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Test Assets and Weak Factors

STEFANO GIGLIO, DACHENG XIU, and DAKE ZHANG*

ABSTRACT

We show that two important issues in empirical asset pricing—the presence of weak
factors and the selection of test assets—are deeply connected. Since weak factors are
those to which test assets have limited exposure, an appropriate selection of test as-
sets can improve the strength of factors. Building on this insight, we introduce super-
vised principal component analysis (SPCA), a methodology that iterates supervised
selection, principal-component estimation, and factor projection. It enables risk pre-
mia estimation and factor model diagnosis even when weak factors are present and
not all factors are observed. We establish SPCA’s asymptotic properties and showcase
its empirical applications.

ESTIMATION AND INFERENCE ON FACTOR models are central elements of em-
pirical work in asset pricing. Typically, a researcher starts with a given factor,
for example, an aggregate liquidity factor, motivated by economic theory. The
objective of the researcher is to estimate and test its risk premium. To proceed,
the researcher needs to decide which test assets to use in the estimation. While
the literature has proposed a variety of choices for test assets, little work has
been dedicated to rigorously and systematically investigating how they should
be chosen.

Another issue that the researcher faces is the potential presence of weak fac-
tors. Broadly speaking, the factor of interest to the researcher is one of many
factors that potentially drive returns. Some of these factors may be weak. That
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is, the available test assets have little or no exposure to them. This makes it
difficult to learn about them using the available assets. The presence of the
weak factors also contaminates inference about the entire model as the litera-
ture shows that the presence of a weak factor biases the estimation of the risk
premia of all factors, including the one of interest to the researcher (whether
that factor itself is strong or weak) as well as inference about the model’s pric-
ing ability. To make things worse, a weak factor could be latent, so that we may
not even know it exists in the first place.

In this paper, we document a deep connection between the selection of test
assets and the long-standing problem of weak factors in asset pricing. Ex-
ploiting this connection, we propose a novel methodology, supervised principal
component analysis (SPCA), that serves two purposes. First, it provides a
well-founded basis for the selection of test assets. Second, it leverages the
selection to mitigate the bias in risk premium estimation for the factor of
interest to the researcher, irrespective of its strength and the strength of
(known or unknown) factors in the panel of test asset returns.

The connection we emphasize between weak factors and test assets is that
the strength or weakness of a factor (whether it is observable or latent) should
not be viewed as a property of the factor itself, as is typical in the asset pricing
literature; rather, it should be viewed as a property of the set of test assets
used in the estimation. As an example, a liquidity factor may be weak in a
cross section of portfolios sorted by, say, size and value, but may be strong in
a cross section of assets sorted by characteristics that well capture exposure
to liquidity.

This perspective provides clear guidance on how to choose test assets: select
them in a way that yields a consistent estimate of the risk premium of the
factor chosen by the researcher and that is robust to the presence of observ-
able or latent weak factors among those driving returns. This criterion is
statistical in nature and offers an agnostic selection and estimation technique
that complements alternative selection strategies found in the literature,
where researchers often use strong economic priors or ad hoc methodologies to
determine which test assets to include and which to exclude.

Estimating and testing the risk premium of a factor of interest requires
properly controlling for all other factors relevant to investors (whether they
are observed or latent) to avoid omitted variable bias (see, e.g., Giglio and Xiu
(2021)).1Giglio and Xiu (2021) propose doing so by first estimating a latent fac-
tor model for the stochastic discount factor (SDF) using principal component
analysis (PCA), and then using this model to estimate the risk premium of the
factor of interest. This approach eliminates the need for explicit specification
of all the control factors, but relies on the assumption that all the latent fac-
tors driving the SDF are pervasive (i.e., strong). Our SPCA procedure also uses

1 This is necessary only when the factor of interest is not itself a tradable portfolio (i.e., it is a
nontradable factor, such as a macroeconomic risk). If the factor of interest is itself a portfolio (also
referred to as tradable factor), as in the case of the CAPM, the computation of the risk premium
simply requires computing the average excess return of the portfolio. In practice, most economic
models have predictions about the risk premia of nontradable factors.

 15406261, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jofi.13415 by Y

ale U
niversity, W

iley O
nline L

ibrary on [06/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Test Assets and Weak Factors 261

PCA to extract latent factors while remaining agnostic about the identities of
the control factors. However, it exploits correlations with the factor of interest
as a guiding criterion for selecting a subset of test assets, before applying PCA.
This results in a versatile methodology that remains robust even in scenarios
in which certain factors are omitted, including cases in which these omitted
factors are weak.

Given a factor gt specified ex ante by the researcher, the procedure estimates
its risk premium as follows. We start from a large universe of potential test as-
sets. In a first step of the procedure (selection step), we compute the univariate
correlation of each asset’s return with gt . We select a relatively small portion of
assets, keeping only those with sufficiently high correlation (in absolute value);
these are assets that are particularly informative about the factor of interest
gt . We then compute the first principal component of the returns of these assets
(PCA step), which will be our first estimated latent factor. Next, we remove via
linear projection from both gt and all the returns of the test assets the part
explained by this first latent factor (projection step). We then go back to the
selection step, computing the univariate correlation of the residuals of the fac-
tor and the residuals of the assets from the projection step. We again select
from the universe of test assets a subset for which this correlation is especially
high, and compute the first principal component of these residuals. This pro-
vides our second estimated latent factor. We then further remove (from gt and
the test assets) the part explained by this second estimated factor as well, and
iterate again on the residuals. We repeat this procedure p̂ times, where p̂ is
a tuning parameter that can be determined by some validation step. In the
most desirable scenario, p̂ serves as a desirable estimate of the actual number
of factors, p, in the data. This procedure recovers from the data latent factors
that are informative about the factor of interest gt . Importantly, the fact that
at each iteration only test assets that are sufficiently correlated with the factor
gt are selected ensures that not only strong, but also weak factors (relative to
the entire cross section) are captured by the procedure—contrary to standard
PCA that uses all assets at all steps to extract latent factors. Finally, a time-
series regression of gt on the p̂ latent factors yields a consistent estimator of
the risk premium of gt by linking it to the risk premia of these latent factors.
The latent factors themselves can be thought of as the part of the SDF that is
related to gt and determines its risk premium.

While the supervision of gt aids in the recovery of factors, including weak
ones, this procedure may not retrieve all the factors driving the cross section of
returns (i.e., the entire SDF). It specifically ensures the recovery of factors cor-
related with gt , while uncorrelated factors, particularly if they are weak, may
remain unrecoverable (so it may be true that p̂ < p). Fortunately, but crucially,
the omission of these factors by SPCA does not affect the consistency of the risk
premium estimation for gt , since such factors do not contribute to the pricing
of gt . That said, complete recovery of all factors remains feasible, contingent
on including multiple variables in the target gt and ensuring that each latent
factor has at least one variable in gt with a nonvanishing exposure to it.
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Beyond risk premia estimation, SPCA can also be used to diagnose omitted
factors in a model based on a set of observable factors in gt . Supervised by
gt , SPCA recovers all the latent factors that drive the SDF and correlate
with gt . We prove that SPCA consistently recovers the true SDF if and only
if gt is spanned by all factors that drive the SDF. We apply this result to
diagnose whether gt misses any factors. This diagnosis on gt can be executed
as a simple comparison between the maximal Sharpe ratio achieved by gt
and that achieved by the factors recovered by SPCA. When the latter is
larger than the former, this indicates that gt misses some factor and that the
researcher should seek a better model. In contrast, if the latter is smaller, this
implies that gt contains factors to which the given cross section of test assets
have insufficient exposures. In such a scenario, a richer set of test assets
is needed.

The choice of test assets in the literature mainly follows one of three
approaches. The vast majority of the literature adopts a “standard” set of
portfolios sorted by a few characteristics, such as size and value, following
the seminal work by Fama and French (1993). A second approach employed
in more recent work (e.g., Kozak, Nagel, and Santosh (2020)) expands this
cross section to include portfolios sorted by a much larger set of characteristics
discovered in the last decades, on the order of hundreds of portfolios. Finally,
a third approach, (e.g., Ang et al. (2006)) focuses more closely on the factor
of interest by sorting assets into portfolios by their estimated exposure to
the factor and estimating risk premia using those portfolios expected to be
particularly informative about that factor.

It is useful to contrast the asset selection procedure of SPCA with the three
approaches summarized above. Using a standard, small cross section (like the
size- and value-sorted portfolios) to estimate risk premia has the problem that
except for size and value, which are strong factors in this cross section, many
other factors are weak, in which case these test assets do not contain sufficient
information to identify their risk premia. The second approach may appear on
the surface to address this issue, as a large cross section of test assets are likely
exposed to many potential factors, but if only a few of those assets are exposed
to some factor, whereas most others are not, that factor will be weak. Finally,
the third approach—building targeted portfolios of assets sorted by exposure
to the factor of interest—is affected by the omitted factor problem, since it
considers univariate exposures only; in general, it will fail in a multifactor
context.

In this paper, we derive the asymptotic properties of SPCA in a setting that
allows for weak factors and for test assets with highly correlated risk expo-
sures. The latter scenario potentially involves the same (asymptotically) rank-
deficiency issue as weak factors. We also analyze in this setting alternative
estimators proposed in recent literature, that rely on PCA, Ridge, Lasso, and
partial least squares (PLS). We show that the PCA (and some other variations
of it), Ridge, and PLS are inconsistent in the presence of weak factors, while
the Lasso approach is consistent for estimation of the SDF and risk premia, but
is generally not as efficient as SPCA. In addition, we perform an extensive set
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of simulations to study the performance of SPCA in different scenarios. These
simulations isolate issues in conventional two-pass regressions, facilitating a
clear comparison of SPCA with other estimators. Our findings confirm SPCA’s
robustness to omitted factors and weak factors, as well as measurement error,
which SPCA also tackles.

As expected, a trade-off exists between robustness and efficiency. In scenar-
ios where all factors are strong, the PCA-based approach by Giglio and Xiu
(2021) is consistent and likely to outperform SPCA in terms of efficiency. The
potential efficiency loss associated with SPCA arises from its selective use of
test assets when all of them are in fact informative, or the possibility that it
may not recover all factors driving returns. However, the PCA-based estimator
is biased in the presence of weak factors, a major concern in empirical applica-
tions. We therefore advocate for using SPCA to estimate risk premia due to its
robustness when weak factors may be present: where consistency is compro-
mised, prioritizing efficiency becomes irrelevant.

Finally, we illustrate the use of SPCA for estimating risk premia of a variety
of tradable and nontradable factors proposed in the asset pricing literature,
and for diagnosing observable factor models. Using the large cross section
of test portfolios produced by Chen and Zimmermann (2022) and Hou, Xue,
and Zhang (2020), covering more than 900 and 1,600 portfolios, respectively,
for the period 1976 to 2020, we apply SPCA to estimate factor risk premia
and evaluate its out-of-sample performance. Almost none of the nontradable
factors are priced, except for the intermediary capital factor. We also explore
the robustness of SPCA to the weakness of factors by artificially changing the
set of test assets used in the estimation. For example, we show that SPCA is
able to recover the risk premium for momentum even when momentum assets
are removed from the original set of test assets (and therefore the momentum
factor is weak in the cross section). Moreover, we illustrate empirically how
SPCA can be used to diagnose whether observable factor models are missing
important priced factors.

The problem of weak factors in latent factor models is closely connected to
that of weak factors in observable factor models, which has been widely exam-
ined in the literature. The seminal contribution of Kan and Zhang (1999) shows
that the inference on risk premia estimates from Fama-MacBeth regressions
becomes invalid when a “useless” factor—a factor to which test assets have
zero exposures—is included in the model. Kleibergen (2009) further highlights
the failure of the standard inference, even for strong factors, if betas are rela-
tively small.2 In our paper, we show that the same logic applies in the context
of latent factor models: if some (latent) factors are weak in the cross section,
the PCA estimator will not be able to disentangle them from idiosyncratic
error, leading to biases in the estimated factors and their risk premia.

2 Related literature also include Gospodinov, Kan, and Robotti (2013, 2014). However, Pesaran
and Smith (2019) investigate the impact of factor strength and pricing error on risk premium
estimation and show that the conventional two-pass risk premium estimator converges at a lower
rate as the factors become weaker.

 15406261, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jofi.13415 by Y

ale U
niversity, W

iley O
nline L

ibrary on [06/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



264 The Journal of Finance®

The issue of weak factors is particularly important in empirical work
in asset pricing because most economically motivated factors (e.g., most
macroeconomic factors) do appear to be weak in practice. Moreover, a statisti-
cal problem analogous to weak factors arises when betas are collinear, that is,
some factors are redundant in terms of explaining the variation in expected
returns. This is again a relevant issue in practice due to the existence of
hundreds of factors discovered in the literature, (see, e.g., Harvey, Liu, and
Zhu (2016)), many of which are close cousins and do not add any explanatory
power (Feng, Giglio, and Xiu (2020)). The weak factor problem appears to be
caused by having seemingly more factors than necessary, which is why some
suggest eliminating such factors (Bryzgalova (2015)) or shrinking their risk
premia estimates (Bryzgalova, Huang, and Julliard (2023)) to improve the
estimates for strong factors. We instead argue that the weak factor problem is
fundamentally an issue of test asset selection. Since weaker factors may still
be priced, our solution is to accommodate them using an adapted procedure
with carefully selected test assets.3

Several recent papers propose different methodologies to address weak fac-
tors. Lettau and Pelger (2020) propose an estimator of the SDF in the presence
of weak factors, risk premium PCA (rpPCA), which generalizes PCA with a
penalty term that accounts for expected returns. While this estimator features
desirable properties as explored by Lettau and Pelger (2020), we show that it is
inconsistent for estimating risk premia in the weak-factor setting we consider.4

Anatolyev and Mikusheva (2022) propose a complementary four-split approach
to address weak factors, that is, based on sample-splitting and instrumental
variables. This alternative procedure works well to address the weak factor
bias, though it does not address omitted priced factors or measurement error
in the factors.5

3 It is worth noting that whereas some theories assume that only strong factors can be priced,
in general this is not true for two reasons. First, many theoretical models—for example, the
consumption-CAPM—are silent on what assets are traded in equilibrium, and if markets are in-
complete, it may very well be the case that some priced factors may not be reflected in many of the
assets that are traded. Second, even if investors have access to many assets exposed to a particular
factor, the econometrician may not, making the factor weak for the set of test assets available to
the econometrician.

4 Lettau and Pelger (2020) focus on the case in which factors are extremely weak—so much so
that they are not statistically distinguishable from idiosyncratic noise. In that case, no estima-
tor can be consistent for either risk premia or the SDF. They show that rpPCA does not recover
consistently the SDF, but in simulations it correlates with the SDF more than the SDF estimator
obtained from standard PCA. Rather than focusing on this extreme case of weak factors, our the-
ory covers a range of factor weaknesses, which include from strong to very weak, and which still
permits consistent estimation of factors and risk premia. Formally, we study the case in which
the minimum eigenvalues of the factor component in the covariance matrix of returns diverges
whereas the largest eigenvalue due to the idiosyncratic errors is bounded.

5 Our paper also relates to a growing strand of econometrics literature on weak
factor models. Bai and Ng (2023) show that PCA can recover moderately weak
factors at the cost of efficiency. Bai and Ng (2008) and Huang et al. (2022) propose super-
vised learning methods in the context of factor-based forecasting. Fan, Ke, and Liao (2021) exploit
information from observed proxies to improve the estimation of factor models, and Wan et al.
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Our paper also relates to a literature that explores different methods to form
portfolios to test asset pricing models, like Ahn, Conrad, and Dittmar (2009) or
Bryzgalova, Pelger, and Zhu (2020). These methods are useful in helping build
or expand the initial cross section for SPCA. In this paper, we use the simpler
approach of working with an existing large cross section of portfolios sorted by
firm characteristics, as in Chen and Zimmermann (2022) and Hou, Xue, and
Zhang (2020).

The concept of SPCA originated from a cancer diagnosis technique applied to
DNA microarray data by Bair and Tibshirani (2004), and was later formalized
by Bair et al. (2006) in a prediction framework in which some predictors are
not correlated with the latent factors that drive the outcome of interest. Bair
et al. (2006) suggest a screening step using marginal correlations between
predictors and the outcome variable to select the subset of useful predictors
before applying the standard PCA to this subset.6 They prove the consistency
of this procedure, but rely on a restrictive identification assumption that any
important predictor must also have a substantial marginal correlation with
the outcome. We provide several examples of multivariate factor models in
which this assumption fails. While the screening step of our SPCA procedure is
in similar spirit as theirs (in the sense that their outcome variable is our factor
of interest, and their predictors are our test assets), our projection step and
the subsequent iteration procedure are new, and are introduced specifically to
eliminate the strong identification assumption used in the existing statistics
literature. Moreover, our focus is not on prediction per se, but instead on
parameter inference.

The remainder of the paper is organized as follows. Section I discusses
the SPCA methodology. Section II presents the finite-sample performance of
SPCA via simulations. Section III provides our empirical analysis. Finally,
Section IV concludes.

I. Methodology

To rigorously address the challenge of weak factors, our approach begins
with the specification of a general data-generating process (DGP). We note that
within this population model, the concept of weak factors holds no relevance.
In population, researchers aiming to identify the risk premium of a factor such
as gt would ideally use all available assets for this purpose.

The real-world (finite-sample) scenario, however, diverges from this ideal-
ized population model. In particular, we encounter practical constraints such

(2024) consider moderately weak factors as in Bai and Ng (2023) in this context. Fan and Liao
(2022) propose extracting factors by diversifying away idiosyncratic noise directly. Uematsu and
Yamagata (2022a) adopt a variant of the sparse PCA algorithm proposed in Uematsu et al.
(2019) to estimate a sparsity-induced weak factor model. Uematsu and Yamagata (2022b) provide
inference results in that sparse model. Freyaldenhoven (2019) and Bailey, Kapetanios, and
Pesaran (2021) adopt a similar framework for estimating factor count and strength.

6 The screening approach has also been adopted in contexts such as classification and regres-
sion. See Fan and Fan (2008) and Fan and Lv (2008).
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as a large number of assets (large N), relatively short time spans (small T),
and a significant proportion of assets that are only weakly correlated with the
target variable gt . We characterize this finite-sample context using asymptotic
concepts, formally defining the notion of weak factors. This asymptotic perspec-
tive is useful as it enables us to investigate the issues of weak factors arising
in finite samples with existing estimators and understand the properties of our
proposed solution.

A. Model Setup

We study a standard linear factor model setup. Suppose that an N × 1 vector
of test asset excess returns, rt , follows

rt = βγ + βvt + ut, E(vt ) = E(ut ) = 0 and cov(vt, ut ) = 0, (1)

where β is an N × p matrix of factor exposures, vt is a p × 1 vector of inno-
vations of p factors ft (i.e., vt = ft − μ f , where μ f = E( ft )), and ut is an N × 1
vector of idiosyncratic errors.

We assume that the vector of factor innovations vt is not fully observable.
Specifically, we allow the asset pricing factors ft to be either latent or observ-
able. In the former case, innovations vt are naturally also latent. Even in the
latter case, when a factor ft is observable, its innovation vt is not directly ob-
servable because μ f is an unknown parameter.7

Note that we model risk exposures (β) as constant: we implicitly assume that
the test assets are portfolios sorted so that their factor exposures are modeled
as constant, as in Giglio and Xiu (2021). Alternatively, one could work directly
with individual stocks (which generally have time-varying risk exposure), com-
bining our procedure with the methodologies of Gagliardini, Ossola, and Scail-
let (2016), Kelly, Pruitt, and Su (2019), or Kim, Korajczyk, and Neuhierl (2021)
to account for the time variation in betas.

We situate our discussion within the framework of two standard asset pric-
ing exercises: estimation of risk premia and recovery of the SDF. Given our
model, an SDF can be defined in terms of factors vt as

mt = 1 − γ ᵀ�−1
v vt, (2)

where �v is the covariance matrix of factor innovations (see, e.g., Giglio and
Xiu (2021)). It also makes sense to consider the SDF represented in terms of
the set of tradable test asset returns,

m̃t = 1 − bᵀ(rt − E(rt )), (3)

where b is an N × 1 vector of SDF loadings that satisfies E(rt ) = �b, where �

is the covariance matrix of rt (see, e.g., Kozak, Nagel, and Santosh (2020)). The

7 In Section III.B of the Internet Appendix, we discuss the case in which factors are observable,
and in Section III.C of the Internet Appendix, we discuss the case in which the zero-beta rate
needs to be estimated. The Internet Appendix may be found in the online version of this article.
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Test Assets and Weak Factors 267

relationship between the two SDFs depends on the degree of market complete-
ness. As will be shown later, these two forms of the SDF are asymptotically
equivalent in the asymptotic scheme we consider, with the number of assets N
going to infinity, so that there is no ambiguity with respect to which estimand
we consider.

In addition to the SDF, we are also interested in estimating the risk pre-
mium of one or more observable factors, summarized in d × 1 vector gt . It is
important to emphasize that gt is a proxy for some risks, constructed or other-
wise chosen by the researcher ex ante, not necessarily tradable, and typically
motivated from economic theory. Following Giglio and Xiu (2021), we do not
impose that gt is part of or identical to vt ; instead, we assume that gt and vt
are (potentially) correlated,

gt = ξ + ηvt + zt, (4)

where ξ = E(gt ), η is a d × p matrix, and zt is measurement error orthogo-
nal to vt .8 This model clearly nests the classic linear asset pricing model with
observable factors only, in which case we can set η = Ip and zt = 0. To price
gt , we can simply use the SDF given by (4), as gt ’s risk premium is given by
γg = −cov(gt, mt ) = ηγ .

To characterize the strength of a factor, we need an asymptotic environment
in which weak factors may arise. First, we begin by introducing some useful
notation. We use the notation a � b to denote a ≤ Kb for some constant K > 0;
if a � b and b � a, we write a � b for short; we use similar notation �P and �P
for bounded in probability. In addition, for any matrix A, we use λmin(A) and
λmax(A) to denote its minimum and maximum eigenvalues, and λi(A) is the ith

largest eigenvalue.
The environment in which we study weak factors is quite general and is

characterized by three assumptions. First, we assume that both N and T go
to ∞ (at arbitrary rates, unless we specify otherwise), whereas the number of
factors p is fixed. Letting N go to infinity in addition to T is rather natural
in the asset pricing context, as motivated by Ross’ arbitrage pricing theory
(APT) (Ross (1976)) and given the proliferation of “anomalies” generated by the
empirical literature in recent decades. Second, we assume that the p × p factor
covariance matrix of the factor innovations, �v, is asymptotically nonsingular:
1 � λmin(�v) ≤ λmax(�v) � 1. This assumption is rather weak, as it only rules
out factors whose risks are (asymptotically) negligible or exploding. Finally,
we maintain the assumption that ‖�u‖ � 1, where ‖‖ indicates the spectral
norm of a matrix, so that there exists no factor structure in the residuals ut .
This assumption is widely adopted in the so-called approximate factor models
proposed by Chamberlain and Rothschild (1983).9

8 When gt is nontradable, measurement error could arise as the econometrician is implementing
an empirical counterpart of some theory-predicted factor; when gt is tradable, it captures the
nondiversified errors in the portfolio.

9 We only need ut to be stationary (so that �u is well defined) when we discuss the SDF in Sec-
tion I.C. For risk premia estimation, we instead impose a weaker condition, namely, Assumption
IA4, which plays a similar role as ‖�u‖ � 1.
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We are now ready to characterize the strength of factors as an exclusive
function of test assets’ exposures to the factors, as opposed to a property of the
factors themselves. We formalize here the idea that, for instance, a momen-
tum factor could be a strong factor when the test assets are momentum-sorted
portfolios, but this same factor may be weak when the test assets are portfolios
sorted by size or value: the latter portfolios may diversify away the exposures
to the momentum factor, and therefore may be uninformative about momen-
tum risk.

In the econometrics literature on factor models (e.g., Bai and Ng (2002)),
the setup described in (1) is typically complemented by the assumption that
λi(βᵀβ ) � N for i = 1, 2, . . . , p: all eigenvalues of the matrix βᵀβ grow at rate
N, so that all factors are pervasive. Informally, even as the number of test
assets N is large, a sufficiently large number of assets are well exposed to
each of the risk factors (their β with respect to all factors is nonvanishing for
a large number of assets). Under this assumption, as we see below, standard
PCA works well to recover the latent factors vt .

This is the point of departure of our paper: we study situations in which
this pervasiveness assumption fails with respect to some or even all factors.
Formally, we define the presence of weak factors as the case in which some of
those eigenvalues, λi(βᵀβ ), grow at a slower rate than N (which will be made
more precise later). Intuitively, in this case, while the number of test assets N
is large, many test assets may have small or zero exposures to some or all of
the factors, making those factors weak. The lack of test asset exposures to a
factor makes it more difficult for standard PCA to recover this factor, and in
more extreme cases, PCA fails to recover either the factors or their loadings.
In our setting, the strength or weakness of a factor is not a binary distinction.
Rather, we allow for a continuum of factor strength or weakness, determined
by how large the exposures to the risk factors are (formally, by the asymptotic
behavior of the eigenvalues λi(βᵀβ )).

How important do we expect these weak factors to be in practice? Consider
Figure 4, which provides a scree plot of the eigenvalues of returns from our em-
pirical analysis based on a large cross section of 950 assets. The figure shows
that the first one or two eigenvalues are clearly much larger than the others,
but the absence of clear gaps among the remaining eigenvalues suggests that
several factors beyond the first two may be weak. Despite the large cross sec-
tion, their eigenvalues remain relatively small and difficult to distinguish from
idiosyncratic error.

Our model naturally allows gt to be weak, since the true factors in vt are po-
tentially weak and the observable factors in gt inherit this weakness through
their loading on vt , η. However, as N and T increase, the risk premium associ-
ated with gt , ηγ , may not necessarily converge to zero. This is because neither
the risk exposure of gt to vt , denoted by η, nor the risk premiums of vt , denoted
by γ , necessarily decrease asymptotically. In simpler terms, weak factors in
this model can still have nonzero risk premia as the sample size and the cross-
sectional dimension grow.
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Test Assets and Weak Factors 269

B. Estimating Risk Premia When Factors are Weak

We begin our analysis with risk premia estimation.

B.1. The Benchmark PCA-Based Estimator

Giglio and Xiu (2021) study this problem using a similar setup as in this
paper, except that all factors in vt are assumed to be strong. They propose a
three-step procedure to estimate gt ’s risk premium ηγ : (i) apply PCA to the
sample covariance matrix of returns to obtain estimates of the latent factors,
v̂t ; (ii) use Fama-MacBeth regressions to recover the risk premia of v̂t , γ̂ ; (iii)
use time-series regressions of gt on v̂t to estimate η̂. The product of the esti-
mates at steps 2 and 3 yields η̂γ̂ , the estimate of risk premia. We summarize
this procedure in the following algorithm.

Algorithm 1 (PCA-based Estimator of Risk Premia): The estimator proceeds as
follows:

Inputs: R̄ and Ḡ, the matrices of demeaned returns and demeaned gt , respec-
tively.10

S1. Apply singular-value decomposition (SVD) on R̄, and write the first p
right singular vectors as ξ . The estimated factors are given by V̂ =√

Tξᵀ.
S2. Estimate the risk premia of V̂ by γ̂ = (β̂ᵀβ̂ )−1β̂ᵀr̄, where β̂ =

R̄V̂ᵀ(V̂V̂ᵀ)−1 and r̄ is the vector of average excess returns.
S3. Estimate the factor loading of gt on vt by η̂ = ḠV̂ᵀ(V̂V̂ᵀ)−1.

Outputs: V̂ , η̂, γ̂ , and γ̂ PCA
g = η̂γ̂ .

As discussed in Giglio and Xiu (2021), one interpretation of this estimator
is that it builds a mimicking portfolio for the factor gt by projecting it onto
the first p principal components of the space of returns. A mimicking portfolio
would ideally be built directly using all possible assets. But when N is large,
this can be inefficient or even infeasible (if N > T). The three-step estimator
effectively regularizes the mimicking portfolio problem by using only p portfo-
lios appropriately constructed as basis assets, that is, the principal components
of the returns. Giglio and Xiu (2021) establish the consistency of this estima-
tor and derive its asymptotic inference, in the case that all latent factors are
strong. This procedure also recovers the SDF because it consistently estimates
all latent factors, v̂t (columns of V̂ ), that drive the SDF, along with their SDF
loadings as in (2), �̂−1

v γ̂ .
This estimator is appealing for its simplicity, efficiency, and, importantly,

robustness to missing factors (since the identity of any factors beyond gt does
not need to be specified). Unfortunately, it fails precisely when some latent
factors are weak, which we show next.

10 For any time series of vectors {at}T
t=1, we have ā = 1

T
∑T

t=1 at . In addition, we have āt = at − ā.
We use the capital letter A to denote the matrix (a1, a2, . . . , aT ), and have Ā = A − āι

ᵀ
T .
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To understand this, it is sufficient to consider a one-factor model with p =
d = 1 and �v = 1, in which case the covariance matrix of returns satisfies � =
ββᵀ + �u. This matrix has a noisy low-rank structure in that ββᵀ has rank one,
whereas �u is a full-rank covariance matrix. To make the exposition simple,
we also assume that gt has no measurement error, that is, zt = 0 and gt = ηvt.

As discussed above, the problem of weak factors stems from the fact that
many assets may not have sufficiently strong exposure to the factor of interest,
which hinders construction of its mimicking portfolio, and in turn, estimation
of its risk premium. This intuition also applies when the weak factor is latent
(vt). In this case, the manifestation of the weak factor problem is that PCA will
fail to recover this factor.

Estimation of the latent factors vt via PCA involves recovering the matrix of
risk exposures β from the covariance matrix of realized returns, �̂. A successful
recovery of β via PCA of realized returns therefore requires a favorable signal-
to-noise ratio. If the “signal,” as measured by ‖β‖, dominates the “noise,” which
arises from the idiosyncratic component �u and the estimation error in the
sample covariance matrix �̂ − �, then the first sample eigenvector of �̂ would
(approximately) span the same space spanned by the true β. Thus, using β̂,
effectively the eigenvector of �̂, in the cross-sectional regression step (Step S2
of the estimator) would yield a consistent estimator of the risk premium of
the estimated latent factor and lead in turn to a consistent estimator of the
risk premium of gt . Otherwise, if the signal ‖β‖ is so weak that the estimation
error in β̂ dominates, there would be a nonvanishing angle between the space
spanned by β̂ and that by β. But estimating risk premia requires comparing
the average returns of assets with different betas (e.g., computing the slope in a
cross-sectional regression). “Measurement” error in the betas thereby induces
a bias in the risk premium estimate.

Proposition 1 shows that the PCA-based estimator is consistent only if
N/(‖β‖2 T ) → 0. This condition formalizes our notion of factor weakness. In
a one-factor model, the factor is weak if this condition fails. We generalize this
definition for the case of multiple factors later.

PROPOSITION 1: Suppose that test asset returns follow a single-factor model in
the form of (1) with p = 1, gt satisfies (4) with d = 1, ut and vt are i.i.d. normally
distributed and mutually independent, and zt = 0. In addition, suppose that β

satisfies N/(‖β‖2 T ) → B ≥ 0 and ‖β‖ → ∞. We then have that γ̂ PCA
g

P−→ (1 +
B)−1ηγ .

In the presence of strong factors, ‖β‖ � √
N, which leads to B = 0 as T →

∞, so there is no bias. In general, the consistency depends on the relative
magnitude of N, T , and ‖β‖. When N and T are of the same order, ‖β‖ → ∞
is sufficient for the consistency of risk premia estimation. This makes sense in
that the eigenvalue of returns corresponding to this factor is proportional to
‖β‖2, whereas the eigenvalues for the idiosyncratic errors are bounded, so that
‖β‖ → ∞ guarantees the separation between factors and errors and hence the
identification of factors.
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Test Assets and Weak Factors 271

This example also shows that the risk premium estimator could be biased
even if we have a consistent estimator of the factors. In fact, the estimated
factors in V̂ are consistent under the assumptions of Proposition 1 in the sense
that |corr(V̂ ,V )| P−→ 1.11 However, estimating a large-dimensional vector β

given V̂ remains a challenging problem, which also requires B = 0 for con-
sistency.

Section I of the Internet Appendix studies how several other estimators
perform in a weak-factor setting, including PLS, Ridge regression, and rpPCA.
The analysis there reveals that these estimators exhibit failures that mirror
that of PCA, despite PLS leveraging information from gt for supervision and
rpPCA being specifically designed for weak factors. None of these estima-
tors, therefore, can address the bias originating from the presence of weak
factors.

B.2. Our Solution: SPCA and Test Asset Selection

The results in the previous section shed light on the detrimental influ-
ence of weak factors on the PCA-based estimator (as well as other existing
approaches). As we mention in the introduction, an important difference
compared to prior literature is that we do not view the weakness of a factor
as a property of the factor itself; rather, we see it as a property of the universe
of test assets that are used in the estimation. This leads us to find a potential
solution in modifying the set of test assets. The solution we propose is to screen
test assets and only keep those that have nontrivial exposure to the factor of
interest, gt . Then, if the factor is strong within this smaller set of test assets,
it is possible to apply PCA (or other procedures discussed in the Internet
Appendix) to recover its risk premium. The key idea behind the screening
approach is to remove the uninformative assets, focusing the estimation on the
set of assets whose exposures are large and dominate the estimation error in β.

We formalize the problem by imposing the assumption that there exists a
subset I0 ⊂ 〈N〉12 within which test assets feature a strong factor structure. In
other words, there exists a subset of assets that are sufficiently informative
about latent factors driving test asset returns. To be clear, we do not make any
assumption about the remaining test assets in the complement set of I0—they
may or may not be informative. Such a set is thus not uniquely defined. In this
regard, this assumption is relatively mild.

To see how this assumption helps, note that in the population model of
Proposition 1, the expected excess return of gt ’s mimicking portfolio built only
with test assets in I0 is

cov(gt, rt,[I0] )cov(rt,[I0] )−1E(rt,[I0] ) = η�vβ
ᵀ
[I0](β[I0]�vβ

ᵀ
[I0] + �u,[I0] )−1β[I0]γ ,

11 We can further establish that a sufficient condition for consistent recovery of factors is
N/(‖β‖4 T ) → 0, which clearly holds in the setup of Proposition 1.

12 We use 〈N〉 to denote the set of integers: {1, 2, . . . , N}.
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where rt,[I0] denotes the vector of returns of test assets in I0, and β[I0] is their
corresponding beta.13 It can be shown that

cov(gt, rt,[I0] )cov(rt,[I0] )−1E(rt,[I0] ) = ηγ + O(
∥∥β[I0]

∥∥−2) (5)

(see the proof in a more general setting in Proposition IA4 of the Internet
Appendix). Since test assets in I0 feature a strong factor structure,

∥∥β[I0]
∥∥2 �

|I0| =: N0,14 the approximation error is given by O(N−1
0 ). This result establishes

the fact that in population using a smaller number of sufficiently informative
assets leads to an asymptotically vanishing error in approximating the risk
premium. Moreover, it holds that N0/(

∥∥β[I0]
∥∥2 T ) = O(T−1), that is, factors are

pervasive within this subset. Therefore, as long as we locate a subset that sat-
isfies the properties of I0, we can estimate gt ’s risk premium consistently with
PCA by only using test assets within this subset.

In practice, it is the researcher who decides which test assets to employ in
an empirical study. Assuming that a strong factor structure exists at least
within a subset of test assets seems practical and plausible. That said, this
assumption does rule out the case in which exposures to a factor are uniformly
small for all test assets. In this scenario, there is no guarantee that SPCA can
recover this factor, a limitation shared with other estimators.

Unfortunately, we do not know ex ante such a set, that is, which assets are
informative about the latent factor vt . Rather than using all assets, the idea
of SPCA revolves around selecting the most informative assets based on their
covariances with gt . In the DGP of Proposition 1, the group of assets exhibiting
high covariances with gt comprises those with large magnitudes of β ’s. Screen-
ing via correlation therefore selects a subset of assets satisfying the desirable
properties of I0.

Our proposed screening strategy echoes some of the practice in the empirical
asset pricing literature. Very often, test assets are formulated using the exact
characteristics-sorted portfolios that the factor of interest is generated from.
For instance, Fama and French (1993) use size and value double-sorted portfo-
lios as test assets when estimating a factor model that includes size and value
as factors. In other cases, for nontradable factors, portfolios are sorted based
on individual stock betas with respect to the factor of interest.

These choices are seldom justified formally, and are often valid only in very
special cases. For example, building portfolios by sorting stocks on beta with
respect to gt may inadvertently incorporate compensation for other correlated
risks, introducing a bias when omitted factors exist in the asset pricing model
that is used to calculate the betas, not to mention the issue of propagation of
errors that arise in the estimation of the beta. Similarly, using Fama-French
portfolios as test assets assumes implicitly that they span the investment
universe. This assumption contradicts the recent asset pricing literature,
from which numerous factors or anomalies emerge. While our methodology

13 We use A[I] to denote a submatrix of A whose rows are indexed in I.
14 For an index set I ⊂ 〈N〉, we use |I| to denote its cardinality.
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Test Assets and Weak Factors 273

formalizes the insight behind these traditional procedures, the fundamental
motivation behind our approach is to circumvent the adoption of arbitrary
priors when selecting assets.

We next formally present our SPCA procedure in the simple one-factor
setting as discussed in the previous proposition, which helps illustrate the
intuition behind our proposal and facilitates the comparison with existing
estimators (the next section is devoted to the general case).

Algorithm 2 (SPCA-Based Estimator of Risk Premia for a Single-Factor Model
(p = 1)): The procedure is as follows:

Inputs: R̄ and Ḡ, a 1 × T vector.15

S1. Select a subset Î ⊂ 〈N〉: Î =
{
i
∣∣∣T−1|R̄[i]Ḡᵀ| ≥ cq

}
, where cq is the (1 − q)-

quantile of
{
T−1|R̄[i]Ḡᵀ|}i∈〈N〉.

S2. Repeat Steps S1 to S3 of Algorithm 1 with selected return matrix R̄[̂I],
Ḡ, and p = 1.

Outputs: γ̂ SPCA
g := η̂γ̂ , V̂ , η̂, and γ̂ .

SPCA (Algorithm 2) adds the screening step, Step S1, to the PCA-based risk-
premium estimation method of Giglio and Xiu (2021) (Algorithm 1). In this
step, out of the N assets available, only a subset Î is selected, and the three
steps of Algorithm 1 are applied to this subset only.

The selection is operated by computing the absolute value of the covariance
between each of the N assets and the factor gt : (T−1|R̄[i]Ḡᵀ| for each asset i).
Only those assets for which the magnitude of this covariance is large enough
are selected, specifically, the top q% of them. Therefore, SPCA involves a tuning
parameter, q, which plays a crucial role in determining how many assets we
use to extract the factor. Note that the fact that Î incorporates information
from the target, gt , reflects the distinctive nature of a supervised procedure
(hence the name supervised-PCA).

We next prove that SPCA is consistent in the presence of weak factors.

PROPOSITION 2: Suppose that log N/T → 0 and test asset returns follow a
single-factor model in the form of (1) and that gt satisfies (4), with ut, vt, and zt
i.i.d. normally distributed. The loading matrix β satisfies ‖β‖MAX � 1 and there
exists a subset I0 ⊂ 〈N〉 such that

∥∥β[I0]
∥∥ � √

N0 where N0 = |I0| → ∞. Then, for
any choice of q in Algorithm 2 such that qN/N0 → 0,16 qN → ∞, and |β|{qN+1} ≤
(1 + δ)−1|β|{qN}17 for some δ > 0, where |β|{k} denotes the kth largest value in{|β[i]|

}
i∈〈N〉, we have γ̂ SPCA

g
P−→ ηγ .

15 We discuss the case of a multivariate G (a d × T matrix) in Section I.B.4.
16 It may be tempting to use qN/N0

P→ const < 1. However, this is not viable because N0 and I0
are not precisely defined in the assumption

∥∥β[I0]
∥∥ � √

N0. That is, if we replace N0 by N0/2, the
previous assumption still holds but qN/N0 might be greater than one.

17 This technical condition on |β|{qN+1} simply states that the test assets should have (asymp-
totically) distinct risk exposure. It is a rather mild assumption that simplifies the proof.
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To gain a better understanding of the intuition, we delve into some key steps
of the proof, which is detailed in the Internet Appendix. Given a specific choice
of the tuning parameter q, we can identify the population counterpart of Î, de-
noted by I. This set I consists of the qN largest entries of β in terms of their
magnitudes, as specified before Assumption IA7 in the Internet Appendix.18

The proof of Proposition 2 establishes the consistency of the selected set Î
(which contains the top qN test assets with the largest sample covariances
with gt) with respect to I in the following sense: P(Î = I) → 1.

This result is valid for two reasons. First, the estimation error for the (pop-
ulation) covariance with gt for any test asset is of order T−1/2. By applying
the large deviation bound in high-dimensional statistics, we can establish that
the estimation error for covariances between gt and all test assets is uniformly
bounded by (log N)1/2T−1/2. Consequently, to ensure consistent estimation of
all covariances, it is necessary that log N/T → 0.

Second, the condition that there exists I0 such that
∥∥β[I0]

∥∥2 � N0 and
qN/N0 → 0 guarantees the existence of at least qN test assets with nonzero
population covariances with gt . Thus, according to the definition of I, the small-
est population covariance with gt among all test assets in I must be nonzero.
This suggests that

∥∥β[I]
∥∥2 � |I| = qN. Furthermore, since we assume a nonvan-

ishing gap between the (qN)th and (qN + 1)th population covariances, it follows
that the set of test assets with largest population covariances must coincide
with those having the largest sample covariances because the vanishing esti-
mation error is dominated by this nonvanishing gap in the asymptotic context.

Given that the identified set I can function as I0 (since
∥∥β[I]

∥∥2 � |I|), then as
demonstrated in equation (5), we can directly approximate the risk premium
of gt using its mimicking portfolio built on this subset I of test assets. The
consistency of the risk premium estimate thereby follows from the consistency
of Î in the recovery of I.

Propositions 1 and IA1–IA3 show that in the single-factor case, the con-
sistency of PCA, Ridge, PLS, and rpPCA requires B = 0. Suppose ‖β‖2 = Nv,
for some v > 0. Then, B = 0 is equivalent to N1−v/T → 0. The consistency of
SPCA, as shown by Proposition 2, nonetheless, requires only (log N)/T → 0.19

B.3. SPCA in the General Case: Selection and Projection

Propositions 1 and 2 focus on an unrealistic single-factor model since they
are meant to illustrate the failure of PCA due to the presence of a weak factor
as well as the intuition behind our procedure. In general, the DGP of returns

18 It is crucial to distinguish between I and I0. I is uniquely defined for each q that satisfies the
conditions of I0, whereas I0 is a general mathematical abstraction not uniquely defined.

19 Another idea that shares the spirit of SPCA is the scaled-PCA proposed by Huang et al.
(2022), which uses regression coefficients of Ḡ on R̄ to weight R̄ before feeding it into the PCA
procedure. An advantage of the scaled-PCA approach is that it does not involve any tuning param-
eter. Nonetheless, scaled-PCA still assigns weights of 1/

√
T to assets that have zero correlation

with the target variable, whereas our approach assigns zero weight to such assets. As a result, our
procedure only requires log N to be small relative to T , whereas both scaled-PCA and PCA require
N to grow no faster than a certain polynomial rate relative to T .
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Test Assets and Weak Factors 275

is likely driven by more than one factor, with these factors generally having
different strength in any specific cross section of test assets. Note also that
gt could have more than one dimension in the general setup (4). In this sec-
tion, we show how to generalize SPCA to the case in which multiple factors of
heterogeneous strength are present.

To begin, in the same spirit as Proposition 1, we can show that a general
necessary condition for the consistency of PCA in a multifactor model is that

N/(λmin(βᵀβ )T ) → 0. (6)

If this holds, then even the weakest factor among all p factors in (1) is suf-
ficiently strong that it can be recovered by PCA. In this case, the three-pass
estimator of Giglio and Xiu (2021) would properly recover the risk premium of
any factor gt . We therefore define weak factors as those for which test asset ex-
posures fail condition (6). This is a compact formal description of the nonideal
finite-sample environment encountered in practice.20

As in the single-factor case, in the multifactor case condition (6) can fail if one
of the factors is not pervasive. However, in the multifactor case, all factors can
be individually strong and condition (6) still fails because the factors’ exposures
are highly correlated. Consider, for example, a two-factor model in which the
beta matrix has the form

β =
[

β11 β12

β21 β22

]
, (7)

where β11 and β12 are N0 × 1 vectors, β21 and β22 are (N − N0) × 1 vectors, and
N0 is small relative to N. Suppose that β21 = β22. In this setup, we can identify
two groups of test assets. The first is a small group of N0 test assets, with ex-
posures β11 to the first factor and β12 to the second factor. The second is a large
group of (N − N0) assets that have the same exposure to both factors (since
β21 = β22). In this case, we can show that condition (6) can fail: even if each
factor is strong individually, there is a “rank deficiency” issue in the betas. The
reason is that most of the assets (group 2) do not contain information that can
separate the risk premia of the two factors because they are equally exposed
to the two factors. This loss of information turns out to have exactly the same
effect on estimation and inference as the weak factor issue.21 We therefore
need a procedure that consistently estimates risk premia in this case as well.

It is also important to note that in the general case with multiple factors of
potentially different strength, a simple extension of Algorithm 2, operating an
initial screening (Step S1) and then extracting multiple factors via PCA (Step
S2) would not actually work to recover all factors. To see this, take (7) as an

20 Note that rt is related to gt through vt . The loading of gt on vt is a low-dimensional parameter
η specific to each gt , whereas the loading of rt on vt is a high-dimensional vector β independent
of gt . The advantage of formulating the condition in terms of λmin(βᵀβ ) without η guarantees the
applicability of our conclusion across all factors of interest.

21 Formally, we can show that λmin(βᵀβ ) ≤ ‖β11 − β12‖2 /2 � N0. As a result, N/(λmin(βᵀβ )T ) �
N/(N0T ), which does not necessarily converge to zero if N0 and T are small, so that condition (6)
could fail.
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example. Suppose now that β21 
= β22, but β22 = 0, that is, most of the assets
have zero exposure to the second factor. In this case, the first factor is strong
while the second factor is weak.22 Now suppose that η = (1, 1), implying that
the observed factor g is correlated with both factors and, by extension, with
all the test assets. The determination of which assets to exclude via screening
now hinges on the betas of these test assets. If a majority of the selected as-
sets pertain to the second group, the subsequent application of PCA in Step
S2 would only recover the first factor. This would occur if condition (6) fails
for the selected assets. In contrast, if many of the selected assets belong to
the first group, PCA applied to them has the potential to recover both factors.
In this case, the first principal component may capture a linear combination of
both the strong and weak factors. This example demonstrates that even though
screening assets ensures that the first principal component after screening re-
covers one factor (which could be the strong factor, the weak factor or their
mixture on the basis of the original cross section), there is no guarantee that
this procedure can solve the weak factor issue in one shot.

We next provide an example that shows that, in some scenarios screening
can eliminate too many assets, making a strong factor model become weak or
even rank-deficient. Suppose that β has the form

β =
[

β11 β11
0 β22

]
, (8)

where β11 and β22 are N/2 × 1 nonzero vectors satisfying ‖β11‖ � ‖β22‖ � √
N.

Clearly, β is full-rank and both factors are strong. Therefore, a standard
PCA procedure should work smoothly. Suppose in addition that η = (1, 0) (i.e.,
gt = v1t) and that v1t and v2t are uncorrelated. Then, it implies that gt is un-
correlated with the second half of test assets in rt , so only those test assets
within the first half would remain, should screening be applied with gt before
extracting the principal components. In this example, however, the remaining
test assets have perfectly correlated exposures to both factors, so that effec-
tively only one factor, v1t + v2t , is left. This example shows once again that the
one-step supervised procedure (screening once and then applying PCA) may
fail at extracting all factors in a multifactor setting.23

To address the aforementioned issues, we propose a multistep version of
SPCA that iteratively conducts selection and projection. Step S1 of Algorithm 2
described above—valid when there is only one factor—can help identify one
strong factor from a selected subset of test assets. In a nutshell, the multistep
SPCA, described in Algorithm 3 iteratively applies Algorithm 2 to extract a
new factor, with a projection step designed to ensure that each new factor is
orthogonal to the estimated factors in the previous steps, similar to the factors
extracted by the standard PCA.

22 It is easy to show that in this case λmin(βᵀβ ) ≤ ‖β12‖2 � N0.
23 This one-step procedure was originally called supervised PCA, as proposed by Bair et al.

(2006) in the context of prediction. We propose below an iterative version that can cope with a
general multifactor model. We still use the term supervised PCA for this iterative procedure.
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Test Assets and Weak Factors 277

Formally, the algorithm is given as follows.

Algorithm 3 (Selection and Projection): The iterative SPCA procedure for risk
premia estimation is as follows:

Inputs: R̄(1) := R̄, r̄(1) := r̄, and Ḡ(1) := Ḡ, a d × T vector.

S1. For k = 1, 2, . . . iterate the following steps using R̄(k), r̄(k), and Ḡ(k):
a. Select an appropriate subset Îk ⊂ 〈N〉.
b. Repeat Steps S1 to S3 of Algorithm 1 with selected return matrix(

R̄(k)
)

[̂Ik] and Ḡ(k) to extract only the first principle component. Denote

the estimates by V̂(k), η̂(k), γ̂(k).
c. Estimate the exposure of R̄(k) to V̂(k) by β̂(k) = T−1R̄(k)V̂

ᵀ
(k).

d. Obtain R̄(k+1) = R̄(k) − β̂(k)V̂(k), r̄(k+1) = r̄(k) − β̂(k)γ̂(k), and Ḡ(k+1) =
Ḡ(k) − η̂(k)V̂(k).

Stop at k = p̂, where p̂ is chosen based on some proper stopping rule.
S2. Estimate risk premia by γ̂ SPCA

g = ∑p̂
k=1 η̂(k)γ̂(k).

Outputs: γ̂ SPCA
g , η̂ = (η̂ᵀ

(1), . . . , η̂
ᵀ
(p̂) )

ᵀ, γ̂ = (γ̂(1), . . . , γ̂(p̂) )ᵀ, V̂ = (V̂ᵀ
(1), . . . , V̂ᵀ

(p̂) )
ᵀ

and β̂ = (β̂(1), . . . , β̂(p̂) ).

Each iteration k of the procedure recovers one latent factor V̂(k), estimates its
risk premium γ̂(k), and estimates the exposure of gt to that factor, η̂(k). In Step
S1, there is first asset selection (Step S1.a). Next, the three-step estimator of
risk premia of Giglio and Xiu (2021) is applied using the selected assets (Step
S1.b) to recover the kth factor V̂(k) in addition to γ̂(k) and η̂(k), which are specific
to that factor. Then, in Step S1.c, we project the returns of all assets (not just
those selected) on the estimated factor V̂(k), and in Step S1.d we compute the
residuals of this projection for returns and the factor gt itself. Therefore, at the
end of Step S1, we have completely eliminated the effect of the kth factor on
returns and the target factor gt . We then repeat Step S1 again, this time using
the residuals of returns and gt , looking for the next factor. Iteration continues
for p̂ steps. At the end, Step S2 combines the γ̂(k) and the η̂(k) obtained at each
step into an estimator γ̂ SPCA

g for the risk premia of gt .
Algorithm 3 requires an appropriate choice of Îk and a stopping rule. One

choice for Îk is24

Îk =
{
i
∣∣∣T−1

∥∥∥(R̄(k) )[i]Ḡ
ᵀ
(k)

∥∥∥
MAX

≥ c(k)
q

}
,

where c(k)
q is the (1 − q)th-quantile of

{
T−1

∥∥∥(R̄(k) )[i]Ḡ
ᵀ
(k)

∥∥∥
MAX

}
i∈〈N〉

. (9)

24 Using covariance for screening allows us to replace all Ḡ(k) in the definition of Îk and Algo-
rithm 3 by Ḡ, that is, only the projections of R̄(k) and r̄(k) are needed, because this replacement
would not affect the covariance between Ḡ(k) and R̄(k), and in turn, the test assets after screening
and the estimates of η̂(k). We use this fact in the proofs, which simplifies the notation. We can also
use correlation instead of covariance in constructing Îk. While this does not affect the asymptotic
analysis, we find that correlation screening performs slightly better in finite samples.
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Correspondingly, we set the stopping criterion as

c(k)
q < c, for some threshold c. (10)

In other words, we select test assets that have predictive power for at least
one variable in gt and stop when most test assets are uncorrelated with all
variables in gt . With a good choice of tuning parameters, q and c, the iteration
stops as soon as most projected residuals of returns appear uncorrelated with
the projected residuals of gt , which implies that all factors that are correlated
with gt are successfully recovered.

It is helpful to revisit the aforementioned examples and understand how the
new procedure fixes issues with the one-step SPCA. Recall that in example (7),
β22 = 0 and gt = v1t + v2t . As discussed previously, screening will select a sub-
set of q assets that are spread across both groups of assets since they are all
correlated with gt . Consequently, applying PCA to them will identify a factor
that is in general spanned by v1t and v2t . Even if this first step only recov-
ers the strong factor v1t , once we project rt and gt onto this factor following
Algorithm 2, both residuals should depend only on v2t . Subsequently, apply-
ing screening to these residuals again will leave us with only the test assets
within the first group of assets, to which applying PCA can recover v2t . In cases
in which a linear combination of v1t and v2t are recovered in the first step, af-
ter projection the residuals feature a strong factor (again a linear combination
of v1t and v2t but orthogonal to the first linear combination), since the second
group of N − N0 assets have exposure to it. Therefore, a subsequent screening
and PCA suffice to recover this factor.

Similarly, in example (8) the second half of the assets will be eliminated in
the first step when using gt = v1t to screen test assets. The returns for the re-
maining (first half) assets load on v1t + v2t with common loading matrix β11.
Applying PCA to these assets thereby finds (v1t + v2t )/

√
2 as the first factor

(up to a sign, assuming v1t and v2t share the same variance). Following Algo-
rithm 2, we then obtain residuals from projections of rt and gt onto this factor.
It is easy to see that the residuals of the second half of rt and the residuals of gt
both load on a single strong factor (v1t − v2t )/

√
2 but the first half of the resid-

uals are purely idiosyncratic. Applying screening plus PCA will successfully
recover this factor and hence the span of the factor space.

To formally establish the consistency of this estimator, we introduce an as-
sumption akin to the single-factor case. Specifically, we require that a subset of
assets, indexed by I0, satisfies that all factors are strong within this subset. In
other words, λmin(βᵀ

[I0]β[I0] ) � N0, where N0 = |I0| → ∞. Because the number of
factors, p, is finite, such a subset I0 always exists as long as for each factor we
can locate a sufficiently large subset, within which this factor can be extracted
consistently.25 Proposition IA4 establishes that test assets in such a subset
suffice to serve as basis assets, building on which a mimicking portfolio can

25 This assumption is weak in that it does not imply that all factors should have identical
strength with respect to the entire cross section of assets in rt . In addition, different groups of
assets could be exposed to different factors.
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Test Assets and Weak Factors 279

approximate the risk premia of any observable factor. With this identification
assumption, along with moment conditions given in the Internet Appendix, the
following theorem establishes the consistency of the SPCA estimator.

THEOREM 1: Suppose that test asset returns in rt follow (1), the factor proxies in
gt satisfy (4), and that Assumptions IA1 to IA8 hold. If log(NT )(N−1

0 + T−1) →
0, then for any tuning parameters c and q that satisfy

c → 0, c−1(log NT )1/2(q−1/2N−1/2 + T−1/2) → 0, qN/N0 → 0, (11)

we have γ̂ SPCA
g

P−→ ηγ .

The screening step in Algorithm 3 ensures that the selected test assets or
their residuals must encompass one strong factor, as they have high correla-
tions with gt . As the SPCA procedure unfolds, each iteration selects a distinct
subset of test assets. By amalgamating all such subsets, we obtain a subset of
assets within which all factors are potentially strong, given that the number of
factors is finite. However, this procedure may not recover all factors that drive
returns. The number of factors that SPCA can recover depends on the inter-
play between η and β as well as the tuning parameters in a complex manner.26

Some of the factors that SPCA omits might even be strong! Intuitively, only
factors correlated with gt are guaranteed to be recovered. This is the trade-off
that arises for using gt as a supervisory signal.27 Nonetheless, missing any fac-
tors in the SDF that are uncorrelated with gt does not affect the consistency
of the estimate of the risk premia of gt . This holds true because such factors
do not help price gt . Of course, this result will need to be strengthened if the
objective is to recover the entire SDF, a problem we tackle in Section I.C.

The consistency result in Theorem 1 does not rely on Gaussian error as-
sumptions nor on an assumption that all factors have the same strength with
respect to all test assets. The assumption on the relative size of N and T is also
quite flexible, in contrast to existing results on factor models in the literature,
where N cannot grow at a rate exceeding a certain polynomial function of T .

B.4. Asymptotic Inference on Risk Premia

In this section, we develop the asymptotic distribution of the risk premia
estimator from Algorithm 3. Naturally, deriving asymptotic inference requires
stronger assumptions than those required for consistency discussed above. To
consistently estimate the risk premia of gt , one only needs to recover factors
that are correlated with gt . Nonetheless, if SPCA misses factors that are in the
SDF but are not correlated with gt , consistency is maintained but inference is

26 We explicitly characterize this number, denoted by p̃, given in the Internet Appendix following
Assumption IA7.

27 In the context of forecasting, Giglio, Xiu, and Zhang (2023) provide the convergence rate of
the estimated factor space, spanned by the factors that are correlated with the variables used for
supervision in a similar SPCA procedure.
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undermined because the omitted factors may contribute a higher-order error
that invalidates the central limit result.

More specifically, the conditions in Theorem 1 do not guarantee that γ̂ SPCA
g

converges to ηγ at the desirable rate T−1/2. The major obstacle lies in the re-
covery of factors not strongly correlated with gt , which we can explain with the
previous single-factor example.

Recall that we use the sample correlation/covariance between rt and gt to
screen test assets. Condition (11) has two key requirements. First, it requires
that c → 0, allowing the iteration procedure to continue until the selected rt
exhibit asymptotically diminishing correlations with gt . At the same time, it
requires that c

√
T → ∞ and c

√
qN → ∞. In other words, c must be sufficiently

large to supersede the estimation error in covariance estimates during the
screening step, which is of order T−1/2,28 and to dominate error in the construc-
tion of residuals in the projection step when multiple steps are involved, an er-
ror of order T−1/2 + (qN)−1/2. However, for any given threshold, say, c = T−1/4,
if it happens that η � T−1/3 < T−1/4, then screening based on gt ’s correlation
with rt will likely not select any assets, leading in turn to the termination of
Algorithm 3 and no discovery of factors. Our procedure thereby gives a risk
premium estimate of zero, which is certainly consistent, but the estimation
error is of order T−1/3 > T−1/2, so that the usual central limit theorem (CLT)
fails. In general, this problem arises due to the possibility of not identifying
all factors in the DGP. Once all factors are recovered, the CLT holds regard-
less of the magnitude of η. To make correct inference, we thus need a stronger
assumption that eliminates scenarios like this.

It appears that if η ∈ Rd×p meets the condition λmin(ηᵀη) � 1, we can rule out
the possibility of missing factors. This condition requires that each latent factor
maintains a correlation with at least one of the observable variables within gt .
As a result, this implies that d must be greater than or equal to p, meaning
that we require gt to possess at least the same number of variables as the true
number of factors. Meanwhile, our algorithm will not select more factors than
needed, as we stop the iteration as soon as c(k)

q is sufficiently small (below c),
at which point no common factors are left in the residuals of gt and rt . We thus
obtain the consistency result on the number of factors, which leads in turn to
the CLT result on risk premia. Formally, we have the following theorem.

THEOREM 2: Under the same assumptions as Theorem 1, if we further have
T−1/2N0 → ∞, Assumption IA9, and λmin(ηᵀη) � 1, then for any tuning param-
eters c and q in (9) and (10) satisfying

c → 0, c−1(log NT )1/2(q−1/2N−1/2 + T−1/2) → 0, qN/N0 → 0,

and q−1N−1T1/2 → 0,

we have that p̂ defined in Algorithm 3 satisfies P(p̂ = p)→1, and that
the estimator constructed via Algorithm 3 satisfies γ̂ SPCA

g − ηγ = OP(T−1/2) +
28 Even if gt is uncorrelated with the test assets, their sample covariances can be as large as

T−1/2.
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OP(q−1N−1). Furthermore, we obtain a CLT:
√

T
(
γ̂ SPCA

g − ηγ
)

d→ N(0,
),

where 
 is given by


 = (
γ ᵀ�−1

v ⊗ Id
)
�11

(
�−1

v γ ⊗ Id
) + (

γ ᵀ�−1
v ⊗ Id

)
�12η

ᵀ + η�
ᵀ
12

(
�−1

v γ ⊗ Id
)

+ η�22η
ᵀ,

and �11, �12, and �22 are dp × dp, dp × p, and p × p matrices, respectively,
defined as

�11 = lim
T→∞

1
T

E
(
vec(ZVᵀ)vec(ZVᵀ)ᵀ

)
,

�12 = lim
T→∞

1
T

E
(
vec(ZVᵀ)ιᵀTVᵀ),

�22 = lim
T→∞

1
T

E
(
V ιT ι

ᵀ
TVᵀ).

In regard to our theoretical findings, several key points merit attention.
First, Theorem 2 hinges on the existence of a tuning parameter, q, that must
satisfy two conditions: q−1N−1T1/2 → 0 and qN/N0 → 0. A necessary condition
for the existence of such a q is thus T1/2/N0 → 0.

Second, the estimation error of γ̂ SPCA
g − ηγ consists of two components. Part

of this error stems from the error accumulation at each step of the iteration
in Algorithm 3. This accumulated error is compounded in each step k at most

by a factor of
√

|̂Ik|/̂λ(k), where λ̂(k) =
∥∥∥(

R̄(k)
)

[̂Ik]

∥∥∥2
/T . Importantly, the assump-

tion that there exists a subset within which factors are pervasive ensures that
λ̂(k) �P qN = |̂Ik|, implying that the accumulated error is magnified by a con-
stant factor with each iteration of SPCA. Ultimately, our proof establishes that
this iterative process results in an overall estimation error in risk premia esti-
mates that is of the order OP(T−1/2 + q−1N−1). The condition q−1N−1T1/2 → 0
thus guarantees that the OP(q−1N−1) term does not influence the asymptotic
distribution. The derivation of the error rate for an iterative procedure is non-
trivial, constituting our primary contribution to the econometric literature on
factor models.

Third, the estimation error of the factor loading has no impact on the asymp-
totic variance of risk premia, as the expression of 
 demonstrates. This stands
in contrast to the classical Fama-MacBeth regression setting, where Shanken’s
adjustment term (Shanken (1992)) is crucial. This difference is due to the fact
that when dealing with a large cross-sectional dimension (N → ∞), this ad-
justment term vanishes asymptotically.29 To make inference feasible, we im-
plement the same Newey-West-type estimator for 
 as in section IV.E of Giglio

29 For a more detailed discussion on this point, please refer to equation (45) of Giglio, Kelly, and
Xiu (2022), and the discussion that follows it.
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and Xiu (2021), since each component of 
 can be estimated from the outputs
of the SPCA algorithm. These estimates are consistent up to some rotation
matrices that cancel each other and yield a consistent estimate of 
.

Fourth, Theorem 2 suggests that, with probability approaching one, we can
expect a perfect recovery of the number of factors p. Yet, in any finite sam-
ple, perfect recovery remains challenging. Notably, the assumptions made here
are considerably less stringent compared to the prevalent factor assumptions
found in the literature (see, e.g., Bai (2003) and Bai and Ng (2002)). In these
previous studies, inference theory for factor models also relies on the perfect
recovery of the count of (strong) factors. We explore the finite-sample behavior
of SPCA through simulations in Section II.

Lastly, in the special case in which the returns of test assets are exclusively
driven by strong factors, SPCA is asymptotically equivalent to PCA, contin-
gent on the appropriate selection of the tuning parameters c and q. Otherwise,
SPCA is less efficient—due to either an excessively small choice of q to the ex-
tent that the OP(q−1N−1) term plays a dominant role in the estimation error in
finite sample (note that PCA corresponds to the case of q = 1) or to the fact that
some factors (specifically, those uncorrelated with gt) may not be recovered by
SPCA. The former loss of efficiency can be mitigated through careful tuning pa-
rameter selection; the latter typically hinges on the unknown values of β and
η, which can be resolved with a multivariate target satisfying λmin(ηᵀη) � 1.

B.5. Tuning Parameter Selection

While the enhanced robustness to weak factors is an advantage, it comes
at the expense of introducing an additional tuning parameter. To employ the
SPCA estimator, we need to make choices regarding the two tuning parameters
q and c. The parameter q governs the subset size employed in PCA construc-
tion, while c determines the stopping rule and consequently the number of
factors, p. In contrast, PCA (and other estimators like PLS) essentially require
the selection of p only. We establish in Theorem 2 that we can consistently
recover p as long as certain conditions are met by q and c.

In theory, the textbook approach to choosing a tuning parameter for
parameter estimation revolves around the analytical minimization of the
root-mean-squared error (RMSE) of the estimator.30 This approach effectively
balances the trade-off between bias and variance inherent in the estimation.
Regrettably, this method necessitates intricate finite-sample analytical calcu-
lations of the RMSE, often relying on strong assumptions regarding the DGP.
In our context, assumptions of a normal distribution for returns and certain
distributional properties and sparsity conditions for betas are likely necessary.
Complicating matters further, our iterative SPCA procedure compounds the

30 Note that in the realm of machine learning, the prevailing approach involves leaning on
the prediction RMSE derived from a validation sample, where the actual values of the prediction
target are available. This stands in contrast to the estimation problem, where the true values are
never known.
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Test Assets and Weak Factors 283

difficulty of this analysis, rendering it practically infeasible. In addition, this
RMSE-based criterion primarily hinges on statistical considerations, lacking
economic relevance.

In lieu of this, we instead use the R2 of the hedging portfolio for gt built by
SPCA as a criterion, as it is both simpler to apply and justified from an eco-
nomic perspective. Recall that any estimator of risk premia for a nontradable
factor explicitly or implicitly builds a hedging portfolio, or a factor-mimicking
portfolio, for gt , and computes the risk premium as the average excess return
of that portfolio. The empirical R2 obtained by different estimators then has
an economic meaning: it reveals the hedging efficacy of the factor mimicking
portfolios constructed (explicitly or implicitly) by any risk premia estimators.31

Beyond the economic motivation, the R2 is a useful criterion from a statis-
tical perspective because attaining an optimal R2 in a validation sample is
a sufficient condition for valid selection of tuning parameters, which in turn
guarantees consistency of risk premia estimates. See Proposition IA5 for a rig-
orous statement.

Furthermore, in practice we can consider directly tuning the parameter
p instead of c, as it offers greater interpretability, restricts itself to integer
values, and is well informed by the scree plot, providing insights into rea-
sonable ranges for p. Regarding the parameter q, opting for larger values
makes SPCA’s performance resemble that of PCA, thus reducing its robustness
against weak factors. Conversely, smaller values of q raise the risk of overfit-
ting, resulting in a high in-sample R2 but a low out-of-sample R2. We suggest
tuning �qN� instead of q because the former can only take integer values, and
multiple choices of the latter may lead to the same integer values of the former.

In our applications, we select tuning parameters based on cross-validation
(CV) in a training sample that proceeds as follows. We split the sample into
three folds. We then use each of the three folds, for validation while the other
two are used for training. We select the optimal tuning parameters according
to the average time-series R2 in the validation folds.

C. Recovery of the SDF

The estimation of risk premia for observable factors gt , studied in Sec-
tion I.B, is a natural application of the SPCA approach, since gt can be used
to supervise the latent factor extraction. In this section, we explore another
application in which observable factors help extract latent factors, namely, a
diagnostic procedure for observable factor models.

The asset pricing literature has proposed a variety of models that contain
a small number of tradable factors gt : the CAPM, the Fama-French three-
or five-factor models, etc. These models are typically evaluated by computing

31 To be clear, while comparing R2’s provides an insightful depiction of the empirical perfor-
mance of the hedging portfolios, this cannot be interpreted as proof of the superiority of one estima-
tor over another (which is instead established based on the theoretical properties, like consistency
and efficiency, discussed in the previous sections).
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the alphas of a universe of test assets and testing whether these alphas
are different from zero. This is clearly a valid test for a model, but it gives
only limited insights into why the model is (as is often the case) rejected
statistically. Specifically, it does not clarify whether the model’s failure is
due to the presence of true alphas or to the omission of priced factors. Our
SPCA procedure helps shed light on this by recovering strong and weak latent
factors that drive the cross section of returns, and evaluating whether those
factors are indeed spanned by the observable factor model gt . This helps us
ascertain whether the model is lacking certain factors.

A last point relates to the universe of test assets. The asset pricing literature
(e.g., Lewellen, Nagel, and Shanken (2010)) has emphasized that using a large
cross section of test assets is important for evaluating asset pricing models,
as it can improve the power of the tests. There is, however, a downside in
expanding the set of test assets: many of the added assets may have little
exposure to some factors, introducing a weak factor problem. The ability of
SPCA to handle weak factors frees the researcher from worrying about adding
assets to the universe, not only in risk premia estimation, but also in diagnostic
tests like the one we conduct in this section.

C.1. Consistency of the SDF Estimator

We first prove that, under certain conditions, SPCA consistently recovers the
SDF even in the presence of weak factors. Using the outputs of Algorithm 3,
we can estimate the SDF as

m̂SPCA
t = 1 − γ̂ ᵀv̂t, where v̂1, . . . , v̂T are the columns of V̂ . (12)

In the Internet Appendix, we prove the following theorem, which not only
shows the consistency of the SDF’s recovery, but also derives the rate at which
the recovery occurs.

THEOREM 3: Suppose that the assumptions of Theorem 2 hold. In addition, we
have Assumption IA10. Then, the estimator (12) satisfies

1
T

T∑
t=1

|m̂SPCA
t − mt|2 �P

1
T

+ log N0

N0
. (13)

This theorem shows that consistent estimation of the entire SDF time series
is possible in terms of average �2-distance, but under specific conditions. First,
for every weak latent factor in vt , there must be a sufficiently large subset of
assets with exposure to that factor. This condition, reflected in the requirement
of a large N0, is also necessary for the consistent estimation of risk premia.

In addition, for each latent factor in vt , there must be at least one observable
factor in gt that is correlated with that latent factor. This second assumption is
needed not only for asymptotic inference on risk premia but also for SDF recov-
ery here. In cases in which gt does not correlate with a latent factor, that latent
factor can potentially be missed by SPCA, thereby hindering SDF recovery.
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C.2. Comparison with Alternative Procedures of SDF Estimation

A number of alternative approaches for SDF estimation with latent factors
are proposed in the literature, for example, the selection/shrinkage approach
by Kozak, Nagel, and Santosh (2020) and the rpPCA by Lettau and Pelger
(2020). In what follows, we provide a theoretical comparison of Lasso- and
Ridge-based estimators in our general framework where factors can poten-
tially be weak. The Ridge estimator shares the spirit of PCA-based estimators
as shown by Giglio and Xiu (2021) and propositions in previous sections. Exam-
ining the asymptotic behavior of these two approaches provides useful insights
that may guide their applications in practice. Developing the asymptotic guar-
antee of these estimators is yet another contribution that we make to existing
literature on SDF recovery.

Kozak, Nagel, and Santosh (2020) consider an SDF of the form of (3),
whereas we represent it as in (2). Prior to the asymptotic analysis of their
estimators, we first establish the asymptotic equivalence of these two defini-
tions in our large-N setting.

PROPOSITION 3: Suppose that test asset returns in rt follow (1), and Assump-
tion IA10 holds. Then as N → ∞, we have

1
T

T∑
t=1

|mt − m̃t|2 �P
1

λmin(βᵀβ )
.

Proposition 3 proves that there is no ambiguity with respect to the defini-
tion of the estimand, since the two estimands are asymptotically equivalent
as long as λmin(βᵀβ ) → ∞. Given that this exact assumption is necessary for
Theorem 3, and λmin(βᵀβ ) � N0, we can replace mt in the left-hand side of (13)
by m̃t .

Kozak, Nagel, and Santosh (2020) suggest estimating the SDF by solving
the optimization problem

b̂ = arg min
b

{
(r̄ − �̂b)ᵀ�̂−1(r̄ − �̂b) + pμ(b)

}
, (14)

which is used to estimate the SDF according to

m̂t = 1 − b̂ᵀ(rt − r̄). (15)

In the above, �̂ is the sample covariance matrix of rt and pμ(b) is a penalty
term through which economic priors are imposed. Depending on the penalty
function, we denote the resulting estimator of m by m̂Ridge

t or m̂Lasso
t .

The objective function in (14) appears to require the inverse of �̂, which is
not well defined when N > T . Instead, we suggest optimizing an equivalent
but different form of (14),

b̂ = arg min
b

{
bᵀ�̂b − 2bᵀr̄ + bᵀ�̂b + pμ(b)

}
, (16)

which avoids the calculation of �̂−1.
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The following result sheds light on the asymptotic properties of this estima-
tor in the cases pμ(b) = μ

∥∥b
∥∥

1 and pμ(b) = μ
∥∥b

∥∥2.32

THEOREM 4: We investigate two distinct scenarios:

(a) Suppose that rt is driven by p latent factors as in (1). With pμ(b) = μ
∥∥b

∥∥2,
if (N + T )/(λpT ) → 0 and Assumptions IA4 to IA7 and IA10 to IA12 hold,
then we have

1
T

T∑
t=1

|m̂Ridge
t − mt|2 �P

1
T

+ N + T
λpT

,

where λp is the pth largest eigenvalue of β�vβ
ᵀ. Since λp � λmin(βᵀβ ), we

can replace mt in the above equation by m̃t.
(b) Suppose that the true SDF satisfies E(m̃2

t ) � 1. With pμ(b) = μ
∥∥b

∥∥
1, if

Assumptions IA10 and IA11 hold, then we have

1
T

T∑
t=1

|m̂Lasso
t − m̃t|2 �P

∥∥b
∥∥

1

√
log N

T
. (17)

If, in addition, λmin(�) � 1 and
∥∥b

∥∥2
0 log N/T → 0 hold, then we have the

stronger result

1
T

T∑
t=1

|m̂Lasso
t − m̃t|2 �P

∥∥b
∥∥

0

log N
T

. (18)

Interestingly, both the Ridge and Lasso approaches deliver consistent esti-
mates of the SDF, albeit under distinct sets of assumptions.

In the case of Ridge, its convergence rate hinges significantly on the strength
of the weakest factor. If condition (6) is not met, the consistency of the SDF
is compromised. Failure of this condition is a clear symptom of weak factors,
precisely the scenario for which our SPCA estimator is designed.

In contrast, the Lasso approach replaces the explicit factor model assump-
tion on rt with a sparsity assumption on the vector b. This sparsity assumption
dictates that the SDF should be represented as a sparse linear combination of
the test assets but imposes no explicit assumptions on the DGP of these test as-
sets. This implies that the Lasso estimator remains consistent regardless of the
strength of the factors but converges at a rather slow rate, as indicated in (17),
which is

∥∥b
∥∥

1

√
log N/T . Consequently, it is not as efficient as our SPCA estima-

tor, which leverages the factor structure to achieve faster convergence. Never-
theless, under a much stronger sparsity assumption where

∥∥b
∥∥2

0 log N/T → 0,
the Lasso estimator can attain a convergence rate comparable to that of the
SPCA. This more stringent notion of sparsity essentially asserts that the set
of true factors must be part of the test assets. In contrast, our SPCA estimator

32 We use ‖‖0, ‖‖1, and ‖‖ to denote the �0-, �1-, and �2-norms of a vector, respectively.
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Test Assets and Weak Factors 287

allows for the presence of idiosyncratic components in any of the test assets,
enhancing its practicality in real-world applications.

We can adapt any SDF estimator to obtain an estimator of risk premia be-
cause of the relationship −cov(mt, gt ) = ηγ . This gives the Lasso-based risk
premia estimator33

γ̂ Lasso
g = − 1

T

T∑
t=1

m̂Lasso
t × (gt − ḡ).

Furthermore, the consistency of the SDF estimator translates into the con-
sistency of the resulting risk premia estimator.34 Deriving a valid inference
procedure is possible for the Lasso-based risk premia estimator if we employ
an additional debiasing step (see Feng, Giglio, and Xiu (2020)), which is beyond
the scope of the current paper.

C.3. Diagnosis of SDF Models using Sharpe Ratios

We now discuss the diagnosis of SDF models that consist of tradable fac-
tors exclusively. Recall that the projection of the SDF on the space of returns
achieves the highest possible Sharpe ratio. Given that the factors recovered
by SPCA are themselves portfolios, as long as SPCA recovers the entire SDF,
these factors should achieve the maximal Sharpe ratio. We can then diagnose
a model gt by comparing its Sharpe ratio with that achieved by the estimated
SDF supervised by gt . If gt contains all the factors that drive the SDF, then
the maximal Sharpe ratio achieved by factors in gt should be on par with the
Sharpe ratio of the SDF. Otherwise, if gt achieves a lower Sharpe ratio, this is
a sign that gt is missing some factors; if gt ’s Sharpe ratio is higher than that
achieved by SPCA, this indicates that gt has alpha relative to the entire cross
section of test asset returns.

For this purpose, it is more convenient to rewrite our SPCA estimator of the
SDF given by equation (12) in the form of portfolio returns as in (15), so that
we can directly evaluate its Sharpe ratio. In other words, we need an SPCA-
based estimate of b in the definition of SDF given by equation (3). Formally, we
provide the following algorithm.35

33 The SDF-induced Ridge estimator is numerically equivalent to (IA1), so we do not introduce
it again.

34 By Assumption IA11(1), Cauchy-Schwartz and triangle inequalities, we have

∥∥∥γ̂ Lasso
g − γg

∥∥∥
MAX

�P

√√√√ 1
T

T∑
t=1

|m̂Lasso
t − m̃t |2 +

√
log N

T
.

35 The effectiveness of this procedure stems from the fact that the SPCA estimates of V̂ can be
written as a rotation of BᵀR̄. Given that b is invariant to rotations of factors, we can exploit this in-
variance property to construct a convenient estimator b̂. To elaborate, if we use BᵀR̄ as the factors,
denoted by, Ṽ , with their risk premia and covariance denoted by γ̃ and �̃, respectively, we can ex-
press the SDF as mt = 1 − γ̂ ᵀ(�̂v )−1v̂t = 1 − γ̃ ᵀ(�̃v )−1ṽt = 1 − γ̃ ᵀ(�̃v )−1Bᵀ(rt − r̄). Consequently,
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Algorithm 4: The SPCA-based procedure for estimating SDF loadings is as
follows:

Inputs: R̄(1) := R̄, r̄(1) := r̄, and Ḡ(1) := Ḡ, a d × T vector.

S1. For k = 1, 2, . . . iterate the following steps using R̄(k), r̄(k), and Ḡ(k) and
construct an N × p matrix B:
a. Run S1.a of Algorithm 3 to obtain Îk
b. Run S1 to S3 of Algorithm 1 with selected return matrix

(
R̄(k)

)
[̂Ik]

and Ḡ(k). Construct the kth column of B as B[̂Ik],k = ς(k) and B[̂Ic
k],k = 0,

where ς(k) is the left singular vector of
(
R̄(k)

)
[̂Ik]. Also, obtain V̂(k) and

η̂(k).
c. Run S1.c of Algorithm 3 to obtain β̂(k).
d. Run S1.d of Algorithm 3 to obtain R̄(k+1) and Ḡ(k+1).
Stop at k = p̂, where p̂ is chosen based on some proper stopping rule.

S2. Estimate the SDF loading b as

b̂SPCA = TB
(
BᵀR̄R̄ᵀB

)−1Bᵀr̄. (19)

Outputs: b̂SPCA.

Similarly, we can construct estimates of b using PCA and PLS.36 With b̂ it is
convenient to build SDFs (optimal portfolios) and evaluate their Sharpe ratio.

THEOREM 5: Under the same assumptions as Theorem 1, if Assumption IA10
holds, then the Sharpe ratio of the optimal portfolio constructed by b̂SPCA in (19)
satisfies √

γ ᵀ�−1
v γ ≥ lim

N,T→∞
b̂SPCAᵀE(rt )√
b̂SPCAᵀ�b̂SPCA

≥
√

γ ᵀηᵀ(η�vηᵀ)†ηγ , (20)

where † denotes the Moore-Penrose inverse of a matrix.

In the inequality (20), the upper bound corresponds to the optimal Sharpe
ratio of the SDF, while the middle term represents the optimal Sharpe ratio
achieved by the SPCA estimator. Meanwhile, the lower bound corresponds to
the optimal Sharpe ratio achieved by η(vt + γ ). This lower bound also matches
the bound attained by gt , except for any undiversified idiosyncratic errors that
may persist in gt . These errors would further reduce the Sharpe ratio, but for
the sake of our discussion exclusively on observable factor models in the liter-
ature, we follow the convention and assume that gt comprises well-diversified
portfolios, so we can ignore this aspect in this section. A sufficient condition

we can deduce that

b̂ = B(�̃v )−1γ̃ = B(
1
T

BᵀR̄R̄ᵀB)−1Bᵀr̄.

36 For PCA, the kth column of B can be chosen as the left singular vectors of R̄. Equation (19)
then yields the standard PCA-based SDF loadings. For PLS, B is a similar weight matrix given by
the iterative procedure. We compare these SDF estimators in simulations.
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Test Assets and Weak Factors 289

for the upper and lower bounds to be equal is that λmin(ηᵀη) � 1. In this case,
the SPCA-based SDF estimator also achieves the optimal Sharpe ratio. This
result is not surprising, especially considering the consistency result outlined
in Theorem 3.

Theorem 5 serves as the basis for diagnosing SDF models. We do not
observe the left side of the equation (the true maximal Sharpe ratio), but
we can estimate and compare the middle term (Sharpe ratio obtained by the
SPCA-recovered SDF) and the right term (Sharpe ratio of gt). If we find in the
data that the Sharpe ratio from SPCA is higher, then we learn that gt must
be missing a factor. If instead we find that the Sharpe ratio from gt is higher,
then this means that there are factors in gt that are insufficiently represented
in rt (e.g., if none of the assets in rt has exposure to those factors): this points
to an insufficiently rich set of test assets rt .37

II. Simulations

In this section, we study the finite-sample performance of our SPCA proce-
dure using simulations.

A. Results on Risk Premia

We implement a number of risk premia estimators for comparison, some of
which are robust to omitted or weak factors, including PCA and its related es-
timators (Ridge, PLS, and rpPCA), Lasso, as well as the four-split estimator by
Anatolyev and Mikusheva (2022).38 Both the standard two-pass and four-split
methods directly use gt as if they were the true factors in their regressions.
The PCA, rpPCA, Ridge, and Lasso effectively construct the SDF first without
knowledge of gt , and then estimate the risk premia of gt factor by factor, using
the covariance between each factor and the resulting SDF. PLS and SPCA use
all variables in gt to supervise the estimation procedure.

To implement the SPCA estimator, we select the tuning parameters p and
�qN� by CV using the procedure detailed in Section I.B.5. To ensure a conserva-
tive basis for comparison, all methods except SPCA use optimal (albeit infeasi-
ble) tuning parameters. Specifically, for PCA, PLS, and rpPCA, we make use of
the true number of factors, p = 4, even though it is difficult to obtain a consis-
tent estimator of p in the regime of weak factors. The tuning parameter μ of the
Ridge estimator is determined via maximum likelihood estimation, with per-
fect knowledge of � = cov(rt ) and E(r). The second tuning parameter of rpPCA
is selected by maximizing the theoretical Sharpe ratio of the estimated SDF,

37 Of course, it can also be the case that the two Sharpe ratios are the same. In that case, gt and
the latent factor model recovered by SPCA are equivalent in terms of their pricing ability.

38 The four-split estimator, which does not rely on dimension reduction, selection, or shrink-
age techniques, is valid in the presence of weak observable factors and strong omitted factors
that are not priced. However, it does not have asymptotic guarantees against omitted and priced
strong/weak factors, or measurement error in the observed factors.
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again, using perfect knowledge of � and E(r). Due to limited sample size, esti-
mating the sample mean and sample covariances in a separate validation sam-
ple is rather challenging, which would further deteriorate their performance.

To demonstrate and compare the performance of different estimators, we
consider various DGPs of returns and/or the observed variables in gt . We start
with the benchmark scenario a), in which all factors are strong and observed.
Specifically, we consider a four-factor DGP as given by equation (1), where
the first three factors are calibrated to match the three Fama-French factors
(RmRf, SMB, and HML) as in Giglio and Xiu (2021), and the last factor is a
potentially weak factor, denoted by V . We calibrate the parameters such that
the monthly Sharpe ratio for the optimal portfolio out of these factors is about
0.256. The process generating ut is modeled as a vector autoregressive process:
ut = 0.8ut−1 + εt , where εt is drawn from a Gaussian distribution with a diag-
onal covariance matrix.39 The standard deviation of ut is calibrated at 0.04.
For comparison, the standard deviations of the four factors are calibrated at
0.04, 0.03, 0.03, and 0.02. The loadings of RmRf are generated independently
from N(1, 1) and the loadings of SMB and HML are generated independently
from N(0, 1). We generate the exposure to the fourth factor V , βi,V , indepen-
dently from a Gaussian mixture distribution, with probability a from N(0, 1)
and 1 − a from N(0, 0.12). Our calibration suggests that a = 0.5 ensures the
factor V is sufficiently strong with respect to the cross section of assets in sim-
ulations. gt includes exactly these four factors in the DGP (RmRF, SMB, HML,
and V ), and we set η = I4, and measurement error is absent.

In scenario (b), we choose a = 0.1 so that V is weak in that for almost all
test assets their factor loadings to V are tiny: only 10% of the assets have
nontrivial exposure to this factor. In scenario (c), the DGP is the same as that
of the benchmark case, except we add Gaussian measurement error, zt , to each
of the factors in gt . In scenario (d), we simulate β for V according to βi,V =
−βi,HML + ei instead, where ei’s are generated independently from the same
mixture Gaussian distribution as above with a = 0.1. This nearly results in a
rank deficiency in the factor loading matrix due to their correlated exposures.
The variable gt contains all four factors with no measurement error. In scenario
(e), we consider the same DGP of returns as in scenario (d), but in gt we omit
the HML factor. Finally, in scenario (f), we further add measurement error to
scenario (d).

For each of these six scenarios (including the benchmark), we plot in Figure 1
histograms of the estimated risk premium of V (one entry in gt) for all esti-
mators.40 If an estimator is consistent, then the histogram is expected to be
centered on the true risk premium of V , whose value is represented by a ver-
tical dashed line. This is indeed the case for SPCA in all scenarios. It is also
the case for almost all estimators in the benchmark scenario (a), when factors

39 Although it is conceivable to employ a more complex covariance matrix for ut , calibrating
such a model can be challenging. We therefore simulate ut ’s that are cross-sectionally uncorrelated
for simplicity.

40 Panels A to F in Figure 1 correspond to scenarios (a) to (f).
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Test Assets and Weak Factors 291

Figure 1. Histogram of risk premium estimates of V . The figure provides histograms of the
risk premium estimates in six scenarios for eight estimators we compare, including SPCA, PCA,
PLS, rpPCA, Lasso, Ridge, four-split, and the standard two-pass estimator. We simulate the models
with N = 1, 000 and T = 240. The number of Monte Carlo repetitions is 1,000. Values reported are
percentages. (Color figure can be viewed at wileyonlinelibrary.com)
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are strong (except for Lasso and Ridge, which have a large shrinkage bias).
This suggests that the latter two estimators are not suitable for inference on
risk premia. Furthermore, in scenario (b), when weak factors are present, only
SPCA and four-split are consistent. The same is true for scenario (d) in which
a similar rank-deficiency issue arises. In scenario (c), the four-split estimator
becomes inconsistent due to measurement error, and it is also ill-behaved in
scenario (e) because the omitted variable, HML, is priced. The PCA and PLS
estimators are consistent in scenario (c) but also fail in (e) because they are
robust to measurement error but not to omitted weak factors. The standard
two-pass estimator is consistent only in the benchmark scenario. Overall, the
simulation evidence is in agreement with our theoretical predictions.

We next focus on the last scenario (f), which includes the case of weak factors
as well as measurement error. For this case, we report in Table I the bias and
RMSE of all estimators for various sample sizes T . The four rows in each
panel provide the results of risk premia estimation for RmRf, SMB, HML, and
the weak factor V , respectively. We find that our SPCA approach has smaller
biases for the weak factors, whereas the remaining estimators have larger
biases and RMSEs, which agrees with our theoretical analysis and Figure 1.
Notably, PLS ranks second. All estimators perform better in terms of RMSE
as T increases.

In the Internet Appendix, we also report a scenario similar to scenario (c)
except the last factor is pure noise. In other words, the DGP is driven by the
first three factors, but econometricians, lacking knowledge of the true model,
include these three factors alongside this pure noise variable in their attempt
to estimate risk premia. This scenario closely resembles that extensively dis-
cussed by Kan and Zhang (1999) and Kleibergen (2009). For the sake of com-
parison, PLS and SPCA incorporate this pure noise variable along with the
aforementioned three factors into gt . The histograms corresponding to the risk
premium estimates associated with the noise factor suggest that SPCA, PCA,
PLS, rpPCA, Lasso, and Ridge remain consistent and cluster around zero. The
consistency stems from the fact that none of these methods involves a cross-
sectional regression on the estimated beta for the noise factor. In contrast, the
four-split and two-pass methods seem to exhibit considerable variances.

We next investigate the finite-sample performance of the inference result
developed in Theorem 2. Figure 2 plots histograms of the standardized risk
premia estimators using the estimated asymptotic standard errors for SPCA
and PCA, respectively, using the DGP in scenario (f) as an example. The his-
tograms of PCA deviate from the standard Gaussian distribution for the two
highly correlated factors, V and HML. In contrast, the histograms correspond-
ing to SPCA closely align with the standard Gaussian distribution, showcas-
ing significantly reduced bias for these two factors. A portion of this small bias
stems from the population-level approximation as demonstrated in (5) (see also
Proposition IA4). This phenomenon thereby likely persists irrespective of the
value of T . Finally, we also investigate the statistical power of SPCA in strong
and weak cases, and we draw a comparative analysis with PCA. We report
these results in the Internet Appendix.
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Table I
Simulation Results for Risk Premia Estimators

In this table, we report the bias (column “Bias”) and the root-mean-squared error (column “RMSE”)
of the risk premia estimates using the SPCA, PCA, rpPCA, Lasso, PLS, Ridge, four-split, and the
standard two-pass regression approaches. The true data-generating process, given by scenario (f),
has four factors, driven by RmRf, SMB, HML, and V , whereas we estimate the risk premia for
noisy versions of these four factors. Their true risk premia are provided in column “True.” We fix
N = 1, 000 while varying T = 120, 240, and 480 in this experiment. All values reported are in
basis points.

SPCA PCA rpPCA PLS

T Param True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

RmRf 53.7 0.2 39.2 0.4 38.9 1.8 66.4 0.2 39.1
120 SMB 21.7 −0.0 29.0 0.6 28.4 1.7 65.1 0.4 28.7

HML 25.4 −6.7 29.3 −38.0 43.9 114.6 205.8 −15.7 30.6
V 40.0 −6.6 20.9 −37.0 38.9 109.9 195.8 −15.7 22.6

RmRf 53.7 0.7 29.7 0.6 29.6 1.3 36.4 0.7 29.7
240 SMB 21.7 0.2 20.1 0.6 19.5 1.2 27.8 0.4 19.8

HML 25.4 −3.3 19.7 −36.3 39.3 64.1 111.9 −8.0 20.1
V 40.0 −3.4 14.6 −35.5 36.5 63.0 109.0 −8.2 15.4

RmRf 53.7 −0.1 20.2 0.0 20.2 0.2 20.7 0.0 20.2
480 SMB 21.7 −0.3 14.2 −0.2 14.0 −0.2 14.7 −0.2 14.1

HML 25.4 −2.6 14.6 −13.4 18.6 22.3 34.6 −4.1 14.5
V 40.0 −3.1 10.3 −13.7 16.1 20.7 32.7 −4.7 10.6

Lasso Ridge Four-Split Two-Pass

T Param True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

RmRf 53.7 −27.6 37.0 −8.1 32.4 12.4 52.0 11.5 48.1
120 SMB 21.7 −12.6 16.5 −5.1 16.9 4.9 47.2 5.4 41.8

HML 25.4 −30.6 31.6 −33.4 36.2 12.9 50.5 −6.1 40.1
V 40.0 −38.3 38.6 −36.0 36.8 32.3 58.6 9.1 32.6

RmRf 53.7 −31.6 37.4 −4.2 25.8 13.4 40.1 12.4 37.9
240 SMB 21.7 −14.0 16.3 −3.0 13.9 6.1 33.3 5.9 29.5

HML 25.4 −29.9 30.7 −31.5 33.7 16.2 37.3 2.5 27.4
V 40.0 −37.6 37.9 −32.7 33.4 38.8 51.2 20.7 32.1

RmRf 53.7 −18.5 24.7 −1.7 19.1 12.6 29.5 11.9 27.3
480 SMB 21.7 −9.0 11.9 −1.5 12.0 4.3 24.0 4.7 20.9

HML 25.4 −32.8 33.5 −29.1 30.9 16.6 29.4 8.3 22.1
V 40.0 −36.8 37.1 −29.5 30.1 38.6 45.6 28.0 33.5

B. Results on SDF Recovery

We next study the finite-sample behavior of the SDF estimators. We com-
pare the performance of SPCA, PCA, rpPCA, Lasso, and Ridge estimators in
scenario (f). We report in Table II the MSE of the SDF estimators where the
true SDF is defined by equation (3). We also include the tuned number of fac-
tors determined by our SPCA approach. In addition, in Table III we report
the out-of-sample Sharpe ratios of different methods, given by b̂ᵀE(r)/

√
b̂ᵀ�b̂,
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Figure 2. Histogram of the standardized estimates in simulations. The left panels provide
the histograms of the standardized SPCA estimates as in Algorithm 3 with asymptotic standard
errors given by Theorem 2, while the right panels provide those of the standardized PCA-based
risk premia estimates as in Algorithm 1. We simulate the model in scenario (f)) with N = 1, 000
and T = 240. The number of Monte Carlo repetitions is 1,000. These standardized statistics serve
as the basis for testing the null hypotheses that the risk premia are equal to their true values. The
sizes of these t-tests at the 5% level are reported in the figure subtitles, allowing us to assess the
tail behavior of our asymptotic approximations.

where E(r) and � are the true mean and covariance of all test assets and b̂
is the estimated SDF loading using each method. Overall, we find that SPCA
outperforms all other methods. PLS ranks second, while rpPCA performs the
worst. rpPCA is competitive only in terms of the out-of-sample Sharpe ratio.
For risk premia estimation, the underperformance of rpPCA can be attributed
to not only its inherent bias but also to its tuning parameters, which are ori-
ented primarily toward maximizing the Sharpe ratio. Last but not least, the
tuning parameter p̂ is found to be in close proximity to the true value four.

Finally, in Figure 3 we investigate the pattern of out-of-sample Sharpe ratios
for various models gt . The setting resembles scenario (f), except that we con-
sider different models gt to examine the role of gt in supervising the procedure.
We report Sharpe ratios as a function of number of factors p̂ used in the PCA
and SPCA procedure. For SPCA, we select �qN� via CV using the time-series
R2 for each given p̂. The sample size T is fixed at 240. The theoretical value
of the optimal Sharpe ratio is 0.256, as shown in Table III, though in finite
sample the maximum Sharpe ratio achieved by SPCA is around 0.226.
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Table II
Simulation Results for SDF Estimators

In this table, we report the mean-squared errors (column “MSE”) defined by 1
T

∑T
t=1 |m̂t − m̃t |2

for various SDF estimates using the SPCA, PCA, rpPCA, PLS, Lasso, and Ridge approaches. The
reported MSEs are the sample average over 1,000 Monte Carlo repetitions and their standard
deviations are reported in brackets. We also report the mean and standard deviation of the esti-
mated number of factors p̂ using the SPCA approach. The true data-generating process, given by
scenario (f), has four factors, driven by RmRf, SMB, HML, and a weak factor V , whereas we esti-
mate the SDF using a vector of factor proxies, gt , that includes noisy versions of the four factors.
We compare three scenarios with T = 120, 240, and 480, where N = 1, 000 is fixed.

SPCA PCA rpPCA PLS Lasso Ridge

T p̂ MSE MSE MSE MSE MSE MSE

120 4.186 0.044 0.074 9.200 0.050 0.056 0.054
(0.389) (0.030) (0.026) (11.332) (0.026) (0.010) (0.013)

240 4.011 0.021 0.058 1.901 0.025 0.055 0.045
(0.104) (0.014) (0.013) (3.313) (0.013) (0.009) (0.010)

480 4.004 0.010 0.018 0.087 0.012 0.050 0.036
(0.063) (0.007) (0.007) (0.083) (0.007) (0.007) (0.008)

Table III
Simulation Results for Out-of-Sample Sharpe Ratios of Optimal

Portfolios
In this table, we report the mean and standard deviation of the out-of-sample Sharpe ratios for var-
ious optimal portfolios constructed by the SPCA, PCA, rpPCA, PLS, Lasso, and Ridge approaches.
The true data-generating process, given by scenario (f), has four factors, driven by RmRf, SMB,
HML, and a weak factor V , whereas we estimate the SDF using a vector of factor proxies, gt , that
includes noisy versions of the four factors. The reported Sharpe ratios are the sample average over
1,000 Monte Carlo repetitions and their standard errors are reported in the brackets. The col-
umn “‘Theoretical Value” provides the benchmark Sharpe ratio calculated by bᵀE(r)/

√
b′�b using

true parameter values. We compare three scenarios with T = 120, 240, and 480, where N = 1, 000
is fixed.

T SPCA PCA rpPCA PLS Lasso Ridge Theoretical Value

120 0.193 0.084 0.134 0.164 0.113 0.109 0.256
(0.049) (0.046) (0.035) (0.051) (0.024) (0.046)

240 0.226 0.110 0.192 0.214 0.122 0.137 0.256
(0.026) (0.036) (0.033) (0.031) (0.019) (0.032)

480 0.241 0.227 0.242 0.238 0.127 0.162 0.256
(0.012) (0.019) (0.008) (0.015) (0.021) (0.019)

We consider four cases of gt = ηvt + zt . In case (a), we set η = I4, so all fac-
tors are included in gt to supervise the procedure. In case (b), only the factor
V and HML are included in gt . In case (c), we fix η = (1, 0, 0, 0), that is, gt only
includes the (strong) market factor. Finally, in case (d), we let η = γ ᵀ�−1

v , so
that gt is a noisy measure of the SDF. In light of Theorem 5, SPCA should
achieve the maximal out-of-sample Sharpe ratio in cases (a) and (d), provided
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Figure 3. Out-of-sample Sharpe ratio patterns with different models of gt . Each panel re-
ports out-of-sample Sharpe ratios for PCA (blue) and SPCA (red) as a function of number of factors,
p, for a specific model of gt = ηvt + zt . (Color figure can be viewed at wileyonlinelibrary.com)

appropriate tuning parameters. Figure 3 confirms this result.41 In case (a),
SPCA reaches its highest Sharpe ratio out-of-sample at p̂ = 4, and the Sharpe
ratio declines slightly as p̂ increases beyond four, since these additional fac-
tors only add noise. Case (d) exhibits a similar pattern. In contrast, the PCA
approach cannot achieve the maximal Sharpe ratio, even as p̂ increases to 10,
because PCA cannot recover the weak factor, which contributes to the SDF. In
case (b), SPCA is supervised by two factors with highly correlated loadings, so
it can recover the part of the SDF spanned by the weak factors. With a large
enough p, we force the procedure of SPCA to continue, and it will also extract
the strong factors and achieve the maximal Sharpe ratio. In case (c), how-
ever, SPCA and PCA provide similar results—neither achieves the optimum—
because gt only includes the market factor, which does not help SPCA recover
the missing weak factor.

41 Panels A to D in Figure 3 correspond to cases (a) to (d).
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III. Empirical Analysis

In this section, we apply SPCA to estimate the risk premia of a variety of
observable factors, and to diagnose observable factor models.

A. Data

Our main data set is the Chen and Zimmermann (2022) data, which include
a large number of equity portfolios sorted by characteristics. Specifically, we
employ the April 2021 release of the data. For each characteristic considered,
Chen and Zimmermann (2022) construct a variable number of portfolios (as
many as are used in the original papers that introduced the anomaly in the
literature, typically 2, 5, or 10). Not all test assets are available for the entire
time period; for our analysis, we study the period 1976m3 to 2020m12, for
which 901 test portfolios are available without missing values. To these sorted
portfolios, we add 49 industry portfolios from Ken French’s website. All of our
results are at the monthly frequency.42

We also consider an alternative data set, proposed by Hou, Xue, and Zhang
(2020), that for the same period includes 1,672 portfolios sorted by charac-
teristics without missing values. Hou, Xue, and Zhang (2020) classify their
portfolios into six groups: momentum, value, investment, profitability, intan-
gibles, and frictions. These two data sets are similar and yield comparable
results. Rather than producing two versions of each result using the two data
sets, we choose Chen and Zimmermann (2022) to be our main data set and
report the robustness of the main results using the Hou, Xue, and Zhang
(2020) data (see Section III.B.6). What both data sets have in common is that
they capture a wide universe of anomaly equity portfolios discovered in the
last four decades of asset pricing research.

We consider both tradable and nontradable factors in our analysis, focusing
on the best-known ones from the literature. The tradable factors are: the
market (in excess of the risk-free rate); size (SMB); value (HML); profitability
(RMW); investment (CMA); momentum (MOM); betting-against-beta (BAB,
from Frazzini and Pedersen (2014)); and quality-minus-junk (QMJ, from
Asness, Frazzini, and Pedersen (2013)). The nontradable factors are: the
liquidity factor from Pástor and Stambaugh (2003); the intermediary capital
factor from He, Kelly, and Manela (2017); AR(1) innovations in industrial
production growth (IP); VAR(1) innovations in the first three principal com-
ponents of 279 macrofinance variables from Ludvigson and Ng (2010); AR(1)
innovations in the three uncertainty indexes of Jurado, Ludvigson, and Ng
(2015), representing financial uncertainty, macroeconomic uncertainty, and
real uncertainty; AR(1) innovations in the term spread, the credit spread, and
the unemployment rate; AR(1) innovations in two sentiment indexes, one from

42 The theory is silent on the correct frequency of the data to study. Here, we follow the literature
and focus on the monthly frequency. We leave for future work a more comprehensive study and
comparison across frequencies.

 15406261, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jofi.13415 by Y

ale U
niversity, W

iley O
nline L

ibrary on [06/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



298 The Journal of Finance®

Huang et al. (2015) and one from Baker and Wurgler (2006); oil price growth
AR(1) innovations; and consumption growth AR(1) innovations.43

B. Estimation of Risk Premia using SPCA

In this section, we estimate the risk premia of a variety of tradable and
nontradable factors. We begin by discussing details of the implementation of
the estimator.

B.1. Choice of Tuning Parameters and Implementation Details

To apply SPCA to the estimation of the risk premia and to evaluate its
out-of-sample performance, we split the sample period into two equal-sized
subsamples. The first half of the sample (training period) is used to choose
the tuning parameters and produce the risk premium estimate. The second
half of the sample (evaluation period) is used to evaluate the out-of-sample
performance of the estimator and the choice of tuning parameter.

For ease of presentation, we select only one tuning parameter q (or, equiv-
alently, the number of assets selected �qN�) for each plausible choice of p
(the number of factors) in our analysis. This approach reduces the number of
tuning parameters to only one, and also conveniently serves as a robustness
check with respect to the number of factors.

To determine reasonable candidates for p, we examine the factor structure
of the panel of test asset returns. Figure 4 provides the scree plot of the log
of the first 25 eigenvalues. There appear to be at least three strong factors.
In addition, it appears that factors 4 to 11 might also be relevant, but weak.
Motivated by the scree plot, in the empirical study below we highlight results
for p equal to 3, 5, 7, and 11, therefore showing robustness of our results to a
wide range of model dimensions.

To choose the tuning parameter q, we adopt the same R2 criterion as in sim-
ulations to evaluate the estimator’s out-of-sample performance, namely, the
hedging ability of the portfolio built by SPCA for gt . Guided by this statisti-
cal justification, in our empirical work we choose q by threefold CV(100 runs)
within the training sample, maximizing the hedging R2 for gt . Section V of the
Internet Appendix describes in detail the steps for the CV. After we tune q, we
use it to compute the SPCA risk premium estimate for gt .

43 The market factor, SMB, HML, RMW, CMA, and MOM are from Ken French’s website. BAB
and QMJ are from AQR’s website. The liquidity factor is from Lubos Pastor’s website. The inter-
mediary capital factor is from Asaf Manela’s website. The macro principal components and the un-
certainty indexes are from Sydney Ludvigson’s website. Industrial production, the credit spread,
the unemployment rate, the term spread, and oil price are from Fred-MD. The Huang et al. (2015)
sentiment index is from Huang’s webpage. The Baker and Wurgler (2006) sentiment index is from
Wurgler’s website. The consumption factor was built from national income and product accounts
(NIPA) data using the methodology of Schorfheide, Song, and Yaron (2018).
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Figure 4. Logarithm of the first 25 eigenvalues in the Chen-Zimmerman data. The
figure plots the logarithm of the first 25 eigenvalues of the data, obtained from Chen and Zim-
mermann (2022) plus 49 industry portfolios, covering the period 1976 to 2020. (Color figure can be
viewed at wileyonlinelibrary.com)

B.2. Results: Estimation of Risk Premia and Out-of-Sample Evaluation

We report the main empirical results in Table IV and Figures 5 and 6. Each
row of Table IV corresponds to one factor; the first eight are tradable, the rest
are nontradable. For tradable factors, the first two columns show the average
excess return of the factor separately for the training sample and the evalu-
ation sample; these numbers correspond to model-free estimates of the risk
premia of tradable factors, and can be directly compared with the model-based
estimate obtained from SPCA.

The next columns of the table show the SPCA results in four groups of
columns, corresponding to the number of latent factors p = 3, 5, 7, and 11. For
each choice of p, we report the risk-premium estimate (obtained in the training
sample, in basis points [bps] per month), the number of assets selected by
SPCA (determined by q), and the out-of-sample R2 obtained in the evaluation
period. These estimates are obtained factor by factor, that is, in each case, gt
contains one factor and the asset selection is driven by that factor only. In
the last two columns of the table, we repeat the exercise (with p = 11) but
estimate all risk premia simultaneously: gt contains all the factors and the
selection of the assets is based on all of them simultaneously (so that d ≥ p
as opposed to d = 1). In theory, both approaches are consistent. In practice,
estimating risk premia factor by factor has the advantage that the latent
factors zoom in immediately on the assets relevant for each factor. In contrast,
the joint estimation is required for the CLT of Section I.B.4.

Consider first the market portfolio (first row of the table), a strong factor
in this data set. The average return of the market in the training sample is
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Figure 5. Out-of-sample R2 heatmaps, tradable factors. Each panel reports the out-of-
sample R2 heatmap for a different factor. The x-axis reports p. The y-axis reports the number
of assets selected, governed by q. The colors in the heatmap correspond to the out-of-sample R2 of
the SPCA-implied hedging portfolio for the factor gt ; this R2 is computed entirely in the evaluation
period. The red marks are the points chosen by CV within the training sample. (Color figure can
be viewed at wileyonlinelibrary.com)
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Figure 6. Out-of-sample R2 heatmaps, nontradable factors. Same as Figure 5, but for a
subset of nontradable factors. (Color figure can be viewed at wileyonlinelibrary.com)
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74 bps per month, and 62 bps in the evaluation period. The SPCA estimates of
the market risk premium, for the four chosen values of p, are 68, 70, 72, and
74 bps per month, respectively, all close to the average excess return. To obtain
these estimates, SPCA estimates the latent factors picking, in each iteration,
100 assets out of the total of 950. Finally, the portfolio that SPCA builds to
hedge the market achieves a very high out-of-sample R2 above 0.98 for all p.

To better understand the performance of the estimator and the tuning pa-
rameter choice, we can examine the heatmap in Figure 5, Panel A, which fo-
cuses on the market factor. In the heatmap, the x-axis corresponds to the num-
ber of factors p and the y-axis to the number of test assets selected by SPCA
(determined in turn by q); for each combination of p and q, the heatmap shows
the out-of-sample R2 of the hedging portfolio built by SPCA.

Panel A shows that for all combinations of p and q, out-of-sample R2’s are
overall very high for the market portfolio, above 85%. However, there appears
to be a subset of the parameter space in which hedging performance is espe-
cially good: combinations with high p and low q. The red marks in the heatmap
correspond to the values of q chosen by CV in the training sample (one for each
value of p considered in the table: 3, 5, 7, and 11). Ideally, the values of q cho-
sen by CV in the training sample would yield a hedging portfolio that performs
well out of sample, that is, the marks should lie in areas in the heatmap with
high out-of-sample R2’s. This is indeed the case, as the figure shows, indicating
good out-of-sample performance of the tuning parameter selection procedure.

Consider now another tradable factor, CMA, in the fifth row of Table IV.
As for the market, the estimated risk premium for CMA is not significantly
different from the average excess return of the factor. The number of assets
selected by SPCA ranges between 100 and 350, and the out-of-sample R2 is
above 50%, indicating that the hedge portfolio built by our latent factor model
is able to capture the majority of the variation on CMA out of sample.44

The heatmap of the out-of-sample R2 for the hedging portfolio of this factor
is provided in Panel E of Figure 5. The figure shows that for the case of CMA,
different combinations of p and q yield very different out-of-sample hedging
performance, with R2’s ranging from above 50% to below zero. Ideally, if the
tuning parameter were chosen properly, we would see that the hedging portfo-
lio also does well out of sample. The red marks in the figure show that this is
indeed the case, especially for p = 5 and above.

These heatmaps also allow us to compare the results with the PCA-based
estimator of Giglio and Xiu (2021). This is because the last row of the heatmap
corresponds to the case q = 1, that is, all assets are used to estimate the factors,
so PCA corresponds to a particular choice for the tuning parameter. Looking

44 Given that the universe of test assets includes portfolios sorted by the same characteristics
used to construct the tradable factors like CMA, one may wonder why an out-of-sample R2 of 100%
is not always obtained for tradable factors. The reason is that SPCA attempts to build a hedging
portfolio for the target gt with factors that must also explain covariation among the universe of test
assets. An advantage of our approach is that the hedging portfolio is able to avoid fitting the “mea-
surement error” component in gt , which, as discussed above, can be thought of as nondiversified
idiosyncratic error for tradable factors, or more literally measurement error for nontradables.
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across the various panels of Figure 5, it is clear that while for some factors
(such as the market) similar R2 can be obtained by PCA and SPCA, for other
factors (such as CMA and RMW) the out-of-sample R2’s obtained by SPCA are
substantially higher than those by PCA. This is not surprising given that the
scree plot shows the presence of several weak factors in the data.

One additional advantage of SPCA that is clearly visible in the heatmaps is
that SPCA often manages to achieve the same (or better) R2 than PCA, while
estimating a much smaller number of factors. For example, consider the mo-
mentum factor in Panel F. The last row of the heatmap shows that extracting
factors via PCA achieves an R2 above 70% only when at least six factors are
included; SPCA gets there with three factors. The reason is intuitive: SPCA
focuses on the test assets most informative about gt , and therefore can zoom in
quickly on the most relevant latent factors.

For nontradable factors, we cannot compare the risk premium estimate from
SPCA with the average excess return; beyond relying on the theory and sim-
ulations, we can look at the out-of-sample R2 for suggestive evidence about
the empirical performance of the estimator. Note that it is well known in the
literature that it is difficult to hedge nontradable factors, like consumption or
IP growth, in equity markets. We show, however, that SPCA gives a hedging
portfolio that successfully hedges at least part of the variation in many non-
tradable factors.

Consider first the liquidity factor of Pástor and Stambaugh (2003), in row 9
of Table IV and Panel A of Figure 6. The out-of-sample R2 achieved by SPCA
is above zero (up to 4%), and the estimated risk premium appears to be high
(between 70 and 95 bps per month). Panel A of Figure 6 shows how strongly
this R2 depends on p and q. Among all combinations of parameters, a large
fraction delivers a negative out-of-sample R2. This result highlights how diffi-
cult it is to hedge this factor (like most macro factors) using equity markets,
and indicates again the relatively good performance of SPCA as tuned in the
training sample.

The remainder of the table and of the two figures shows the results for all
of the other factors (due to space considerations, the heatmaps report only
a subset of the factors, while the table reports them all). A few interesting
patterns emerge. First, for tradable factors, SPCA gives risk premia estimates
that are always close to the model-free estimates obtained from average excess
returns: the two are never statistically different at the 5% level (with the
only exception of QMJ with p = 3). Second, confirming the previous litera-
ture, nontradable factors are much harder to hedge than tradable factors;
in fact, for several factors—like the first two JLN macro factors—we do not
get positive R2 at all. For those factors, there is so little exposure in equity
returns that SPCA cannot build a proper hedging portfolio. However, SPCA is
able to hedge out of sample at least part of the variation of many factors, like
the third LN factor, the three uncertainty measures, the liquidity factor, and
the intermediary capital factor (for which it achieves an R2 above 50%). Third,
the risk premia estimated by SPCA—for those factors for which SPCA can
actually hedge some of the variation—make economic sense. For example, the
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liquidity and intermediary factors command significantly positive risk premia,
whereas the three uncertainty measures command negative risk premia.

B.3. Asset Selection

To better understand how SPCA estimates risk premia, we can study which
assets are selected when extracting the latent factors. Table V shows, for
four representative factors (two tradables—Momentum and RMW, and two
nontradables—liquidity and intermediary capital), the top 10 test assets (by
absolute value of correlation) selected at each step. The names of the portfo-
lios follow Chen and Zimmermann (2022), with the numbers indicating the
quintile or decile of the characteristic.

Consider momentum in the first set of rows. To extract the first factor, SPCA
selects the assets with the highest correlation with the momentum factor.
The table indicates that the highest correlation, at 0.44, is with IntMom09,
an intermediate momentum portfolio. The other assets with high correlation
are all momentum-related, not surprisingly. In the next columns, the table
shows the assets selected at the second iteration of SPCA, after orthogonal-
izing gt and the test assets to the first factor. Interestingly, the correlations
among these residuals are even higher, up to 0.79 for a different momentum
sort (Mom12mOffSeason, momentum without the seasonal component). This
suggests that the first factor captures some of the asset variation that is not
exclusively specific to momentum (e.g., part of the market factor), which the
projection step of SPCA removes.

The remainder of the table shows which assets are selected at the different
iterations for RMW, Liquidity, and Intermediary Capital. For RMW (a prof-
itability factor), the selected assets are often based on accounting measures,
like asset growth, accruals, leverage, and operating profits. For liquidity,
portfolios sorted by payout yield and beta seem to play an important role
in hedging the risk. Finally, for intermediary capital, the portfolios selected
by SPCA relate to idiosyncratic volatility, liquidity, as well as two industry
portfolios (not surprisingly, banking and financials).

The selection of particularly informative assets is the central mechanism
through which SPCA addresses the issue of weak factors. It is also responsible
for the parsimony of SPCA to the number of factors used, since SPCA zooms in
on the most informative assets.

B.4. Strength of the Factors

We next report the strength of the factors extracted by SPCA at each step.
To make the results comparable across iterations of SPCA, and between SPCA
and PCA, we compute the strength of a latent factor as the eigenvalue of the
factor normalized by the number of assets used to extract it. Figure 7 reports,
in each panel, the log-normalized eigenvalues for the factors extracted from
PCA (dashed line) and for the factors extracted by SPCA, grouped across pan-
els for the various targets (since the factors extracted by SPCA are different
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Test Assets and Weak Factors 309

Figure 7. Strength of the latent factors. Each panel of the figure shows the log eigenvalues
extracted by PCA from the universe of all assets in the training sample, as well as the log eigen-
values extracted by SPCA at each iteration (for the first five factors), for the tuning parameter
selected by CV. All eigenvalues are normalized by the number of assets used, which is a measure
of the strength of the factor that is directly comparable. Panels A and B study two groups of trad-
able factors, Panel C a selection of the nontradables, and Panel D the remaining nontradables.
(Color figure can be viewed at wileyonlinelibrary.com)

for different targets gt): Panels A and B show the factors extracted when the
targets are tradable factors, Panel C focuses on a subset of nontradables, and
Panel D corresponds to the remaining nontradables. The figure shows eigen-
values corresponding to the first five factors.

As expected, the log eigenvalues for PCA decrease as lower-variance factors
are extracted. This is mostly (but not always) the case for SPCA, though we
see a large difference across factors. For some factors (like most nontradables,
which, as discussed above, are mostly noise factors), SPCA chooses a large
number of assets, so the results look very similar to PCA (e.g., see Panel D).
For factors where SPCA chooses a small number of assets (e.g., intermediary
capital and many tradables) we see that the strength of the extracted factor
is higher than with PCA. This effect is strongest for the first eigenvalue (the
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log scale hides it somewhat), but is there for subsequent factors as well. In
general, it appears that SPCA does indeed strengthen the factor extracted
from the cross section, compared to PCA—especially so when fewer assets are
selected.45

B.5. SPCA and the Universe of Test Assets

The fact that SPCA estimates the latent factors using the most informative
assets also makes it particularly robust to the universe of test assets used in
the estimation. We explore this in more detail here by considering three fac-
tors, value, momentum, and profitability, for which we can easily identify test
assets informative about them. Specifically, we consider (for this section only)
the data set from Hou, Xue, and Zhang (2020), which, as discussed in Sec-
tion III.A, collects test portfolios by characteristics in six groups, among which
one is labeled “value vs. growth,” one “momentum,” and one “profitability.” We
can then ask how SPCA performs in estimating the value risk premium if we
exclude the value and growth sorts from the universe. Similarly, we can ex-
amine how it performs in estimating the momentum and profitability risk pre-
mia if momentum and profitability test assets, respectively, are removed. Once
the sorted portfolios are removed, the corresponding factors naturally become
weaker. However, we expect SPCA to continue to perform well, provided suffi-
cient exposure to the factor is present in the remaining test assets. In contrast,
we expect PCA’s performance to deteriorate more sharply.

We again look at the performance of SPCA through the lens of the hedging
portfolio R2. Figure 8 provides the out-of-sample time-series R2 heatmap for
the three factors: value, momentum, and profitability. On the left of each row,
we can see the R2 obtained using all assets from the Hou, Xue, and Zhang
(2020) data set; on the right we can see the results excluding the test assets
corresponding to each factor. By looking at the last row of each heatmap,
which corresponds to the PCA estimate with no selection, it is clear that the
hedging performance of a portfolio built via PCA deteriorates significantly
when the most informative assets are removed. Consider, for example, the case
p = 9. For value, the PCA hedging portfolio’s out-of-sample R2 decreases from
64% to 47%, as value and growth assets are removed; SPCA’s R2 decreases
by substantially less, from 74% to 62%. In the case of momentum, the R2

decreases from 76% to 48% for PCA, but from only 86% to 77% for SPCA.
Finally, for profitability, the R2 decreases from 41% to 14% for PCA, but from
only 71% to 60% for SPCA. In all cases, the SPCA portfolio hedging ability
deteriorates little when the relative sorts are removed and the factor is made
weaker, whereas the deterioration is much larger for PCA.

45 One caveat is that once the main factors are extracted, and mostly noise is left in the cross
section, noise itself could lead to higher normalized eigenvalues. This is why the criterion for
tuning the parameter q of SPCA is the out-of-sample R2 of the hedging portfolio, and not this
measure of factor strength.
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Test Assets and Weak Factors 311

Figure 8. Varying the universe of test assets. For value, momentum, and RMW (profitabil-
ity), the figure provides out-of-sample R2 heatmaps when all the test assets from Hou, Xue, and
Zhang (2020) are used in the estimation (left), and when value portfolios, momentum portfolios,
or profitability portfolios, respectively, are excluded (right). (Color figure can be viewed at wileyon-
linelibrary.com)

To summarize, these empirical results mirror the simulations in Section II,
which show that SPCA performs well even when the factor of interest is weak
in the universe of test assets considered.

B.6. Robustness

We conclude by reporting in Table VI a version of Table IV obtained using
the Hou, Xue, and Zhang (2020) data set instead of the Chen and Zimmermann
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(2022) data. The results are qualitatively similar to those obtained using the
Chen and Zimmermann (2022) data, and, with a few exceptions, not statis-
tically different. This confirms that the results do not depend on using one
particular universe of test assets. That said, the results also suggest some dif-
ferences between these two universes of test assets, which our analysis in the
next section sheds some light on.

C. Diagnosing Factor Models via SPCA

In the previous section, we apply SPCA to the estimation of risk premia.
In this section, we illustrate the use of SPCA to diagnose missing factors in
observable factor models, applying the theory developed in Section I.C. Recall
that given an observable factor model gt , and a set of test assets rt , we can use
SPCA to recover the latent factor SDF (using gt to supervise the extraction of
weak factors). If we find that the Sharpe ratio achieved by the latent factors
recovered by SPCA is higher than that achieved by gt , we can conclude that
the factor model using gt to span the SDF is missing some factor. This is not
just a test of whether gt explains rt ; rather, it sheds light on why a model may
be rejected in the data.

We consider five observable factor models: the CAPM, the Fama-French
three-factor model (FF3), the Fama-French five-factor model (FF5), and finally
two richer models: one with the FF5 factors plus momentum, and one with FF5
plus momentum, BAB, and QMJ. We diagnose these models using both the CZ
and the HXZ data sets.

We divide the sample into two parts as in Section I.B, and use the first half
for training (and selection of the tuning parameter) and the second half for
out-of-sample evaluation. Maximal Sharpe ratios achieved using the factors in
gt and using the factors from SPCA are calculated out of sample.

Figure 9 reports the results. Each panel corresponds to a different model.
The x-axis in each figure corresponds to the number of factors extracted via
SPCA. The y-axis corresponds to the out-of-sample Sharpe ratio. The Sharpe
ratio achieved by gt is represented by a dashed solid line, which naturally does
not depend on the number of latent factors. In each graph, we overlay the SPCA
results with the HXZ and CZ data, respectively, using different markers (blue
triangles for HXZ and red circles for CZ). Not surprisingly, the out-of-sample
Sharpe ratios are somewhat noisy; we also plot fitted lines using raw estimates
to help visualize the trend.

Consider Panel A, in which gt is just the market. The market in our out-
of-sample period achieves a Sharpe ratio of 0.46 (dashed line). SPCA factors
extracted using gt achieve significantly higher Sharpe ratios, in both the HXZ
and CZ data. The Sharpe ratio increases with the number of factors, indicat-
ing that the CAPM misses several sources of risk. Results for the FF3 and
FF5 models (Panels B and C) are similar: for both, once the number of factors
is sufficiently large, SPCA produces a Sharpe ratio that is superior to either
model. When momentum is included (Panel D), the model performs as well as
SPCA in the HXZ data. This result suggests that relative to the universe of
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Figure 9. Out-of-sample Sharpe ratios of different factor models. Each panel reports the
out-of-sample Sharpe ratio of an observable factor model gt (dashed line), together with the out-
of-sample Sharpe ratio obtained from the factors recovered using SPCA, using both the HXZ data
(triangles) and CZ (circles). The x-axis corresponds to the number of factors used in SPCA (p).
(Color figure can be viewed at wileyonlinelibrary.com)

test assets in the HXZ data set, this model (FF5+momentum) appears to be
spanned by almost all sources of risk driving this data set (but not so in the CZ
data set).

As more observable factors are added to these models (Panel E that includes
BAB and QMJ), we should expect the Sharpe ratio of the model to increase, as
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long as more latent factors adds risk factors and not noise. We indeed find that
this is the case. Overall, this suggests that these richer models do a better job
in capturing the fundamental sources of risk in these data set, although some
amount of misspecification remains visible in the CZ data set.

The differences between the results using the HXZ and CZ data sets also em-
phasize the importance of the choice of test assets. Ideally, to have as powerful
tests as possible, we would want to have a large and varied universe of test as-
sets. The number of assets in a data set, however, is not a perfect proxy for the
richness of the universe in terms of risk exposures. In fact, as we have noted
in this paper, a universe with large N but low exposures to some factors can
introduce a weak factor problem. Here, we see another case in which the size of
the data set does not necessarily translate into richer risk exposure: HXZ con-
tains more assets than CZ, yet the results in this section show that using the
test assets, rt , from CZ, SPCA diagnoses additional factors compared to those
diagnosed using HXZ (this could reflect, e.g., a different construction of the
portfolios in the different data sets, or different selection of characteristics).

Overall, these results illustrate that the ability of SPCA to recover weak
latent factors can prove useful as a diagnostic tool for observable factor models,
and again highlights the importance of the choice of test assets in performing
asset pricing tests.

IV. Conclusions

The choice of test assets plays a fundamental role in empirical asset pricing
tests. The recent explosion of anomaly discoveries and related characteristics
in the empirical literature has provided researchers with a large universe of
potential test assets to choose from. On the one hand, the availability of so
many characteristics gives us hope that the returns of these portfolios can help
us uncover and identify the pricing of various dimensions of risk, including
those that are not well captured by standard cross sections. On the other hand,
the large dimensionality goes hand in hand with the weak factor issue: a factor
may well be captured by some assets within the large cross section, but if most
assets do not have exposure to that factor, it will be weak and inference will
be incorrect.

Traditional methodologies take the cross section of assets as given. In this
paper, we present a new methodology, SPCA, that instead actively selects as-
sets to estimate risk premia of factors of interest, whether they are strong or
weak, and at the same time addresses the issue of potentially omitted factors,
again regardless of whether they are strong or weak. In addition, SPCA can
exploit its ability to recover weak latent factors to help diagnose omitted fac-
tors in observable factor models. The paper confirms the good performance of
SPCA for both of these tasks in a variety of simulations, and illustrates the
application of the methodology in various empirical contexts.

While the road to a full understanding of risk and risk premia in financial
markets is still long, we believe that systematically tackling weak factors in
empirical asset pricing is an important step forward that opens the door to the
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study of factors that, while important to investors, may be not pervasive in
either the standard cross sections or the recently developed large universes of
test assets.

Two pressing issues on the debates related to the factor zoo are economic
interpretability and the overwhelming amount of degrees of freedom in empir-
ical asset pricing research. The central challenge we address in this paper is to
evaluate factors motivated by economic theories. Our proposal eliminates two
critical degrees of freedom altogether from this exercise: the choice of control
factors when estimating risk premia of economically motivated factors, and
the choice of test assets used for estimation and testing. Our study thereby
contributes to a promising agenda developing a fusion of asset pricing theory
and machine learning. It does so by using the factor structure as a main theo-
retical foundation, and applying to it tools and results from machine learning,
in order to exploit these statistical advances while maintaining economic in-
terpretability.

Initial submission: June 24, 2022; Accepted: December 21, 2023
Editors: Stefan Nagel, Philip Bond, Amit Seru, and Wei Xiong
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