ) (07,

Similarly, we have

-1
/ 1 AN 1{ Ja r
n12(0 77){”(5”71 5T5>+0p(1)} Xn BTa — N (0,7),

where

-1

T = (o) (37— ) "

By the same asymptotic independence argument as in the proof of Theorem 3 in Bai (2003), we establish

the desired result:

(T7'® +0'7) 2 (5, — 1) 55 N(0,1).
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Proof of Theorem 1.J. By Assumptions A.5, A.6, and 1.2, Lemma 4, (V.33), and (V.45), we have

nHIE =0+ By + Op(n 2+ T2,
nTTT =TSy 498 + (0%)7 + 9T Bovo + 50 + Op(n™ 2+ T71/2),

it then follows that
n VM, 7 = n  F TE — (n )2 = AT(SP — BoBl)y + (0%)2 + 0,(1).
n n Y 0 y p
On the other hand, by Assumption A.5, Lemma 3, (V.27), we have

not B, — || = (7B - M (0 + B+ B0+ )|

MAX MAX

<o s -

Lo By + 8+ allp = Op(n” V2 + T71/2).
Similarly, we have
T BT, = (27 = BoBT ) 7 + 0p(1),
nBTM,, B = £° — BBl + 0p(1),
therefore, we obtain
(016, )T (0 B, B) T (0 BT, 7) =7 (27— BoB ) v + op(1),

which establishes f{% L, R2.
By Lemma 2, (IV.11), (B.6) and the fact that ||n|y\;ax < K, we have

TV - sy |
[ravvmr =]

< H(ﬁ_ 77H_1)(7/7\_ 77H_1)THMAX + H(ﬁ_ 77H_l)H_T77THMAX + HnH_l(ﬁ_ 77H_1)THMAX
+ Hn(HilHiT - EU)HTHMAX
:Op(7fl/2 —i—T*l/Q).

Also, by Assumptions A.5, A.8, and A.11, we have
T7I\GGT =T gV + Z)(gV + Z)T 25 pxvnyT + %7,
hence it follows that f{f] SN Rg. O

Proof of Theorem 1.5. For any 1 <t < T, we have

G —nue = (M—nH )@ — Hoy) + (7 —nH " )Ho, + nH ' (0, — HYy) — 0o (V.46)
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By (IV.6), we have

O — Hoy =n ' TIA"NV — HV) (U7 B + UTyy) +n T A~ (HVU Bo, + HVU Ty
+n MTTIATIV VBTG, (V.47)

By Assumption 1.6, we have ||8Tw|| = Op(n'/?), so that using (V.33),
187 llp < 18Tuellp + 187 allp = Op(n'/?). (V.48)

By Assumption A.4(i), Assumptions 1.4 and 1.5, using the fact that |p, | < 1, we have

T n 2
E ||UTUt||12r =E Z (n’Yn,st + Z (UpstUrt — E(Uksukt))>

s=1 k=1

T T
SKn2Z%2,”st + KnT < nzz IVnst| + KnT = Kn? + KnT,

s=1 s=1

n n
Ellullf <> Eup < |ow| < K. (V.49)
k=1 k=1

Then from (V.27) and (IV.20), it follows that
107 < |07l + 10wl + ller g e sl = Opln + n /2772,
The above estimates, along with (V.34), Lemma 1, and ||o¢|| = Op(1), lead to

| RN - vy (OB O

<ot R |V =m0l el + [Tl fy) = Oyt + 7).

MAX

Moreover, it follows from (V.27), (IV.13), and (IV.18) that

|n T A (HV O o+ HV O |
MAX

<Kkn~'77 |37 VOB ygac el + VO sl + Il )

vax 121
=0,(n 27712 771,

We thereby focus on the remaining term, which by Lemma 1, (V.36) and (V.48), satisfies

R HK‘le/VTﬁTatH S KT HK*H HVHF V7|l 1187 | gax = Op(n=2).

MA MAX

Therefore, we have

1B = Hotllpax = Op(n ™2 +T71). (V.50)
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Then by (V.46), (V.47), and (B.5), we have

Hﬁt — v — (T_lszHTHUt +n T H ATV VT BT, — n@) H = op(n~ 24 T71/?),

MAX

Next, we note that by Assumption A.11 and Lemma 2,

T2 ( T~ 'vec (ZVTHTHuy) > _ /2 < (v] HTH @ ) vec(ZVT) >
nv no

iﬂ\/ <0 ( (vtT (Ev)*l ®]Id> 1114 ((ZU)*l v ® ]Id) (vtT (Ev)*l ® Hd) TionT )) |

nlzenT
By (B.2) and Assumptions A.6 and 1.6, we have
~ 15e -1 —1
n 2Ty H ATV VT BT, :nl/zn(ﬁTﬁ)_lﬁTut LN <0,77 (Eﬁ> Q (ZB) nT) )

The desired result follows from the same asymptotic independence argument as in Bai (2003). O

Proof of Theorem 1.6. To prove the consistency of &), without loss of generality, we focus on the case of
II;2, and show that

(3" @) Thaii” 25 (77 (29) 7 @ L) o' (V.51)

The proof for the other two terms in ® is similar and hence is omitted.
Note that by (IV.19), Lemma 2, Lemma 3(a), and Assumption A.5, we have

HT—lH—lf/f/TH—T _ 5

MAX
o A U A A e e (VAR UV e A AR
=0,(n~ ! + T-1/2).
By (B.6), Lemma 2, and the proof of Theorem 1, we have
IH = nllyax = Op(n™ +T7Y2), [HTF =[x = Op(n ™2+ T7Y2). (V.52)
Therefore, to prove (V.51), we only need to show that
My = (H ' @I H T 25 Iy, (V.53)

with which, and by the continuous mapping theorem, we have

~ \ —1 ~ —~ —1 ~
(’iT (z) ®]Id> My57T = ((HW)T (H*lsz*T) ® ]Id> (H™' @ 1) H T (FH)T

L> (’YT (Zv)il X Hd> H1277T.
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Writing V= H_II/}, we have

T
ng (—)djif = = vec(eje] )T (H ® ]Id)ngH Tey = vec(ejel H™ )TH12H*Tei/ =71 Z Zjt0it Qs Vit s,
t=1 s=1

q+1
In fact, to show (V.53), by Lemma 2 we only need to prove for any fixed 1 < 4,4/ < p, and

1<j,5" <d,

where Qg = (1 — |S*t|> Lis—t|<q-

H12 ,(i—1)d+j4,3 — ! Z Z]t'vthtsvz s —> 0, (V54)
t=1 s=1

since by the identical proof of Theorem 2 in Newey and West (1987), we have

T T
r Z Z 2jtVitQtsvirs — g (i-1)d4j0 — 0.
t=1 s=1

Note that

the left-hand side of (V.54)

T T
:T_l Z Z {(gjt - zjt)(iit - Uit)Qts(gi’s - Ui/s) + (/Z\]t — th)(gz‘t — Uit)QtsUi’S
t=1 s=1
+ (Zjt — 2jt)vitQusVirs + 2t (Vi — i1) QusVirs + 251 Vit Qrs (Virs — ’Uz"s)}-
We analyze these terms one by one. Since we have
Z—Z=nV—0V=0H '—§)HV —{—nH )V -HV)—nH (V- HV), (V.55)
it follows from (B.6), (IV.7), and Lemmas 1 and 2 that
"z
F
KT (|nH = Tl VL Vg + 7= 0 [7 = FV |+ o) |7 = 7] )
=0, (V2772 7Y,

Moreover, by Lemma 8, Assumption 1.5, (V.55), and (V.52), we have

|z-2]
MAX
< nH ™ = il MV [l + 17 = 0 ax |V — 57|

=0, ((log T)Y/oT~Y/2 4 n=1/21/4),

+ |nE Y| Hf/_HvH

MAX MAX
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By Cauchy-Schwartz inequality, Lemmas 1, 8, and using the fact that [Qss]| < 1;,_4<4 and H@L;HF =
|9l e [|p < KTY? [[0]l\ax = Op(1), we have

T
T ! Z Z Zjt — th Uzt - Uit)Qts(ai’s - Ui’s)

T

t=1 s=1

<R (7l ) (71, 00 721, + 51
+n

=0, (a(T" + n )T/~ 77 )

Similarly, because of H‘N/HF = 0,(T"/?) implied by (IV.8), || Z|[yax = Op((log T)'/®) by Assumption 1.5
and Lemma 2, and by Assumptions A.5 and A.8, we have

T T
1
T 5 5 Z]t - Z]t Uzt - Uzt)QtsUz s

t=1 s=1

<KqT [V |max (HV - VHF + HEL},HF) (H2 - ZHF + HZL}HF) =0, (q(logT)l/a(n_1 + T_l)) ,

T T

T3S G — 2j)viQustis
t=1 s=1

< W7, 1221, ) 0, et (7))

T T
T Z Z 2jt (Uit — vit)QtsVirs

t=1 s=1

<ot Vs [, 7 -, + 1) =0 ot o2

T T
T3S 230 Qs (Tyrs — virs)

t=1 s=1
<Kt | Z g [P, (|77 = V], + loekl) = Oy (atog 7y (72 77172)).

All the above terms converge to 0, as T,n — oo, with ¢7"~/* + gn=/* — 0 and n=3T — 0, which
establishes (V.54).

Finally, to show the consistency of T, we first note

e (5 3 1 (5 48 = 5 -

HTB.8TH — TH
g S + || BB H — 5o}

MAX MAX

By Lemmas 2, 4(b), (e), and Assumption A.6,

|rmsna =2
o L S WOCY Loty WS
<[}t (1B = BT) (Bl = 8+ 0t (HTFT = 57) B =878 = )| +o0p(1)
=0,(1). (V.56)
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HHTB\OBSH - BoﬁgH

MAX
<[ (7o — Bo) (Bsr — 53) + Bo (ByH — 88) + (70— 5o) 83| ..
=op(1),
where we also use Lemma 6(b):
[ N 77 e T et}

Next, by Lemma 3(b) and (V.52), we have

—~ —~ |12
0'0‘2 o (o_a)2 :n—l Hf N Ln?O . B?HF - (O_a)Z

~ 2
=01 om0 = Fo) + By = 7 + B+ +n" fallE - (0°)?

~ 2
- 2 ~ 2 - 2 11112 12 -
<™ eallf 0 = Follp + w181 o1 +n " allp +n = | BH - 89|
-1||/% —1x 2 -1 —1x 2
+n H(BH —B)(HF - ’Y)HF +n7H[BHT = )||p + op(1).
Therefore, by (B.6) and the continuous mapping theorem,
— SR |
o AHH T (SP — BoBy)  HTHT T,
which concludes the proof. O

Proof of Theorem 1.7. For \/I\/lt, we can follow exactly the same proof as that of Theorem 1.6, since,
similar to (V.52) for 7, we have the same estimate for v; by (V.50).

As to \/I\'gt, similarly, we only need to show
HTOH — QH = 0,(1).
H Max P (1)

Then by the continuous mapping theorem, along with (V.52) and (V.56), we have
~ R ~ -1 ~ -1,
Uy — 7H (HTEfBH) HTOH (HT25H> HTT 25 Wy,
Note that by Fan et al. (2013), we have

Hi“ — 5| = 0, (snwk ™). (V.57)

Then by (V.57) and Lemmas 3(b), 4(b), and using the fact that ||8]|p = Op(n'/?) and ||2%|| < [|Z¥, =

Op(sn), writing B = B\H, we have
@-pree-sG-) . <t |58l - =
n F

MAX N

=0, (snwilfh(n_l + T_l)) ,
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Su || = =0, (snw% h> ,

e -G -, < |G @ - < B2 7@ - )
E o] B ] = 0 (ot £ 7).
%HBTEU(E_B) ‘MAX nHBTﬁ BHMAXHZUHZOP(SH(” +T7h).
Therefore,
ool = ;[rsein ],
S%H<5—5>T@“—2“><5—/3>+<5—5>Tz“<5—/3HMAX nHBT (£ —xp)|
to @ B -+ G- pTE -+ B - s+ B

=0, (sn (w%_h +nt 4 T71>> = o0p(1),

which concludes the proof.
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