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Abstract

This appendix contains additional theoretical results, Monte Carlo simulations, additional empir-

ical analysis, and supplementary mathematical proofs.

I Additional Theoretical Results

In what follows, we first provide a consistent estimator of the number of factors, p, and show the

robustness of the risk premia estimator with respect to the number of factors used. We then develop

the limiting distribution of the risk premia estimator and the zero-beta rate estimator in a more general

setting that allows for pricing errors. Next, we develop the limiting distribution of the estimated factors.

Finally we conclude this section by showing the consistency of the asymptotic variances involved.

I.1 Determining the Number of Factors

We propose to determine the number of factors using the following criterion:

p̂ = arg min
1≤j≤pmax

(
n−1T−1λj(R̄

ᵀR̄) + j × φ(n, T )
)
− 1,

where pmax is some upper bound of p and φ(n, T ) is some penalty function.

While our estimator makes use of a penalty function, in the same spirit as Bai and Ng (2002) do, our

criterion takes on a simpler form. The objective function in Bai and Ng (2002) barring from penalty is

equal to arg mink
1
nT

∑n
j=k+1 λj(R̄

ᵀR̄). It is rather challenging to analyze and control the growth rate of

the sum of many eigenvalues required by this objective function, at least under only moment conditions

we assume. Random matrix theory is likely unavoidable. In contrast, the plot of the objective function

in our case against j is a penalized version of the scree plot. We show in the next theorem that our

proposed estimator is consistent for the true number of factors p under appropriate conditions on the
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penalty function. On the one hand, the penalty function increases as j increases, so that it penalizes

the choice of smaller eigenvalues. On the other hand, the penalty function is sufficiently small that it is

dominated by the large eigenvalues. These two aspects together dictate the selected number of factors.

Our choice of pmax is an economically reasonable upper bound for the number of factors, imposed only

to improve the finite sample performance, which is not needed in the asymptotic analysis.

Theorem I.1. Suppose Assumptions A.1, A.2, A.4 – A.7 hold, and suppose that φ(n, T ) → 0 as n,

T → ∞, then it follows that P(p̂ ≥ p) → 1. If, in addition, φ(n, T )/(n−1/2 + T−1/2) → ∞, then it

follows that p̂
p−→ p.

Other estimators for the number of factors could be applied instead, including but not limited to

those proposed by Onatski (2010) and Ahn and Horenstein (2013). However, to prove the consistency of

these alternative estimators needs random matrix theory, which in turn requires stronger assumptions

than ours.1 Notably, the criterion of Ahn and Horenstein (2013) does not rely on any tuning parameter,

which makes it appealing in certain scenarios. When applied empirically, their criterion often selects

one factor, because the first eigenvalue is a bit stronger than the next few ones. However, it is unlikely

that a single principal component summarizes all the risk factors in the financial markets. As we show

in our simulations, selecting insufficient number of factors harms the inference on risk premia because

of the omitted variable bias, whereas the risk premia estimates are robust to the inclusion of additional

principal components. Fan et al. (2013) also find in their simulations that selecting more factors than

necessary does not affect the performance of their factor-based covariance matrix estimates.

This robustness is a useful property, because in a finite sample, it is likely that p̂ 6= p, although p̂ is

a consistent estimator of p. The next theorem formally establishes the robustness of our estimates with

respect to a few extra principal components. As long as our selected number of factors, denoted by p̆,

is greater than or equal to p, yet is not too large relative to n and T , then the risk premia estimator

based on p̆, denoted by γ̆g, remains consistent.

Theorem I.2. Suppose Assumptions A.2, A.4 – A.11 hold. In addition, assume that zt is i.i.d. and

independent of ut. If p̆ ≥ p, p̆ = o(n∧ T ), and λp+p̆(Ū Ū
ᵀ) ≥ K(n∨ T ) for some K > 0 with probability

approaching 1,2 then γ̆g is consistent with respect to ηγ, and it holds that

γ̆g − γ̂g = op(1).

I.2 Allowing for Pricing Errors and Zero-beta Rate

Now we extend the main results to a more general setting, in which the zero-beta rate is unrestricted,

and in which mispricing is allowed for in the model.

1We only need moment conditions to prove Theorem I.1. Nonetheless, our rate condition on the penalty function
φ(n, T ) is not sharp, which could be improved to φ(n, T )/(n−1 + T−1)→∞ using results of random matrix theory.

2 The assumptions on the lower bound of the eigenvalue of Ū Ūᵀ can be replaced by more primitive assumptions on ut.

For instance, if ut is
i.i.d.∼ (0, σ2

u) and n/T → c ∈ (0,∞), then a direct result of the random matrix theory leads to such a
bound, see, e.g., Theorem 5.11 of Bai and Silverstein (2009). Ahn and Horenstein (2013) show that a similar bound holds
for somewhat more general ut with time-series and cross-sectional dependence.
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Assumption I.1. Suppose the cross-section of asset returns rt follows

rt = α+ ιnγ0 + βγ + βvt + ut, (I.1)

where the cross-sectional pricing error α is i.i.d., independent of β, u and v, with mean 0, standard

deviation σα > 0, and a finite fourth moment.

There is a large body of literature on testing the APT by exploring the deviation of α from 0,

including Connor and Korajczyk (1988), Gibbons et al. (1989), MacKinlay and Richardson (1991), and

more recently, Pesaran and Yamagata (2012) and Fan et al. (2015). This is, however, not the focus

of this paper. Empirically, the pricing errors may exist for many reasons such as limits to arbitrage,

transaction costs, market inefficiency, and so on, so that it is important to allow for a misspecified

linear factor model. Gospodinov et al. (2014) and Kan et al. (2013) also consider this type of model

misspecification in their two-pass cross-sectional regression setting.

Next, we assume

Assumption I.2. There exists a p × 1 vector β0, such that
∥∥n−1βᵀιn − β0

∥∥
MAX

= op(1). Moreover,

the matrix (
1 βᵀ0
β0 Σβ

)
is of full rank.

This rank condition ensures that in the limit the factor loadings and ιn are not perfectly correlated

in the cross section, and in particular, that the zero-beta rate γ0 is identifiable.

Finally, we need the following assumption, which imposes restrictions on the time series dependence

of ut. Assumption I.3 is similar to part of Assumption C in Bai (2003). Stationarity of ut is not required.

Eigenvalues of the residual covariance matrices E(utu
ᵀ
t ) are not necessarily bounded.

Assumption I.3. Define, for any i, i′ ≤ n, t, t′ ≤ T ,

E(uitui′t) = σii′,t, and E(uitui′t′) = σii′,tt′ .

The following moment conditions hold, for all n and T , and i, j ≤ p, l ≤ d,

(i) max
1≤t≤T

|σii′,t| ≤ |σii′ |, for some σii′ . In addition, n−1
n∑
i=1

n∑
i′=1

|σii′ | ≤ K.

(ii) n−1T−1
n∑
i=1

n∑
i′=1

T∑
t=1

T∑
t′=1

|σii′,tt′ | ≤ K.

(iii) E

(
T∑
t=1

n∑
k=1

vjtukt

)2

≤ KnT.

In this scenario, we employ the alternative estimator (9), which also yields an estimate of the zero-

beta rate. The next theorem establishes their limiting distributions.
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Theorem I.3. Under Assumptions A.2, A.4 – A.11, I.1 – I.3, and suppose p̂
p−→ p, then as n, T →∞,

we have

n1/2 (γ̂0 − γ0)
L−→ N

(
0,
(

1− βᵀ0(Σβ)−1β0

)−1
(σα)2

)
,(

T−1Φ + n−1Υ
)−1/2

(γ̃g − ηγ)
L−→ N (0, Id) ,

where the asymptotic covariance matrices Φ is given by (11), and Υ is defined by

Υ =(σα)2η
(

Σβ − β0β
ᵀ
0

)−1
ηᵀ.

Unlike the CLT in Theorem 1, Theorem I.3 does not impose any restrictions on the relative rates of

n and T . Note that this result assumes that the factor loading β is uncorrelated with the pricing error

α, which means that the mispricing is not related to risk exposures. In fact, even if they were correlated,

our estimator would instead converge to the “pseudo-true” parameter η
(
γ + plimn→∞(βᵀMιnβ)−1βᵀα

)
,

which is difficult to interpret, see, e.g., Kan et al. (2013).

To measure the goodness-of-fit in the cross-section of expected returns, we define the usual (popu-

lation) cross-sectional R2 for the latent factors in (I.1):

R2
v =

γᵀ(Σβ − β0β
ᵀ
0)γ

(σα)2 + γᵀ(Σβ − β0β
ᵀ
0)γ

,

which can be estimated in finite sample by

R̂2
v =

r̄ᵀMιn β̂(β̂ᵀMιn β̂)−1β̂ᵀMιn r̄

r̄ᵀMιn r̄
.

We can consistently estimate the cross-sectional R2 for the latent factors as well as the time-series R2

for each observable factor g, introduced in Section 4.4 of the main text.

Theorem I.4. Under Assumptions A.2, A.4 – A.11, I.1 – I.3, and suppose p̂
p−→ p, then as n, T →∞,

we have

R̂2
v

p−→ R2
v and R̂2

g
p−→ R2

g.

I.3 Limiting Distribution of the Denoised Factors

As discussed above, our framework allows for measurement error in the observable factor proxies g.

Theorem I.4 above indicates that we can separate the error from the factors using the extracted PCs.

Moreover, we can conduct inference on ĝt, provided additional assumptions:

Assumption I.4. The following conditions hold:

(i)
T∑
t′=1

|γn,tt′ | ≤ K, for all t.
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(ii)

n∑
i′=1

|σii′ | ≤ K, for all i.

This assumption is identical to Assumption E in Bai (2003). It restricts the eigenvalues of E(utu
ᵀ
t )

and E(uᵀtut) to be bounded as the dimension increases. We need this to bound the estimation error of

factors uniformly over t, which in turn leads to the consistency of the asymptotic variance estimation

to be discussed later.

For the same reason, we also need Assumption I.5, which Fan et al. (2011) and Fan et al. (2015)

also adopt:

Assumption I.5. For all t′, t ≤ T , we have

E (uᵀtut′ − Euᵀtut′)
4 ≤ Kn2, E ‖βᵀut‖4 ≤ Kn2.

The next assumption we need is identical to Assumption F3 in Bai (2003), which is used to describe

the asymptotic distribution of the estimated factors at each point in time.

Assumption I.6. For each t, as n→∞,

n−1/2βᵀut
L−→ N (0,Ωt) ,

where, writing β = (β1 : β2 : . . . : βn)ᵀ,

Ωt = lim
n→∞

1

n

n∑
i=1

n∑
i′=1

βiβ
ᵀ
i′E(uitui′t). (I.2)

Theorem I.5. Under Assumptions A.2, and A.4 – A.11, I.1 – I.6, and suppose that p̂
p−→ p, then as

n, T →∞, we have

Ψ
−1/2
t (ĝt − ηvt)

L−→N (0, Id),

where Ψt = T−1Ψ1t + n−1Ψ2t,

Ψ1t =
{(

vᵀt (Σv)−1 ⊗ Id
)

Π11

(
(Σv)−1 vt ⊗ Id

)
−
(
vᵀt (Σv)−1 ⊗ Id

)
Π12η

ᵀ

− ηΠᵀ
12

(
(Σv)−1 vt ⊗ Id

)
+ ηΠ22η

ᵀ
}
, and

Ψ2t =η
(

Σβ
)−1

Ωt

(
Σβ
)−1

ηᵀ.

In Bai (2003), the latent factors can be estimated at the n−1/2-rate, provided that n1/2T−1 → 0. In

our setting, the estimation error consists of the errors in estimating η̂ and v̂t. Because η̂ is estimated

up to a T−1/2-rate error which dominates T−1 terms, the convergence rate of ĝt is n−1/2 +T−1/2, which

does not require any relative rate restrictions between n and T .
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I.4 Consistency of the Asymptotic Covariance Estimators

In this section, we propose asymptotic variance estimators used in this paper, as well as establish their

consistency. We only consider the more general setup in Theorem I.3. The case for Theorem 1 of the

main text is simpler.

We construct the following estimators of the asymptotic variances, simply by using the sample

analogues of their theoretical counterparts:

Φ̂ =
(
γ̃ᵀ(Σ̂v)−1 ⊗ Id

)
Π̂11

(
(Σ̂v)−1γ̃ ⊗ Id

)
+
(
γ̃ᵀ(Σ̂v)−1 ⊗ Id

)
Π̂12η̂

ᵀ + η̂Π̂21

(
(Σ̂v)−1γ̃ ⊗ Id

)
+ η̂Π̂22η̂

ᵀ,

Υ̂ =σ̂α
2
η̂
(

Σ̂β − β̂0β̂
ᵀ
0

)−1
η̂ᵀ,

where Π̂11, Π̂12, Π̂22, Ẑ, Σ̂
β, and Σ̂v, are defined in Section 4.5, and

β̂0 = n−1β̂ᵀιn, σ̂α
2

= n−1
∥∥∥r̄ − (ιn : β̂)Γ̃

∥∥∥2

F
, γ̃ =

(
β̂ᵀMιn β̂

)−1
β̂ᵀMιn r̄, Γ̃ = (γ̂0 : γ̃ᵀ)ᵀ.

Theorem I.6. The sequence of {vt, zt}t≥1 satisfies the exponential-type tail condition. Under Assump-

tions A.2, and A.4 – A.11, I.1 – I.5, and suppose that p̂
p−→ p, then as n, T → ∞, n−3T → 0,

q(T−1/4 + n−1/4)→ 0, Φ̂
p−→ Φ and Υ̂

p−→ Υ.

We say a sequence of centered multivariate random variables {yt}t≥1 satisfy the exponential-type tail

condition, if there exist some constants a and b, such that P (|yit| > y) ≤ exp{−(y/b)a}, for all i and t.

This exponential-tail assumption is perhaps overly restrictive for financial returns, which feature heavy-

tailness. The recent literature (e.g., Fan et al. (2017) and Fan et al. (2019)) replaces this assumption

by moment conditions, and correspondingly, constructs estimators using Huber’s loss. It is therefore

possible to relax the exponential-tail condition using their techniques, though we do not explore this in

this paper.

To estimate the asymptotic covariance matrices Ψ1t and Ψ2t in Theorem I.5, we can similarly replace

vt, Σv, Π11, Π12, Π22, η, Σβ by their sample analogues, v̂t, Σ̂v, Π̂11, Π̂12, Π̂22, η̂, Σ̂β, in the Ψ̂1t and Ψ̂2t

constructions. With respect to Ωt, we need an additional assumption:

Assumption I.7. The innovation uit is stationary and strongly mixing, and its covariance matrix Σu

is sparse, i.e., there exists some h ∈ [0, 1/2), with ωT = (log n)1/2T−1/2 + n−1/2, such that

sn = max
1≤i≤n

n∑
i′=1

|Σu
ii′ |h, where sn = op

((
ω1−h
T + n−1 + T−1

)−1
)
.

Given this assumption, equation (I.2) and its estimator can be rewritten as

Ω = lim
n→∞

1

n
βᵀΣuβ, and Ω̂t = Ω̂ =

1

n
β̂ᵀΣ̂uβ̂, (I.3)
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where, for 1 ≤ i, i′ ≤ n,

Σ̂u
ii′ =

{
Σ̃u
ii, i = i′

sii′(Σ
u
ii′), i 6= i′

, Σ̃u =
1

T

T∑
t=1

ûtû
ᵀ
t ,

and sii′(z) : R→ R is a general thresholding function with an entry dependent threshold τii′ such that

(i) sii′(z) = 0 if |z| < τii′ ; (ii) |sii′(z) − z| ≤ τii′ ; and (iii) |sii′(z) − z| ≤ aτ2
ii′ , if |z| > bτii′ , with some

a > 0 and b > 1. τii′ can be chosen as:

τii′ = c(Σ̂iiΣ̂i′i′)
1/2ωT , for some constant c > 0.

Bai and Liao (2013) adopt a similar estimator of Σu for efficient estimation of factor models.

With their components constructed, our estimators for Ψ1t and Ψ2t are defined as:

Ψ̂1t =T−1
{(

v̂ᵀt (Σ̂v)−1 ⊗ Id
)

Π̂11

(
(Σ̂v)−1v̂t ⊗ Id

)
−
(
v̂ᵀt (Σ̂v)−1 ⊗ Id

)
Π̂12η̂

ᵀ − η̂Π̂ᵀ
12

(
(Σ̂v)−1v̂t ⊗ Id

)
+ η̂Π̂22η̂

ᵀ
}
,

Ψ̂2t =n−1η̂
(

Σ̂β
)−1

Ω̂t

(
Σ̂β
)−1

η̂ᵀ,

where Ω̂t is given by (I.3). The next theorem establishes the desired consistency of Ψ̂1t and Ψ̂2t:

Theorem I.7. The sequence of {ut, vt, zt}t≥1 satisfies the exponential-type tail condition. Under As-

sumptions A.2, A.3 – A.11, and I.1 – I.7, we have

Ψ̂1t −Ψ1t
p−→ 0, and Ψ̂2t −Ψ2t

p−→ 0.

II Simulations

In this section, we study the finite sample performance of our inference procedure using Monte Carlo

simulations. We consider a five-factor data-generating process following (I.1), where the latent factors

are calibrated to match the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, CMA, see

Fama and French (2015)) from our empirical study. Suppose that we do not observe all five factors,

but instead some noisy version of the three Fama-French factors (RmRf, SMB, HML, see Fama and

French (1993)), plus a potentially spurious macro factor calibrated to industrial production growth (IP)

in our empirical study. Our simulations, therefore, include both the issue of omitted factors and that

of a spurious factor. We calibrate the parameters γ0, γ, η, Σv, Σz, Σu, (σα)2, β0, and Σβ to exactly

match their counterparts in the data (in our estimation of the Fama-French five-factor model). We then

generate the realizations of vt, zt, ut, α, and β from a multivariate normal using the calibrated means

and covariances.

We report in Tables II.1, II.2, and II.3 the bias and the root-mean-square error of the estimates using

standard two-pass regressions and our three-pass approach. We choose different numbers of factors to

estimate the model, p̆ = 4, 5, and 6, whereas the true value is 5. The five rows in each panel provide
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the results for the zero-beta rate, RmRf, SMB, HML, and IP, respectively. Throughout these tables,

we find that the three-pass estimators with p̆ = 5 or 6 outperform the other estimators, in particular

when n and T are large. By comparison, the two-pass estimates have substantial biases. Moreover, the

biases for the market factor premium are substantial and negative even when n and T are large. The

three-pass estimator with p̆ = 4 has an obvious bias, compared to the cases with p̆ = 5 and 6, because

an omitted-factor problem still affects it (4 factors do not span the entire factor space).

We then plot in Figure II.1 the histograms of the standardized risk premia estimates using the

estimated asymptotic standard errors for the two-pass estimator (right column) and for the three-pass

method with p̆ = 5 (left column), respectively. The histograms on the right deviate substantially from

the standard normal distribution, whereas those on the left match the normal distribution very well,

which verifies our central limit results despite a small sample size T = 240 and a moderate dimension

n = 200.3 There exist some small higher order biases for γ0, which would disappear with larger n and

T in simulations not included here.

Next, we report in Table II.4 the estimated number of factors. We choose φ(n, T ) = K(log n +

log T )(n−1/2 + T−1/2), where K = 0.5× λ̂, λ̂ is the median of the first pmax eigenvalues of n−1T−1R̄ᵀR̄.

The median eigenvalue helps adjust the magnitude of the penalty function for better finite sample

accuracy. Although the estimator is consistent, it cannot give the true number of factors without error,

in particular when n or T is small, potentially due to the ad-hoc choice of tuning parameters.4 In the

empirical study, we apply this estimator of p and select slightly more factors to ensure the robustness

of the estimates, as suggested by Theorem I.2.

Then we evaluate the size and power properties of the proposed test in Section 4.4. To check the size

control, we create a purely noisy factor with η = 0 and variance calibrated to be the average variance of

the four factors we consider. The top panel of Table II.5 reports the rejection probabilities of the test

statistic under the null. In spite of slight over-rejection, the size control is acceptable given the moderate

sizes of n and T . To evaluate the power, we report on the lower panel the average rejection probabilities

when the null is false (η 6= 0). We test for factors with a variety of the signal-to-noise strength measured

by R2
g. These factors only load on the market factor, and share the same total variance calibrated to

be the average variance as above, with R2
gs being 2.5%, 5%, and 10%, respectively. As expected, we

observe the rejection probability elevates to 100% as R2
g increases.

Finally, we compare the performance of these estimators with the mimicking portfolio estimators

under more restrictive dynamics in which γ0 is known and α = 0. So we estimate the model using (8)

and excess returns. We consider two sets of mimicking portfolios: one set (MP3) uses three portfolios

as spanning assets to project factors, where portfolio weights are exactly proportional to the market,

SMB, and HML beta. Using three base assets clearly leads to an omitted variable problem because

these three assets cannot span the space of five factors. The second set of mimicking portfolios (MP)

uses all assets as basis assets for projection. There is no omitted variable bias in this case as we prove

3Fan et al. (2017) show that the empirical eigenvectors can be estimated with very little finite sample bias. This
might explain why the asymptotic approximation for risk premia is rather accurate despite the finite sample errors that
accumulate from each step of our procedure.

4The eigenvalue ratio-based test by Ahn and Horenstein (2013) does not work well in our simulation setting because
the first eigenvalue dominates the rest by a wide margin, so that their test often suggests 1 factor.
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Table II.1: Simulation Results for n = 50

Two-Pass Estimator Three-Pass Estimators
p̆ = 4 p̆ = 5 p̆ = 6

T Param True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

γ0 0.546 0.252 0.339 0.028 0.210 0.019 0.206 0.042 0.206
RmRf 0.372 -0.230 0.514 0.020 0.425 0.019 0.425 -0.016 0.425

120 SMB 0.229 -0.037 0.305 -0.024 0.275 -0.020 0.276 -0.012 0.276
HML 0.209 0.010 0.349 -0.111 0.227 -0.088 0.221 -0.071 0.217
IP -0.003 -0.015 0.116 0.000 0.009 0.000 0.010 0.000 0.010

γ0 0.546 0.265 0.324 0.085 0.191 0.060 0.177 0.048 0.173
RmRf 0.372 -0.214 0.396 -0.033 0.319 -0.029 0.318 -0.020 0.317

240 SMB 0.229 -0.129 0.250 -0.052 0.199 -0.037 0.196 -0.035 0.196
HML 0.209 0.082 0.278 -0.074 0.168 -0.049 0.159 -0.043 0.158
IP -0.003 -0.024 0.136 0.001 0.006 0.001 0.006 0.001 0.007

γ0 0.546 0.348 0.380 0.051 0.173 0.008 0.146 -0.001 0.145
RmRf 0.372 -0.333 0.415 -0.047 0.252 -0.006 0.237 0.003 0.237

480 SMB 0.229 -0.165 0.231 -0.067 0.158 -0.038 0.146 -0.036 0.146
HML 0.209 0.211 0.296 -0.008 0.115 -0.022 0.115 -0.020 0.116
IP -0.003 -0.040 0.159 0.001 0.004 0.000 0.005 0.000 0.005

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the
zero-beta rate and risk premia estimates using two-pass and three-pass estimators with p̆ = 4, 5, and 6, for n = 50,
and T = 120, 240, and 480, respectively. The true data-generating process has five factors, and the parameters are
calibrated based on the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, and CMA). The true zero-beta
rate is 0.546, and the true risk premia of four noisy yet observed factors (RmRf, SMB, HML, and IP) are provided in
the “True” column. All numbers are in percentages.

in Proposition 1, but these estimators are not as efficient as the three-pass estimators. They become

infeasible when n > T . Figure II.2 verifies these statements. Indeed, the deviation from normality is

clearly visible for all estimators but ours. MP3 and two-pass estimates show visible biases whereas MP

estimates display distortion due to the curse of dimensionality (n is of a similar scale to T ). Tables

II.6 - II.8 further illustrate that the RMSEs of the mimicking portfolio estimators are often larger than

those of the three-pass estimators, due to large biases of MP3 and large variances of MP.

Overall, the three-pass estimator outperforms the two-pass and mimicking portfolio estimators by

a large margin in almost all cases. The MP estimator using all assets ranks the second, despite being

infeasible when n is greater than T . The biases in the two-pass and MP3 are substantial, yet they are

unfortunately the most common choices in the empirical literature.

III Additional Empirical Results

In this section we provide more details on the construction of the test assets and present additional

empirical results and robustness tests.

III.1 Additional Details on the Datasets

We assemble the set of test portfolios as follows. We start from a set of 202 standard equity portfolios

from Kenneth French’s website, that span the most well-known dimensions of risk: 25 portfolios sorted

9



Table II.2: Simulation Results for n = 100

Two-Pass Estimator Three-Pass Estimators
p̆ = 4 p̆ = 5 p̆ = 6

T Param True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

γ0 0.546 0.434 0.482 0.102 0.191 0.083 0.167 0.076 0.163
RmRf 0.372 -0.422 0.612 -0.088 0.421 -0.069 0.414 -0.063 0.414

120 SMB 0.229 -0.087 0.305 -0.021 0.269 -0.018 0.269 -0.017 0.269
HML 0.209 0.138 0.356 -0.023 0.202 -0.026 0.208 -0.023 0.209
IP -0.003 -0.011 0.100 0.000 0.010 0.000 0.010 0.000 0.011

γ0 0.546 0.425 0.453 0.095 0.167 0.038 0.121 0.035 0.120
RmRf 0.372 -0.431 0.538 -0.103 0.322 -0.041 0.298 -0.037 0.297

240 SMB 0.229 -0.144 0.256 -0.043 0.197 -0.018 0.192 -0.018 0.192
HML 0.209 0.312 0.399 0.058 0.165 0.009 0.153 0.006 0.153
IP -0.003 -0.020 0.107 0.000 0.006 0.000 0.007 0.000 0.007

γ0 0.546 0.371 0.391 0.067 0.125 0.025 0.102 0.020 0.101
RmRf 0.372 -0.374 0.439 -0.069 0.228 -0.022 0.216 -0.019 0.216

480 SMB 0.229 -0.028 0.155 0.003 0.139 -0.001 0.140 0.002 0.140
HML 0.209 0.033 0.203 -0.025 0.115 -0.019 0.114 -0.015 0.113
IP -0.003 -0.043 0.170 0.001 0.005 0.000 0.005 0.000 0.005

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the
zero-beta rate and risk premia estimates using two-pass and three-pass estimators with p̆ = 4, 5, and 6, for n = 100,
and T = 120, 240, and 480, respectively. The true data-generating process has five factors, and the parameters are
calibrated based on the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, and CMA). The true zero-beta
rate is 0.546, and the true risk premia of four noisy yet observed factors (RmRf, SMB, HML, and IP) are provided in
the “True” column. All numbers are in percentages.

Table II.3: Simulation Results for n = 200

Two-Pass Estimator Three-Pass Estimators
p̆ = 4 p̆ = 5 p̆ = 6

T Param True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

γ0 0.546 0.423 0.460 0.069 0.132 0.059 0.113 0.058 0.112
RmRf 0.372 -0.366 0.561 -0.047 0.400 -0.038 0.396 -0.038 0.396

120 SMB 0.229 -0.137 0.323 -0.024 0.270 -0.020 0.271 -0.019 0.271
HML 0.209 0.169 0.358 -0.011 0.208 -0.013 0.210 -0.012 0.210
IP -0.003 -0.012 0.092 0.000 0.010 0.000 0.011 0.000 0.011

γ0 0.546 0.277 0.300 0.030 0.089 0.022 0.074 0.020 0.073
RmRf 0.372 -0.270 0.408 -0.024 0.291 -0.023 0.290 -0.021 0.290

240 SMB 0.229 -0.084 0.227 -0.011 0.196 -0.004 0.196 -0.004 0.196
HML 0.209 0.105 0.266 -0.018 0.152 -0.013 0.155 -0.011 0.155
IP -0.003 -0.027 0.135 0.000 0.007 0.000 0.007 0.000 0.007

γ0 0.546 0.256 0.273 0.051 0.105 0.013 0.067 0.012 0.067
RmRf 0.372 -0.246 0.331 -0.054 0.226 -0.011 0.209 -0.010 0.209

480 SMB 0.229 -0.089 0.175 -0.002 0.138 -0.007 0.138 -0.007 0.139
HML 0.209 0.121 0.226 -0.010 0.112 -0.010 0.112 -0.009 0.112
IP -0.003 -0.046 0.168 0.001 0.005 0.000 0.005 0.000 0.005

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the
zero-beta rate and risk premia estimates using two-pass and three-pass estimators with p̆ = 4, 5, and 6, for n = 200,
and T = 120, 240, and 480, respectively. The true data-generating process has five factors, and the parameters are
calibrated based on the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, and CMA). The true zero-beta
rate is 0.546, and the true risk premia of four noisy yet observed factors (RmRf, SMB, HML, and IP) are provided in
the “True” column. All numbers are in percentages.
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Figure II.1: Histograms of the Standardized Estimates in Simulations
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Note: The left panels provide the histograms of the standardized three-pass estimates using asymptotic standard errors,
whereas the right panels provide those of the standardized two-pass risk premia estimates using the Fama-MacBeth
approach for standard error estimation. We simulate the models with n = 200 and T = 240.
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Figure II.2: Histograms of the Standardized Estimates in Simulations
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Note: The top panel plots the histograms of the standardized estimates using the three-pass estimator (top left) and the
two-pass estimator (top right), respectively, for four parameters. The bottom panels provide those of the standardized
mimicking portfolio estimators, using three (bottom left) or all assets (bottom right), respectively. We simulate the
models with n = 200 and T = 240.
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Table II.4: Simulation Results for the Number of Factors

n = 50 n = 100 n = 200
T Median Stderr Median Stderr Median Stderr

120 3 0.87 4 0.69 5 0.18
240 3 0.58 3 0.92 5 0.18
480 3 0.03 5 0.42 5 0.41

Note: In this table, we report the median (Column “Median”) and the standard error (Column “Stderr”) of the
estimates for the number of factors. The true number of factors in the data generating process is five.

Table II.5: Size and Power of the Test Statistic

Size
n = 50 n = 100 n = 200

α-level 1.0% 5.0% 10.0% 1.0% 5.0% 10.0% 1.0% 5.0% 10.0%

120 6.9% 15.8% 23.4% 7.8% 17.5% 25.2% 7.4% 17.1% 25.2%
240 3.7% 10.6% 17.3% 3.1% 9.8% 17.1% 3.8% 10.6% 17.2%
480 2.3% 8.3% 14.2% 2.3% 7.6% 13.8% 2.1% 8.1% 14.8%

Power
R2

g 2.5% 5.0% 10.0% 2.5% 5.0% 10.0% 2.5% 5.0% 10.0%

120 41.1% 61.8% 87.3% 40.4% 62.6% 87.9% 40.2% 62.0% 88.6%
240 55.1% 83.6% 99.1% 53.6% 83.1% 99.0% 54.2% 83.3% 99.2%
480 79.5% 98.3% 100.0% 81.0% 98.5% 100.0% 80.8% 98.4% 100.0%

Note: In this table, we report on the upper panel the rejection probabilities for the level-α tests when H0 : η = 0 holds.
The lower panel provides the rejection probabilities when the null hypothesis is false (R2

g = 2.5%, 5%, 10%).

by size and book-to-market ratio, 17 industry portfolios, 25 portfolios sorted by operating profitability

and investment, 25 portfolios sorted by size and variance, 35 portfolios sorted by size and net issuance,

25 portfolios sorted by size and accruals, 25 portfolios sorted by size and beta, and 25 portfolio sorted

by size and momentum.

We augment this set with a large set of additional anomaly portfolios sorted by various charac-

teristics. Specifically, we obtain from WRDS a list of 103 characteristics, which we use to compute

value-weighted quintile portfolios sorted by each characteristic (using NYSE breakpoints, restricting to

share code 10 and 11, and exchange code 1, 2 and 3).5 We remove portfolios for which we have missing

returns during our sample period, yielding 413 additional test portfolios.

Finally, we add 10 maturity-sorted government bond portfolios, 10 corporate bond portfolios sorted

on yield spread, 6 currency portfolios sorted on interest rate differentials, and 6 currency portfolios

sorted on currency momentum obtained from Asaf Manela’s website, for a total of 647 test portfolios.

The factors whose risk premia we estimate are listed in the main text. We report here the data

sources. All tradable factors except BAB and QMJ are obtained from Kenneth French’s website; BAB

and QMJ from AQR’s website; IP from the Federal Reserve Bank of St. Louis; the Macro PCs from

Sydney Ludvigson’s website; liquidity from Lubos Pastor’s website; the intermediary factors from Bryan

Kelly’s website; the Novy-Marx factors from the various sources indicated in Novy-Marx (2014); the

5See Appendix B of the WRDS Factors Manuals for details of the sorting signals: https://wrds-www.wharton.upenn.

edu/documents/1109/Backtest_Manual_v2.pdf. We use their raw signals to reconstruct test portfolios that are more
conformable to the convention of the asset pricing literature.
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Table II.6: Simulation Results for n = 50

Two-Pass Estimator Mimicking Portfolios Mimicking Portfolios
using three assets using all assets

T Param True Bias RMSE Bias RMSE Bias RMSE

RmRf 0.372 -0.212 0.484 0.044 0.389 0.004 0.403
120 SMB 0.229 -0.133 0.326 0.039 0.262 -0.023 0.282

HML 0.209 0.149 0.372 -0.344 0.359 0.003 0.263
IP -0.003 -0.009 0.088 0.003 0.008 0.000 0.028

RmRf 0.372 -0.573 0.665 0.001 0.271 0.007 0.277
240 SMB 0.229 -0.046 0.218 0.176 0.248 -0.002 0.196

HML 0.209 0.075 0.266 -0.380 0.388 -0.025 0.164
IP -0.003 -0.023 0.124 0.002 0.005 0.000 0.013

RmRf 0.372 -0.288 0.373 0.014 0.201 0.010 0.204
480 SMB 0.229 -0.081 0.172 0.124 0.179 -0.013 0.138

HML 0.209 0.057 0.216 -0.367 0.371 -0.032 0.112
IP -0.003 -0.053 0.160 0.002 0.004 0.000 0.007

Three-Pass Estimators
p̆ = 4 p̆ = 5 p̆ = 6

T Param True Bias RMSE Bias RMSE Bias RMSE

RmRf 0.372 0.006 0.397 0.008 0.397 0.005 0.397
120 SMB 0.229 -0.072 0.273 -0.060 0.271 -0.046 0.269

HML 0.209 0.027 0.208 0.015 0.209 0.002 0.210
IP -0.003 0.001 0.009 0.001 0.009 0.001 0.010

RmRf 0.372 0.020 0.274 0.019 0.275 0.009 0.275
240 SMB 0.229 -0.016 0.190 -0.011 0.190 -0.002 0.191

HML 0.209 -0.082 0.161 -0.074 0.158 -0.058 0.154
IP -0.003 0.000 0.006 0.000 0.007 0.000 0.007

RmRf 0.372 0.024 0.204 0.024 0.204 0.013 0.203
480 SMB 0.229 -0.053 0.145 -0.045 0.142 -0.031 0.139

HML 0.209 -0.043 0.110 -0.053 0.111 -0.036 0.105
IP -0.003 0.000 0.004 0.000 0.004 0.001 0.004

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the
risk premia estimates using mimicking portfolios with three assets or all assets, two-pass and three-pass estimators with
p̆ = 4, 5, and 6, for n = 50, and T = 120, 240, and 480, respectively. The true data-generating process has five factors,
and the parameters are calibrated based on the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, and
CMA). In this setting, there is no α. The true zero-beta rate is 0, and the true risk premia of four noisy yet observed
factors (RmRf, SMB, HML, and IP) are provided in the “True” column. All numbers are in percentages.
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Table II.7: Simulation Results for n = 100

Two-Pass Estimator Mimicking Portfolios Mimicking Portfolios
using three assets using all assets

T Param True Bias RMSE Bias RMSE Bias RMSE

RmRf 0.372 -0.228 0.478 0.047 0.395 0.015 0.417
120 SMB 0.229 -0.114 0.315 0.070 0.272 -0.008 0.321

HML 0.209 0.109 0.347 -0.417 0.433 0.004 0.439
IP -0.003 -0.010 0.098 0.002 0.008 0.000 0.073

RmRf 0.372 -0.223 0.377 0.043 0.283 -0.002 0.287
240 SMB 0.229 -0.141 0.255 0.117 0.222 -0.010 0.202

HML 0.209 0.220 0.328 -0.348 0.353 -0.001 0.181
IP -0.003 -0.024 0.114 0.002 0.006 0.000 0.020

RmRf 0.372 -0.301 0.373 0.030 0.202 0.001 0.205
480 SMB 0.229 -0.095 0.177 0.083 0.156 -0.006 0.139

HML 0.209 0.173 0.252 -0.389 0.393 -0.002 0.117
IP -0.003 -0.049 0.147 0.002 0.004 0.000 0.009

Three-Pass Estimators
p̆ = 4 p̆ = 5 p̆ = 6

T Param True Bias RMSE Bias RMSE Bias RMSE

RmRf 0.372 0.009 0.396 0.019 0.397 0.017 0.397
120 SMB 0.229 -0.016 0.268 -0.018 0.269 -0.016 0.269

HML 0.209 0.000 0.208 -0.013 0.211 -0.012 0.212
IP -0.003 0.000 0.010 0.000 0.011 0.000 0.011

RmRf 0.372 0.007 0.285 -0.005 0.285 -0.002 0.285
240 SMB 0.229 -0.034 0.198 -0.018 0.196 -0.016 0.196

HML 0.209 0.003 0.148 0.003 0.149 -0.003 0.149
IP -0.003 0.000 0.007 0.000 0.007 0.000 0.007

RmRf 0.372 0.008 0.204 0.004 0.204 0.001 0.204
480 SMB 0.229 -0.030 0.140 -0.016 0.138 -0.012 0.138

HML 0.209 -0.003 0.107 -0.004 0.108 -0.004 0.108
IP -0.003 0.000 0.004 0.000 0.005 0.000 0.005

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the
risk premia estimates using mimicking portfolios with three assets or all assets, two-pass and three-pass estimators with
p̆ = 4, 5, and 6, for n = 100, and T = 120, 240, and 480, respectively. The true data-generating process has five factors,
and the parameters are calibrated based on the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, and
CMA). In this setting, there is no α. The true zero-beta rate is 0, and the true risk premia of four noisy yet observed
factors (RmRf, SMB, HML, and IP) are provided in the “True” column. All numbers are in percentages.
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Table II.8: Simulation Results for n = 200

Two-Pass Estimator Mimicking Portfolios Mimicking Portfolios
using three assets using all assets

T Param True Bias RMSE Bias RMSE Bias RMSE

RmRf 0.372 -0.357 0.554 0.022 0.396 NA NA
120 SMB 0.229 -0.074 0.302 0.088 0.280 NA NA

HML 0.209 0.083 0.327 -0.386 0.400 NA NA
IP -0.003 -0.009 0.087 0.003 0.008 NA NA

RmRf 0.372 -0.344 0.459 0.059 0.285 0.000 0.293
240 SMB 0.229 -0.095 0.229 0.033 0.191 -0.003 0.227

HML 0.209 0.122 0.266 -0.382 0.388 -0.008 0.297
IP -0.003 -0.026 0.130 0.002 0.006 0.002 0.051

RmRf 0.372 -0.276 0.351 0.030 0.201 0.000 0.202
480 SMB 0.229 -0.097 0.180 0.088 0.158 -0.005 0.142

HML 0.209 0.068 0.201 -0.419 0.422 -0.003 0.127
IP -0.003 -0.060 0.188 0.002 0.004 0.000 0.014

Three-Pass Estimators
p̆ = 4 p̆ = 5 p̆ = 6

T Param True Bias RMSE Bias RMSE Bias RMSE

RmRf 0.372 -0.017 0.401 -0.005 0.402 -0.005 0.402
120 SMB 0.229 -0.005 0.273 -0.008 0.274 -0.008 0.274

HML 0.209 0.003 0.212 -0.012 0.214 -0.012 0.214
IP -0.003 0.001 0.010 0.000 0.011 0.000 0.011

RmRf 0.372 0.001 0.284 0.001 0.284 0.001 0.284
240 SMB 0.229 -0.010 0.193 -0.008 0.194 -0.008 0.194

HML 0.209 -0.009 0.149 -0.010 0.150 -0.010 0.151
IP -0.003 0.000 0.007 0.000 0.007 0.000 0.007

RmRf 0.372 0.024 0.203 0.002 0.201 0.001 0.201
480 SMB 0.229 -0.031 0.141 -0.008 0.138 -0.008 0.139

HML 0.209 -0.032 0.110 -0.009 0.107 -0.009 0.107
IP -0.003 0.000 0.005 0.000 0.005 0.000 0.005

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the
risk premia estimates using mimicking portfolios with three assets or all assets, two-pass and three-pass estimators with
p̆ = 4, 5, and 6, for n = 200, and T = 120, 240, and 480, respectively. The true data-generating process has five factors,
and the parameters are calibrated based on the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, and
CMA). In this setting, there is no α. The true zero-beta rate is 0, and the true risk premia of four noisy yet observed
factors (RmRf, SMB, HML, and IP) are provided in the “True” column. All numbers are in percentages. NA means
the estimators are “infeasible.”
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consumption factors from Toby Moskowitz’s website.

III.2 Robustness to the Number of Latent Factors

Theorem I.2 shows that our results are theoretically robust to using “a few” too many latent factors in

our analysis, compared to the true number p. Given the potential concern that our baseline choice of p,

p̌ = 7, might omit some latent factor with small eigenvalues, we explore here how the results change as

we increase the number of factors. We choose p̌ = 10 and p̌ = 13 based on the scree plot (Figure III.3).

The results are reported in the first three columns of Table III.9, and appear mostly robust to the

change in number of factors. While the significance changes in some cases (with more factors, estimates

of risk premia tend to become less precise), the signs and magnitudes of the estimated risk premia

remain similar as p̌ varies.

Of course, we should not expect (and Theorem I.2 does not guarantee) that the results remain the

same as p̌ increases arbitrarily: in the limit, as p̌ approaches n, the estimator becomes the mimicking-

portfolio estimator with all assets (which in this case is infeasible). It is however reassuring to see that

almost doubling the number of factors included gives similar results.

III.3 Estimating the Zero-beta Rate

Column 4 of Table III.9 shows the results produced by our more general estimator (9), that allows the

zero-beta rate to be different from the T-bill rate.6

The estimated zero-beta rate (which does not depend on the choice of gt by construction) is 49bp,

close to the average T-bill rate of 46bp per month in our sample. Given that the unconstrained estimates

of the zero-beta rate are close to the average T-bill rate, it should not be surprising that the results for

the risk premia are similar to the ones obtained when the zero-beta rate is constrained to be equal to

the T-bill rate.

III.4 Robustness to the Presence of Weak Latent Factors

As we discuss in the main text, our procedure works even if the observable factor gt is weak (in fact,

we propose a test for whether gt is weak); however, PCA will not necessarily recover the entire factor

space if the underlying latent factors are weak. In this section we summarize our main theoretical and

empirical arguments for using PCA in practice, and propose an additional robustness test to mitigate

the concern that the presence of weak factors may distort our results.

In theory, weak latent factors — unobservable factors for which the dispersion of risk exposures is

small in the cross-section — can affect our estimator because they have low eigenvalues, and PCA might

fail to separate them from noise. However, for weak factors to bias our estimates of risk premia for

observable factors, they also need to have themselves high risk premia, which allows them to explain

a significant portion of the cross-section of average returns. But large risk premia for factors with low

eigenvalues imply high Sharpe ratios. A first theoretical argument in favor of focusing on the PCs with

6The inference based on Theorem I.3 in this case is also robust to the presence of pricing errors (alphas) that satisfy
our assumptions.
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largest eigenvalues are good-deal bounds, which impose a theoretical upper bound on the potential bias

from weak factors (Kozak et al. (2018) make precisely this argument to support using PCA in this

context).

A second, empirical, argument is that we can easily add additional PCs with lower and lower

eigenvalues, and verify that the risk premia estimates are stable (as shown in Table III.9).

A third way to verify that weak latent factors are not driving our empirical results is the comparison

of the risk premia estimated for tradable factors using our three-pass procedure with those obtained as

time-series average of the portfolios’ excess returns. As discussed in the text, the two should be the

same if the factor model is correctly specified. Biases due to the presence of weak latent factors should

produce significant differences between the estimates using cross-sectional methods and the time-series

averages.

Finally, we propose here an additional robustness test with respect to the possibility of weak factors,

based on changing the objective function when extracting the statistical factors from the panel of returns.

Recall that the first step towards PCA is to calculate eigenvalues of the covariance matrix of returns,

which equal the variances of the corresponding PCs, and that the constructed factors are eigenvectors

associated with the largest few eigenvalues.

Since weak factors are factors with low eigenvalues, which however explain the cross-section of

returns, we can modify the objective function to account for the contribution to the cross-sectional

variation. That is, rather than finding factors that best explain the time-series comovement of stock

returns, we find factors that strike a balance between explaining the time-series comovement of stock

returns and the cross-sectional variation of expected returns. This alternative objective function was

first proposed by Connor and Korajczyk (1986), and has been recently extended by Lettau and Pelger

(2018). It is a convenient reference point because it puts equal weight on the two components of the

objective function — the time-series and the cross-sectional variation.

As shown in Bai and Ng (2002), our PCA formula given in (7) is the solution to the following

optimization problem:

min
β,V̄

n−1T−1
∥∥R̄− βV̄ ∥∥2

F
, subject to T−1V̄ V̄ ᵀ = Ip̂,

where ‖·‖F is the Frobenius norm of a matrix. By our rotation invariance result, it would give the

same risk premia estimates if we were to use an alternative normalization n−1βᵀβ = In. Connor and

Korajczyk (1986) suggest another optimization problem (henceforth CK):

min
β,V̄ ,γ

n−1T−1
∥∥R̄− βV̄ ∥∥2

F
+ wn−1 ‖r̄ − βγ‖2F , subject to n−1βᵀβ = In,

where they choose w = 1. The solution turns out to be

β̃ = n1/2(ς̃1 : ς̃2 : . . . : ς̃p̂), and Ṽ = (β̃ᵀβ̃)−1β̃ᵀR̄,

where ς̃1, ς̃2, . . . , ς̃p̂ are the eigenvectors associated with the largest eigenvalues of the matrix n−1T−1R̄R̄ᵀ+

wn−1r̄r̄ᵀ. Note that starting from CK’s formulation, setting w = 0 (thus focusing entirely on time-series
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comovement) is equivalent to PCA.

The CK approach can be used instead of the standard PCA in step (i) of our three-step procedure.

Since the second term of the objective function is the cross-sectional R2, it may help select latent factors

that have large risk premia but are weak. We can then continue steps (ii) and (iii) as in Section 3 using

the estimated latent factors together with gt to estimate risk premia. Note that the CK approach does

not allow for an unrestricted zero-beta rate or pricing errors.

In Table III.9, column CK, we report the results using the CK approach (we have not derived the

standard error of our estimator when CK is used in the first step; so we only report the point estimates).

The table shows that there is almost no difference in the risk premia estimates relative to the baseline,

which suggests that weak factors are either not present in this dataset we consider, or if they are, they

have small enough risk premia that ignoring them has little consequence for our estimates.

Taken together, these considerations lead us to conclude that for the purposes of estimating risk

premia, using PCA to recover the factor space represents a simple yet robust solution.

III.5 Ridge Regression

Section 4.3 shows that instead of using PCA to reduce the dimensionality of the returns’ space, we could

instead use ridge regression and still obtain a consistent estimator of risk premia. Table III.9 reports the

risk premia estimates in the second-to-last column. While we do not derive the asymptotic distribution

of the estimator (so we do not report standard errors), the point estimates we obtain are in general

quite similar to our baseline results that instead use PCA. Note that we fix the tuning parameter µ in

the ridge equation (14) to be λ2×p̆(R̄R̄
ᵀ), so that the ridge results effectively serve as a benchmark of a

large factor model.

III.6 Robustness to the Choice of Test Portfolios

Our main empirical results are obtained using a large set of 647 portfolios, that spans equities, bonds,

and currencies. It is natural, however, to wonder to what extent the results are affected by the particular

selection of test assets.

We explore robustness with respect to the choice of test portfolios in two ways. First, we perform

the estimation using only equity portfolios. The results are in the last column of Table III.9. The results

are similar to those of the baseline.

Second, we perform a bootstrap-type analysis that excludes systematically random subsets of assets.

In particular, from the 647 test portfolios we use in our empirical exercise, we randomly select (without

replacement) half of them, and we re-estimate the risk premia of all observable factors in this subsample.

We repeat this exercise 10,000 times, thus obtaining a distribution of risk premia estimates across

subsamples of 323 portfolios each, randomly selected.

Appendix Figure III.5 shows the results for several factors. Note that all panels of the figure report

the same range of risk premia (x axis, between -20bp and 100bp), so that the histograms are easily

comparable across panels. The results are heterogeneous across factors. In the top left panel, we see

that the risk premium for the market return is precisely estimated, from essentially any of the random
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subsets of the assets. The top right panel shows that the risk premia estimates for SMB and HML vary

more across subsets of assets. The next panel shows that momentum’s risk premium varies even more

across subsets, but it is still estimated to be between 25bp and 70bp in almost all subsamples.

The last three panels show interesting results for non-tradable factors. Confirming the results of

Table 1, IP is a useless factor, with a risk premium of effectively zero in all subsamples. On the contrary,

liquidity and intermediary capital factors all appear positively priced across subsamples.

Overall, our subsample results show that the conclusions of our empirical analysis are very robust

to the selection of the test assets, at least within the universe of assets we consider (equity, bonds,

currencies). One caveat worth keeping in mind when interpreting these results is that this analysis

randomly selects (without replacement) half of the assets within the original set of 647 portfolios – but

the original universe was itself not randomly selected in the first place, since it is based on characteristics

proposed in the existing literature.

III.7 Robustness to the Choice of Estimation Time Period

A potential concern when working with PCs is the stability of the estimated loadings and factors over

time. The extent to which our risk premia estimates are consistent across time periods is an empirical

question that we explore in this section.

Similarly to the robustness with respect to the test assets, we perform our robustness check with

respect to the sample period by resampling half of the time periods randomly without replacement, and

looking at the variability of the risk premia estimates. Simple resampling in the time series is possible

in our context because of the low serial correlation of returns and factor innovations over time.

Figure III.6 shows the results. Interestingly, the estimates are more variable across time subsamples

compared to the case in which test assets were resampled (previous section). That said, the estimated

risk premia remain positive across almost all subsamples, for all factors (except IP, which is clearly a

weak factor, and whose risk premium is precisely estimated to be zero); our results are therefore quite

stable across subsamples.

Note that the variability of estimates in this analysis is necessarily higher than the variability

captured by the standard errors of our full-sample estimates: we are resampling periods with half as

many observations than in our full-sample test.

Despite the increased variability, the estimates are quite stable across subsamples. This may appear

surprising, because our estimator is based on PCA, which is known to give different factor estimates

(rotations) in different subsamples. However, it is useful to note that our risk premia estimator is not

only based on PCA. Instead, a key step is the projection of the factor of interest gt onto the extracted

PCs. So any rotation that makes the extracted factors differ across subsamples will be entirely offset

by a corresponding rotation of the loading of gt onto those factors – resulting in stable risk premia

estimates for the observable factors.
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III.8 Separating the Measurement Error from the Factors

The R2 of the projection of each factor gt onto the latent factors (R2
g in Table 1) reveals the amount

of measurement error in the factor. Figure III.7 further explores how our method allows us to “clean”

the factors from measurement error. It shows the time series of cumulated innovations in the original

and cleaned (i.e., fitted) factors, for a few of them. The figures provide a graphical representation of

the extent to which the PCs of returns capture the variation in each factor. While for several factors

the original and cleaned factors track each other closely (e.g., for the market, SMB and HML plotted

in the figure), for others the cleaned factor displays much lower variation than the original factor: the

difference is the measurement error that our procedure has eliminated (a nice example is IP, plotted in

the figure, which is identified as a weak factor).

III.9 Individual Assets vs. Portfolios

In this paper, we recommend using characteristic-sorted portfolios instead of individual stocks. The

main advantage of using portfolios is that their risk exposures are more stable over time, as discussed at

length in the asset pricing literature. This is particularly important in our setting, because we assume

the betas of the test assets are constant.

To see this intuition more formally, call r̃t the vector of time-t returns for m individual stocks, and

ct a m×n matrix of characteristics (or their functions) observed at time t for the m stocks. The typical

procedure to construct characteristic-sorted portfolios in asset pricing categorizes stocks at each time

t − 1 into groups based on one or more observed characteristics, and then obtains the portfolio return

at time t using equal or market-value weights for stocks in each group.

The sorting procedure can be represented mathematically by constructing the matrix ct−1 stacking

side-by-side the n dummy variables corresponding to each characteristic-sorted group. For example, to

construct 10 size-based portfolios, ct−1 would be an m×10 matrix containing 10 dummy variables, each

indicating the size group to which each stock belongs at time t−1. The n characteristic-sorted portfolio

returns from t − 1 to t are simply the coefficients of a cross-sectional regression of r̃t onto ct−1, since

ct−1 contains only dummies.

More generally, given any matrix ct−1 (that could include dummies or continuous variables), the

characteristics-weighted portfolio returns at time t are:

rt = (cᵀt−1ct−1)−1cᵀt−1r̃t, (III.4)

where the term (cᵀt−1ct−1)−1ct−1 therefore represents the time-(t− 1) portfolio weights.

Using this expression that links rt and r̃t, it is immediate to find that if individual factor exposures

are linear functions of ct−1 (e.g., Rosenberg (1974)), then the sorted portfolios have constant factor

exposures. Specifically, extending our setup (1) to include time-varying factor exposures for individual

asset returns, we have:

r̃t = βt−1γt−1 + βt−1ṽt + ũt,
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where r̃t and ũt are m× 1 vectors, βt−1 is an m× n matrix of time-varying exposures, following

βt−1 = ct−1β + εt−1, (III.5)

for some n × p matrix β, m × n matrix of observable characteristics ct−1, and some n × p matrix of

residuals εt−1. Prior to applying our three-pass estimation procedure, we construct characteristics-sorted

portfolios:

rt = (cᵀt−1ct−1)−1cᵀt−1r̃t = βγ + βvt + ut,

where

γ = E(γt−1), vt = ṽt + γt−1 − E(γt−1), ut = (cᵀt−1ct−1)−1cᵀt−1 (ũt + εt−1(γt−1 + ṽt)) .

Therefore, our methodology to estimate risk premia can be applied even if individual stock risk exposures

are time-varying, as long as characteristic-sorted portfolios that have constant factor exposures are used

as test assets, provided that ut and vt satisfy assumptions in this paper. Also, we can interpret the

estimated risk premia as estimates of their time-series average.

In this paper, we take the portfolio-formation step as given, and use characteristic-sorted portfolios

that have been proposed in the literature. In contrast, Kelly et al. (2019) construct such portfolios using

characteristics and individual stocks for a model specification test. Their results show that PCs based

on such portfolios explain more cross-sectional variations than those based on individual stocks, which

is consistent with the formal result shown above that characteristic-sorted portfolios will have constant

betas if the characteristics are chosen appropriately.
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Figure III.3: First Fifteen Eigenvalues of the Covariance Matrix of 647 Test Portfolios
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Note: The left panel reports the first 20 eigenvalues of the covariance matrix of our 647 test portfolios. The right panel
zooms in to the eigenvalues 5 through 20.
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Figure III.4: Sparsity plot of portfolio returns

Note: The left panel reports a sparsity plot based on the correlation matrix of excess returns of the 647 portfolios. This
matrix plots a dot if the corresponding correlation is above 0.25, and no dot if it is below 0.25. The right-hand side
reports the same sparsity plot, but for the residuals of our 7-factor model. Assets are our 647 portfolios: assets 1-413 are
the characteristic-sorted portfolios from WRDS, 414-438 are the portfolios sorted by size and book-to-market, 439-455
are industry portfolios, 456-480 are portfolios sorted by operating profitability and investment, 481-505 are portfolios
sorted by size and variance, 506-540 are portfolios sorted by size and net issuance, 541-565 are portfolios sorted by
size and beta, 566-590 are portfolios sorted by size and accruals, 591-615 are portfolios sorted by size and momentum,
616-635 are bond portfolios and 636-647 are currency portfolios.
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Figure III.5: Robustness to the Set of Test Portfolios: Resampling Exercise
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Note: This figure reports the histograms of risk premia estimated using the three-pass estimator across subsamples of
the set of 647 test portfolios. We generate 10,000 subsamples by randomly drawing (without replacement) half of the
portfolios from the baseline set of 647 portfolios. In each sample we estimate the risk premium of each factor using the
three-pass estimator, setting p̆ = 7. The histogram reports the frequency of the risk premia estimates across samples.
All figures report the same range for the risk premia, between -20bp and 100bp per month.
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Figure III.6: Robustness to the Time Period: Resampling Exercise
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Note: This figure reports the histograms of risk premia estimated using the three-pass estimator across subsamples
of the time period. We generate 10,000 subsamples by randomly drawing (without replacement) half of the available
time periods (using all 647 portfolios). In each sample we estimate the risk premium of each factor using the three-pass
estimator, setting p̆ = 7. The histogram reports the frequency of the risk premia estimates across samples. All figures
report the same range for the risk premia, between -20bp and 100bp per month.
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Figure III.7: Cumulative Factor Time Series with and without Measurement Error
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Note: This figure reports the time series of cumulative factor innovations for RmRf, SMB, HML, and IP (thin line)
together with the time series obtained from removing measurement error from the factor (thick line).
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IV Technical Lemmas and Their Proofs

To prove the main theorems of the paper, we need the following lemmas:

Lemma 1. Under Assumptions A.1, A.2, A.4, A.5, A.6, and A.7, and suppose that p̂ = p, we have∥∥∥V̂ −HV̄ ∥∥∥
F

= Op(n
−1/2T 1/2 + 1).

Proof. We make use of the following decomposition:

V̂ −HV̄ = n−1T−1
(

Λ̂−1V̂ R̄ᵀR̄− Λ̂−1V̂ V̄ ᵀβᵀβV̄
)

= n−1T−1Λ̂−1V̂
(
ŪᵀβV̄ + V̄ ᵀβᵀŪ + ŪᵀŪ

)
. (IV.6)

Note that by (V.36), we have ∥∥V̄ ∥∥
F
≤ K

∥∥V̄ ∥∥ = Op(T
1/2). (IV.7)

Also, we have ∥∥∥V̂ ∥∥∥ ≤ ∥∥∥V̂ ∥∥∥
F
≤
∥∥∥V̂ V̂ ᵀ

∥∥∥1/2

F
= T 1/2. (IV.8)

Using (V.39), we have ∥∥∥Λ̂
∥∥∥

MAX
= Op(1), and

∥∥∥Λ̂−1
∥∥∥

MAX
= Op(1). (IV.9)

Combining these estimates with (V.34), we obtain

n−1T−1
∥∥∥Λ̂−1V̂ ŪᵀβV̄

∥∥∥
F
≤ Kn−1T−1

∥∥∥Λ̂−1
∥∥∥

MAX

∥∥∥V̂ ∥∥∥∥∥V̄ Ūᵀβ
∥∥ = Op(n

−1/2T 1/2).

The same bound holds for another term:

n−1T−1
∥∥∥Λ̂−1V̂ V̄ ᵀβᵀŪ

∥∥∥
F

= Op(n
−1/2T 1/2).

Using (V.31), (IV.8), and (IV.9), we obtain

n−1T−1
∥∥∥Λ̂−1V̂ ŪᵀŪ

∥∥∥
F
≤Kn−1T−1

∥∥∥Λ̂−1V̂ ŪᵀŪ
∥∥∥ ≤ K (n−1/2T 1/2 + 1

)
,

which concludes the proof.

Lemma 2. Under Assumptions A.1, A.2, A.4, A.5, A.6, and A.7, and suppose that p̂ = p, if follows

that H is invertible with probability approaching 1. Moreover, ‖H‖ = Op(1),
∥∥H−1

∥∥ = Op(1), and∥∥∥HᵀH − (Σv)−1
∥∥∥ = Op(n

−1/2 + T−1/2).

29



Proof. Note that∥∥V̄ ∥∥ = Op(T
1/2),

∥∥∥V̂ ∥∥∥ ≤ ∥∥∥V̂ ∥∥∥
F

= T 1/2, n−1 ‖βᵀβ‖ ≤
∥∥∥n−1βᵀβ − Σβ

∥∥∥+
∥∥∥Σβ

∥∥∥ ≤ Op(1),

it follows from (B.2) that

‖H‖ ≤ n−1T−1
∥∥∥V̂ ∥∥∥∥∥V̄ ∥∥ ‖βᵀβ‖∥∥∥Λ̂−1

∥∥∥ = Op(1).

Moreover, by triangle inequalities, Assumption A.5, and Lemma 1, we have

‖HΣvHᵀ − Ip‖ ≤
∥∥HΣvHᵀ − T−1HV̄ V̄ ᵀHᵀ

∥∥+
∥∥T−1HV̄ V̄ ᵀHᵀ − Ip

∥∥
≤‖H‖2

(∥∥Σv − T−1V V ᵀ
∥∥+ ‖v̄v̄ᵀ‖

)
+ T−1

∥∥∥V̂ −HV̄ ∥∥∥
F

∥∥HV̄ ∥∥+ T−1
∥∥∥V̂ ∥∥∥∥∥∥V̂ −HV̄ ∥∥∥

F

=Op(n
−1/2 + T−1/2). (IV.10)

By Weyl’s inequality, we have λmin(HΣvHᵀ) > 1/2 with probability approaching 1. This implies

that H(Σv)1/2 is invertible with probability approaching 1, so is H. Moreover, since λmin(HΣvHᵀ) ≤
λmax(Σv) ‖H‖2, there exists ε > 0 such that ‖H‖ ≥ ε with probability approaching 1, and hence∥∥H−1

∥∥ = Op(1).

Multiplying H−1 and H−ᵀ from each side of (IV.10) respectively, we obtain∥∥Σv −H−1H−ᵀ
∥∥ = Op(n

−1/2 + T−1/2), (IV.11)

so that multiplying (Σv)−1 from the right hand side gives∥∥∥Ip −H−1H−ᵀ (Σv)−1
∥∥∥ = Op(n

−1/2 + T−1/2).

Finally, multiplying HᵀH from the left gives the desired result.

Lemma 3. Under Assumptions A.1, A.2, A.4, A.5, A.6, A.7, A.9, and p̂ = p, we have

(a) T−1
∥∥∥(HV̄ − V̂ ) V̄ ᵀ

∥∥∥
MAX

= Op(n
−1 + T−1).

(b)
∥∥∥β − β̂H∥∥∥

F
= Op(1 + n1/2T−1/2).

Proof. (a) By (IV.6) and (IV.9), we have∥∥∥(HV̄ − V̂ ) V̄ ᵀ
∥∥∥

MAX
≤Kn−1T−1

∥∥∥V̂ ŪᵀβV̄ V̄ ᵀ + V̂ V̄ ᵀβᵀŪ V̄ ᵀ + V̂ ŪᵀŪ V̄ ᵀ
∥∥∥

MAX
.

(i) To bound the first term, we note that∥∥∥V̂ Ūᵀβ
∥∥∥

MAX
≤K

∥∥∥V̂ −HV̄ ∥∥∥
F

∥∥Ūᵀβ
∥∥

F
+K ‖H‖MAX

∥∥V̄ Ūᵀβ
∥∥

MAX
.
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Since ‖v̄‖MAX = Op(T
−1/2), it follows from (V.33) that

‖v̄ūᵀβ‖MAX ≤ K ‖v̄‖MAX ‖ū
ᵀβ‖MAX = Op(n

1/2T−1). (IV.12)

Combining with Assumption A.9(ii), we have∥∥V̄ Ūᵀβ
∥∥

MAX
≤ ‖V Uᵀβ‖MAX + T ‖v̄ūᵀβ‖MAX = Op(n

1/2T 1/2). (IV.13)

By Lemmas 1 and 2, (V.34), and (IV.13), we obtain∥∥∥V̂ Ūᵀβ
∥∥∥

MAX
= Op(T + n1/2T 1/2). (IV.14)

Therefore, by (V.35), we have∥∥∥V̂ ŪᵀβV̄ V̄ ᵀ
∥∥∥

MAX
≤ K

∥∥∥V̂ Ūᵀβ
∥∥∥

MAX

∥∥V̄ V̄ ᵀ
∥∥

MAX
= Op(T

2 + n1/2T 3/2).

(ii) To bound the second term, by Weyl’s inequalities and Assumption A.6,∣∣∣∣λmin

(
1

n
βᵀβ

)
− λmin

(
Σβ
)∣∣∣∣ ≤∥∥∥∥ 1

n
βᵀβ − Σβ

∥∥∥∥ = op(1).

Therefore, there exists some 0 < ε < λmin(Σβ), such that

λmin(βᵀβ) ≥ n
(
λmin(Σβ)− ε

)
,

which establishes that ∥∥(n−1βᵀβ)−1
∥∥ = nλ−1

min(βᵀβ) = Op(1), (IV.15)

so that∥∥∥V̂ V̄ ᵀ
∥∥∥

MAX
= nT

∥∥∥Λ̂H(βᵀβ)−1
∥∥∥

MAX
≤ KnT

∥∥∥Λ̂
∥∥∥

MAX
‖H‖MAX

∥∥(βᵀβ)−1
∥∥ = Op(T ). (IV.16)

Using (IV.13) we have∥∥∥V̂ V̄ ᵀβᵀŪ V̄ ᵀ
∥∥∥

MAX
≤ K

∥∥∥V̂ V̄ ᵀ
∥∥∥

MAX

∥∥βᵀŪ V̄ ᵀ
∥∥

MAX
= Op(n

1/2T 3/2).

(iii) Finally, we have∥∥∥V̂ ŪᵀŪ V̄ ᵀ
∥∥∥

MAX
≤
∥∥∥(V̂ −HV̄ )ŪᵀŪ V̄ ᵀ

∥∥∥
MAX

+
∥∥HV̄ ŪᵀŪ V̄ ᵀ

∥∥
MAX

.

On the one hand, note that∥∥∥(V̂ −HV̄ )ŪᵀŪ V̄ ᵀ
∥∥∥

MAX
≤ K

∥∥∥V̂ −HV̄ ∥∥∥
F

∥∥ŪᵀŪ
∥∥∥∥V̄ ᵀ

∥∥
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Combining with (V.36), (V.31), and Lemma 1, we have∥∥∥(V̂ −HV̄ )ŪᵀŪ V̄ ᵀ
∥∥∥

MAX
= Op(T

2 + nT ). (IV.17)

On the other hand, we have ∥∥Ū V̄ ᵀ
∥∥

F
≤ ‖UV ᵀ‖F + T ‖ūv̄ᵀ‖F .

By Assumption A.9(i):

E ‖UV ᵀ‖2F ≤
p∑
i=1

n∑
j=1

E

(
T∑
t=1

vitujt

)2

≤ KnT.

Also, by Assumption A.5 and Equation (V.27),

‖v̄‖F ≤ p
1/2 ‖v̄‖MAX = Op(T

−1/2), ‖ū‖F = Op(n
1/2T−1/2),

so that T ‖ūv̄ᵀ‖F = Op(n
1/2), hence we obtain that∥∥Ū V̄ ᵀ

∥∥
F

= Op(n
1/2T 1/2), (IV.18)

and that ∥∥HV̄ ŪᵀŪ V̄ ᵀ
∥∥

MAX
≤ K ‖H‖MAX

∥∥Ū V̄ ᵀ
∥∥2

F
= Op(nT ).

Therefore, we obtain ∥∥∥V̂ ŪᵀŪ V̄ ᵀ
∥∥∥

MAX
= Op

(
T 2 + nT

)
.

Combining (i), (ii), and (iii), we have

T−1
∥∥∥(HV̄ − V̂ ) V̄ ᵀ

∥∥∥
MAX

= Op(n
−1 + T−1).

To prove (b), using the following decomposition,

β − β̂H =− T−1
(
βH−1(HV̄ − V̂ )V̂ ᵀH + Ū

(
V̂ ᵀ − V̄ ᵀHᵀ

)
H + Ū V̄ ᵀHᵀH

)
,

it follows from Lemmas 1 and 2, (V.27), (V.28), (IV.8), (IV.18), and ‖β‖F ≤ p1/2 ‖β‖ = Op(n
1/2), that

n−1
∥∥∥β − β̂H∥∥∥

F
≤Kn−1T−1 ‖β‖F

∥∥H−1
∥∥

MAX

∥∥∥HV̄ − V̂ ∥∥∥
F

∥∥∥V̂ ᵀ
∥∥∥

F
‖H‖MAX

+Kn−1T−1
∥∥Ū∥∥

F

∥∥∥V̂ ᵀ − V̄ ᵀHᵀ
∥∥∥

F
‖H‖MAX +Kn−1T−1

∥∥Ū V̄ ᵀ
∥∥

F
‖H‖2MAX

=Op(n
−1 + n−1/2T−1/2).
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Lemma 4. Under Assumptions A.1, A.2, A.4, A.5, A.6, A.7, A.9, and p̂ = p, we have

(a) n−1
∥∥H−ᵀβᵀū∥∥

MAX
= Op

(
n−1/2T−1/2

)
.

(b) n−1
∥∥∥H−ᵀβᵀ(β − β̂H)

∥∥∥
MAX

= Op
(
n−1 + T−1

)
.

(c) n−1
∥∥∥(β̂ − βH−1

)ᵀ
ū
∥∥∥

MAX
= Op(n

−1 + T−1).

(d) n−1
∥∥∥H−ᵀβᵀ(β − β̂H)v̄

∥∥∥
MAX

= Op(n
−1T−1/2 + T−3/2).

(e) n−1
∥∥∥(β̂ᵀ −H−ᵀβᵀ)(β − β̂H)

∥∥∥
MAX

= Op(n
−1 + T−1).

Proof. For (a), by (V.33), we have

n−1
∥∥H−ᵀβᵀū∥∥

MAX
≤ Kn−1

∥∥H−1
∥∥

MAX
‖βᵀū‖F = Op

(
n−1/2T−1/2

)
.

As to (b), we have

n−1H−ᵀβᵀ(β − β̂H)

=− n−1T−1
(
H−ᵀβᵀβH−1(HV̄ − V̂ )V̂ ᵀH +H−ᵀβᵀŪ

(
V̂ ᵀ − V̄ ᵀHᵀ

)
H +H−ᵀβᵀŪ V̄ ᵀHᵀH

)
.

(i) We need the following result, which can be shown by Lemmas 1 and 3:

T−1
∥∥∥(HV̄ − V̂ )V̂ ᵀ

∥∥∥
MAX

≤T−1
∥∥∥(HV̄ − V̂ )

(
V̂ ᵀ − V̄ ᵀHᵀ

)∥∥∥
MAX

+ T−1
∥∥∥(HV̄ − V̂ )V̄ ᵀHᵀ

∥∥∥
MAX

≤KT−1
∥∥∥V̂ −HV̄ ∥∥∥2

F
+KT−1

∥∥∥(HV̄ − V̂ ) V̄ ᵀ
∥∥∥

MAX
‖H‖MAX

=Op(n
−1 + T−1). (IV.19)

Combined with that ‖βᵀβ‖ = Op(n), we obtain

n−1T−1
∥∥∥H−ᵀβᵀβH−1(HV̄ − V̂ )V̂ ᵀH

∥∥∥ ≤ Kn−1 ‖βᵀβ‖T−1
∥∥∥(HV̄ − V̂ )V̂ ᵀ

∥∥∥
MAX

= Op(n
−1 + T−1).

(ii) It immediately follows from (V.34) and Lemma 2 that∥∥H−ᵀβᵀŪ∥∥
F

= Op(n
1/2T 1/2).

Using this and Lemma 1, we have

n−1T−1
∥∥∥H−ᵀβᵀŪ (V̂ ᵀ − V̄ ᵀHᵀ

)
H
∥∥∥

MAX
≤n−1T−1

∥∥H−1βᵀŪ
∥∥

F

∥∥∥V̂ ᵀ − V̄ ᵀHᵀ
∥∥∥

F
‖H‖F

=Op(n
−1 + n−1/2T−1/2).
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(iii) By (IV.13) and Lemma 2, we have

n−1T−1
∥∥H−ᵀβᵀŪ V̄ ᵀHᵀH

∥∥
MAX

≤ Kn−1T−1
∥∥H−1

∥∥
MAX

‖H‖2MAX

∥∥V̄ Ūᵀβ
∥∥

MAX
= Op(n

−1/2T−1/2).

(i), (ii), and (iii) yield (b).

To show (c), note that

n−1ūᵀ(β̂ − βH−1) =− n−1ūᵀ(β − β̂H)H−1

=n−1T−1
(
ūᵀβH−1(HV̄ − V̂ )V̂ ᵀ + ūᵀŪ

(
V̂ ᵀ − V̄ ᵀHᵀ

)
+ ūᵀŪ V̄ ᵀHᵀ

)
.

(iv) By (V.33), we have

‖ūᵀβ‖F = Op(n
1/2T−1/2).

Combined with (IV.19), we have

n−1T−1
∥∥∥ūᵀβH−1(HV̄ − V̂ )V̂ ᵀ

∥∥∥
MAX

≤n−1T−1 ‖ūᵀβ‖F
∥∥H−1

∥∥
MAX

∥∥∥(HV̄ − V̂ )V̂ ᵀ
∥∥∥

MAX

=Op

(
n−3/2T−1/2 + n−1/2T−3/2

)
.

(v) Next, note that by (V.31)∥∥ūᵀŪ∥∥
F

=T−1
∥∥ιᵀTUᵀU

∥∥
F

+ ‖ιT ūᵀū‖F ≤ KT
−1 ‖ιT ‖ ‖UᵀU‖+ ‖ιT ‖F ‖ū

ᵀū‖MAX

=Op(n
1/2T 1/2 + n). (IV.20)

With this, we obtain

n−1T−1
∥∥∥ūᵀŪ (V̂ ᵀ − V̄ ᵀHᵀ

)∥∥∥
MAX

≤n−1T−1
∥∥ūᵀŪ∥∥

F

∥∥∥V̂ ᵀ − V̄ ᵀHᵀ
∥∥∥

F
= Op

(
n−1 + T−1

)
.

(vi) By (IV.18), we have

n−1T−1
∥∥ūᵀŪ V̄ ᵀ

∥∥
MAX

≤ n−1T−1 ‖ū‖F
∥∥Ū V̄ ᵀ

∥∥
F

= Op(T
−1).

(iv), (v), and (vi) yield (c).

As to (d), by Assumption A.5, Lemmas 2 and 4(b), we have

n−1
∥∥∥H−ᵀβᵀ(β − β̂H)v̄

∥∥∥
MAX

≤Kn−1
∥∥∥H−ᵀβᵀ(β − β̂H)

∥∥∥
MAX

‖v̄‖MAX = Op(n
−1T−1/2 + T−3/2).

For (e), we use Lemmas 2 and 3(b):∥∥∥n−1(β̂ᵀ −H−ᵀβᵀ)(β − β̂H)
∥∥∥

MAX
≤ n−1

∥∥∥β − β̂H∥∥∥2

F

∥∥H−1
∥∥ = Op(n

−1 + T−1),

which concludes the proof.
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Lemma 5. Under Assumptions A.1, A.2, A.4, A.5, A.6, A.7, A.8, A.9, A.10, and p̂ = p, we have

(a)
∥∥∥ηH−1

(
HV̄ − V̂

)
V̂ ᵀ(V̂ V̂ ᵀ)−1

∥∥∥
MAX

= Op(n
−1 + T−1).

(b) T−1
∥∥∥(HV̄ − V̂ ) Z̄ᵀ

∥∥∥
MAX

= Op(n
−1 + T−1).

(c)
∥∥∥Z̄V̄ ᵀHᵀ(V̂ V̂ ᵀ)−1

∥∥∥
MAX

= Op(T
−1/2).

Proof. To show (a), by (IV.19) and the fact that T−1V̂ V̂ ᵀ = Ip, we have∥∥∥ηH−1
(
HV̄ − V̂

)
V̂ ᵀ(V̂ V̂ ᵀ)−1

∥∥∥
MAX

≤‖η‖MAX ‖H‖MAX

∥∥∥T−1
(
HV̄ − V̂

)
V̂ ᵀ
∥∥∥

MAX

=Op(n
−1 + T−1).

For (b) we use the following decomposition∥∥∥(HV̄ − V̂ ) Z̄ᵀ
∥∥∥

MAX
≤Kn−1T−1

∥∥∥V̂ ŪᵀβV̄ Z̄ᵀ + V̂ V̄ ᵀβᵀŪ Z̄ᵀ + V̂ ŪᵀŪ Z̄ᵀ
∥∥∥

MAX
.

(i) By Assumption A.8 and (IV.14), we have∥∥∥V̂ ŪᵀβV̄ Z̄ᵀ
∥∥∥

MAX
≤ K

∥∥∥V̂ Ūᵀβ
∥∥∥

MAX
(‖V Zᵀ‖MAX + T ‖v̄‖MAX ‖z̄‖MAX) = Op(T

3/2 + n1/2T ).

(ii) Next, since ‖z̄‖MAX = Op(T
−1/2), it follows from (V.33) that

‖βᵀūz̄ᵀ‖MAX ≤ ‖β
ᵀū‖MAX ‖z̄

ᵀ‖MAX = Op(n
1/2T−1).

By Assumption A.10(ii), we have

E ‖βᵀUZᵀ‖2MAX ≤K
d∑
l=1

p∑
j=1

E

(
T∑
s=1

n∑
k=1

zlsuksβkj

)2

= Op(nT ),

and hence ∥∥βᵀŪ Z̄ᵀ
∥∥

MAX
≤ ‖βᵀUZᵀ‖MAX + T ‖βᵀūz̄ᵀ‖MAX = Op(n

1/2T 1/2).

Therefore, we obtain∥∥∥V̂ V̄ ᵀβᵀŪ Z̄ᵀ
∥∥∥

MAX
≤ K

∥∥∥V̂ V̄ ᵀ
∥∥∥

MAX

∥∥βᵀŪ Z̄ᵀ
∥∥

MAX
= Op(n

1/2T 3/2).

(iii) Finally, we note that∥∥∥V̂ ŪᵀŪ Z̄ᵀ
∥∥∥

MAX
≤
∥∥∥(V̂ −HV̄ )ŪᵀŪ Z̄ᵀ

∥∥∥
MAX

+
∥∥HV̄ ŪᵀŪ Z̄ᵀ

∥∥
MAX

.

35



On the one hand, using the same argument as in the proof of (IV.17) and
∥∥Z̄∥∥ = Op(T

1/2), we obtain∥∥∥(V̂ −HV̄ )ŪᵀŪ Z̄ᵀ
∥∥∥

MAX
= Op(T

2 + nT ). (IV.21)

On the other hand, we have ∥∥Ū Z̄ᵀ
∥∥

F
≤ ‖UZᵀ‖F + T ‖ūz̄ᵀ‖F .

By Assumption A.10(i):

E ‖UZᵀ‖2F ≤ K
d∑
i=1

n∑
j=1

E

(
T∑
t=1

zitujt

)2

= Op(nT ).

Also, by Assumption A.8 and Equation (V.27),

‖z̄‖F ≤ p
1/2 ‖z̄‖MAX = Op(T

−1/2), ‖ū‖F = Op(n
1/2T−1/2),

so that T ‖ūz̄ᵀ‖F = Op(n
1/2), hence we obtain∥∥Ū Z̄ᵀ

∥∥
F

= Op(n
1/2T 1/2). (IV.22)

Combined with (IV.18), we have∥∥HV̄ ŪᵀŪ Z̄ᵀ
∥∥

MAX
≤ K ‖H‖MAX

∥∥Ū V̄ ᵀ
∥∥

F

∥∥Ū Z̄ᵀ
∥∥

F
= Op(nT ).

Therefore, we obtain ∥∥∥V̂ ŪᵀŪ Z̄ᵀ
∥∥∥

MAX
= Op

(
T 2 + nT

)
.

Combining (i), (ii), and (iii), we have

T−1
∥∥∥(HV̄ − V̂ ) Z̄ᵀ

∥∥∥
MAX

= Op(n
−1 + T−1).

For (c), by Lemma 2, Assumptions A.5 and A.8,∥∥∥Z̄V̄ ᵀHᵀ(V̂ V̂ ᵀ)−1
∥∥∥

MAX
=
∥∥T−1Z̄V̄ ᵀHᵀ

∥∥
MAX

≤
∥∥T−1ZV ᵀHᵀ

∥∥
MAX

+ ‖z̄v̄ᵀHᵀ‖MAX = Op(T
−1/2).

Lemma 6. Under Assumptions A.2, A.4, A.5, A.6, A.7, A.8, A.9, I.1, I.2, I.3, and p̂ = p, we have

(a) n−1 ‖ιᵀnū‖MAX = Op

(
n−1/2T−1/2

)
.

(b) n−1
∥∥∥ιᵀn(β − β̂H)

∥∥∥
MAX

= Op
(
n−1 + T−1

)
.
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(c)
∥∥∥n−1ιᵀn(β − β̂H)v̄

∥∥∥
MAX

= Op(n
−1T−1/2 + T−3/2).

Proof. To show (a), we note that by Assumption I.3(ii),

E ‖ιᵀnUιT ‖
2 ≤

T∑
s=1

T∑
s′=1

n∑
i=1

n∑
i′=1

|σii′,ss′ | ≤ KnT, (IV.23)

so that

n−1 ‖ιᵀnū‖MAX = n−1T−1 ‖ιᵀnUιT ‖MAX = Op

(
n−1/2T−1/2

)
.

To show (b), we start from the following decomposition:

n−1ιᵀn(β − β̂H) =− n−1T−1
(
ιᵀnβH

−1(HV̄ − V̂ )V̂ ᵀH + ιᵀnŪ
(
V̂ ᵀ − V̄ ᵀHᵀ

)
H + ιᵀnŪ V̄

ᵀHᵀH
)
.

(i) By Assumption I.2, n−1 ‖ιᵀnβ‖∞ = Op(1). By Lemmas 1, 2, and 3, we have

n−1T−1
∥∥∥ιᵀnβH−1(HV̄ − V̂ )V̂ ᵀH

∥∥∥
MAX

≤n−1T−1
∥∥∥ιᵀnβH−1(HV̄ − V̂ )

(
V̂ ᵀ − V̄ ᵀHᵀ

)
H
∥∥∥

MAX
+ n−1T−1

∥∥∥ιᵀnβH−1(HV̄ − V̂ )V̄ ᵀHᵀH
∥∥∥

MAX

≤Kn−1T−1 ‖ιᵀnβ‖∞
∥∥H−1

∥∥
MAX

‖H‖MAX

∥∥∥V̂ −HV̄ ∥∥∥2

F

+Kn−1T−1 ‖ιᵀnβ‖∞
∥∥H−1

∥∥
MAX

∥∥∥(HV̄ − V̂ ) V̄ ᵀ
∥∥∥

MAX
‖H‖2MAX

=Op(n
−1 + T−1).

(ii) We note that ∥∥ιᵀnŪ∥∥F
≤ ‖ιᵀnU‖F +

∥∥ιᵀnūιᵀT∥∥F
,

and that by Assumption I.3(i),

E ‖ιᵀnU‖
2
F = E

T∑
t=1

(
n∑
i=1

uit

)2

≤ K
T∑
t=1

n∑
i=1

n∑
i′=1

|σii′,t| ≤ KnT,

and that by Assumption I.3(ii) again,

E
∥∥ιᵀnūιᵀT∥∥2

F
≤ KT−1

n∑
i=1

n∑
i′=1

T∑
t=1

T∑
t′=1

|σii′,tt′ | ≤ Kn,

so that by Lemma 1 again, we obtain

n−1T−1
∥∥∥ιᵀnŪ (V̂ ᵀ − V̄ ᵀHᵀ

)
H
∥∥∥

MAX
≤ n−1T−1

∥∥ιᵀnŪ∥∥F

∥∥∥V̂ ᵀ − V̄ ᵀHᵀ
∥∥∥

F
‖H‖F

= Op(n
−1 + n−1/2T−1/2).
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(iii) By Assumption I.3(iii), we have

‖ιᵀnUV ᵀ‖MAX = Op

(
n1/2T 1/2

)
. (IV.24)

Moreover, it follows from (IV.23) that

‖ιᵀnUιT v̄ᵀ‖MAX ≤ ‖ι
ᵀ
nUιT ‖ ‖v̄‖MAX = Op(n

1/2), (IV.25)

and hence that∥∥ιᵀnŪ V̄ ᵀ
∥∥

MAX
=
∥∥ιᵀnUV̄ ᵀ

∥∥
MAX

≤ ‖ιᵀnUV ᵀ‖MAX + ‖ιᵀnUιT v̄ᵀ‖MAX = Op(n
1/2T 1/2).

Therefore, we have

n−1T−1
∥∥ιᵀnŪ V̄ ᵀHᵀH

∥∥
MAX

= Op(n
−1/2T−1/2).

Combining (i), (ii), and (iii) leads to (b).

To show (c), by Assumption A.5 and Lemma 6(b), we have

n−1
∥∥∥ιᵀn(β − β̂H)v̄

∥∥∥
MAX

≤ Kn−1
∥∥∥ιᵀn(β − β̂H)

∥∥∥
MAX

‖v̄‖MAX = Op(n
−1T−1/2 + T−3/2),

which concludes the proof.

Lemma 7. Under Assumptions A.2, A.4, A.5, A.6, A.7, A.8, A.9, I.1, and p̂ = p, we have

n−1
∥∥∥(β̂ − βH−1)ᵀα

∥∥∥
MAX

= Op(n
−1 + n−1/2T−1/2).

Proof. Note that

n−1αᵀ(β̂ − βH−1) =− n−1αᵀ(β − β̂H)H−1

=n−1T−1
(
αᵀβH−1(HV̄ − V̂ )V̂ ᵀ + αᵀŪ

(
V̂ ᵀ − V̄ ᵀHᵀ

)
+ αᵀŪ V̄ ᵀHᵀ

)
.

Since α is i.i.d., and α and β are independent, we have

E ‖αᵀβ‖2F = E

p∑
k=1

 n∑
j=1

αjβjk

2

≤ KE ‖β‖2F ≤ Kn,

and by (IV.19), we obtain

n−1T−1
∥∥∥αᵀβH−1(HV̄ − V̂ )V̂ ᵀ

∥∥∥
MAX

≤Kn−1T−1 ‖αᵀβ‖F
∥∥H−1

∥∥
MAX

∥∥∥(HV̄ − V̂ )V̂ ᵀ
∥∥∥

MAX

=Op(n
−3/2 + n−1/2T−1).
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Moreover, by Assumption I.1, we have

E ‖αᵀU‖2F =E

T∑
t=1

(
n∑
k=1

αkukt

)2

≤
T∑
t=1

n∑
k=1

Eα2
kEu

2
kt ≤ KnT,

E ‖α‖2F ≤E

n∑
k=1

α2
k ≤ Kn.

Therefore, we obtain ∥∥αᵀūιᵀT
∥∥

F
≤‖α‖F ‖ū‖F ‖ιT ‖F = Op(n).

These imply that

n−1T−1
∥∥∥αᵀŪ

(
V̂ ᵀ − V̄ ᵀHᵀ

)∥∥∥
MAX

≤n−1T−1
(
‖αᵀU‖F +

∥∥αᵀūιᵀT
∥∥

F

) ∥∥∥V̂ ᵀ − V̄ ᵀHᵀ
∥∥∥

F

=Op(n
−1 + n−1/2T−1/2).

Finally, by Assumption A.9(i), we have

E ‖αᵀUV ᵀ‖2F =
n∑
j=1

E(α2
j )

p∑
i=1

E

(
T∑
t=1

ujtvit

)2

≤ KnT.

Using the fact that

T ‖αᵀūv̄ᵀ‖F ≤T ‖α‖F ‖ū‖F ‖v̄‖F = Op(n),

we obtain

n−1T−1
∥∥αᵀŪ V̄ ᵀHᵀ

∥∥
MAX

≤ n−1T−1 (‖αᵀUV ᵀ‖F + T ‖αᵀūv̄ᵀ‖F) ‖H‖MAX = Op(n
−1/2T−1/2).

Lemma 8. Suppose that vt satisfies the exponential-type tail condition. Under Assumptions A.2, A.4,

A.5, A.6, A.7, A.8, A.9, I.1, I.4, I.5, and p̂ = p, we have∥∥∥V̂ −HV̄ ∥∥∥
MAX

= Op

(
n−1/2T 1/4 + T−1/2

)
.

Proof. By (IV.6)

V̂ −HV̄ = n−1T−1Λ̂−1V̂
(
ŪᵀβV̄ + V̄ ᵀβᵀŪ + ŪᵀŪ

)
.

We bound each term on the right-hand side. First, note that by the exponential-tail condition,
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∥∥V̄ ∥∥
MAX

= Op((log T )1/a). Along with (IV.14), we obtain∥∥∥V̂ ŪᵀβV̄
∥∥∥

MAX
≤ K

∥∥∥V̂ Ūᵀβ
∥∥∥

MAX

∥∥V̄ ∥∥
MAX

= Op

(
T (log T )1/a + n1/2T 1/2(log T )1/a

)
.

Next, by Assumption I.5 and Bonferroni and Markov inequalities,

P(max
t≤T
‖βᵀut‖ > x) ≤ T max

t≤T
P(‖βᵀut‖ > x) ≤ Tx−4 max

t≤T
E ‖βᵀut‖4 ≤ KTx−4n2,

which implies that

max
t≤T
‖βᵀut‖ = Op(T

1/4n1/2).

Then by (V.33) and (IV.16), we have
∥∥βᵀūιᵀT∥∥MAX

= ‖βᵀū‖MAX = Op(n
1/2T−1/2), and hence

∥∥∥V̂ V̄ ᵀβᵀŪ
∥∥∥

MAX
≤ K

∥∥∥V̂ V̄ ᵀ
∥∥∥

MAX

(
max
t≤T
‖βᵀut‖+

∥∥βᵀūιᵀT∥∥MAX

)
= Op

(
n1/2T 5/4

)
.

Finally, by Cauchy-Schwartz inequality,

E ‖Uᵀut − E(Uᵀut)‖4F = E

(
T∑
s=1

(uᵀsut − E(uᵀsut))
2

)2

≤ T
T∑
s=1

E(uᵀsut − E(uᵀsut))
4 ≤ Kn2T 2,

therefore, by Bonferroni and Markov inequalities again, we have

P

(
max
t≤T
‖Uᵀut − E(Uᵀut)‖F > x

)
≤ T max

t≤T
P (‖Uᵀut − E(Uᵀut)‖F > x) ≤ KT 3x−4n2,

which implies that

max
t≤T
‖Uᵀut − E(Uᵀut)‖F = Op(n

1/2T 3/4).

Also, by Assumption I.4 and the fact that |ρn,tt′ | ≤ 1, we obtain

max
t≤T
‖E(Uᵀut)‖F = max

t≤T

(
T∑
t′=1

(E(uᵀtut′))
2

)1/2

= nmax
t≤T

(
T∑
s=1

γ2
n,tt′

)1/2

≤ Kn.

Since by (V.27), (IV.20), and (V.49), we have

max
t≤T

∥∥Ūᵀūt
∥∥

F
≤
∥∥Ūᵀū

∥∥
F

+ max
t≤T
‖ιT ‖F ‖ū

ᵀ‖F ‖ut‖F + max
t≤T
‖Uᵀut − E(Uᵀut)‖F + max

t≤T
‖E(Uᵀut)‖F

=Op(n
1/2T 3/4 + n),
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it follows that∥∥∥V̂ ŪᵀŪ
∥∥∥

MAX
≤ K max

t≤T

∥∥∥V̂ Ūᵀūt

∥∥∥ ≤ K ∥∥∥V̂ ∥∥∥
F

max
t≤T

∥∥Ūᵀūt
∥∥

F
= Op(n

1/2T 5/4 + nT 1/2).

This concludes the proof.

V Proofs of Theorems in I

Proof of Theorem I.1. We take two steps to prove it.

Step 1: Since

R̄ᵀR̄− V̄ ᵀβᵀβV̄ = ŪᵀβV̄ + V̄ ᵀβᵀŪ + ŪᵀŪ ,

then by Weyl’s inequality, we have, for 1 ≤ j ≤ p,∣∣λj(R̄ᵀR̄)− λj(V̄ ᵀβᵀβV̄ )
∣∣ ≤ ∥∥ŪᵀŪ

∥∥+
∥∥ŪᵀβV̄

∥∥+
∥∥V̄ ᵀβᵀŪ

∥∥ .
We analyze the terms on the right-hand side one by one.

(i) To begin with, write Γu = (γn,tt′). Note that∥∥ŪᵀŪ − nΓu
∥∥ ≤ ‖UᵀU − nΓu‖F + 2 ‖ιT ūᵀU‖F +

∥∥ιT ūᵀūιᵀT∥∥F
.

By Assumption A.4(ii),

E ‖UᵀU − nΓu‖2F =
T∑
s=1

T∑
t=1

E

 n∑
j=1

(ujsujt − E(ujsujt))

2

≤ KnT 2, (V.26)

and by Assumption A.4(i),

E ‖ū‖2F = T−2E
n∑
i=1

T∑
t=1

T∑
t′=1

uituit′ ≤ nT−2
T∑
t=1

T∑
t′=1

|γn,tt′ | ≤ KnT−1, (V.27)

E ‖U‖2F =
n∑
i=1

T∑
t=1

Eu2
it ≤ n

T∑
t=1

γn,tt ≤ KnT, (V.28)

it follows that

‖ιT ūᵀU‖F ≤ ‖ιT ‖F ‖ū
ᵀ‖F ‖U‖F = Op(nT

1/2),
∥∥ιT ūᵀūιᵀT∥∥F

≤ ‖ιT ‖2F ‖ū
ᵀ‖2F = Op(n),

and hence that ∥∥ŪᵀŪ − nΓu
∥∥ = Op(n

1/2T ) +Op(nT
1/2). (V.29)
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Next, writing ρn,st = γn,st/
√
γn,ssγn,tt, by Assumption A.4(i) and the fact that |ρn,st| ≤ 1,

‖Γu‖2F =

T∑
s=1

T∑
t=1

γ2
n,st =

T∑
s=1

T∑
t=1

γn,ssγn,ttρ
2
n,st

≤K
T∑
s=1

T∑
t=1

|γn,ssγn,tt|1/2|ρn,st| ≤ K
T∑
s=1

T∑
t=1

|γn,st| ≤ KT, (V.30)

so we have n ‖Γu‖ = Op(nT
1/2). Therefore, we obtain∥∥ŪᵀŪ
∥∥ ≤ ∥∥ŪᵀŪ − nΓu

∥∥+ n ‖Γu‖ = Op(nT
1/2) +Op(n

1/2T ). (V.31)

(ii) By Assumption A.7, we have

E ‖Uᵀβ‖2F =E

p∑
j=1

T∑
t=1

(
n∑
i=1

βijuit

)2

≤ KnT, (V.32)

E ‖ūᵀβ‖2F =E

p∑
k=1

(
n∑
i=1

ūiβik

)2

≤ KnT−1, (V.33)

it follows that ∥∥Ūᵀβ
∥∥

F
≤ ‖Uᵀβ‖F + ‖ιT ‖F ‖ū

ᵀβ‖F = Op(n
1/2T 1/2). (V.34)

Also, by Assumption A.5,

T−1
∥∥V̄ V̄ ᵀ

∥∥
MAX

≤
∥∥T−1V V ᵀ − Σv

∥∥
MAX

+ ‖Σv‖MAX + ‖v̄v̄ᵀ‖MAX ≤ K, (V.35)

we have ∥∥V̄ ∥∥ ≤ ∥∥V̄ V̄ ᵀ
∥∥1/2 ≤ K

∥∥V̄ V̄ ᵀ
∥∥1/2

MAX
= Op(T

1/2). (V.36)

Therefore, we have ∥∥V̄ ᵀβᵀŪ
∥∥ =

∥∥ŪᵀβV̄
∥∥ ≤ ∥∥Ūᵀβ

∥∥
F

∥∥V̄ ∥∥ = Op(n
1/2T ).

Combining (i) and (ii), we have for 1 ≤ j ≤ p,

n−1T−1
∣∣λj(R̄ᵀR̄)− λj(V̄ ᵀβᵀβV̄ )

∣∣ = Op(n
−1/2 + T−1/2) = op(1). (V.37)

(iii) Moreover, by Assumption A.6, (V.36), and Weyl’s inequality again,∣∣∣n−1T−1λj(V̄
ᵀβᵀβV̄ )− T−1λj(V̄

ᵀΣβV̄ )
∣∣∣ ≤ ∥∥∥n−1βᵀβ − Σβ

∥∥∥T−1
∥∥V̄ ᵀ

∥∥∥∥V̄ ∥∥ = op(1),
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and combined with Assumption A.5, and the fact that ‖v̄‖ ≤ K ‖v̄‖MAX = Op(T
−1/2),∣∣∣∣T−1λj(V̄

ᵀΣβV̄ )− λj
((

Σβ
)1/2

Σv
(

Σβ
)1/2

)∣∣∣∣
≤
∥∥T−1V̄ V̄ ᵀ − Σv

∥∥∥∥∥Σβ
∥∥∥ ≤ (∥∥T−1V V ᵀ − Σv

∥∥+ ‖v̄v̄ᵀ‖
) ∥∥∥Σβ

∥∥∥ = op(1),

where we also use the fact that the non-zero eigenvalues of V̄ ᵀΣβV̄ are identical to the non-zero eigen-

values of
(
Σβ
)1/2

V̄ V̄ ᵀ
(
Σβ
)1/2

. Therefore, for 1 ≤ j ≤ p,∣∣∣∣n−1T−1λj(R̄
ᵀR̄)− λj

((
Σβ
)1/2

Σv
(

Σβ
)1/2

)∣∣∣∣ = op(1). (V.38)

Step 2: By Assumptions A.5 and A.6, there exists 0 < K1,K2 <∞, such that

K1 < λmin(Σv)λmin(Σβ) ≤ λmin(ΣvΣβ) ≤ λmax(ΣvΣβ) ≤ λmax(Σv)λmax(Σβ) < K2.

Therefore the eigenvalues of (Σβ)1/2Σv(Σβ)1/2 are bounded away from 0 and ∞, we have by (V.38), for

1 ≤ j ≤ p,

K1 < n−1T−1λj(R̄
ᵀR̄) < K2. (V.39)

On the other hand, we can write

R̄R̄ᵀ = β̃V̄ V̄ ᵀβ̃ᵀ + Ū
(
IT − V̄ ᵀ(V̄ V̄ ᵀ)−1V̄

)
Ūᵀ, (V.40)

where β̃ = β+UV̄ ᵀ(V̄ V̄ ᵀ)−1. By (4.3.2a) of Theorem 4.3.1 and (4.3.14) of Corollary 4.3.12 in Horn and

Johnson (2013), for p+ 1 ≤ j ≤ n, we have

λj(R̄R̄
ᵀ) ≤ λj−p

(
Ū(IT − V̄ ᵀ(V̄ V̄ ᵀ)−1V̄ )Ūᵀ)+ λp+1(β̃V̄ V̄ ᵀβ̃) ≤ λj−p(Ū Ūᵀ) ≤ λ1(Ū Ūᵀ).

Moreover, by (V.31), we have

λ1(Ū Ūᵀ) =
∥∥ŪᵀŪ

∥∥ = Op(nT
1/2) +Op(n

1/2T ),

hence for p+ 1 ≤ j ≤ n, there exists some K > 0, such that

n−1T−1λj(R̄
ᵀR̄) ≤ K(n−1/2 + T−1/2). (V.41)

Now we define, for 1 ≤ j ≤ n,

f(j) = n−1T−1λj(R̄
ᵀR̄) + j × φ(n, T ).
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(V.39) and (V.41) together imply that for 1 ≤ j ≤ p,

f(j)− f(p+ 1) =n−1T−1
(
λj(R̄

ᵀR̄)− λp+1(R̄ᵀR̄)
)

+ (j − p− 1)φ(n, T )

>λj

((
Σβ
)1/2

Σv
(

Σβ
)1/2

)
+ op(1) > K,

for some K > 0. This establishes the first statement. Moreover, for p+ 1 < j ≤ n, we have

P(f(j) < f(p+ 1)) = P
(
(j − p− 1)φ(n, T ) < n−1T−1

(
λp+1(R̄ᵀR̄)− λj(R̄ᵀR̄)

))
→ 0.

Therefore, p+ 1 = arg min1≤j≤pmax f(j) holds with probability approaching 1, and hence p̂
p−→ p.

Proof of Theorem I.2. We denote the estimators of V̄ and β based on p̆ as V̆ and β̆ respectively. Consider

the singular value decomposition of n−1/2T−1/2R̄ by scaling (B.10), we have

n−1/2T−1/2ςᵀp+1:p̆R̄ = Λ
1/2
p+1:p̆ξ

ᵀ
p+1:p̆ and n−1/2T−1/2R̄ξp+1:p̆ = ςp+1:p̆Λ

1/2
p+1:p̆, (V.42)

where Λp+1:p̆ is a (p̆−p)×(p̆−p) diagonal matrix with the ith entry on the diagonal being n−1T−1λi(R̄
ᵀR̄),

ξp+1:p̆ = (ξp+1 : ξp+2 : · · · : ξp̆) is T × (p̆− p), and ςp+1:p̆ = (ςp+1 : ςp+2 : . . . : ςp̆) is n× (p̆− p). It is also

easy to observe that

V̆ ᵀ =
(
V̂ ᵀ : T 1/2ξp+1:p̆

)
, β̆ =

(
β̂ : n1/2ςp+1:p̆Λ

1/2
p+1:p̆

)
, V̂ ξp+1:p̆ = 0, and ςᵀp+1:p̆β̂ = 0.

By direct calculation, we have

γ̆g − γ̂g = T−1/2n−1/2Ḡξp+1:p̆Λ
−1/2
p+1:p̆ς

ᵀ
p+1:p̆r̄.

First, by Lemma 3(b) and (V.27), we have∥∥∥ςᵀp+1:p̆(β − β̂H)
∥∥∥ = Op(1 + n1/2T−1/2),

∥∥∥ςᵀp+1:p̆ū
∥∥∥ = Op(n

1/2T−1/2),

which, in turn, leads to∥∥∥ςᵀp+1:p̆r̄
∥∥∥ ≤ ∥∥∥ςᵀp+1:p̆(β − β̂H)(γ + v̄)

∥∥∥+
∥∥∥ςᵀp+1:p̆ū

∥∥∥ = Op(1 + n1/2T−1/2).

Second, by Lemmas 1 and 2,∥∥ηV̄ ξp+1:p̆

∥∥ =
∥∥∥η(V̄ −H−1V̂ )ξp+1:p̆

∥∥∥ = Op(1 + n−1/2T 1/2).

Because zt is i.i.d., and that it is independent of ξp+1:p̆, we also have
∥∥Z̄ξp+1:p̆

∥∥
F

= Op(p̆
1/2). This

establishes that ∥∥Ḡξp+1:p̆

∥∥ = Op(1 + p̆1/2 + n−1/2T 1/2).
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Third, it follows from (V.40) that

R̄R̄ᵀ + Ū V̄ ᵀ(V̄ V̄ ᵀ)−1V̄ Ūᵀ = Ū Ūᵀ + β̃V̄ V̄ ᵀβ̃ᵀ,

where β̃ = β + UV̄ ᵀ(V̄ V̄ ᵀ)−1. By (4.3.2a) and (4.3.2b) of Theorem 4.3.1 in Horn and Johnson (2013),

for p+ 1 ≤ j ≤ p̆,

λj+p(Ū Ū
ᵀ) + λn−1(β̃V̄ V̄ ᵀβ̃ᵀ) ≤ λj+p(R̄R̄ᵀ + Ū V̄ ᵀ(V̄ V̄ ᵀ)−1V̄ Ūᵀ) ≤ λj(R̄R̄ᵀ) + λp+1(Ū V̄ ᵀ(V̄ V̄ ᵀ)−1V̄ Ūᵀ).

Since rank(β̃V̄ V̄ ᵀβ̃ᵀ) ≤ p and rank(Ū V̄ ᵀ(V̄ V̄ ᵀ)−1V̄ Ūᵀ) ≤ p, we obtain,

λp̆+p(Ū Ū
ᵀ) ≤ λj+p(Ū Ūᵀ) ≤ λj(R̄R̄ᵀ) ≤ λj−p(Ū Ūᵀ) ≤ λ1(Ū Ūᵀ).

This implies that with probability approaching 1,

λj(R̄R̄
ᵀ) ≥ K(n ∨ T ), p+ 1 ≤ j ≤ p̆,

so that
∥∥∥Λ
−1/2
p+1:p̆

∥∥∥ = Op(n
1/2 ∧ T 1/2).

Combining results of the above three steps, we therefore obtain that∥∥∥T−1/2n−1/2Ḡξp+1:p̆Λ
−1/2
p+1:p̆ς

ᵀ
p+1:p̆r̄

∥∥∥ = op(1),

which concludes the proof.

Proof of Theorem I.3. We summarize the parameters of interest in Γ = (γ0 : (ηγ)ᵀ)ᵀ, and denote

Γ̃ := (γ̃0, γ̃
ᵀ)ᵀ =

(
(ιn : β̂)ᵀ(ιn : β̂)

)−1
(ιn : β̂)ᵀr̄, Γ̂ :=

(
γ̂0

γ̃g

)
:=

(
1 0

0 η̂

)
Γ̃ =

(
γ̃0

η̂γ̃

)
.

Because β̂ and η̂ only rely on R̄ and Ḡ, which do not depend on γ0ιn and α, we can recycle the estimates

derived in Lemmas 1 – 5, despite that the DGP is given by Assumption I.1 instead of Assumption A.1.

We use the following decomposition:

Γ̃−

(
γ0

Hγ

)
=
(

(ιn : β̂)ᵀ(ιn : β̂)
)−1

(ιn : β̂)ᵀ
((
β − β̂H

)
γ + βv̄ + α+ ū

)
=

(
0

Hv̄

)
+

{
1

n

(
ιᵀnιn ιᵀnβ̂

β̂ᵀιn β̂ᵀβ̂

)}−1{
1

n

(
ιᵀnα

H−ᵀβᵀα

)
+

1

n

(
ιᵀnū+ ιᵀn(β − β̂H)γ

H−ᵀβᵀū+H−ᵀβᵀ(β − β̂H)γ

)

+
1

n

(
ιᵀn(β − β̂H)v̄

(β̂ − βH−1)ᵀ(α+ ū) +H−ᵀβᵀ(β − β̂H)v̄ + (β̂ᵀ −H−ᵀβᵀ)(β − β̂H)(γ + v̄)

)}
. (V.43)
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By Lemma 6(b), we have

n−1
∥∥∥ιᵀn(β̂ − βH−1)

∥∥∥
MAX

= Op(n
−1 + T−1).

Therefore, we have

1

n

(
ιᵀnιn ιᵀnβ̂

β̂ᵀιn β̂ᵀβ̂

)
=

1

n

(
ιᵀnιn ιᵀnβH−1

H−ᵀβᵀιn H−ᵀβᵀβH−1

)
+Op(n

−1 + T−1). (V.44)

Using this, and by Lemmas 2, 4, 5, 6, and 7, we have

Γ̂−

(
γ0

ηγ

)
=

(
0

T−1Z̄V̄ ᵀ(Σv)−1γ + ηv̄

)

+

(
1 0

0 η

){
1

n

(
ιᵀnιn ιᵀnβ

βᵀιn βᵀβ

)
+ op(1)

}−1

×

{
1

n

(
ιᵀnα

βᵀα

)
+ op(n

−1/2 + T−1/2)

}
.

Moreover, by Cramér-Wold theorem and Lyapunov’s central limit theorem, we can obtain

n−1/2

(
ιᵀnα

βᵀα

)
L−→ N

((
0

0

)
,

(
1 βᵀ0
β0 Σβ

)
(σα)2

)
, (V.45)

where we use
∥∥n−1βᵀιn − β0

∥∥
MAX

= o(1) and
∥∥n−1βᵀβ − Σβ

∥∥
MAX

= o(1). Also, Assumptions A.6 and

I.2 ensure that (1 − βᵀ0(Σβ)−1β0) and (Σβ − β0β
ᵀ
0) are invertible. Therefore, by the Delta method, we

have

n1/2 (γ̂0 − γ0)
L−→ N

(
0,
(

1− βᵀ0(Σβ)−1β0

)−1
(σα)2

)
,

Similarly, we have

n1/2
(

0 η
){ 1

n

(
ιᵀnιn ιᵀnβ

βᵀιn βᵀβ

)
+ op(1)

}−1

× 1

n

(
ιᵀnα

βᵀα

)
L−→ N (0,Υ) ,

where

Υ = (σα)2η
(

Σβ − β0β
ᵀ
0

)−1
ηᵀ.

By the same asymptotic independence argument as in the proof of Theorem 3 in Bai (2003), we establish

the desired result:

(
T−1Φ + n−1Υ

)−1/2
(γ̃g − ηγ)

L−→ N (0, Id).
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Proof of Theorem I.4. By Assumptions A.5, A.6, and I.2, Lemma 4, (V.33), and (V.45), we have

n−1ιᵀnr̄ = γ0 + βᵀ0γ +Op(n
−1/2 + T−1/2),

n−1r̄ᵀr̄ = γᵀΣβγ + γ2
0 + (σα)2 + γᵀβ0γ0 + βᵀ0γγ0 +Op(n

−1/2 + T−1/2),

it then follows that

n−1r̄ᵀMιn r̄ = n−1r̄ᵀr̄ − (n−1ιᵀnr̄)
2 = γᵀ(Σβ − β0β

ᵀ
0)γ + (σα)2 + op(1).

On the other hand, by Assumption A.5, Lemma 3, (V.27), we have

n−1
∥∥∥Hᵀβ̂ᵀMιn r̄ − βᵀMιn r̄

∥∥∥
MAX

=
∥∥∥(Hᵀβ̂ᵀ − βᵀ)Mιn(α+ βγ + βv̄ + ū)

∥∥∥
MAX

≤n−1
∥∥∥Hᵀβ̂ᵀ − βᵀ

∥∥∥
F
‖α+ βγ + βv̄ + ū‖F = Op(n

−1/2 + T−1/2).

Similarly, we have

n−1βᵀMιn r̄ =
(

Σβ − β0β
ᵀ
0

)
γ + op(1),

n−1βᵀMιnβ = Σβ − β0β
ᵀ
0 + op(1),

therefore, we obtain

(n−1βᵀMιn r̄)
ᵀ (n−1βᵀMιnβ

)−1 (
n−1βᵀMιn r̄

)
= γᵀ

(
Σβ − β0β

ᵀ
0

)
γ + op(1),

which establishes R̂2
v

p−→ R2
v.

By Lemma 2, (IV.11), (B.6) and the fact that ‖η‖MAX ≤ K, we have∥∥∥T−1η̂V̂ V̂ ᵀηᵀ − ηΣvηᵀ
∥∥∥

MAX

≤
∥∥(η̂ − ηH−1)(η̂ − ηH−1)ᵀ

∥∥
MAX

+
∥∥(η̂ − ηH−1)H−ᵀηᵀ

∥∥
MAX

+
∥∥ηH−1(η̂ − ηH−1)ᵀ

∥∥
MAX

+
∥∥η(H−1H−ᵀ − Σv)ηᵀ

∥∥
MAX

=Op(n
−1/2 + T−1/2).

Also, by Assumptions A.5, A.8, and A.11, we have

T−1ḠḠᵀ = T−1(ηV̄ + Z̄)(ηV̄ + Z̄)ᵀ
p−→ ηΣvηᵀ + Σz,

hence it follows that R̂2
g

p−→ R2
g.

Proof of Theorem I.5. For any 1 ≤ t ≤ T , we have

ĝt − ηvt = (η̂ − ηH−1)(v̂t −Hv̄t) + (η̂ − ηH−1)Hv̄t + ηH−1(v̂t −Hv̄t)− ηv̄ (V.46)
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By (IV.6), we have

v̂t −Hv̄t =n−1T−1Λ̂−1(V̂ −HV̄ )
(
Ūᵀβv̄t + Ūᵀūt

)
+ n−1T−1Λ̂−1

(
HV̄ Ūᵀβv̄t +HV̄ Ūᵀūt

)
+ n−1T−1Λ̂−1V̂ V̄ ᵀβᵀūt. (V.47)

By Assumption I.6, we have ‖βᵀut‖ = Op(n
1/2), so that using (V.33),

‖βᵀūt‖F ≤ ‖β
ᵀut‖F + ‖βᵀū‖F = Op(n

1/2). (V.48)

By Assumption A.4(i), Assumptions I.4 and I.5, using the fact that |ρn,st| ≤ 1, we have

E ‖Uᵀut‖2F =E

T∑
s=1

(
nγn,st +

n∑
k=1

(uksukt − E(uksukt))

)2

≤Kn2
T∑
s=1

γ2
n,st +KnT ≤ n2

T∑
s=1

|γn,st|+KnT = Kn2 +KnT,

E ‖ut‖2F ≤
n∑
k=1

Eu2
kt ≤

n∑
k=1

|σkk′ | ≤ K. (V.49)

Then from (V.27) and (IV.20), it follows that∥∥Ūᵀūt
∥∥

F
≤
∥∥Ūᵀū

∥∥
F

+ ‖Uᵀut‖F + ‖ιT ‖F ‖ū
ᵀ‖F ‖ut‖F = Op(n+ n1/2T 1/2).

The above estimates, along with (V.34), Lemma 1, and ‖v̄t‖ = Op(1), lead to∥∥∥n−1T−1Λ̂−1(V̂ −HV̄ )
(
Ūᵀβv̄t + Ūᵀūt

)∥∥∥
MAX

≤n−1T−1
∥∥∥Λ̂−1

∥∥∥
MAX

∥∥∥V̂ −HV̄ ∥∥∥
F

(∥∥Ūᵀβ
∥∥

F
‖v̄t‖+

∥∥Ūᵀūt
∥∥

F

)
= Op(n

−1 + T−1).

Moreover, it follows from (V.27), (IV.13), and (IV.18) that∥∥∥n−1T−1Λ̂−1
(
HV̄ Ūᵀβv̄t +HV̄ Ūᵀūt

)∥∥∥
MAX

≤Kn−1T−1
∥∥∥Λ̂−1

∥∥∥
MAX

‖H‖
(∥∥V̄ Ūᵀβ

∥∥
MAX

‖v̄t‖+
∥∥V̄ Ūᵀ

∥∥
F

(‖ut‖F + ‖u‖F)
)

=Op(n
−1/2T−1/2 + T−1).

We thereby focus on the remaining term, which by Lemma 1, (V.36) and (V.48), satisfies

n−1T−1
∥∥∥Λ̂−1V̂ V̄ ᵀβᵀūt

∥∥∥
MAX

≤ Kn−1T−1
∥∥∥Λ̂−1

∥∥∥
MAX

∥∥∥V̂ ∥∥∥
F

∥∥V̄ ᵀ
∥∥

F
‖βᵀūt‖MAX = Op(n

−1/2).

Therefore, we have

‖v̂t −Hv̄t‖MAX = Op(n
−1/2 + T−1). (V.50)
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Then by (V.46), (V.47), and (B.5), we have∥∥∥ĝt − ηvt − (T−1Z̄V̄ ᵀHᵀHvt + n−1T−1ηH−1Λ̂−1V̂ V̄ ᵀβᵀut − ηv̄
)∥∥∥

MAX
= op(n

−1/2 + T−1/2).

Next, we note that by Assumption A.11 and Lemma 2,

T 1/2

(
T−1vec

(
Z̄V̄ ᵀHᵀHvt

)
ηv̄

)
= T 1/2

(
(vᵀtH

ᵀH ⊗ Id)vec(Z̄V̄ ᵀ)

ηv̄

)
L−→N

(
0,

( (
vᵀt (Σv)−1 ⊗ Id

)
Π11

(
(Σv)−1 vt ⊗ Id

) (
vᵀt (Σv)−1 ⊗ Id

)
Π12η

ᵀ

· ηΠ22η
ᵀ

))
.

By (B.2) and Assumptions A.6 and I.6, we have

n−1/2T−1ηH−1Λ̂−1V̂ V̄ ᵀβᵀut =n1/2η(βᵀβ)−1βᵀut
L−→ N

(
0, η

(
Σβ
)−1

Ωt

(
Σβ
)−1

ηᵀ
)
.

The desired result follows from the same asymptotic independence argument as in Bai (2003).

Proof of Theorem I.6. To prove the consistency of Φ̂, without loss of generality, we focus on the case of

Π12, and show that

(γ̃ᵀ ⊗ Id) Π̂12η̂
ᵀ p−→

(
γᵀ (Σv)−1 ⊗ Id

)
Π12η

ᵀ. (V.51)

The proof for the other two terms in Φ̂ is similar and hence is omitted.

Note that by (IV.19), Lemma 2, Lemma 3(a), and Assumption A.5, we have∥∥∥T−1H−1V̂ V̂ ᵀH−ᵀ − Σv
∥∥∥

MAX

=
∥∥∥T−1H−1(V̂ −HV̄ )V̂ ᵀH−ᵀ + T−1V̄ (V̂ ᵀ − V̄ ᵀHᵀ)H−ᵀ + T−1V V ᵀ − Σv − v̄v̄ᵀ

∥∥∥
MAX

=Op(n
−1 + T−1/2).

By (B.6), Lemma 2, and the proof of Theorem 1, we have

‖η̂H − η‖MAX = Op(n
−1 + T−1/2),

∥∥H−1γ̃ − γ
∥∥

MAX
= Op(n

−1/2 + T−1/2). (V.52)

Therefore, to prove (V.51), we only need to show that

Π̃12 := (H−1 ⊗ Id)Π̂12H
−ᵀ p−→ Π12, (V.53)

with which, and by the continuous mapping theorem, we have(
γ̃ᵀ
(

Σ̂v
)−1
⊗ Id

)
Π̂12η̂

ᵀ =

(
(H−1γ̃)ᵀ

(
H−1Σ̂vH−ᵀ

)−1
⊗ Id

)
(H−1 ⊗ Id)Π̂12H

−ᵀ(η̂H)ᵀ

p−→
(
γᵀ (Σv)−1 ⊗ Id

)
Π12η

ᵀ.
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Writing Ṽ = H−1V̂ , we have

Π̃12,(i−1)d+j,i′ = vec(eje
ᵀ
i )

ᵀ(H−1 ⊗ Id)Π̂12H
−ᵀei′ = vec(eje

ᵀ
iH
−1)ᵀΠ̂12H

−ᵀei′ = T−1
T∑
t=1

T∑
s=1

ẑjtṽitQtsṽi′s,

where Qst =
(

1− |s−t|q+1

)
1|s−t|≤q.

In fact, to show (V.53), by Lemma 2 we only need to prove for any fixed 1 ≤ i, i′ ≤ p, and

1 ≤ j, j′ ≤ d,

Π̃12,(i−1)d+j,i′ − T−1
T∑
t=1

T∑
s=1

zjtvitQtsvi′s
p−→ 0, (V.54)

since by the identical proof of Theorem 2 in Newey and West (1987), we have

T−1
T∑
t=1

T∑
s=1

zjtvitQtsvi′s −Π12,(i−1)d+j,i′
p−→ 0.

Note that

the left-hand side of (V.54)

=T−1
T∑
t=1

T∑
s=1

{
(ẑjt − zjt)(ṽit − vit)Qts(ṽi′s − vi′s) + (ẑjt − zjt)(ṽit − vit)Qtsvi′s

+ (ẑjt − zjt)vitQtsṽi′s + zjt(ṽit − vit)Qtsṽi′s + zjtṽitQts(ṽi′s − vi′s)
}
.

We analyze these terms one by one. Since we have

Ẑ − Z̄ = ηV̄ − η̂V̂ = (ηH−1 − η̂)HV̄ − (η̂ − ηH−1)(V̂ −HV̄ )− ηH−1(V̂ −HV̄ ), (V.55)

it follows from (B.6), (IV.7), and Lemmas 1 and 2 that

T−1
∥∥∥Ẑ − Z̄∥∥∥

F

≤KT−1
(∥∥ηH−1 − η̂

∥∥
MAX

‖H‖
∥∥V̄ ∥∥

F
+
∥∥η̂ − ηH−1

∥∥
F

∥∥∥V̂ −HV̄ ∥∥∥
F

+
∥∥ηH−1

∥∥∥∥∥V̂ −HV̄ ∥∥∥
F

)
=Op(n

−1/2T−1/2 + T−1).

Moreover, by Lemma 8, Assumption I.5, (V.55), and (V.52), we have∥∥∥Ẑ − Z̄∥∥∥
MAX

≤
∥∥ηH−1 − η̂

∥∥
MAX

‖H‖
∥∥V̄ ∥∥

MAX
+
∥∥η̂ − ηH−1

∥∥
MAX

∥∥∥V̂ −HV̄ ∥∥∥
MAX

+
∥∥ηH−1

∥∥∥∥∥V̂ −HV̄ ∥∥∥
MAX

=Op((log T )1/aT−1/2 + n−1/2T 1/4).
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By Cauchy-Schwartz inequality, Lemmas 1, 8, and using the fact that |Qts| ≤ 1|t−s|≤q and
∥∥v̄ιᵀT∥∥F

=

‖v̄‖F
∥∥ιᵀT∥∥F

≤ KT 1/2 ‖v̄‖MAX = Op(1), we have∣∣∣∣∣T−1
T∑
t=1

T∑
s=1

(ẑjt − zjt)(ṽit − vit)Qts(ṽi′s − vi′s)

∣∣∣∣∣
≤KqT−1

(∥∥∥Ṽ − V̄ ∥∥∥
MAX

+
∥∥v̄ιᵀT∥∥MAX

)(∥∥∥Ṽ − V̄ ∥∥∥
F

+
∥∥v̄ιᵀT∥∥F

)(∥∥∥Ẑ − Z̄∥∥∥
F

+
∥∥z̄ιᵀT∥∥F

)
=Op

(
q(T−1 + n−1)(T 1/4n−1/2 + T−1)

)
.

Similarly, because of
∥∥∥Ṽ ∥∥∥

F
= Op(T

1/2) implied by (IV.8), ‖Z‖MAX = Op((log T )1/a) by Assumption I.5

and Lemma 2, and by Assumptions A.5 and A.8, we have∣∣∣∣∣T−1
T∑
t=1

T∑
s=1

(ẑjt − zjt)(ṽit − vit)Qtsvi′s

∣∣∣∣∣
≤KqT−1 ‖V ‖MAX

(∥∥∥Ṽ − V̄ ∥∥∥
F

+
∥∥v̄ιᵀT∥∥F

)(∥∥∥Ẑ − Z̄∥∥∥
F

+
∥∥z̄ιᵀT∥∥F

)
= Op

(
q(log T )1/a(n−1 + T−1)

)
,∣∣∣∣∣T−1

T∑
t=1

T∑
s=1

(ẑjt − zjt)vitQtsṽi′s

∣∣∣∣∣
≤KqT−1 ‖V ‖MAX

∥∥∥Ṽ ∥∥∥
F

(∥∥∥Ẑ − Z̄∥∥∥
F

+
∥∥z̄ιᵀT∥∥F

)
= Op

(
q(log T )1/a

(
n−1/2 + T−1/2

))
,∣∣∣∣∣T−1

T∑
t=1

T∑
s=1

zjt(ṽit − vit)Qtsṽi′s

∣∣∣∣∣
≤KqT−1 ‖Z‖MAX

∥∥∥Ṽ ∥∥∥
F

(∥∥∥H−1V̂ − V̄
∥∥∥

F
+
∥∥v̄ιᵀT∥∥F

)
= Op

(
q(log T )1/a

(
n−1/2 + T−1/2

))
,∣∣∣∣∣T−1

T∑
t=1

T∑
s=1

zjtṽitQts(ṽi′s − vi′s)

∣∣∣∣∣
≤KqT−1 ‖Z‖MAX

∥∥∥Ṽ ∥∥∥
F

(∥∥∥H−1V̂ − V̄
∥∥∥

F
+
∥∥v̄ιᵀT∥∥F

)
= Op

(
q(log T )1/a

(
n−1/2 + T−1/2

))
.

All the above terms converge to 0, as T, n → ∞, with qT−1/4 + qn−1/4 → 0 and n−3T → 0, which

establishes (V.54).

Finally, to show the consistency of Υ̂, we first note∥∥∥Hᵀ
(

Σ̂β − β̂0β̂
ᵀ
0

)
H −

(
Σβ − β0β

ᵀ
0

)∥∥∥
MAX

≤
∥∥∥HᵀΣ̂βH − Σβ

∥∥∥
MAX

+
∥∥∥Hᵀβ̂0β̂

ᵀ
0H − β0β

ᵀ
0

∥∥∥
MAX

.

By Lemmas 2, 4(b), (e), and Assumption A.6,∥∥∥HᵀΣ̂βH − Σβ
∥∥∥

MAX

≤
∥∥∥n−1Hᵀβ̂ᵀβ̂H − n−1βᵀβ

∥∥∥
MAX

+
∥∥∥n−1βᵀβ − Σβ

∥∥∥
MAX

≤
∥∥∥n−1

(
Hᵀβ̂ᵀ − βᵀ

)
(β̂H − β) + n−1

(
Hᵀβ̂ᵀ − βᵀ

)
β − n−1βᵀ(β − β̂H)

∥∥∥
MAX

+ op(1)

=op(1). (V.56)
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∥∥∥Hᵀβ̂0β̂
ᵀ
0H − β0β

ᵀ
0

∥∥∥
MAX

≤
∥∥∥(Hᵀβ̂0 − β0

)(
β̂ᵀ0H − β

ᵀ
0

)
+ β0

(
β̂ᵀ0H − β

ᵀ
0

)
+
(
Hᵀβ̂0 − β0

)
βᵀ0

∥∥∥
MAX

=op(1),

where we also use Lemma 6(b):∥∥∥Hᵀβ̂0 − β0

∥∥∥
MAX

= n−1
∥∥∥(Hᵀβ̂ᵀ − βᵀ

)
ιn

∥∥∥
MAX

= op(1).

Next, by Lemma 3(b) and (V.52), we have

σ̂α
2 − (σα)2 =n−1

∥∥∥r̄ − ιnγ̃0 − β̂γ̃
∥∥∥2

F
− (σα)2

=n−1
∥∥∥ιn(γ0 − γ̃0) + βγ − β̂γ̃ + βv̄ + ū

∥∥∥2

F
+ n−1 ‖α‖2F − (σα)2

≤n−1 ‖ιn‖2F ‖γ0 − γ̃0‖2F + n−1 ‖β‖2F ‖v̄‖
2
F + n−1 ‖ū‖2F + n−1

∥∥∥(β̂H − β)γ
∥∥∥2

F

+ n−1
∥∥∥(β̂H − β)(H−1γ̃ − γ)

∥∥∥2

F
+ n−1

∥∥β(H−1γ̃ − γ)
∥∥2

F
+ op(1).

Therefore, by (B.6) and the continuous mapping theorem,

σ̂α
2
η̂HH−1

(
Σ̂β − β̂0β̂

ᵀ
0

)−1
H−ᵀHᵀη̂ᵀ

p−→ Υ,

which concludes the proof.

Proof of Theorem I.7. For Ψ̂1t, we can follow exactly the same proof as that of Theorem I.6, since,

similar to (V.52) for γ̃, we have the same estimate for v̂t by (V.50).

As to Ψ̂2t, similarly, we only need to show∥∥∥HᵀΩ̂H − Ω
∥∥∥

MAX
= op(1).

Then by the continuous mapping theorem, along with (V.52) and (V.56), we have

Ψ̂2t = η̂H
(
HᵀΣ̂βH

)−1
HᵀΩ̂tH

(
HᵀΣ̂βH

)−1
Hᵀη̂ᵀ

p−→ Ψ2t.

Note that by Fan et al. (2013), we have∥∥∥Σ̂u − Σu
∥∥∥ = Op(snω

1−h
T ). (V.57)

Then by (V.57) and Lemmas 3(b), 4(b), and using the fact that ‖β‖F = Op(n
1/2) and ‖Σu‖ ≤ ‖Σu‖1 =

Op(sn), writing β̃ = β̂H, we have

1

n
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≤ 1

n
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F
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snω
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,
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which concludes the proof.
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